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Abstract: Fractal properties in time series of human behavior and physiology are quite ubiquitous,
and several methods to capture such properties have been proposed in the past decades. Fractal
properties are marked by similarities in statistical characteristics over time and space, and it has
been suggested that such properties can be well-captured through recurrence quantification analysis.
However, no methods to capture fractal fluctuations by means of recurrence-based methods have
been developed yet. The present paper takes this suggestion as a point of departure to propose and
test several approaches to quantifying fractal fluctuations in synthetic and empirical time-series data
using recurrence-based analysis. We show that such measures can be extracted based on recurrence
plots, and contrast the different approaches in terms of their accuracy and range of applicability.

Keywords: recurrence quantification analysis; fractals; monofractals; fractal time series

1. Introduction

Since Gilden et al.’s [1] seminal paper, showing the presence of 1/f α -fluctuations
in human time estimation performance, a huge interest in the presence and meaning of
fractal fluctuations in human behavior has emerged. On the one hand, fractal patterns
have been found in virtually all aspects of human physiology and behavior across recent
studies [2–11]. On the other hand, their meaning has been intensely discussed [12–19].

Through the same period, the development and refinement of different time-series
analysis techniques gained momentum, so that fractal properties could be quantified with
a variety of methods, based on the power spectrum of a time series [20], their standard
deviation [21] or residual fluctuations [22]—each of which has particular advantages
and downsides, as well as requirements for preprocessing [21,23]. This was of central
importance, because methods that are suitable for special fractals, such as box counting,
are not equally applicable to time-series data [24].

In the current paper, we want to present another way of quantifying fractal fluctuations
in time-series data using recurrence quantification analysis [25,26]. Our motivation for
the present work is two-fold: firstly, to extend the use of recurrence plot-based methods
to capture fractal properties. This is something that recurrence plot-based analyses have
not been capable of. Further, to pave the way to provide an easy-to-use tool to compare
fractal dimensions of time series that are well-applicable to binary data, and in the future
also to multidimensional time series using multidimensional recurrence plot methods [27].
As has been suggested elsewhere [28], fractal properties in time-series data can be well-
captured by the concept of (imperfectly) recurring patterns over time, and this is—as the
name implies—what recurrence quantification analysis is about. Specifically, Webber [28]
encouraged researchers to explore RQA as a bridge to further understand fractal systems
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in various fields. However, Webber did not specify how to quantify fractal fluctuations by
means of recurrence plots.

Hence, the aim of the present paper is to take this next step and propose, as well as com-
pare, novel recurrence-based approaches that can be used to quantify fractal fluctuations. In
the following, each approach is introduced, tested on synthetic data, and evaluated; in addi-
tion, a Matlab (The MathWorks, Inc., Natick, MA, USA) implementation of the approaches
presented in this paper is available on GitHub: https://github.com/alontom/FARQA
(Accessed on 19 July 2022, see Appendix A). Finally, we discuss the individual strengths
and weaknesses of each approach and relate the results to those obtained from detrended
fluctuation analysis (DFA; [22]), as DFA is one of the most widely used methods with
accurate performance in capturing fractal fluctuations in time-series data [29–31].

2. Methods and Results
2.1. Synthetic Data

In this section, we show four new approaches to differentiate between the power-law
scaling exponent (α; 1/fα) based on several RQA properties. Each evaluation approach was
applied to synthetic data consisting of 1026 data points with different fractal dimensions
ranging from α = −1 (antipersistent) to 2 (persistent) generated by ‘power noise’ func-
tion [32] using Matlab version 2021b (The MathWorks, Inc.). For every fractal dimension,
100 time series were generated under two conditions: idealized fractal time series and a
noisy fractal time series (SNR 2:1). The noise component added was drawn from a normal
distribution with 50% of the SD of the idealized fractal time series. We conducted RQA
without embedding (delay and embedding parameters of 1, euclidean normalization of
the phase space, and radius = 0.4) on the z-scored generated time series and utilized its
properties to discriminate between signals with different 1/f values. As a benchmark
to compare against, alongside the true predetermined α, we also subjected the data to
detrended fluctuation analysis (DFA; [22]). In the next sections, we will describe each of the
methods and present the results of their application. After that, we will apply the methods
to empirical data of a time-estimation task. Finally, we will provide a summary of the
strengths and weaknesses of each method and the intercorrelations of their results.

