I. kultur.informatik –
Entlang des Zeitpfeils zwischen Berechenbarkeit und Kontingenz

Berechenbarkeit und Kontingenz

Doch natürlich ging es Turing um etwas ganz anderes, als er 1936/37 sein bahnbrechendes Papier schrieb. Er hatte zwar eine Maschinenmetapher benutzt, aber wollte keine Maschine bauen; und auch seine so genannten “Bomben” von Bletchley Park, bei denen es ganz wesentlich auf Geschwindigkeit ankam – schließlich wollte er den Funkspruch entschlüsselt haben, bevor das deutsche U-Boot die britische Fregatte versenkt hatte – seine dann später tatsächlich betriebenen Dechiffrier-Maschinen funktionierten nicht so wie seine berühmtesten, die nach ihm benannt wurde. Die Turing-Maschine hatte er erfunden, um klären zu können, was berechenbar sei und was eben gerade nicht. Berechenbar nicht ursprünglich von einer Maschine, hier war eher an Menschen gedacht, die als Prozessoren, als Computoren als Manifestationen einer Theorie gedacht wurden, die die Grundlagen der Mathematik zu klären hatten: was ist formalisierbar, was nicht?

Mithin bleibt, so der erste Blick, nur der Maschinentakt selbst, der in die Rechnerzeit eine Skala bringt. Heute nennen wir sie invers ganz ausschließlich männlich Prozessortaktfrequenz, und sie verdoppelt sich alle achtzehn Monate, so jedenfalls wollte es Gerald Moore, einer der Intel-Gründer, und darum heißt das Gesetz auch das Mooresche.

Die Trias “Synthese, Mimesis, Emergenz”

Wenn signifikante Einflüsse von außerhalb der Turingmaschine verarbeitet werden, äußert sich dies auf dem Feld des Ästhetischen in nachahmenden Verfahren: wie der Marionettenspieler seine hölzerne Puppe tanzt lässt, ahnen Animateure vor, was Beobachter dann als Nachahmung empfinden. Diese zweite Phase soll nun die *mimetische* heißen.

Im letzten Schritt gerät auch das Meister Knecht-Verhältnis aus den Fugen: in großem Stile vernetzt, kann niemand mehr kontrollie ren, was zwischen Milliarden Menschen und Maschinen geschieht. Die vormals, in den synthetischen und mimetischen Phasen, noch sinnvoll als isolierbare Elemente eines Pro zesses beschreibbaren Bewusstseine und Au tomaten erzeugen mit starker Wechselwirkung unvorhersehbare Erscheinungen, was halb diese dritte Phase auch die Phase der *Emergenzen* heißen soll.

Bei allen drei Phasen lassen sich je spezifische Abgrenzungen zwischen Berechenbar keit und Kontingenz vornehmen, es gibt zu gehörige Techniken, Theorien, Stile, Artefakte und Formen des Medialen. Alle drei Phasen werden gebraucht, um die Vielfalt der Phä nomene beschreiben zu können, die die Informationsgesellschaft ausmachen. Die Theorie der Berechenbarkeit, zentral und erschöpfend für die erste, ist unzureichend, um die Lebensgeschichte des Clownsfisches Nemo zu er klären, und auch eine Theorie der mimeti schen Kontrolle ist restlos überfordert, die Emergenz etwa von eBay oder des Gender swapping in Chatrooms der dritten Phase vorherzusagen. Allerdings lässt sich mit einiger Berechtigung behaupten, dass die Hard sciences, und zu diesen soll die Informatik auch gezählt werden, diesen Sachverhalt noch nicht so recht in ihren Kanon eingebaut haben.

Und nun ist es an der Zeit, für diese Behauptungen einige Plausibilitäten anzuführen.

