Dimension theory of representations of real (and complex) numbers

Jörg Neunhäuserer
neunchen@aol.com
www.neunhaeuserer.de

b-adic representation

- Consider the b-adic representation of a real numbers $x \in[0,1]$:

- Choosing digits from $A \subseteq\{0, \ldots, b-1\}$ we define

$$
\mathcal{D}_{\text {b-adic }}[A]:=\left\{x \in[0,1] \mid d_{i}(x) \in A\right\} .
$$

- If $2 \geq|A|<b$ the set $\mathcal{D}_{\text {b-adic }}[A]$ is uncountable and compact but of length zero and totally disconnected.

b-adic representation

- Consider the b-adic representation of a real numbers $x \in[0,1]$:

$$
x=\sum_{i=1}^{\infty} d_{i}(x) b^{-i}, \quad d_{i}(x) \in\{0,1, \ldots, b-1\}
$$

- Choosing digits from $A \subseteq\{0, \ldots, b-1\}$ we define

$$
\mathcal{D}_{\text {b-adic }}[A]:=\left\{x \in[0,1] \mid d_{i}(x) \in \bar{A}\right\} .
$$

- If $2 \geq|A|<b$ the set $\mathcal{D}_{\text {b-adic }}[A]$ is uncountable and compact but of length zero and totally disconnected.

b-adic representation

- Consider the b-adic representation of a real numbers $x \in[0,1]$:

$$
x=\sum_{i=1}^{\infty} d_{i}(x) b^{-i}, \quad d_{i}(x) \in\{0,1, \ldots, b-1\}
$$

- Choosing digits from $A \subseteq\{0, \ldots, b-1\}$ we define

$$
\mathcal{D}_{\mathrm{b} \text {-adic }}[A]:=\left\{x \in[0,1] \mid d_{i}(x) \in A\right\} .
$$

- If $2 \geq|A|<b$ the set $\mathcal{D}_{b-a d i c}[A]$ is uncountable and compact but of length zero and totally disconnected.

b-adic representation

- Consider the b-adic representation of a real numbers $x \in[0,1]$:

$$
x=\sum_{i=1}^{\infty} d_{i}(x) b^{-i}, \quad d_{i}(x) \in\{0,1, \ldots, b-1\} .
$$

- Choosing digits from $A \subseteq\{0, \ldots, b-1\}$ we define

$$
\mathcal{D}_{\mathrm{b} \text {-adic }}[A]:=\left\{x \in[0,1] \mid d_{i}(x) \in A\right\} .
$$

- If $2 \geq|A|<b$ the set $\mathcal{D}_{\text {b-adic }}[A]$ is uncountable and compact but of length zero and totally disconnected.

Hausdorff dimension

- The d-dimension Hausdorff measure of $B \subseteq \mathbb{R}^{n}$ is

- The is a natural generalization of the n-dimensional Lebesgue measure to non-integer dimensions, $\mathfrak{L}^{n}=c_{n} \mathfrak{H}^{n}$.
- The Hausdorff dimension is given by

$$
\operatorname{dim} B=\inf \left\{d \geq 0 \mid \mathfrak{H}^{d}(B)=0\right\}=\sup \left\{d \geq 0 \mid \mathfrak{H}^{d}(B)=\infty\right\}
$$

Hausdorff dimension

- The d-dimension Hausdorff measure of $B \subseteq \mathbb{R}^{n}$ is

$$
\mathfrak{H}^{d}(B)=\lim _{\epsilon \longleftrightarrow 0} \inf \left\{\sum_{i=1}^{\infty} \operatorname{diam}\left(C_{i}\right)^{d} \mid B \subseteq \bigcup_{i=1}^{\infty} C_{i}, \operatorname{diam}\left(C_{i}\right)<\epsilon\right\} .
$$

- The is a natural generalization of the n-dimensional Lebesgue measure to non-integer dimensions, $\mathfrak{L}^{n}=c_{n} \mathfrak{H}^{n}$.
- The Hausdorff dimension is given by

Hausdorff dimension

- The d-dimension Hausdorff measure of $B \subseteq \mathbb{R}^{n}$ is

$$
\mathfrak{H}^{d}(B)=\lim _{\epsilon \longmapsto 0} \inf \left\{\sum_{i=1}^{\infty} \operatorname{diam}\left(C_{i}\right)^{d} \mid B \subseteq \bigcup_{i=1}^{\infty} C_{i}, \operatorname{diam}\left(C_{i}\right)<\epsilon\right\} .
$$

- The is a natural generalization of the n-dimensional Lebesgue measure to non-integer dimensions, $\mathfrak{L}^{n}=c_{n} \mathfrak{H}^{n}$.
- The Hausdorff dimension is given by

Hausdorff dimension

- The d-dimension Hausdorff measure of $B \subseteq \mathbb{R}^{n}$ is

$$
\mathfrak{H}^{d}(B)=\lim _{\epsilon \longmapsto 0} \inf \left\{\sum_{i=1}^{\infty} \operatorname{diam}\left(C_{i}\right)^{d} \mid B \subseteq \bigcup_{i=1}^{\infty} C_{i}, \operatorname{diam}\left(C_{i}\right)<\epsilon\right\} .
$$

- The is a natural generalization of the n-dimensional Lebesgue measure to non-integer dimensions, $\mathfrak{L}^{n}=c_{n} \mathfrak{H}^{n}$.
- The Hausdorff dimension is given by

$$
\operatorname{dim} B=\inf \left\{d \geq 0 \mid \mathfrak{H}^{d}(B)=0\right\}=\sup \left\{d \geq 0 \mid \mathfrak{H}^{d}(B)=\infty\right\}
$$

Hausdorff (1919)

Theorem

$$
\operatorname{dim} \mathcal{D}_{b-a d i c}[A]=\frac{\log |A|}{\log b}
$$

- For the upper bound just cover the set by by $|A|^{n}$ intervals of length b^{n}.
- For the lower bound define a probability measure by $\mu\left(l_{a_{1} a_{2} \ldots a_{n}}\right)=|A|^{-n}$. We have $x \in \mathcal{D}: \mu\left(B_{r}(x)\right) \leq c r^{\log |A| / \log b}$.