2.1.1. Detrended Fluctuations Analysis (DFA)

First, we tested the fractal properties of the dataset by applying a detrended fluctuation
analysis [22]. To do so, we used the following DFA parameters: a minimum bin size of
10, a maximum of 510, linear detrending. The results are presented in Figure 1 and show
that the Hurst exponents H estimated via the DFA scale well with the true α-values of the
time series. In the absence of random noise, DFA distinguishes scaling relations well down
to antipersistent fluctuations with α = −1 (Figure 1, left panel, R2 = 0.997). When noise is
added, the capacity of DFA to distinguish among antipersistent was slightly compromised
(Figure 1, right panel, R2 = 0.965).

2.1.2. First Approach: Estimating Scaling Using the SD of %REC over a Range of Bin Sizes
(%REC SD)

To capture the change in fluctuations with scale, the RP was split into bins of various
sizes (powers of two). In each, we calculated the recurrence rate. Then, the SD of all the
bins of the same size was computed, and we fitted a linear line to the log–log plot of the SD
vs. the bin sizes. Figure 2 illustrates the approach.

The rationale behind this approach is that a time series of i.i.d. white noise will yield
a recurrence plot that is statistically uniformly populated by mostly isolated recurrence
points, while the correlation structure of persistent fluctuations will yield a more clustered,
nonuniform distribution, and will hence lead to a slower increase in SD compared to the
white noise case (Figure 3, α > 0). However, antipersistent fluctuations tend to systemat-
ically decluster recurrences, and the result is likewise a relatively uniformly distributed
recurrence plot (Figure 3, α = −1).

https://github.com/alontom/FARQA
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Figure 1. Detrended fluctuation analysis (DFA) results: Left panel: Box plots of the true α-values on 
the x-axis and the estimated Hurst exponents H on the y-axis from DFA. As can be seen, the DFA H 
scales well with the true alpha values down to antipersistent fluctuations (α = −1). Right panel: Box 
plots of the true α-values on the x-axis and the estimated Hurst exponents H on the y-axis from DFA, 
when random noise is added (SNR = 2:1). DFA still scales well for persistent fluctuations with the 
true α-values, but is relatively less sensitive to distinguishing between different types of antipersis-
tent fluctuations. 
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Figure 1. Detrended fluctuation analysis (DFA) results: Left panel: Box plots of the true α-values on
the x-axis and the estimated Hurst exponents H on the y-axis from DFA. As can be seen, the DFA
H scales well with the true alpha values down to antipersistent fluctuations (α = −1). Right panel:
Box plots of the true α-values on the x-axis and the estimated Hurst exponents H on the y-axis from
DFA, when random noise is added (SNR = 2:1). DFA still scales well for persistent fluctuations
with the true α-values, but is relatively less sensitive to distinguishing between different types of
antipersistent fluctuations.
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ones. In (B,C) the RP is split into bins of 2 and 4 (respectively, marked in brown). With approach 1, 
one finds the %REC in every bin and computes the SD between the recurrence percentages. After-
ward, a linear trend is fitted to the log–log scaling plot (D) and the slope represents the scaling. 