Synthese

Zu Beginn seines Buches “General Systems Theory” beschreibt Ludwig von Bertalanffy die klassische Methode der exakten Wissenschaften – um ihr im folgenden seine Systemtheorie als Erweiterung entgegen zu stellen –, er charakterisiert die Methode der Hard sciences als eine *analytische*: Phänomene werden untersucht in Hinblick auf ihre elementaren Konstituenten und deren Wechselwirkungen, gesucht wird nach isolierbaren Kausalketten, und verstanden hat man die Phänomene dann,
wenn sie sich vollständig aus ihren Elementen und deren basalen Operationen ergeben.

Uns interessiert hier nun die operative Umkehrung. Das, was Computer tun, wenn sie, nur auf sich selbst gestellt, ihre Elemente operativ nach der Vorschrift des abzuarbeitenden Algorithmus rekombinieren. Dieses Tun muss dann synthetisch genannt werden. Synthese, der Aufbau des Ganzen aus seinen Teilen, des Komplexen aus dem Einfachen, ist die Sache und das Prinzip der Turing-Maschine. Von Bertalanffy nennt sie die moderne und verallgemeinerte Form der mechanistischen Auffassung.

Alan Turing hat in seinem Text von 1936/37 motiviert und beschrieben, was als Prinzip und Technik der ersten und ursprünglichen, der synthetischen Phase der Computerkultur gelten soll: die strikte Beschränkung auf ein streng formal arbeitendes Verfahren, um anhand eines Maschinenmodells die Präzisierung dessen zu klären, was Rechnen und Berechenbarkeit sei. Endlichkeit, Überschaubarkeit, Ausschluss von Zufall und Intuition, von allem dem, was in Abgrenzung vom Notwendig so Seienden als Kontingenz bezeichnet werden kann, ist dabei die Grundvoraussetzung. Die Elemente, die im Verlauf der Maschinenaktivität ins Spiel gebracht werden, die Zeichen eines Alphabets, ihre Notate, die Operationen, die an ihnen vorgenommen werden, werden nur in strikter Isolation betrachtet, ganz im Sinne des von Bertalanffyschen Diktums einer modernen Form der mechanistischen Auffassung.

Die Reinform der Aktivität der Turingmaschine besteht bekanntlich darin, sie auf einem leeren Band zu lassen, sie nach Maßgabe ihres Programms eine Zeichenkette schreiben zu lassen, die dann als Stellen einer Zahl interpretiert werden, der von ihr berechneten Zahl.

Von Kontingenz keine Spur, alles geschieht deterministisch, zwangsläufig, eben berechnend. Der Gewinn dieser Beschränkung ist die Charakterisierung der Menge aller Zahlen, die so als überhaupt berechenbar gelten können: sie ist erstaunlich klein, viel kleiner als die Menge aller der Zahlen, die definierbar sind. Alles kann die Maschine nicht, noch nicht einmal alle schreibbaren Zahlen schreiben.

Für die Grundlagen der Mathematik hieß das: der logische Prozeß ist schöpferisch² und verlangt Intelligenz, Mathematik lässt sich nicht mechanisieren. Für eine mathematische Theorie wird Kontingenz als das nicht Berechenbare immer wieder erforderlich sein, dort, wo sie, die Theorie, um neue Begriffe und Verfahren zu erweitern ist, damit sie ihre eigenen Probleme lösen kann. Das jedenfalls hat Kurt Gödel mit seinem Theorem zum Ausdruck gebracht, das Turing mit seiner Maschine umformuliert hat.

³ ebenda, S. 27.
Die synthetische Phase wird hier als die erste vorgeschlagen, weil sie auch historisch am Anfang stand. Ihre technische Realisierung fand sie mit den Computern, deren Arbeitsweise strikt auf den Dreischnitt Eingabe, Verarbeitung, Ausgabe reduzierbar war. Verarbeitungs-Unterbrechungen, um Teilergebnisse in Augenschein zu nehmen, gab es nicht, alles, auch wenn es ästhetischen Zwecken dienen sollte, musste a priori durch einen Algorithmus festgelegt werden, konnte erst nach Fertigstellung beurteilt werden. Anders als mit einer mathematisch formulierten Theorie des Ästhetischen war das nicht zu machen, also stützte man sich auf die schon vorher entwickelte “Informationsästhetik”.