By the mass distribution principle $\mathfrak{H}^{\log |A| / \log b}(\mathcal{D}) \geq 1 / c$.

Hausdorff (1919):

Theorem

$$
\operatorname{dim} \mathcal{D}_{b-\text { adic }}[A]=\frac{\log |A|}{\log b}
$$

- For the upper bound just cover the set by by $|A|^{n}$ intervals of length b^{n}.
- For the lower bound define a probability measure by $\mu\left(I_{a_{1} a_{2} \ldots a_{n}}\right)=|A|^{-n}$. We have

$$
x \in \mathcal{D}: \mu\left(B_{r}(x)\right) \leq c r^{\log |A| / \log b} .
$$

By the mass distribution principle $\mathfrak{H}^{\log |A| / \log b}(\mathcal{D}) \geq 1 / c$.

Hausdorff (1919):

Theorem

$$
\operatorname{dim} \mathcal{D}_{b-a d i c}[A]=\frac{\log |A|}{\log b}
$$

- For the upper bound just cover the set by by $|A|^{n}$ intervals of length b^{n}.
- For the lower bound define a probability measure by $\mu\left(l_{a_{1} a_{2} \ldots a_{n}}\right)=|A|^{-n}$. We have

$$
x \in \mathcal{D}: \mu\left(B_{r}(x)\right) \leq c r^{\log |A| / \log b} .
$$

By the mass distribution principle $\mathfrak{H}^{\log |A| / \log b}(\mathcal{D}) \geq 1 / c$.

Hausdorff (1919):

Theorem

$$
\operatorname{dim} \mathcal{D}_{b \text {-adic }}[A]=\frac{\log |A|}{\log b}
$$

- For the upper bound just cover the set by by $|A|^{n}$ intervals of length b^{n}.
- For the lower bound define a probability measure by $\mu\left(l_{a_{1} a_{2} \ldots a_{n}}\right)=|A|^{-n}$. We have

$$
x \in \mathcal{D}: \mu\left(B_{r}(x)\right) \leq c r^{\log |A| / \log b}
$$

By the mass distribution principle $\mathfrak{H}^{\log |A| / \log b}(\mathcal{D}) \geq 1 / c$.

Hausdorff (1919):

Theorem

$$
\operatorname{dim} \mathcal{D}_{b \text {-adic }}[A]=\frac{\log |A|}{\log b}
$$

- For the upper bound just cover the set by by $|A|^{n}$ intervals of length b^{n}.
- For the lower bound define a probability measure by $\mu\left(I_{a_{1} a_{2} \ldots a_{n}}\right)=|A|^{-n}$. We have

$$
x \in \mathcal{D}: \mu\left(B_{r}(x)\right) \leq c r^{\log |A| / \log b} .
$$

By the mass distribution principle $\mathfrak{H}^{\log |A| / \log b}(\mathcal{D}) \geq 1 / c$.

Hausdorff (1919):

Theorem

$$
\operatorname{dim} \mathcal{D}_{b \text {-adic }}[A]=\frac{\log |A|}{\log b}
$$

- For the upper bound just cover the set by by $|A|^{n}$ intervals of length b^{n}.
- For the lower bound define a probability measure by $\mu\left(I_{a_{1} a_{2} \ldots a_{n}}\right)=|A|^{-n}$. We have

$$
x \in \mathcal{D}: \mu\left(B_{r}(x)\right) \leq c r^{\log |A| / \log b} .
$$

By the mass distribution principle $\mathfrak{H}^{\log |A| / \log b}(\mathcal{D}) \geq 1 / c$.

Prescribed frequencies in b-adic representation

- Let $\mathbf{p}=\left(p_{j}\right)$ be a probability vector on $\{0, \ldots b-1\}$. The entropy of \mathbf{p} is

- Consider the set of real numbers in $[0,1]$ with given frequency of digits in the b-adic representation

- $\mathcal{F}_{\text {b-adic }}[(1 / b)]$ is the set of normal numbers to base b. Almost every number is normal.

Prescribed frequencies in b-adic representation

- Let $\mathbf{p}=\left(p_{j}\right)$ be a probability vector on $\{0, \ldots b-1\}$. The entropy of \mathbf{p} is

$$
H(\mathbf{p})=-\sum_{j=0}^{b-1} p_{j} \log p_{j}
$$

- Consider the set of real numbers in $[0,1]$ with given frequency of digits in the b-adic representation

- $\mathcal{F}_{\mathrm{b} \text {-adic }}[(1 / b)]$ is the set of normal numbers to base b Almost every number is normal.

Prescribed frequencies in b-adic representation

- Let $\mathbf{p}=\left(p_{j}\right)$ be a probability vector on $\{0, \ldots b-1\}$. The entropy of \mathbf{p} is

$$
H(\mathbf{p})=-\sum_{j=0}^{b-1} p_{j} \log p_{j}
$$

- Consider the set of real numbers in $[0,1]$ with given frequency of digits in the b -adic representation

$$
\mathcal{F}_{\text {b-adic }}[\mathbf{p}]:=\left\{x \left\lvert\, \lim _{n \mapsto \infty} \frac{\left|\left\{i=1, \ldots n \mid d_{i}(x)=j\right\}\right|}{n}=p_{j}\right.\right\} .
$$

- $\mathcal{F}_{\mathrm{b} \text {-adic }}[(1 / b)]$ is the set of normal numbers to base b. Almost every number is normal.

Prescribed frequencies in b-adic representation

- Let $\mathbf{p}=\left(p_{j}\right)$ be a probability vector on $\{0, \ldots b-1\}$. The entropy of \mathbf{p} is

$$
H(\mathbf{p})=-\sum_{j=0}^{b-1} p_{j} \log p_{j}
$$

- Consider the set of real numbers in $[0,1]$ with given frequency of digits in the b -adic representation

$$
\mathcal{F}_{\text {b-adic }}[\mathbf{p}]:=\left\{x \left\lvert\, \lim _{n \mapsto \infty} \frac{\left|\left\{i=1, \ldots n \mid d_{i}(x)=j\right\}\right|}{n}=p_{j}\right.\right\} .
$$

- $\mathcal{F}_{\mathrm{b} \text {-adic }}[(1 / b)]$ is the set of normal numbers to base b. Borel (1909): Almost every number is normal.