The rationale behind this approach is that a time series of i.i.d. white noise will yield 
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points, while the correlation structure of persistent fluctuations will yield a more clus-
tered, nonuniform distribution, and will hence lead to a slower increase in SD compared 
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Figure 2. Demonstration of approach 1 over a simple recurrence plot: (A) A hypothetic 8 × 8 recur-
rence plot (RP) where blue squares stand for recurrence points and blank squares for nonrecurrent
ones. In (B,C) the RP is split into bins of 2 and 4 (respectively, marked in brown). With approach 1, one
finds the %REC in every bin and computes the SD between the recurrence percentages. Afterward, a
linear trend is fitted to the log–log scaling plot (D) and the slope represents the scaling.
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Figure 4 shows the model coefficients for each α (n = 100 simulations each). This 
method seems appropriate for distinguishing among persistent signals (α > 0) for the ide-
alized, but also noise data. It does not work for antipersistent fluctuations (α < 0). Here, 
the method simply does not distinguish between α-values of 0 and −1. For the noisy time 
series, we fitted linear regressions between α values and the power-law coefficients sepa-
rately for the α ≥ 0 (R2 = 0.9) and α ≤ 0 (R2 = 0.04), which support the above statement. 

 

Figure 3. RP and scaling plots for different alpha values: Examples of univariate RP time series
generated with different α-values, and scaling plots demonstrate the association of bin sizes and
the SD of the recurrence rates between bins. As can be seen, from α = 0 the slope tends to decrease,
suggesting a lower fractal dimension (i.e., higher α).

Figure 4 shows the model coefficients for each α (n = 100 simulations each). This method
seems appropriate for distinguishing among persistent signals (α > 0) for the idealized, but
also noise data. It does not work for antipersistent fluctuations (α < 0). Here, the method
simply does not distinguish between α-values of 0 and −1. For the noisy time series, we fitted
linear regressions between α values and the power-law coefficients separately for the α≥ 0
(R2 = 0.9) and α ≤ 0 (R2 = 0.04), which support the above statement.
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sizes on the y-axis. As observed, the coefficient scales well with the true alpha values for the persistent
fluctuations (α > 0). Right panel: Box plots of the true alpha values on the x-axis and the power-law
coefficients for the association of SD of %REC between the bins and bin sizes on the y-axis, when
random noise (SNR 2:1) is added. Still, the resulted coefficients scale well for persistent fluctuations
with the true alpha values but are relatively insensitive to distinguishing between different types of
antipersistent fluctuations.

2.1.3. Second Approach: Estimating Scaling Using Laminarity (%LAM)

For this approach, we simply calculated the percentage of recurrence points that have
a vertical/horizontal neighbor (%LAM, laminarity; [33]) over the whole plot (Figure 5).
The rationale behind this approach is somewhat similar to the first approach, which is that
fractal fluctuations tend to be manifested by patches or squares in the recurrence plot (see
Figure 3). Hence, %LAM would represent the persistence of the data well.
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Figure 5. Quantifying laminarity: An 8 × 8 RP where colored squares represent recurrence points.
The orange-filled recurrence points have a vertical/horizontal neighbor, while the blue squares do
not. %LAM is the percentage of the recurrence points that have a vertical neighbor (orange) out of all
the recurrence points (colored).

The results corroborate this: persistent fractal fluctuations lead to increased laminarity
with and without noise (Figure 6). In addition, there was a tight connection between the
%LAM values and the true α-values, marked by a high R2 (0.96) quantifying correlation
between α and %LAM for the noise condition.
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for both persistent and antipersistent fluctuations (α > 0). Right panel: box plots of the true α-values
on the x-axis and the %LAM on the y-axis, when random noise (SNR 2:1) is added. Still, the resulted
coefficients scale well for every alpha value (−1 < α < 2).

While there is a mathematical relation between %LAM and autocorrelations in a time
series, the method has a downside in that it does not capture scaling relations within the
data per se, and hence represents more of a correlate of fractal fluctuations, albeit a very
useful one.

