
b-adic representation
A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

Dimension theory of representations of real (and
complex) numbers

Jörg Neunhäuserer
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b-adic representation

Consider the b-adic representation of a real numbers x ∈ [0, 1]:

x =
∞∑
i=1

di (x)b−i , di (x) ∈ {0, 1, . . . , b − 1}.

Choosing digits from A ⊆ {0, . . . , b − 1} we define

Db-adic[A] := {x ∈ [0, 1]|di (x) ∈ A}.

If 2 ≥ |A| < b the set Db-adic[A] is uncountable and compact
but of length zero and totally disconnected.
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Jörg Neunhäuserer Dimension theory of representations of numbers



b-adic representation
A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

Hausdorff dimension

The d-dimension Hausdorff measure of B ⊆ Rn is

Hd(B) = lim
ε7−→0

inf{
∞∑
i=1

diam(Ci )
d |B ⊆

∞⋃
i=1

Ci , diam(Ci ) < ε}.

The is a natural generalization of the n-dimensional Lebesgue
measure to non-integer dimensions, Ln = cnH

n.

The Hausdorff dimension is given by

dim B = inf{d ≥ 0|Hd(B) = 0} = sup{d ≥ 0|Hd(B) =∞}
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Jörg Neunhäuserer Dimension theory of representations of numbers



b-adic representation
A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

Hausdorff dimension

The d-dimension Hausdorff measure of B ⊆ Rn is

Hd(B) = lim
ε7−→0

inf{
∞∑
i=1

diam(Ci )
d |B ⊆

∞⋃
i=1

Ci , diam(Ci ) < ε}.

The is a natural generalization of the n-dimensional Lebesgue
measure to non-integer dimensions, Ln = cnH

n.

The Hausdorff dimension is given by

dim B = inf{d ≥ 0|Hd(B) = 0} = sup{d ≥ 0|Hd(B) =∞}
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Hausdorff (1919):

Theorem

dimDb-adic[A] =
log |A|
log b

For the upper bound just cover the set by by |A|n intervals of
length bn.

For the lower bound define a probability measure by
µ(Ia1a2...an) = |A|−n. We have

x ∈ D : µ(Br (x)) ≤ c r log |A|/ log b.

By the mass distribution principle Hlog |A|/ log b(D) ≥ 1/c .
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Prescribed frequencies in b-adic representation

Let p = (pj) be a probability vector on {0, . . . b − 1}. The
entropy of p is

H(p) = −
b−1∑
j=0

pj log pj .

Consider the set of real numbers in [0, 1] with given frequency
of digits in the b-adic representation

Fb-adic[p] := {x | lim
n 7→∞

|{i = 1, . . . n|di (x) = j}|
n

= pj}.

Fb-adic[(1/b)] is the set of normal numbers to base b.
Borel (1909): Almost every number is normal.
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Besicovitch (1934) / Eggleston (1949):

Theorem

dimFb-adic[p] =
H(p)

log b
(=: θ)

Construct a measure µ(Id1d2...dn) = pd1pd2 . . . pdn .

x ∈ F : lim
n 7−→∞

1

n
log

µ(Id1...dn(x))

|Id1...dn(x)|s
= −H(p) + s log(b)

s < θ : limr→∞ µ(Br (x))/r s = 0⇒ Hs(F) =∞
s > θ : limr→∞ µ(Br (x))/r s =∞⇒ Hs(F) = 0
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A modification of the dyadic representation

Represent a real number x ∈ (0, 1] by a sequence in NN:

x =
∞∑
i=1

2−(n1(x)+···+ni (x)), ni (x) ∈ N.

ni (x) is the distance between two digits 1 in the dyadic
expansion.

For A ⊆ N consider the set of real numbers Dm.dyadic[A]
with digits in A.

Dm.dyadic[{1, 2}] = {x |ni (x) = 0⇒ ni+1(x) = 1} is called
the golden Markov set.
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Theorem

The Hausdorff dimension d of Dm.dyadic[A] is d is given by∑
i∈A

2−id = 1

For A = {1, . . . n}: d = log(s)/ log(2) where s is given by the
solution s ∈ (1, 2) of sn − sn−1 · · · − s − 1 = 0.

For the golden Markov set: d = log((
√

5 + 1)/2)/ log 2.

For A = {nj |n ∈ N} we have d = 1/j .

For A = {nj + m|n ∈ N0} d is given by 2−dj + 2−dm = 1.

Jörg Neunhäuserer Dimension theory of representations of numbers



b-adic representation
A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

Theorem

The Hausdorff dimension d of Dm.dyadic[A] is d is given by∑
i∈A

2−id = 1

For A = {1, . . . n}: d = log(s)/ log(2) where s is given by the
solution s ∈ (1, 2) of sn − sn−1 · · · − s − 1 = 0.

For the golden Markov set: d = log((
√

5 + 1)/2)/ log 2.

For A = {nj |n ∈ N} we have d = 1/j .

For A = {nj + m|n ∈ N0} d is given by 2−dj + 2−dm = 1.
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Jörg Neunhäuserer Dimension theory of representations of numbers



b-adic representation
A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

Theorem

The Hausdorff dimension d of Dm.dyadic[A] is d is given by∑
i∈A

2−id = 1

For A = {1, . . . n}: d = log(s)/ log(2) where s is given by the
solution s ∈ (1, 2) of sn − sn−1 · · · − s − 1 = 0.

For the golden Markov set: d = log((
√

5 + 1)/2)/ log 2.

For A = {nj |n ∈ N} we have d = 1/j .