Mit ihr entstanden dann auch die Kunstwerke. Auf dem Felde des Bildnerischen waren dies die Computergraphiken von Nees, Nake, Noll, Mohr und anderen, die auf riesigen Plottern, gesteuert durch Lochstreifen, angefertigt wurden.

Betrachtet man Beispiele dieser Phase ästhetischer Produktion, dann drängt sich der Eindruck eines spezifischen Stils auf. Er bestand zunächst aus den Elementarformen, die mit der verwendeten Maschinerie erzeugbar waren, samt und sonders elementar im Sinne der Theorie der Berechenbarkeit, also aus Geradenstücken, algebraischen Kurven niedriger Ordnung, aber auch aus Pseudorandern bestehend.

Frieder Nake, Zufälliger Polygonzug, 1963

Eine der neuesten Produktionen algorithmisch erzeugter Kunst wurde 2003 noch auf der Ars Electronica in Linz prämiert. Es handelt sich um in Bewegung gesetzte Fraktale, unterlegt mit Klängen, die nach denselben Prinzipien erzeugt wurden – hier ein Standbild:

Herbert W. Franke, Horst Helbig: Nr. 124, 1984

Andy Kopr: Fire, 1988
Verbindende Charakteristik aller dieser ästhetischen Produkte ist ihre absolute Sinn-Leere. Nichts führt irgendwo hin, es lassen sich keine Entwicklungsliken innerhalb eines Werks oder Stückes ausmachen, jede Schlussoperation, also jeder Strich, der auf einen vorigen folgt, jeder Ton oder jede harmonische Figur ist so gut oder so schlecht wie jede andere, alles gehorcht zwar einem durchgängigen Formprinzip, aber Sinn ist keiner zu entdecken, selbst heftigste Sinn und Gestalt suchende Bemühung bringt nur etwa ein “Apfelmännchen” der fraktalen Geometrie hervor, was bei der investierten Rechnerleistung nicht eben viel ist.

Mimesis

Lassen Sie uns nun das Dispositiv und den Blick weiten! Die Kontingenz soll ihren Platz bekommen. Sie muss von außen hinzugefügt werden, denn die Turing-Maschine kann nicht produzieren, was nicht berechenbar wäre. Bei den hier interessierenden Formen kultureller Produktion bricht die Kontingenz in Form des gestaltenden menschlichen Eingriffs in das System ein. Technisch lässt sich das dadurch realisieren, dass der Dreischritt aus Eingabe, Verarbeitung und Ausgabe unterbrochen und der Computer damit interaktiv bedienbar wird.

Das geübte Auge erkennt hier sofort die Rückkopplungs-Schleife. Sie wurde von Norbert Wiener als der Kern seiner Kybernetik

identifiziert und überall dort ausgemacht, wo Signale kontrolliert Effekte zeitigen sollten:

“We thus see that for effective action on the outer world”, und diese äußere Welt ist in unserem Falle aus Sicht des Menschen der zu kontrollierende Computer, also für effektive Aktion “it is not only essential that we possess good effectors, but that the performance of these effectors be properly monitored back to the central nervous system, and that the readings of these monitors be properly combined with the other information coming in from the sense organs to produce a properly proportioned output to the effectors. … Note that in this system there is a human link in the chain of the transmission and return of information: in what we shall from now on call the chain of feedback.”

Wir werden nun nicht verfolgen, wie auch der Mensch und sein Zentralnervensystem durch Maschinerie ersetzt werden sollen, was Sache der Artificial Intelligence ist, sondern der Mensch fungiert als Quelle der Kontingenz, er sorgt für den Ausgleich des Mangels, der ansonsten den Output der rechnenden Maschine auf die allzu dürftige Menge der berechenbaren Zahlen beschränkte. Der Mensch und sein Bewusstsein führen dem System die nötigen Informationen zu, damit dieses überraschende, vielleicht sogar lebensechte Formen ausprägt – damit im menschlichen Bewusstsein Sinn entsteht.