2.1.4. Third Approach: Estimating Scaling Relations via Diagonal Recurrence Rates
(Diag %REC)

The third approach is based on diagonal recurrence profiles of a time series. The
diagonal recurrence profile quantifies the number of recurrences at different lags, similar
to the autocorrelation function [34]. To obtain the diagonal recurrence profile, one simply
counts the proportion of recurrence points in the off-diagonals towards the lower-right
or lower-left of the recurrence plot and plots them as a function of distance from the
main diagonal; that is, lag [35]. Figure 7 illustrates the computation of the diagonal
recurrence profile.
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Figure 7. Approaches 3 and 4—diagonals in RP: An 8 × 8 RP presents the diagonal lines from 0 (main
diagonal) to 7; due to the univariate RP’s symmetrical characteristic, only the bottom triangle was
used. In approach 3, we counted the recurrence points in each diagonal and divided them by the
diagonal’s length. Additionally, approach 4 utilizes the ratio of recurrence percentage between every
two subsequent diagonal lines. Both approaches focused on the middle diagonals to avoid the main
diagonal’s 100% recurrence points and the short diagonals towards the edges of the recurrence plot.

The rationale behind the approach is that the diagonal recurrence profile is a model-
free type of autocorrelation [33,36], and hence captures the magnitude of autocorrelation
at different lags, which is related to fractal fluctuations in a time series [37]. Accordingly,
a scaling relation between the logarithm of the recurrence rate and the logarithm of the
diagonal number (reflecting the frequency spectra) should be related to fractal scaling. Here,
a sharper negative slope indicates dominance of lower frequencies. Hence, contrasting the
previous approaches, a lower power-law coefficient evidence a more persistent fluctuation.
Correspondingly to spectral scaling analysis, this method yielded a scaling exponent of
0 to white noise (α = 0)—a benchmark to determine whether the time series is persistent,
random, or antipersistent.

As can be seen in Figure 8, this approach distinguishes comparatively well between
the different exponents for persistent fluctuations, with and without noise, but is less
sensitive to the antipersistent fluctuations (however, the exponents are still increasing with
decreasing negative alpha-values). Moreover, the relation to the true α-values appears
strong for this range, even with noise (R2 = 0.88).
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Figure 8. Results of approach 3 (Diag %REC). (A) Left panel: box plots of the true alpha values on
the x-axis and the power-law coefficients for the association of diagonal %REC and the diagonal
index (distance from the main diagonal) on the y-axis. As can be seen, the coefficient scales well
with the true α-values for both persistent and antipersistent fluctuations (−1 < α < 2). Right panel:
box plots of the true alpha values on the x-axis and the power-law coefficients for the association of
diagonal %REC and the diagonal index on the y-axis when random noise (SNR = 2:1) is added. Still,
the resulted coefficients scale well with the true α-values for persistent and antipersistent fluctuations,
but are somewhat less sensitive to distinguishing between different types of antipersistent fluctuations
(α < 0). (B) Example of scaling plots demonstrating the association of diagonal %REC and diagonal
index for different α values.
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Another version of this approach is derived from Zbilut and Marwan’s [38] proposal,
which applied the Wiener–Khinchin theorem [38] to the analysis of diagonal recurrence
profiles. They show that one can detect (nonlinear) periodicities by applying a Fourier
transform to the diagonal recurrence profile of an RP (Figure 7). Just as with the raw
diagonal recurrence profile, we fitted a linear trend line to the log–log plot power spectrum
(obtained via the Fourier Transform) of the diagonal recurrence profile (Figure 9). The
results were similar to what we observed for the raw diagonal recurrence profile in that
the method distinguished between persistent (R2 = 0.68, α ≥ 0) fluctuations. However, the
standard errors were higher, and the method did not capture antipersistent fluctuations
(R2 = 0.002, α ≤ 0).
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index on the y-axis. As can be seen, the coefficient scales well with the true α-values for the persistent
fluctuations (α > 0). Right panel: box plots of the true α-values on the x-axis and the power-law
coefficients for the association of FT of the diagonal %REC and the diagonal index on the y-axis, when
random noise (SNR = 2:1) is added. The relation of the resulting coefficients to the true α-values is
not as good for persistent fluctuations (cannot differentiate α = 0 and 0.5) and is relatively insensitive
to distinguishing between different types of antipersistent fluctuations. (B) Example of scaling plots
demonstrating the association of FT of the diagonal %REC and diagonal index for different α values.