For A = {nj + m|n ∈ N0} d is given by 2−dj + 2−dm = 1.
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Consider the set of real numbers Fm.dyadic[p] with frequency of

digits given by by a probability vector p with expectation E (p) and
entropy H(p)

Theorem

dimFm.dyadic[p] =
H(p)

E (p) log 2

For the equidistribution

dimFm.dyadic[(1/n, . . . , 1/n)] =
2 log(n)

(n + 1) log(2)

dimFm.dyadic[(1/2, 1/4, . . . , 1/2n, . . . )] = 1
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Continued fraction representation

Represent a real number x ∈ (0, 1) by a continued fraction:

x =
1

n1(x) + 1
n2(x)+...

, ni(x) ∈ N

Consider the set of numbers Dcon.[A] with digits in A.

Jarnik (1929):

Theorem

1− 4

n log 2
≤ dimH Dcon.[{1, . . . , n}] ≤ 1− 1

8n log n

for n > 8.

Jörg Neunhäuserer Dimension theory of representations of numbers



b-adic representation
A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

Continued fraction representation

Represent a real number x ∈ (0, 1) by a continued fraction:

x =
1

n1(x) + 1
n2(x)+...

, ni(x) ∈ N

Consider the set of numbers Dcon.[A] with digits in A.

Jarnik (1929):

Theorem

1− 4

n log 2
≤ dimH Dcon.[{1, . . . , n}] ≤ 1− 1

8n log n

for n > 8.
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A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

The calculation Dcon.[A] has been addressed over the years:
Good (1941), Bumby (1982), Hensly (1989/1996)

Today we have an efficient algorithm du to Jenkinson /
Pollicott (2001). Especially:

dimDcon.[{1, 2}] = 0.531280506277 . . . (54 digits known)

dimDcon.[{1, 2, 3}] = 0.7046 . . .

dimDcon.[{1, 2, 3, 4}] = 0.7889 . . .

dimDcon.[{1, 2, 3, 4, 5}] = 0.8368 . . .

dimDcon.[{1, 2, 3, 4, 5, 6}] = 0.8676 . . .

dimDcon.[{1, 3}] = 0.254489077661 . . .

dimDcon.[{2, 3}] = 0.337436780806 . . .
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Jörg Neunhäuserer Dimension theory of representations of numbers



b-adic representation
A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

As a corollary of Jarnik’s dimension estimate:

dimH{x ∈ (0, 1) | (nk(x)) is bounded} = 1

Good (1941):

Theorem

dimH{x ∈ (0, 1) | lim
k→∞

(nk(x)) =∞} = 1/2

Luczak (1997):

Theorem

dimH{x ∈ (0, 1) | nk(x) ≥ ab
k} = 1/(b + 1)
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Jörg Neunhäuserer Dimension theory of representations of numbers



b-adic representation
A modification of the dyadic representation

Continued fraction representation
Continued logarithm representation

Complex continued fractions

For z ∈ C consider the Hurwiz continued fraction

z = c0 +
1

c1 + 1
c2+...

, cj = aj + bj i ∈ Z[i ]

The digits cj are given by

zj+1 = 1/zj − [1/zj ] = 1/zj − cj

with c0 = [z ] and z0 = z − c0 where [.] denotes rounding to
the nearest element of Z[i ].

For A ⊆ N[i ] consider the set of Hurwitz continued fractions
Dcomlex[A] with digits in A.
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Estimating the modulus of the derivative of Tz = 1/(z + a + bi)
on the ball B1/2(1/2) one proves:

Theorem

d < dimDcomlex[A] < D∑
a+bi∈A

(
1

a2 + b2
)D = 1

∑
a+bi∈A

(
1

a2 + b2 + (1 +
√

2) max{a, b}+ 1
)d = 1.

0.21 < dimDcomlex[{3 + i , 2 + 4i}] < 0.27

0.49 < dimDcomlex[{2 + 2i , 3 + 2i , 2 + 3i , 3 + 3i}] < 0.61

1 < dimDcomlex[{a + bi |a, b = 1 . . . 4}] < 1.33
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Dcomlex[{2 + 2i , 3 + 2i , 2 + 3i , 3 + 3i}]

Dcomlex[{a + bi |a, b = 1 . . . 4}]
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b-adic representation
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Continued fraction representation
Continued logarithm representation

Continued logarithm representation

Consider the continued logarithm representation to base
m ≥ 3 of x ∈ [0, 1]:

x = lim
n→∞

logm(dn(x)+logm(dn−1(x)+logm(· · ·+logm(d1(x)))̇

with digits in {1, . . . ,m − 1}.
The representation is unique up to a countable set and in
almost all numbers all digits appear.

For m ≥ 4 choosing digits from A ⊆ {1, . . . ,m − 1} we define

Dc.log[A] := {x ∈ [0, 1]|di (x) ∈ A}.
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Let [(d1, . . . , dn)](x) = logm(dn + logm(dn−1 + · · ·+ logm(d1 + x).).

Theorem

Ln ≤ dimH Dc.log[A] ≤ Un

for all n ≥ 1, where Un and On are given by∑
d1,...,dn∈A

[(dk)]′(1)Un = 1
∑

d1,...,dn∈A
[(dk)]′(0)Ln = 1

For m = 4 using Mathematica we get

dimH Dc.log[{1, 2}] = 0.81± 0.01

dimH Dc.log[{1, 3}] = 0.66± 0.01

dimH Dc.log[{2, 3}] = 0.45± 0.01
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For an arbitrary continued logarithm expansion to base m ≥ 3 we
consider the set of real numbers Fc.log [p] with frequency of digits
given by by a probability vector p.

Theorem

dimH Fc.log [p] ≤ c < 1

for all p (!).

For m = 3 the upper bound look as follows
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