Besicovitch (1934) / Eggleston (1949):

Theorem

$$
\operatorname{dim} \mathcal{F}_{b-a d i c}[\mathbf{p}]=\frac{H(\mathbf{p})}{\log b}(=: \theta)
$$

- Construct a measure $\mu\left(I_{d_{1} d_{2} \ldots d_{n}}\right)=p_{d_{1}} p_{d_{2}} \ldots p_{d_{n}}$.

- $s<\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=0 \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=\infty$
- $s>\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=\infty \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=0$

Besicovitch (1934) / Eggleston (1949):

Theorem

$$
\operatorname{dim} \mathcal{F}_{b-a d i c}[\mathbf{p}]=\frac{H(\mathbf{p})}{\log b}(=: \theta)
$$

- Construct a measure $\mu\left(I_{d_{1} d_{2} \ldots d_{n}}\right)=p_{d_{1}} p_{d_{2}} \ldots p_{d_{n}}$
-

$$
\begin{gathered}
x \in \mathcal{F}: \lim _{n \longmapsto \infty} \frac{1}{n} \log \frac{\mu\left(I_{d_{1} \ldots d_{n}}(x)\right)}{\left|I_{d_{1} \ldots d_{n}}(x)\right|^{s}}=-H(\mathbf{p})+s \log (b) \\
s<\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=0 \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=\infty \\
s>\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=\infty \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=0
\end{gathered}
$$

Besicovitch (1934) / Eggleston (1949):

Theorem

$$
\operatorname{dim} \mathcal{F}_{b-a d i c}[\mathbf{p}]=\frac{H(\mathbf{p})}{\log b}(=: \theta)
$$

- Construct a measure $\mu\left(I_{d_{1} d_{2} \ldots d_{n}}\right)=p_{d_{1}} p_{d_{2}} \ldots p_{d_{n}}$.

Besicovitch (1934) / Eggleston (1949):

Theorem

$$
\operatorname{dim} \mathcal{F}_{b-a d i c}[\mathbf{p}]=\frac{H(\mathbf{p})}{\log b}(=: \theta)
$$

- Construct a measure $\mu\left(I_{d_{1} d_{2} \ldots d_{n}}\right)=p_{d_{1}} p_{d_{2}} \ldots p_{d_{n}}$.
-

$$
x \in \mathcal{F}: \lim _{n \longmapsto \infty} \frac{1}{n} \log \frac{\mu\left(I_{d_{1} \ldots d_{n}}(x)\right)}{\left|I_{d_{1} \ldots d_{n}}(x)\right|^{s}}=-H(\mathbf{p})+s \log (b)
$$

- $s<\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=0 \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=\infty$
- $s>\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=\infty \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=0$

Besicovitch (1934) / Eggleston (1949):

Theorem

$$
\operatorname{dim} \mathcal{F}_{b-a d i c}[\mathbf{p}]=\frac{H(\mathbf{p})}{\log b}(=: \theta)
$$

- Construct a measure $\mu\left(I_{d_{1} d_{2} \ldots d_{n}}\right)=p_{d_{1}} p_{d_{2}} \ldots p_{d_{n}}$.
-

$$
x \in \mathcal{F}: \quad \lim _{n \longmapsto \infty} \frac{1}{n} \log \frac{\mu\left(I_{d_{1} \ldots d_{n}}(x)\right)}{\left|I_{d_{1} \ldots d_{n}}(x)\right|^{s}}=-H(\mathbf{p})+s \log (b)
$$

- $s<\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=0 \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=\infty$
- $s>\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=\infty \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=0$

Besicovitch (1934) / Eggleston (1949):

Theorem

$$
\operatorname{dim} \mathcal{F}_{b-a d i c}[\mathbf{p}]=\frac{H(\mathbf{p})}{\log b}(=: \theta)
$$

- Construct a measure $\mu\left(I_{d_{1} d_{2} \ldots d_{n}}\right)=p_{d_{1}} p_{d_{2}} \ldots p_{d_{n}}$.
-

$$
x \in \mathcal{F}: \quad \lim _{n \longmapsto \infty} \frac{1}{n} \log \frac{\mu\left(I_{d_{1} \ldots d_{n}}(x)\right)}{\left|I_{d_{1} \ldots d_{n}}(x)\right|^{s}}=-H(\mathbf{p})+s \log (b)
$$

- $s<\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=0 \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=\infty$
- $s>\theta: \lim _{r \rightarrow \infty} \mu\left(B_{r}(x)\right) / r^{s}=\infty \Rightarrow \mathfrak{H}^{s}(\mathcal{F})=0$

A modification of the dyadic representation

- Represent a real number $x \in(0,1]$ by a sequence in $\mathbb{N}^{\mathbb{N}}$:

- $n_{i}(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\text {m.dyadic }}[A]$ with digits in A.
- $\mathcal{D}_{\text {m. dyadic }}[\{1,2\}]=\left\{x \mid n_{i}(x)=0 \Rightarrow n_{i+1}(x)=1\right\}$ is called the golden Markov set.

A modification of the dyadic representation

- Represent a real number $x \in(0,1]$ by a sequence in $\mathbb{N}^{\mathbb{N}}$:

$$
x=\sum_{i=1}^{\infty} 2^{-\left(n_{1}(x)+\cdots+n_{i}(x)\right)}, \quad n_{i}(x) \in \mathbb{N}
$$

- $n_{i}(x)$ is the distance between two digits 1 in the dyadic

expansion.

- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\text {m.dyadic }}[A]$ with digits in A.
- $\mathcal{D}_{\text {m. dyadic }}[\{1,2\}]=\left\{x \mid n_{i}(x)=0 \Rightarrow n_{i+1}(x)=1\right\}$ is called the golden Markov set.