2.1.5. Fourth Approach: Consecutive Diagonals Recurrence Ratio (Diag ratio)

Until this point, the analysis techniques were more effective for persistence signals
and did not distinguish between antipersistent signals well. Approach number four
solves this issue to some degree. Similar to the third approach, we utilized the recurrence
percentage of the diagonal lines. Here, however, we calculate the ratio between each
couple of consecutive diagonal lines (Figure 7). The rationale behind the approach is that
antipersistent fluctuations will tend to yield oscillations at high frequencies, and the ratio
of recurrence rate of adjacent diagonals in the recurrence plot will capture the magnitude
of such oscillations. Just as with the laminarity measure, however, this method is more of a
correlate of antipersistent fractal scaling, and does not capture scaling properties directly.

As seen in Figure 10, with this measure, we can differentiate negative α-values (an-
tipersistent) from α = 0, both with and without external noise. However, the method does
not distinguish between the different alpha values of the persistent fluctuations.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 16 
 

 

Example of scaling plots demonstrating the association of FT of the diagonal %REC and diagonal 
index for different α values. 

2.1.5. Fourth Approach: Consecutive Diagonals Recurrence Ratio (Diag ratio) 
Until this point, the analysis techniques were more effective for persistence signals 

and did not distinguish between antipersistent signals well. Approach number four solves 
this issue to some degree. Similar to the third approach, we utilized the recurrence per-
centage of the diagonal lines. Here, however, we calculate the ratio between each couple 
of consecutive diagonal lines (Figure 7). The rationale behind the approach is that antiper-
sistent fluctuations will tend to yield oscillations at high frequencies, and the ratio of re-
currence rate of adjacent diagonals in the recurrence plot will capture the magnitude of 
such oscillations. Just as with the laminarity measure, however, this method is more of a 
correlate of antipersistent fractal scaling, and does not capture scaling properties directly. 

As seen in Figure 10, with this measure, we can differentiate negative α-values (anti-
persistent) from α = 0, both with and without external noise. However, the method does 
not distinguish between the different alpha values of the persistent fluctuations. 

 
Figure 10. Results of approach 4 (consecutive diagonals %REC ratio). Left panel: box plots of the 
true alpha values on the x-axis and the mean ratio between subsequent diagonals’ %REC on the y-
axis. As can be seen, the coefficient scales well with the true α-values for antipersistent fluctuations 
(α < 0) and converges to 1 from α = 0. Right panel: box plots of the true α-values on the x-axis and 
the mean ratio between subsequent diagonals’ %REC on the y-axis when random noise (SNR 2:1) is 
added. Still, the resulted coefficients scale well for negative alpha value (R2 = 0.79). 

2.2. Empirical Example 
The approaches were tested on a dataset of a tapping experiment during which par-

ticipants listened to a certain beat and were then instructed to tap according to the tempo 
they had heard. Under one of the two within-participant conditions, participants received 
visual feedback on every trial to help them align their tapping performance with the target 
tempo, while in the other condition no such feedback was provided. The sample was com-
prised of 36 time series from 18 participants with at about 1000 tapping intervals per time 
series. 