Technisch geschieht das mit der Einführung der Interaktion, im Time-Sharing-Betrieb oder auf dem persönlichen Computer in der Main event loop, die ständig Eingriffe seitens der Benutzer erwartet und verarbeitet.

Alle die lustigen kleinen Spielzeugwelten, die Papierkörbe, Aktenordner, Schieberegler, die Kaufmannsläden und Puppenstuben der Kontrolle, mit denen die Benutzungsoberflä-

chen möbliert werden, sind Ausdruck des mimetischen Griffs der Benutzer durch die Oberfläche, das Interface, die Trennfläche zwischen Berechenbarkeit und Kontingenz. Mit magischen Gesten ahmen die User vor, was ihre virtuellen Maschinen nachzuahmen haben: den Pinselstrich, den Anschlag der Schreibmaschine, die Funktionen des Zettelkastens.

Auf dem Feld des Ästhetischen finden wir hier vor allem die Computeranimation und die interaktive Medienkunst, Spiele wie etwa Flugsimulatoren, Virtual Reality und in Echtzeit zu spielende Synthesizer.

Nehmen wir uns die Computeranimation vor, die schon in ihrem Namen trägt, was sie vorhat: dem allzu beschränkten Computer Seele einzuhauchen, den Odem des Lebens, den er selbst zu produzieren nicht im Stande ist. Zwar hat es schon einige semiotisch begründete Versuche gegeben, Gestik und Mimik quasi lexikographisch aufzählend kontingenzfrei zu symbolisieren,
doch gehen die Profis alle anders vor: ein Mensch ahmt vor, was die Maschine nachzuahmen instruiert wird. Dabei verlässt man sich bei Gestik und Mimik auf Motion tracking oder auf cartoonhaft vorgezeichnete Gestalten, in keinem Falle jedoch gelingt durch Ausführung eines Algorithmus allein ein hinreichend überzeugendes Ergebnis. Entweder per Motion tracking erhobene Daten direkt vom Körper oder nach zeichnerischer Vorlage durch Stell-Regler übertragene Bewegungen werden am Computerbildschirm instantan beurteilt und nachgeregelt.

Die Mimik des Cave Trolls aus dem „Herrn der Ringe“ wird vom Schauspieler per Motion tracking abgegriffen.

So definiert die Literaturwissenschaft die Mimesis. Für unsere Zwecke ist die Version von Dietmar Kamper passender, der aus der Nach- die Vorahmung macht und damit präzi se die Steuerung des Rechners durch den Menschen beschreibt, wenngleich er speziell diesen Vorgang in seiner Schrift nicht ge meint hat:

„Das Wort ‘Mimesis’ stammt aus dem Griechischen … . Es bezeichnet das Vermö gen, mittels einer körperlichen Geste eine gewünschte Wirkung zu erzielen. Mimesis heißt nicht Nachahmung, sondern Vorahmung, während “Simulation”, ein lateinisches Wort, das technische Herstellen von Bildern meint, die einer Realität täuschend ähnlich sind. … Es gibt bisher keine hinreichende, keine triftige Unterscheidung zwischen beidem … . Man könnte sie durchaus magische Praktiken nennen, … Zauberei. … Mimetisch, mit hohem Einsatz, wird ein Fundament ge legt. Und dieses Spiel wird akzeptiert. Die Menschen wissen, dass es eine Erfindung ist oder eine Illusion. … Auf der anderen Seite will die Simulation eine künstliche Doublette herstellen, die sich nicht unterscheiden soll vom Original. … Simulation verläuft in Automation. … Demgegenüber gehört Mimesis zur Kunst, die das Ähnliche als Ähliches setzt, die Fiktion als Fiktion betreibt und die Illusion als Illusion inszeniert. … Die ideale Form der Simulation will eine völlige Identität von Bild und Wirklichkeit erreichen, während in der Mimesis eine Differenz zum Aus-