A modification of the dyadic representation

- Represent a real number $x \in(0,1]$ by a sequence in $\mathbb{N}^{\mathbb{N}}$:

$$
x=\sum_{i=1}^{\infty} 2^{-\left(n_{1}(x)+\cdots+n_{i}(x)\right)}, \quad n_{i}(x) \in \mathbb{N}
$$

- $n_{i}(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\text {m.dyadic }}[A]$ with digits in A.
- $\mathcal{D}_{\text {m. dyadic }}\left[\{1,2\} 1=\left\{x \mid n_{i}(x)=0 \Rightarrow n_{i+1}(x)=1\right\}\right.$ is called the golden Markov set.

A modification of the dyadic representation

- Represent a real number $x \in(0,1]$ by a sequence in $\mathbb{N}^{\mathbb{N}}$:

$$
x=\sum_{i=1}^{\infty} 2^{-\left(n_{1}(x)+\cdots+n_{i}(x)\right)}, \quad n_{i}(x) \in \mathbb{N}
$$

- $n_{i}(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\text {m.dyadic }}[A]$ with digits in A.
- $\mathcal{D}_{\text {m.dyadic }}[\{1,2\}]=\left\{x \mid n_{i}(x)=0 \Rightarrow n_{i+1}(x)=1\right\}$ is called the golden Markov set.

A modification of the dyadic representation

- Represent a real number $x \in(0,1]$ by a sequence in $\mathbb{N}^{\mathbb{N}}$:

$$
x=\sum_{i=1}^{\infty} 2^{-\left(n_{1}(x)+\cdots+n_{i}(x)\right)}, \quad n_{i}(x) \in \mathbb{N} .
$$

- $n_{i}(x)$ is the distance between two digits 1 in the dyadic expansion.
- For $A \subseteq \mathbb{N}$ consider the set of real numbers $\mathcal{D}_{\text {m.dyadic }}[A]$ with digits in A.
- $\mathcal{D}_{\text {m.dyadic }}[\{1,2\}]=\left\{x \mid n_{i}(x)=0 \Rightarrow n_{i+1}(x)=1\right\}$ is called the golden Markov set.

Theorem

The Hausdorff dimension d of \mathcal{D} m.dyadic $[A]$ is d is given by

- For $A=\{1, \ldots n\}: d=\log (s) / \log (2)$ where s is given by the solution $s \in(1,2)$ of $s^{n}-s^{n-1} \cdots-s-1=0$.
- For the golden Markov set: $d=\log ((\sqrt{5}+1) / 2) / \log 2$.
- For $A=\{n j \mid n \in \mathbb{N}\}$ we have $d=1 / j$.
- For $A=\left\{n j+m \mid n \in \mathbb{N}_{0}\right\} d$ is given by $2^{-d j}+2^{-d m}=1$.

Theorem

The Hausdorff dimension d of $\mathcal{D}_{\text {m.dyadic }}[A]$ is d is given by

$$
\sum_{i \in A} 2^{-i d}=1
$$

- For $A=\{1, \ldots n\}: d=\log (s) / \log (2)$ where s is given by the solution $s \in(1,2)$ of $s^{n}-s^{n-1} \cdots-s-1=0$.
- For the golden Markov set: $d=\log ((\sqrt{5}+1) / 2) / \log 2$.
- For $A=\{n j \mid n \in \mathbb{N}\}$ we have $d=1 / j$.
- For $A=\left\{n j+m \mid n \in \mathbb{N}_{0}\right\} d$ is given by $2^{-d j}+2^{-d m}=1$.

Theorem

The Hausdorff dimension d of $\mathcal{D}_{\text {m.dyadic }}[A]$ is d is given by

$$
\sum_{i \in A} 2^{-i d}=1
$$

- For $A=\{1, \ldots n\}: d=\log (s) / \log (2)$ where s is given by the solution $s \in(1,2)$ of $s^{n}-s^{n-1} \cdots-s-1=0$.
- For the golden Markov set: $d=\log ((\sqrt{5}+1) / 2) / \log 2$.
- For $A=\{n j \mid n \in \mathbb{N}\}$ we have $d=1 / j$.
- For $A=\left\{n j+m \mid n \in \mathbb{N}_{0}\right\} d$ is given by $2^{-d j}+2^{-d m}=1$

Theorem

The Hausdorff dimension d of $\mathcal{D}_{\text {m.dyadic }}[A]$ is d is given by

$$
\sum_{i \in A} 2^{-i d}=1
$$

- For $A=\{1, \ldots n\}: d=\log (s) / \log (2)$ where s is given by the solution $s \in(1,2)$ of $s^{n}-s^{n-1} \cdots-s-1=0$.
- For the golden Markov set: $d=\log ((\sqrt{5}+1) / 2) / \log 2$.
- For $A=\{n j \mid n \in \mathbb{N}\}$ we have $d=1 / j$.
- For $A=\left\{n j+m \mid n \in \mathbb{N}_{0}\right\} d$ is given by $2^{-d j}+2^{-d m}=1$

Theorem

The Hausdorff dimension d of $\mathcal{D}_{\text {m.dyadic }}[A]$ is d is given by

$$
\sum_{i \in A} 2^{-i d}=1
$$

- For $A=\{1, \ldots n\}: d=\log (s) / \log (2)$ where s is given by the solution $s \in(1,2)$ of $s^{n}-s^{n-1} \cdots-s-1=0$.
- For the golden Markov set: $d=\log ((\sqrt{5}+1) / 2) / \log 2$.
- For $A=\{n j \mid n \in \mathbb{N}\}$ we have $d=1 / j$.
- For $A=\left\{n j+m \mid n \in \mathbb{N}_{0}\right\} d$ is given by $2^{-d j}+2^{-d m}=1$

Theorem

The Hausdorff dimension d of $\mathcal{D}_{\text {m.dyadic }}[A]$ is d is given by

$$
\sum_{i \in A} 2^{-i d}=1
$$

- For $A=\{1, \ldots n\}: d=\log (s) / \log (2)$ where s is given by the solution $s \in(1,2)$ of $s^{n}-s^{n-1} \cdots-s-1=0$.
- For the golden Markov set: $d=\log ((\sqrt{5}+1) / 2) / \log 2$.
- For $A=\{n j \mid n \in \mathbb{N}\}$ we have $d=1 / j$.
- For $A=\left\{n j+m \mid n \in \mathbb{N}_{0}\right\} d$ is given by $2^{-d j}+2^{-d m}=1$.

