Professorship for materials mechanics

Organisational unit: Section

Organisation profile

The professorship "materials mechanics“ focuses on the development of suitable models for different classes of materials based on the physical deformation mechanisms as well as on the modeling and simulation of local production processes. The development of these material models is crucial for the application of new materials, since these models are able to describe the deformation behavior in industrial production processes which allows for their optimization. In particular, local engineering in the context of production processes is of high technological relevance in adjusting local properties. For example, laser material processing and friction stir welding are relevant processes which are investigated. A targeted heat input into the material can be used to control and adjust the properties near the surface. As a result, improved properties, particularly in terms of damage tolerance can be achieved. The complexity of the interaction between the process parameters and material properties leads to high experimental effort, with sophisticated experimental techniques required to determine the influence of the process on the component. Therefore, reliable models are required to reduce the experimental effort. The developed material and process models are used to identify optimal process parameters that produce the desired properties inside the material and structure. The main objective of the professorship is to develop realistic and efficient numerical models which are formulated on basis of the underlying physical mechanisms. The identification of these mechanisms requires interdisciplinary collaborations with scientists from materials science, mechanics and production.The cooperation between the University of Lüneburg and the Helmholtz-Zentrum Geesthacht provides an ideal opportunity to accomplish the goals of this shared professorship.

Topics

modeling of microstructures

process modeling ans simulation of laser shock peening

process modeling and simulation of laser welding

modeling of metallic glasses

modeling of residual stresses

modeling of nano materials

development of homogenization approaches for heterogeneous materials

  1. Journal articles › Research › Peer-reviewed
  2. Published

    Friction surfacing of aluminum to steel: Influence of different substrate surface topographies

    Roos, A., Metternich, F., Kallien, Z., Baumann, J., Ehrich, J., Kipp, M., Hanke, S., Biermann, D. & Klusemann, B., 01.11.2023, In: Materials and Design. 235, 12 p., 112390.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  3. Published

    Fully periodic RVEs for technological relevant composites: Not worth the effort!

    Schneider, K., Klusemann, B. & Bargmann, S., 07.2017, In: Journal of Mechanics of Materials and Structures. 12, 4, p. 471-484 14 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. Published

    Fundamental study of multi-track friction surfacing deposits for dissimilar aluminum alloys with application to additive manufacturing

    Soujon, M., Kallien, Z., Roos, A., Zeller-Plumhoff, B. & Klusemann, B., 01.07.2022, In: Materials and Design. 219, 15 p., 110786.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  5. Published

    Heterogenous activation of dynamic recrystallization and twinning during friction stir processing of a Cu-4Nb alloy

    Escobar, J., Gwalani, B., Olszta, M., Silverstein, J., Ajantiwalay, T., Overman, N., Fu, W., Li, Y., Bergmann, L., Maawad, E., Klusemann, B., Santos, J. F. D. & Devaraj, A., 20.12.2022, In: Journal of Alloys and Compounds. 928, 9 p., 167007.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  6. Published

    Hybrid modelling by machine learning corrections of analytical model predictions towards high-fidelity simulation solutions

    Bock, F. E., Keller, S., Huber, N. & Klusemann, B., 10.04.2021, In: Materials. 14, 8, 19 p., 1883.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  7. Published

    Improved mechanical properties of cast Mg alloy welds via texture weakening by differential rotation refill friction stir spot welding

    Fu, B., Shen, J., Suhuddin, U. F. H. R., Chen, T., dos Santos, J. F., Klusemann, B. & Rethmeier, M., 01.10.2021, In: Scripta Materialia. 203, 6 p., 114113.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Influence of Mg content in Al alloys on processing characteristics and dynamically recrystallized microstructure of friction surfacing deposits

    Ehrich, J., Roos, A., Klusemann, B. & Hanke, S., 05.07.2021, In: Materials Science and Engineering A. 819, 141407.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  9. Published

    Investigation of friction stir welding process applied to ASTM 572 steel plate cladded with Inconel (R) 625

    Landell, R. M., de Lima Lessa, C. R., Bergmann, L., dos Santos, J. F., Kwietniewski, C. E. F. & Klusemann, B., 01.03.2021, In: Welding in the World. 65, 3, p. 393-403 11 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  10. Published

    Investigation of microstructural and mechanical properties in AA2024-T351 multi-layer friction surfacing

    Hoffmann, M., Roos, A. & Klusemann, B., 30.03.2024, In: Surface and Coatings Technology. 480, 11 p., 130610.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  11. Published

    Metallurgical aspects of joining commercially pure titanium to Ti-6Al-4V alloy in a T-joint configuration by laser beam welding

    Fomin, F., Frönd, M., Ventzke, V., Alvarez, P., Bauer, S. & Kashaev, N., 01.07.2018, In: The International Journal of Advanced Manufacturing Technology. 97, 5-8, p. 2019-2031 13 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

Previous 1...5 6 7 8 9 10 11 12 ...15 Next