9 http://www.uni-essen.de/literaturwissenschaft-aktiv/Vorlesungen/epik/mimesis.htm 30.12.03
druck kommt, die auch für die Beteiligten nie verschwindet.10

\textbf{Emergenz}

Der entscheidende nächste Schritt besteht nun darin, die Systemgrenzen ein zweites Mal zu weiten, die Komplexität dadurch zu erhöhen, dass nicht mehr nur ein Mensch mit einem Computer interagiert, sondern viele Menschen und viele Automaten miteinander verschaltet werden:

Die Bedienoberflächen schaffen es nicht mehr, Kontrolle vorzugaukeln, die Grenze zwischen Berechenbarkeit und Kontingenz sieht eher aus wie die Blasen eines Schaums, ist nicht mehr als Trennfläche zu lokalisieren, unzählige Membranen erlauben an ebenso unzählig vielen Benutzungsoberflächen Eingriffe und Rückmeldungen, so dass das Ganze insgesamt weder zu kontrollieren, noch auch nur in seinen Phänomenen vorhersagen wäre. Aus der Ferne wirkt alles verschwommen und unscharf: einzelne Phänomene lassen sich nicht mehr einzelnen Menschen oder isolierbaren Automaten zurechnen.

Die Phänomene emergieren, lassen sich nicht aus der Beschaffenheit der vernetzten Konstituenten ableiten, wenngleich unverdrossene Modellierer das noch immer versuchen:

So etwa John H. Holland, der in seinem Buch “Emergence – From Chaos to Order”11 zwar anfänglich zugestehst, dass schon die kommunikative Situation zweier Brettspieler von einer doppelter Kontingenz bestimmt ist, wie Luhmann12 sie genannt hätte, die selbst in einer so stark geregelten Konfiguration wie etwa beim Damespiel jede Vorhersage unmöglich macht:

“Each player has decided what to do in each contingency, but each player has no idea what particular contingencies will arise because of the other player’s actions. So the individual player cannot predict the final outcome … For each player the game will take unexpected twists and turns.”13

Doch stark ist der Glaube an die analytische Kraft der exakten Wissenschaft, und selbst unter den in diesem Abschnitt obwaltenden skizzierten Umständen, die die Zahl der Interaktionspartner explodieren lässt, scheint nur der Weg bottom-up, von den atomaren Bestandteilen des Systems und ihren Interaktionen bis hin zur Vielfalt der daraus sich ergebenden emergenten Phänomene, aussichtsreich und in den Hard sciences erlaubt: “A well-conceived model will exhibit the complexity, and emergent phenomena, of the system being modeled, but with much of the detail sheared away.”14 Seine, Hollands, Methode ist die der Constrained generating procedures, CGP, die, an Zellularamautomaten erinnernd, komplexe Phänomene aus einfachen Bausteinen und Regeln erzeugen. Der Anspruch an seine CGPs am Ende ist erheblich: “For the cgp framework, or something similar, to acquire the status of a full-blown theory of emergence, it would have to be refined to yield sufficient conditions for emergence. We would have to prove that emergent phenomena will occur when these sufficient conditions are present.”15 “Viel Glück dabei!”, ist man geneigt, dem Manne zuzurufen, den viel Glück wird er brauchen.

Dies führt uns auf die systemtheoretische Gretchenfrage, wie emergente Phänomene am besten zu beschreiben sind, bottom-up als Konsequenz der Beschaffenheit eines Systems niedrigerer Stufe, kontrollierbar und erzeugbar durch die Manipulation und unwahrscheinliches Arrangement seiner Elemente, oder aufgrund der Autopoiesis eines sich über diesem elementaren höheren sich bildenden System, das für die Beobachter undurchschaubar bleibt, und für dessen emergente Phänomene die Bedingungen niemals hinreichend, sondern eben immer nur notwendig sein können: Möglichkeitsbedingungen, eben gerade keine auslösenden Momente.