Consider the set of real numbers $\mathcal{F}_{\text {m.dyadic }}[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p} with expectation $E(\mathbf{p})$ and entropy $H(\mathbf{p})$

Theorem

- For the equidistribution

- $\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}\left[\left(1 / 2,1 / 4, \ldots, 1 / 2^{n}, \ldots\right)\right]=1$

Consider the set of real numbers $\mathcal{F}_{\text {m.dyadic }}[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p} with expectation $E(\mathbf{p})$ and entropy $H(\mathbf{p})$

Theorem

$$
\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}[\mathbf{p}]=\frac{H(\mathbf{p})}{E(\mathbf{p}) \log 2}
$$

- For the equidistribution

- $\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}\left[\left(1 / 2,1 / 4, \ldots, 1 / 2^{n}, \ldots\right)\right]=1$

Consider the set of real numbers $\mathcal{F}_{\text {m.dyadic }}[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p} with expectation $E(\mathbf{p})$ and entropy $H(\mathbf{p})$

Theorem

$$
\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}[\mathbf{p}]=\frac{H(\mathbf{p})}{E(\mathbf{p}) \log 2}
$$

- For the equidistribution

$$
\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}[(1 / n, \ldots, 1 / n)]=\frac{2 \log (n)}{(n+1) \log (2)}
$$

- $\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}\left[\left(1 / 2,1 / 4, \ldots, 1 / 2^{n}, \ldots\right)\right]=1$

Consider the set of real numbers $\mathcal{F}_{\text {m.dyadic }}[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p} with expectation $E(\mathbf{p})$ and entropy $H(\mathbf{p})$

Theorem

$$
\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}[\mathbf{p}]=\frac{H(\mathbf{p})}{E(\mathbf{p}) \log 2}
$$

- For the equidistribution

$$
\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}[(1 / n, \ldots, 1 / n)]=\frac{2 \log (n)}{(n+1) \log (2)}
$$

- $\operatorname{dim} \mathcal{F}_{\text {m.dyadic }}\left[\left(1 / 2,1 / 4, \ldots, 1 / 2^{n}, \ldots\right)\right]=1$

Continued fraction representation

- Represent a real number $x \in(0,1)$ by a continued fraction:

- Consider the set of numbers $\mathcal{D}_{\text {con. }}[A]$ with digits in A.

Theorem

for $n>8$.

Continued fraction representation

- Represent a real number $x \in(0,1)$ by a continued fraction:

$$
x=\frac{1}{n_{1}(x)+\frac{1}{n_{2}(x)+\ldots}}, \quad n_{i(x)} \in \mathbb{N}
$$

- Consider the set of numbers $\mathcal{D}_{\text {con }}[A]$ with digits in A.

Theorem

Continued fraction representation

- Represent a real number $x \in(0,1)$ by a continued fraction:

$$
x=\frac{1}{n_{1}(x)+\frac{1}{n_{2}(x)+\ldots}}, \quad n_{i(x)} \in \mathbb{N}
$$

- Consider the set of numbers $\mathcal{D}_{\text {con }}[A]$ with digits in A.

Continued fraction representation

- Represent a real number $x \in(0,1)$ by a continued fraction:

$$
x=\frac{1}{n_{1}(x)+\frac{1}{n_{2}(x)+\ldots}}, \quad n_{i(x)} \in \mathbb{N}
$$

- Consider the set of numbers $\mathcal{D}_{\text {con }}[A]$ with digits in A.

Jarnik (1929):

Theorem

$$
1-\frac{4}{n \log 2} \leq \operatorname{dim}_{H} \mathcal{D}_{\operatorname{con} .}[\{1, \ldots, n\}] \leq 1-\frac{1}{8 n \log n}
$$

for $n>8$.

- The calculation $\mathcal{D}_{\text {con }}$. A] has been addressed over the years:
- Today we have an efficient algorithm du to Jenkinson Pollicott (2001). Especially:
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2\}]=0.531280506277 \ldots$ (54 digits known)
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .\{\{1,2,3\}]=0.7046 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .\{\{1,2,3,4\}]=0.7889 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {Con }} .[\{1,2,3,4,5\}]=0.8368 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4,5,6\}]=0.8676 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,3\}]=0.254489077661 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{2,3\}]=0.337436780806 \ldots$
- The calculation $\mathcal{D}_{\text {con }}$. A] has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Especially:
- dim Dcon. [\{1, 2\}] $=0.531280506277 \ldots$ (54 digits known)
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3\}]=0.7046$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4\}]=0.7889$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3,4,5\}]=0.8368$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4,5,6\}]=0.8676$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,3\}]=0.254489077661$
- $\operatorname{dim} \mathcal{D}_{\text {con }} .[\{2,3\}]=0.337436780806$
- The calculation $\mathcal{D}_{\text {con }}$. A] has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2\}]=0.531280506277 \ldots$ (54 digits known)
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3\}]=0.7046$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}$. $\left.\{1,2,3,4\}\right]=0.7889$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3,4,5\}]=0.8368$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4,5,6\}]=0.8676$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .\{\{1,3\}]=0.254489077661$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{2,3\}]=0.337436780806$
- The calculation $\mathcal{D}_{\text {con }}[A]$ has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2\}]=0.531280506277 \ldots(54$ digits known $)$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3\}]=0.7046$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4\}]=0.7889$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3,4,5\}]=0.8368$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4,5,6\}]=0.8676$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,3\}]=0.254489077661$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{2,3\}]=0.337436780806$
- The calculation $\mathcal{D}_{\text {con }}$. A] has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2\}]=0.531280506277 \ldots(54$ digits known $)$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3\}]=0.7046 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4\}]=0.7889 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4,5\}]=0.8368 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3,4,5,6\}]=0.8676 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,3\}]=0.254489077661$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{2,3\}]=0.337436780806$
- The calculation $\mathcal{D}_{\text {con }}$. A] has been addressed over the years: Good (1941), Bumby (1982), Hensly (1989/1996)
- Today we have an efficient algorithm du to Jenkinson / Pollicott (2001). Especially:
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2\}]=0.531280506277 \ldots(54$ digits known $)$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,2,3\}]=0.7046 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4\}]=0.7889 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4,5\}]=0.8368 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }} .[\{1,2,3,4,5,6\}]=0.8676 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{1,3\}]=0.254489077661 \ldots$
- $\operatorname{dim} \mathcal{D}_{\text {con. }}[\{2,3\}]=0.337436780806 \ldots$