Figure 10. Results of approach 4 (consecutive diagonals %REC ratio). Left panel: box plots of the true
alpha values on the x-axis and the mean ratio between subsequent diagonals’ %REC on the y-axis. As
can be seen, the coefficient scales well with the true α-values for antipersistent fluctuations (α < 0)
and converges to 1 from α = 0. Right panel: box plots of the true α-values on the x-axis and the mean
ratio between subsequent diagonals’ %REC on the y-axis when random noise (SNR 2:1) is added.
Still, the resulted coefficients scale well for negative alpha value (R2 = 0.79).
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2.2. Empirical Example

The approaches were tested on a dataset of a tapping experiment during which
participants listened to a certain beat and were then instructed to tap according to the
tempo they had heard. Under one of the two within-participant conditions, participants
received visual feedback on every trial to help them align their tapping performance with
the target tempo, while in the other condition no such feedback was provided. The sample
was comprised of 36 time series from 18 participants with at about 1000 tapping intervals
per time series.

Drawing on previous research on cognitive processes, we expected the time series to
show persistent fractal fluctuation. Moreover, previous research showed that receiving
feedback would reduce long-range dependencies in the data related to cognitive-motor
processes of timing, and hence yield a more random (‘whiter’) noise manifested by a
lower α exponent [39]. Our findings, displayed in Figure 11, support these expectations
in several ways. Firstly, a negative power-law coefficient in approach 3 along with a
~1 ratio between subsequent diagonals (approach 4) indicate a persistent fluctuation in
both conditions and is supported by a Hurst exponent 1.0 > H > 0.5, suggesting a pinkish
noise. Further, approaches 1–3, as well as Wiener–Khinchin theorem’s results, imply a
lower α-exponent for the feedback condition (see Table 1). While SD %REC and %LAM
exhibit it by presenting a higher clustering characteristic for the no-feedback condition,
Diag %REC and the Wiener–Khinchin theorem display it with a stronger lower frequency
dominance when no feedback is given.
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Figure 11. Box plots illustrating the outcomes of feedback and no-feedback conditions: Six sets of
box plots represent a comparison between the outcomes of each approach for feedback (orange)
and no-feedback (blue) conditions. While the frame of the boxplot is defined by the interquartile
range, the notch represents a 95% confidence interval and the whiskers show the maximum and the
minimum of each distribution (except outliers). As expected, due to its persistent noise characteristics
(α > 0), behavioral data would be appropriately analyzed by approaches 1–3 but not approach 4.
Approaches 1 and 2, as well as DFA, yield higher results for the no-feedback condition, indicating a
larger α, meaning a more persistent behavior. Likewise, approach 3 and Wiener–Khinchin theorem
suggest a lower frequency dominancy in the no-feedback condition.
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Table 1. Paired t-test results comparing the outcomes of feedback and no-feedback conditions.

Approach t df p

1—SD %REC −5.12 17 >0.001
2—%LAM −3.33 17 0.004
3—Diag %REC 3.43 17 0.003
4—Diag ratio 0.82 17 0.42
Wiener–Khinchin
theorem 3.68 17 0.002

DFA −4.08 17 >0.001

2.3. Comparison of the Approaches

To evaluate the presented approaches in relation to the true alpha values of the
generated time series, we focus on three main parameters: (a) fractal dimension range,
(b) sensitivity to noise, and (c) summary of the quantitative relation to the true alpha values.
Furthermore, we investigated their applicability to empirical behavioral data.

2.3.1. Range

As presented above, approaches 1 (SD %REC) and the Wiener–Khinchin-based analy-
sis are sensitive to persistent fluctuations. Conversely, approach 4 (Diag ratio) differentiates
only antipersistent fluctuations, whereas approaches 2 and 3 (%LAM, Diag %REC) are
applicable throughout the whole tested range (−1 < α < 2), like DFA. Hence, with no
estimation of the time series’ fractal dimension, one should conduct an analysis according
to approaches 2 or 3, otherwise the researcher might prefer to pick the analysis technique
that best fits his data’s characteristics. On a similar note, one can try to detect whether there
are persistent fluctuations using approach 4, which yields a ~1 ratio for α ≥ 0.

