Professorship for materials mechanics

Organisational unit: Section

Organisation profile

The professorship "materials mechanics“ focuses on the development of suitable models for different classes of materials based on the physical deformation mechanisms as well as on the modeling and simulation of local production processes. The development of these material models is crucial for the application of new materials, since these models are able to describe the deformation behavior in industrial production processes which allows for their optimization. In particular, local engineering in the context of production processes is of high technological relevance in adjusting local properties. For example, laser material processing and friction stir welding are relevant processes which are investigated. A targeted heat input into the material can be used to control and adjust the properties near the surface. As a result, improved properties, particularly in terms of damage tolerance can be achieved. The complexity of the interaction between the process parameters and material properties leads to high experimental effort, with sophisticated experimental techniques required to determine the influence of the process on the component. Therefore, reliable models are required to reduce the experimental effort. The developed material and process models are used to identify optimal process parameters that produce the desired properties inside the material and structure. The main objective of the professorship is to develop realistic and efficient numerical models which are formulated on basis of the underlying physical mechanisms. The identification of these mechanisms requires interdisciplinary collaborations with scientists from materials science, mechanics and production.The cooperation between the University of Lüneburg and the Helmholtz-Zentrum Geesthacht provides an ideal opportunity to accomplish the goals of this shared professorship.

Topics

modeling of microstructures

process modeling ans simulation of laser shock peening

process modeling and simulation of laser welding

modeling of metallic glasses

modeling of residual stresses

modeling of nano materials

development of homogenization approaches for heterogeneous materials

  1. Published
  2. Published

    Modeling precipitation kinetics for multi-phase and multi-component systems using particle size distributions via a moving grid technique

    Herrnring, J., Sundman, B., Staron, P. & Klusemann, B., 15.08.2021, In: Acta Materialia. 215, 14 p., 117053.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  3. Published

    Multimodal analysis of spatially heterogeneous microstructural refinement and softening mechanisms in three-pass friction stir processed Al-4Si alloy

    Escobar, J., Gwalani, B., Olszta, M., Silverstein, J., Overman, N., Bergmann, L., dos Santos, J. F., Staron, P., Maawad, E., Klusemann, B., Mathaudhu, S. & Devaraj, A., 20.12.2021, In: Journal of Alloys and Compounds. 887, 13 p., 161351.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. Published
  5. Published

    Multiscale process simulation of residual stress fields of laser beam welded precipitation hardened AA6082

    Herrnring, J., Staron, P., Kashaev, N. & Klusemann, B., 11.2018, In: Materialia. 3, p. 243-255 13 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  6. Published

    Numerical Investigation of Influence of Spot Geometry in Laser Peen Forming of Thin-Walled Ti-6Al-4V Specimens

    Pöltl, D., Keller, S., Chupakhin, S., Sala, S. T., Kashaev, N. & Klusemann, B., 22.07.2022, Achievements and Trends in Material Forming: Peer-reviewed extended papers selected from the 25 th International Conference on Material Forming (ESAFORM 2022). Vincze, G. & Barlat, F. (eds.). Baech: Trans Tech Publications Ltd, p. 2293-2302 10 p. (Key Engineering Materials; vol. 926).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  7. Published

    Numerical investigation of laser beam-welded AA2198 joints under different artificial ageing conditions

    Examilioti, T., Germanou, A., Papanikos, P., Kashaev, N., Klusemann, B. & Alexopoulos, N. D., 01.01.2022, In: Procedia Structural Integrity. 42, p. 244-250 7 p.

    Research output: Journal contributionsConference article in journalResearch

  8. Published

    Numerical Investigation of the Effect of Rolling on the Localized Stress and Strain Induction for Wire + Arc Additive Manufactured Structures

    Abbaszadeh, M., Hönnige, J. R., Martina, F., Neto, L., Kashaev, N., Colegrove, P., Williams, S. & Klusemann, B., 15.08.2019, In: Journal of Materials Engineering and Performance. 28, 8, p. 4931-4942 12 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  9. Published

    Numerical simulation of friction extrusion: process characteristics and material deformation due to friction

    Diyoke, G., Rath, L., Chafle, R., Ben Khalifa, N. & Klusemann, B., 05.2024, In: International Journal of Material Forming. 17, 3, 13 p., 26.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  10. Published

    Numerical study of rolling process on the plastic strain distribution in wire + arc additive manufactured Ti-6Al-4V

    Abbaszadeh, M., Hönnige, J., Martina, F., Kashaev, N., Williams, S. W. & Klusemann, B., 02.07.2019, In: AIP Conference Proceedings. 2113, 1, 6 p., 150019.

    Research output: Journal contributionsConference article in journalResearchpeer-review