As a corollary of Jarnik's dimension estimate:

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid\left(n_{k}(x)\right) \text { is bounded }\right\}=1
$$

Good (1941):

Theorem

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid \lim _{k \rightarrow \infty}\left(n_{k}(x)\right)=\infty\right\}=1 / 2
$$

\square
Theorem

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid n_{k}(x) \geq a^{b^{k}}\right\}=1 /(b+1)
$$

As a corollary of Jarnik's dimension estimate:

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid\left(n_{k}(x)\right) \text { is bounded }\right\}=1
$$

Theorem

$\operatorname{dim}_{H}\left\{x \in(0,1) \mid \quad \lim \left(n_{k}(x)\right)=\infty\right\}=1 / 2$

Theorem

As a corollary of Jarnik's dimension estimate:

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid\left(n_{k}(x)\right) \text { is bounded }\right\}=1
$$

Good (1941):

Theorem

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid \lim _{k \rightarrow \infty}\left(n_{k}(x)\right)=\infty\right\}=1 / 2
$$

Theorem

$\operatorname{dim}_{H}\left\{x \in(0,1) \mid n_{k}(x) \geq a^{b^{k}}\right\}=1 /(b+1)$

As a corollary of Jarnik's dimension estimate:

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid\left(n_{k}(x)\right) \text { is bounded }\right\}=1
$$

Good (1941):

Theorem

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid \lim _{k \rightarrow \infty}\left(n_{k}(x)\right)=\infty\right\}=1 / 2
$$

Luczak (1997):

Theorem

$$
\operatorname{dim}_{H}\left\{x \in(0,1) \mid n_{k}(x) \geq a^{b^{k}}\right\}=1 /(b+1)
$$

Complex continued fractions

- For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

- The digits c_{j} are given by

$$
z_{j+1}=1 / z_{j}-\left[1 / z_{j}\right]=1 / z_{j}-c_{j}
$$

with $c_{0}=[z]$ and $z_{0}=z-c_{0}$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

- For $A \subseteq \mathbb{N}[i]$ consider the set of Hurwitz continued fractions $\mathcal{D}_{\text {comlex }}[A]$ with digits in A.

Complex continued fractions

- For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$
z=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ldots}}, \quad c_{j}=a_{j}+b_{j} i \in \mathbb{Z}[i]
$$

- The digits c_{j} are given by

$$
z_{j+1}=1 / z_{j}-\left[1 / z_{j}\right]=1 / z_{j}-c_{j}
$$

with $c_{0}=[z]$ and $z_{0}=z-c_{0}$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

- For $A \subseteq \mathbb{N}[i]$ consider the set of Hurwitz continued fractions $\mathcal{D}_{\text {comlex }}[A]$ with digits in A.

Complex continued fractions

- For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$
z=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ldots}}, \quad c_{j}=a_{j}+b_{j} i \in \mathbb{Z}[i]
$$

- The digits c_{j} are given by

$$
z_{j+1}=1 / z_{j}-\left[1 / z_{j}\right]=1 / z_{j}-c_{j}
$$

with $c_{0}=[z]$ and $z_{0}=z-c_{0}$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

- For $A \subseteq \mathbb{N}[i]$ consider the set of Hurwitz continued fractions $\mathcal{D}_{\text {comlex }}[A]$ with digits in A.

Complex continued fractions

- For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$
z=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ldots}}, \quad c_{j}=a_{j}+b_{j} i \in \mathbb{Z}[i]
$$

- The digits c_{j} are given by

$$
z_{j+1}=1 / z_{j}-\left[1 / z_{j}\right]=1 / z_{j}-c_{j}
$$

with $c_{0}=[z]$ and $z_{0}=z-c_{0}$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

- For $A \subseteq \mathbb{N}[i]$ consider the set of Hurwitz continued fractions $\mathcal{D}_{\text {comlex }}[A]$ with digits in A.

Complex continued fractions

- For $z \in \mathbb{C}$ consider the Hurwiz continued fraction

$$
z=c_{0}+\frac{1}{c_{1}+\frac{1}{c_{2}+\ldots}}, \quad c_{j}=a_{j}+b_{j} i \in \mathbb{Z}[i]
$$

- The digits c_{j} are given by

$$
z_{j+1}=1 / z_{j}-\left[1 / z_{j}\right]=1 / z_{j}-c_{j}
$$

with $c_{0}=[z]$ and $z_{0}=z-c_{0}$ where [.] denotes rounding to the nearest element of $\mathbb{Z}[i]$.

- For $A \subseteq \mathbb{N}[i]$ consider the set of Hurwitz continued fractions $\mathcal{D}_{\text {comlex }}[A]$ with digits in A.

Estimating the modulus of the derivative of $T z=1 /(z+a+b i)$ on the ball $B_{1 / 2}(1 / 2)$ one proves:

Theorem

$$
\begin{gathered}
d<\operatorname{dim} \mathcal{D}_{\text {comlex }}[A]<D \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}}\right)^{D}=1 \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}+(1+\sqrt{2}) \max \{a, b\}+1}\right)^{d}=1
\end{gathered}
$$

- $0.21<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{3+i, 2+4 i\}]<0.27$
- $0.49<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{2+2 i, 3+2 i, 2+3 i, 3+3 i\}]<0.61$
- $1<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{a+b i \mid a, b=1 \ldots 4\}]<1.33$

Estimating the modulus of the derivative of $T z=1 /(z+a+b i)$ on the ball $B_{1 / 2}(1 / 2)$ one proves:

Theorem

$$
\begin{gathered}
d<\operatorname{dim} \mathcal{D}_{\text {comlex }}[A]<D \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}}\right)^{D}=1 \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}+(1+\sqrt{2}) \max \{a, b\}+1}\right)^{d}=1 .
\end{gathered}
$$