2.3.2. Robustness to Noise

Most of the analysis techniques that were applied were robust to noise. Except for
the Wiener–Khinchin theorem approach, the rest distinguished between α-values within
their range comparably with and without noise. Nevertheless, antipersistent fluctuations
were less distinguishable by both approach 3 and DFA when i.i.d. noise (SNR = 2:1)
was introduced.

2.3.3. Quantitative Relation to True Alpha Values

Table 2 provides a summary of the R2-values that capture the relation between the
true α-values and the estimated parameters of the different approaches, separately for
persistent and antipersistent fluctuations. As DFA is the gold standard for fractal analyses
in time-series methods, the comparison of the recurrence-based approaches to DFA is of
particular interest here. Comparing the likelihoods of the linear models of each of our four
approaches to DFA, we found that the association between the true α values and Hurst
exponent is significantly stronger than in almost every other method (α < 0.05). On the
contrary, approaches 2 and 4 yielded significantly higher association (than DFA) with the
true α values for antipersistent fluctuation when noise is introduced, but somewhat below
DFA under the no-noise condition. Nevertheless, approaches 1–3 show similar R2 to DFA
when analyzing persistent noise. It has to be kept in mind that the sample sizes here are
quite large, and tests of significance are of limited value in this case.

2.3.4. Applicability

All approaches were found applicable to behavioral data and concluded conformally
despite the small sample size. The utilized data were most likely to behave persistently
and hence were out of the fourth approach range. Yet, we suggest using approach 4 to
confirm whether the time series is persistent or not (persistent fluctuations are indicated
by a 1:1 ratio between subsequent diagonals). Table 3 provides an overview of the R2

for the different approaches (including DFA) when comparing the two time-estimation
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groups (i.e., with and without feedback). In a model comparison, approaches 2–4 were less
predictive than DFA (α < 0.05), while approach 1 was not significantly lower.

Table 2. Comparison of approaches on simulated data.

Approach R2—Persistent (No Noise) R2—Antipersistent (No Noise) R2—Persistent (with Noise) R2—Antipersistent (with Noise)

1—SD %REC 0.9 0.08 0.9 0.04
2—%LAM 0.97 0.82 0.95 0.81
3—Diag %REC 0.93 0.38 0.93 0.33
4—Diag ratio 0.33 0.79 0.06 0.78
Wiener–Khinchin
theorem 0.7 0.01 0.68 0.002

DFA 0.99 0.99 0.98 0.68

Table 3. Comparison of approaches on empirical data.

Approach R2—with vs. without Feedback

1—SD %REC 0.33
2—%LAM 0.11
3—Diag %REC 0.25
4—Diag ratio 0
Wiener–Khinchin theorem 0.23
DFA 0.36

3. Conclusions

In the current paper, we presented and compared several recurrence-based approaches
to quantify the strength of monofractal autocorrelations in time-series data. This is a major
step forward for integrating the quantification of scaling properties into recurrence quan-
tification analysis, as previous research has suggested that such analyses are theoretically
possible (e.g., [28]), but did not point to concrete means for how to deduce such properties.
The proposed methods differ in quality, as well as in the range of applicability to particular
types of colored noise, as we have shown on synthetic and empirical data. Based on
our results, we recommend using approaches 3 and 4 to determine whether the data are
persistent, antipersistent, or white noise. Then, approaches 1, 2, and 3 would be suitable to
compare the fractal dimensionality of persistent data, while approaches 2 and 4 would fit
antipersistent time series.

Thus, the present work lays the foundations for integrating fractal analysis into
an RQA framework, and defining appropriate recurrence-based quantifies. Moreover,
these methods might be amenable to quantifying time-dependent fractal fluctuations of
not only univariate time series, but also strange attractor profiles, which possess fractal
properties and are readily analyzable within the framework of recurrence quantification
analysis [28]. In the future, these methods could be extended to capturing fractal dimensions
in multidimensional systems via multidimensional recurrence quantification analysis. In
addition, an evaluation and adaptation of these approaches to multifractals would be
valuable [40,41].
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