13 Holland, S. 40.
14 ebenda, S. 12.
15 ebenda, S. 239.
sondern Unterbrechung und Neubeginn des Aufbaus von Komplexität.”

Und tatsächlich sieht die Informatik, so stark der Wunsch nach Modellierbarkeit auch immer sein möge, sich mit einer Situation konfrontiert, in der die sie angehenden Phänomene unvorhersehbar sind, in der bereits während jeder noch so ausgetüftelten Modellierungsphase sich die Spielregeln, die Elemente, die Randbedingungen, vielleicht sogar die Ziele unter der Hand emergent ändern können, damit jede Planung, jedes Modell zunichte machend. Es ist, wie wenn der Bösewicht den Saloon betritt und jede Gewinnstrategie eines regelgeleiteten Spiels dadurch obsolet macht, dass er seinen daran teilnehmenden Widersacher kurzerhand über den Haufen schießt.

Es ist mit allem zu rechnen, vor allem mit dem nicht Berechenbaren.

Neben der gerade bemühten Saloon-Szene hat der Wilde Westen noch ein weiteres Beispiel zu unserer Fragestellung und Untersuchung des Emergenten in der Informatik beizusteuern, und zwar in Gestalt der berühmten Essay-Sammlung von David Lorge Parnas zum SDI-Programm – alias “Krieg der Sterne”. Der ansonsten Rüstungsaufträgen nicht abgeneigte Parnas beschrieb, warum die Software für die satellitengestützten Raketenabwehrwaffen nicht würde funktionieren können, und zog sich aus dem Beraterstab des Präsidenten Reagan zurück. Seine Argumente mögen Systementwicklerinnen und Systementwickler an ihre eigenen Probleme erinnern, selbst wenn sie nicht so hoch hinauf und hinaus wollen wie damals diejenigen des SDI, aber die Konsequenzen sind dieselben. Parnas beschrieb die Systemanforderungen an die satellitengestützte Raketenabwehr unter anderem wie folgt:

“1. The system will be required to identify, track, and direct weapons toward targets whose ballistic characteristics cannot be known with certainty before the moment of battle. It must distinguish these targets from decoys”, Attrappen, “whose characteristics are also unknown. 2. The computing will be done by a network of computers connected to sensors, weapons, and each other, by channels whose behavior, at the time the system is invoked, cannot be predicted because of possible countermeasures by an attacker. … 6. The weapon system will include a large variety of sensors and weapons, most of which will themselves require a large and complex software system. The suite of weapons and sensors is likely to grow during development and after deployment. The characteristics of weapons and sensors are not yet known and are likely to remain fluid for many years after deployment. … The components of that system will be subject to independent modification.”

Ein nächster Kronzeugen in Sachen Emergenz sei nun Howard Rheingold. Der Autor

von “Virtual Reality” hat nun seinen neuesten Bestseller vorgelegt, der in diesem Kapitel zur Emergenz zum Tragen kommt. Er beschreibt Phänomene, die alle auf digitale Kommunikationstechniken gründen, aus den Tiefen individueller Anonymität auftauchende “Smart Mobs”, emergierende soziale Ordnungen. Er beschreibt, wie Technik zu Zwecken genutzt wird, die niemand hat vorhersagen können, die aus den Bauprinzipien der zum Einsatz kommenden technischen Medien nicht ableitbar sind. „They enable people to act together in new ways and in situations where collective action was not possible before.”

Vor allem Mobiltelefone stellen eine Kommunikationstechnik zur Verfügung, die überraschende Phänomene zeitigt. Das “Texting”, das Schreiben und Empfangen von SMS, macht dabei Geschichte, hier den Sturz des philippinischen Präsidenten Estrada im Jahr 2001: “The ‘People Power II’ demonstrations of 2001 broke out when the impeachment trial of President Estrada was suddenly ended by senators linked to Estrada. Opposition leaders broadcast text messages, and within seventy-five minutes of the abrupt halt of the impeachment proceedings, 20,000 people converged on EDSA”, einem Boulevard in Manila. “Over four days, more than a million people showed up. The military withdrew support from the regime: the Estrada government fell … .”