> - $0.21<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{3+i, 2+4 i\}]<0.27$
> - $0.49<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{2+2 i, 3+2 i, 2+3 i, 3+3 i\}]<0.61$
> - $1<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{a+b i \mid a, b=1 \ldots 4\}]<1.33$

Estimating the modulus of the derivative of $T z=1 /(z+a+b i)$ on the ball $B_{1 / 2}(1 / 2)$ one proves:

Theorem

$$
\begin{gathered}
d<\operatorname{dim} \mathcal{D}_{\text {comlex }}[A]<D \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}}\right)^{D}=1 \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}+(1+\sqrt{2}) \max \{a, b\}+1}\right)^{d}=1 .
\end{gathered}
$$

- $0.21<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{3+i, 2+4 i\}]<0.27$
- $0.49<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{2+2 i, 3+2 i, 2+3 i, 3+3 i\}]<0.61$
- $1<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{a+b i \mid a, b=1 \ldots 4\}]<1.33$

Estimating the modulus of the derivative of $T z=1 /(z+a+b i)$ on the ball $B_{1 / 2}(1 / 2)$ one proves:

Theorem

$$
\begin{gathered}
d<\operatorname{dim} \mathcal{D}_{\text {comlex }}[A]<D \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}}\right)^{D}=1 \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}+(1+\sqrt{2}) \max \{a, b\}+1}\right)^{d}=1
\end{gathered}
$$

- $0.21<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{3+i, 2+4 i\}]<0.27$
- $0.49<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{2+2 i, 3+2 i, 2+3 i, 3+3 i\}]<0.61$
- $1<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{a+b i \mid a, b=1 \ldots 4\}]<1.33$

Estimating the modulus of the derivative of $T z=1 /(z+a+b i)$ on the ball $B_{1 / 2}(1 / 2)$ one proves:

Theorem

$$
\begin{gathered}
d<\operatorname{dim} \mathcal{D}_{\text {comlex }}[A]<D \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}}\right)^{D}=1 \\
\sum_{a+b i \in A}\left(\frac{1}{a^{2}+b^{2}+(1+\sqrt{2}) \max \{a, b\}+1}\right)^{d}=1 .
\end{gathered}
$$

- $0.21<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{3+i, 2+4 i\}]<0.27$
- $0.49<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{2+2 i, 3+2 i, 2+3 i, 3+3 i\}]<0.61$
- $1<\operatorname{dim} \mathcal{D}_{\text {comlex }}[\{a+b i \mid a, b=1 \ldots 4\}]<1.33$

$\mathcal{D}_{\text {comlex }}[\{2+2 i, 3+2 i, 2+3 i, 3+3 i\}]$

$\mathcal{D}_{\text {comlex }}[\{a+b i \mid a, b=1 \ldots 4\}]$

$\mathcal{D}_{\text {comlex }}[\{2+2 i, 3+2 i, 2+3 i, 3+3 i\}]$

$\mathcal{D}_{\text {comlex }}[\{a+b i \mid a, b=1 \ldots 4\}]$

Continued logarithm representation

- Consider the continued logarithm representation to base $m \geq 3$ of $x \in[0,1]$:
$x=\lim _{n \rightarrow \infty} \log _{m}\left(d_{n}(x)+\log _{m}\left(d_{n-1}(x)+\log _{m}\left(\cdots+\log _{m}\left(d_{1}(x)\right)\right)\right.\right.$
with digits in $\{1, \ldots, m-1\}$.
- The representation is unique up to a countable set and in almost all numbers all digits appear.
- For $m \geq 4$ choosing digits from $A \subseteq\{1, \ldots, m-1\}$ we define

$$
\mathcal{D}_{\mathrm{C} . \log }[A]:=\left\{x \in[0,1] \mid d_{i}(x) \in A\right\}
$$

Continued logarithm representation

- Consider the continued logarithm representation to base $m \geq 3$ of $x \in[0,1]$:
$x=\lim _{n \rightarrow \infty} \log _{m}\left(d_{n}(x)+\log _{m}\left(d_{n-1}(x)+\log _{m}\left(\cdots+\log _{m}\left(d_{1}(x)\right)\right) \dot{1}\right.\right.$
with digits in $\{1, \ldots, m-1\}$.
- The representation is unique up to a countable set and in almost all numbers all digits appear.
- For $m>4$ choosing digits from $A \subset\{1 \ldots, m-1\}$ we define

Continued logarithm representation

- Consider the continued logarithm representation to base

$$
m \geq 3 \text { of } x \in[0,1]:
$$

$$
x=\lim _{n \rightarrow \infty} \log _{m}\left(d_{n}(x)+\log _{m}\left(d_{n-1}(x)+\log _{m}\left(\cdots+\log _{m}\left(d_{1}(x)\right)\right)\right.\right.
$$

with digits in $\{1, \ldots, m-1\}$.

- The representation is unique up to a countable set and in almost all numbers all digits appear.
- For $m \geq 4$ choosing digits from $A \subseteq\{1, \ldots, m-1\}$ we define

Continued logarithm representation

- Consider the continued logarithm representation to base

$$
\begin{aligned}
& m \geq 3 \text { of } x \in[0,1]: \\
& x=\lim _{n \rightarrow \infty} \log _{m}\left(d_{n}(x)+\log _{m}\left(d_{n-1}(x)+\log _{m}\left(\cdots+\log _{m}\left(d_{1}(x)\right)\right)\right.\right.
\end{aligned}
$$

with digits in $\{1, \ldots, m-1\}$.

- The representation is unique up to a countable set and in almost all numbers all digits appear.
- For $m \geq 4$ choosing digits from $A \subseteq\{1, \ldots, m-1\}$ we define

$$
\mathcal{D}_{c . \log }[A]:=\left\{x \in[0,1] \mid d_{i}(x) \in A\right\} .
$$

Let $\left[\left(d_{1}, \ldots, d_{n}\right)\right](x)=\log _{m}\left(d_{n}+\log _{m}\left(d_{n-1}+\cdots+\log _{m}\left(d_{1}+x\right).\right)\right.$.

Theorem

$$
\begin{gathered}
L_{n} \leq \operatorname{dim}_{H} \mathcal{D}_{c . l o g}[A] \leq U_{n} \\
\text { for all } n \geq 1 \text {, where } U_{n} \text { and } O_{n} \text { are given by } \\
\sum_{d_{1}, \ldots, d_{n} \in A}\left[\left(d_{k}\right)\right]^{\prime}(1)^{U_{n}}=1 \sum_{d_{1}, \ldots, d_{n} \in A}\left[\left(d_{k}\right)\right]^{\prime}(0)^{L_{n}}=1
\end{gathered}
$$

For $m=4$ using Mathematica we get

$$
\begin{aligned}
& \operatorname{dim}_{H} \mathcal{D}_{C \cdot l \log }[\{1,2\}]=0.81 \pm 0.01 \\
& \operatorname{dim}_{H} \mathcal{D}_{C \cdot l o g}[\{1,3\}]=0.66 \pm 0.01 \\
& \operatorname{dim}_{H} \mathcal{D}_{C \cdot l}[\{2,3\}]=0.45 \pm 0.01
\end{aligned}
$$

Let $\left[\left(d_{1}, \ldots, d_{n}\right)\right](x)=\log _{m}\left(d_{n}+\log _{m}\left(d_{n-1}+\cdots+\log _{m}\left(d_{1}+x\right).\right)\right.$.

Theorem

$$
L_{n} \leq \operatorname{dim}_{H} \mathcal{D}_{c \cdot \log }[A] \leq U_{n}
$$

for all $n \geq 1$, where U_{n} and O_{n} are given by

For $m=4$ using Mathematical we get
$\operatorname{dim}_{H} \mathcal{D}_{C \cdot}{ }^{\log }[\{1,2\}]=0.81 \pm 0.01$
$\operatorname{dim}_{H} \mathcal{D}_{\text {C. }}$ log $[\{1,3\}]=0.66 \pm 0.01$
$\operatorname{dim}_{H} \mathcal{D}_{\text {Clog }}[\{2,3\}]=0.45 \pm 0.01$

Let $\left[\left(d_{1}, \ldots, d_{n}\right)\right](x)=\log _{m}\left(d_{n}+\log _{m}\left(d_{n-1}+\cdots+\log _{m}\left(d_{1}+x\right).\right)\right.$.

Theorem

$$
L_{n} \leq \operatorname{dim}_{H} \mathcal{D}_{c . \log }[A] \leq U_{n}
$$

for all $n \geq 1$, where U_{n} and O_{n} are given by

$$
\sum_{d_{1}, \ldots, d_{n} \in A}\left[\left(d_{k}\right)\right]^{\prime}(1)^{U_{n}}=1 \quad \sum_{d_{1}, \ldots, d_{n} \in A}\left[\left(d_{k}\right)\right]^{\prime}(0)^{L_{n}}=1
$$

For $m=4$ using Mathematica we get
$\operatorname{dim}_{H} \mathcal{D}_{\text {c. } \log }[\{1,2\}]=0.81 \pm 0.01$
$\operatorname{dim}_{H} \mathcal{D}_{C . l o g}[\{1,3\}]=0.66 \pm 0.01$
$\operatorname{dim}_{H} \mathcal{D}_{\text {C. }}$ log $[\{2,3\}]=0.45 \pm 0.01$

Let $\left[\left(d_{1}, \ldots, d_{n}\right)\right](x)=\log _{m}\left(d_{n}+\log _{m}\left(d_{n-1}+\cdots+\log _{m}\left(d_{1}+x\right).\right)\right.$.

Theorem

$$
L_{n} \leq \operatorname{dim}_{H} \mathcal{D}_{c . \log }[A] \leq U_{n}
$$

for all $n \geq 1$, where U_{n} and O_{n} are given by

$$
\sum_{d_{1}, \ldots, d_{n} \in A}\left[\left(d_{k}\right)\right]^{\prime}(1)^{U_{n}}=1 \quad \sum_{d_{1}, \ldots, d_{n} \in A}\left[\left(d_{k}\right)\right]^{\prime}(0)^{L_{n}}=1
$$

For $m=4$ using Mathematica we get

$$
\begin{aligned}
\operatorname{dim}_{H} \mathcal{D}_{\text {c. } \log }[\{1,2\}] & =0.81 \pm 0.01 \\
\operatorname{dim}_{H} \mathcal{D}_{\text {c.log }}[\{1,3\}] & =0.66 \pm 0.01 \\
\operatorname{dim}_{H} \mathcal{D}_{\text {c. } \log }[\{2,3\}] & =0.45 \pm 0.01
\end{aligned}
$$

For an arbitrary continued logarithm expansion to base $m \geq 3$ we consider the set of real numbers $\mathcal{F}_{c . \log }[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p}.

Theorem

$$
\operatorname{dim}_{H} \mathcal{F}_{c \cdot \log }[\mathbf{p}] \leq c<1
$$

for all \mathbf{p} (!).
For $m=3$ the upper bound look as follows

Jörg Neunhäuserer
Dimension theory of representations of numbers

For an arbitrary continued logarithm expansion to base $m \geq 3$ we consider the set of real numbers $\mathcal{F}_{c . \log }[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p}.

Theorem

for all \mathbf{p} (!).
For $m=3$ the upper bound look as follows

For an arbitrary continued logarithm expansion to base $m \geq 3$ we consider the set of real numbers $\mathcal{F}_{c . \log }[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p}.

Theorem

$$
\operatorname{dim}_{H} \mathcal{F}_{c \cdot \log }[\mathbf{p}] \leq c<1
$$

for all \mathbf{p} (!).
For $m=3$ the upper bound look as follows

For an arbitrary continued logarithm expansion to base $m \geq 3$ we consider the set of real numbers $\mathcal{F}_{c . \log }[\mathbf{p}]$ with frequency of digits given by by a probability vector \mathbf{p}.

Theorem

$$
\operatorname{dim}_{H} \mathcal{F}_{c \cdot \log }[\mathbf{p}] \leq c<1
$$

for all \mathbf{p} (!).
For $m=3$ the upper bound look as follows

Thanks for Your Attention