Rheingold schreibt als Fazit: “The computer and the Internet were designed, but the ways people used them were not designed in either technology, nor were the most world-shifting uses of these tools anticipated by their designers or vendors. Word processing and virtual communities, eBay and e-commerce, Google and weblogs … emerged. Smart mobs are an unpredictable but at least partially describable emergent property that I see surfacing as more people use mobile telephones, more chips communicate with each other, more computers know where they are located, more technology becomes wearable, more people start using these new media to invent new forms of sex, commerce, entertainment, communion, and, as always, conflict.”

Das Internet, besonders mit seinen Diensten E-Mail und WWW, stellt eine besonders reichhaltige Sammlung emergenter Phänomene zur Verfügung. Dabei spielt die Tatsache, dass es wächst und nicht nach Fertigstellung in Betrieb genommen wurde, seine interessanteste und markanteste Eigenschaft dar. Albert-László Barabási bezeichnet es in seinem atemberaubenden Buch „Linked“ zur momentan entstehenden Theorie der skalenfreien Netze sogar dar als “success desaster, the design of a new function that escapes into the real world and multiplies at an unseen rate before the design is fully in place. Today the Internet is used almost exclusively for accessing the World Wide Web and e-mail. Had its original creators foreseen this, they would have designed a very different infrastructure, resulting in a much smoother experience. … Until the mid-nineties all research concentrated on designing new protocols and components. Lately, however, an increasing number of researchers are asking an unexpected question: What exactly did we create?”

Diese Frage bringt den interessantesten und für unser Thema aufschlussreichsten Aspekt dieses erfolgreichsten aller modernen technischen Artefakte zum Ausdruck: sein Designprinzip auf der Grundlage von Kontrollverzicht. Die Protokolle und Geräte, die

20 ebenda, S. 160.
21 ebenda, S. 182.
die Infrastruktur des Internet ausmachen, sind offenbar so offen konzipiert, dass über die damit zu realisierenden Funktionen nur sehr wenig festgelegt wird. Das Netz entwickelte sich zumal anders, als seine Designer ursprünglich intendiert hatten. Weiter Barabási: “While entirely of human design, the Internet lives a life on its own. It has all the characteristics of a complex evolving system, making it more similar to a cell than a computer chip. … What neither computer scientists nor biologists know is how the large-scale structure emerges once we put the pieces together.”

Und ein wenig weiter unten: “Most of the Web’s truly important features and emerging properties derive from its large-scale self-organized topology. … the science of the Web increasingly proves that this architecture represents a higher level of organization than the code.”

Das Internet als prominentestes Beispiel einer Vernetzung von Bewusstseinen und Computern in großem Stile demonstriert, woauf die Informatik sich einzustellen hat: auf bewussten Verzicht auf Kontrolle, auf das Gewährenlassen emergenter Prozesse, auf Selbstorganisation, auf Netz-Topologien, die in der Technik wie in der Biologie oder Soziologie zwar einem angebaren Gesetz folgen, dem der Skalenfreiheit, aber dennoch in ihrer Entwicklung im Detail nicht modellierbar sein können.

Die Hard sciences traditionellen Zuschnitts fordern Determinismus und Kausalität, die Formulierung von hinreichenden Kriterien, müssen aber sprachlos bleiben bei Phänomenen wie: Leben, Gesellschaft, Kontingenz. Will Informatik Informationsgesellschaft beschreiben können, muss sie sich einlassen auf bislang für sie wissenschaftsfremde Begriffe: Autopoiesis, Selbstorganisation, Emergenz, Möglichkeitsbedingung. Das Internet – viel-

23 ebenda, S. 150f.
24 ebenda, S. 174f.