
Resilience of natural-resource-dependent

economies: weak vs. strong demand-side

interactions

Abstract: We study the role of consumer needs for (limited) resilience of

natural-resource-dependent economies. In particular, we study how substi-

tutability vs. complementarity of natural resources in consumer needs may

give rise for multiple steady states and path dependence under the optimally

controlled harvest of two renewable natural resources. This is a major shift in

the interpretation and analysis of resilience, from seeing (limited) resilience

as an objective property of the economy-environment system to acknowledg-

ing its partially subjective, preference-based character. We show that the

resilience of natural-resource-dependent economies decreases with the degree

of complementarity between resources in consumer needs. More generally,

we hypothesize that the stability of economic systems decreases with the

strength of demand-side interactions.
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1. Introduction

Economies that use and depend on dynamic natural resources may be

understood as dynamic systems exhibit non-trivial dynamics. This includes

largely resilient stability domains, where exogenous shocks are effectively

buffered, and, on the opposite, potential collapse of resource stocks and wel-

fare. The former and the latter potential dynamics of one and the same

system are separated by tipping points, i.e. threshold values of the economy-

environment-systems state variables, which separate domains of fundamen-

tally different dynamics. Long-term efficient and sustainable management of

such systems is thus a huge challenge and requires a thorough understanding

of the origins and mechanisms of such non-linear dynamics.

The collapse of historical natural-resource-dependent economies has be-

come a fascinating area of economic research in recent years, which promises

conclusions for todays major environmental crises such as climate change

or biodiversity loss.1 Examples include the societies of Easter Island, the

Anasazi, and the Maya (Diamond 2005). Brander and Taylor (1998), Taylor

(2009) and Good and Reuveny (2009) provide a modeling analysis of the col-

lapse of the historical society of Easter Island, suggesting that the collapse

may have been due to a nonlinear interaction between population growth and

the dynamics of natural resource use. Such studies may provide important

insights for today’s decision making, as, on a global scale, economies de-

pend on natural resources, such as clean water and the global climate system

1As a counter position, McAnany and Yoffee (2010) question the idea of collapse. They

stress the large resilience of natural-resource-dependent societies.
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(Arrow et al. 1995, Taylor 2009).

Traditionally, literature in resource economics has considered dynamics

of resource use where the natural resource is either bound to depletion or can

be harvested sustainably, depending on the growth dynamics of the resource,

on harvesting technology and on the economy’s institutions (Gordon 1954,

Clark 1973, 1990, Copeland and Taylor 2009). More recent studies show

that the dynamics of resource use may be path-dependent, such that the fate

of the resource-dependent economy depends on its initial state. In terms

of dynamical systems, this means that the system features more than one

stable steady-state, with a domain of attraction for each. As a consequence,

a system of resource use may flip from one domain of attraction into another

one as a result of exogenous disturbance (Holling 1973, Levin et al. 1998,

Carpenter et al. 2001, Scheffer et al. 2001). Such a limited resilience may

be due to nonconvexities in the dynamics of the ecosystem, as for example,

in boreal forests, semi-arid rangelands, wetlands, shallow lakes, coral reefs,

or high-seas fisheries (Gunderson and Jr. 2002). The implications for the

management of nonconvex ecosystems that have several stable states have

been studied in general (Dasgupta and Mäler 2003), and in particular for

shallow lakes (Mäler et al. 2003) and rangelands (Perrings and Stern 2000,

Anderies et al. 2002, Janssen et al. 2004). Limited resilience may also be

driven by harvesting technology or storability of resources in an open access

setting (Kremer and Morcom 2000, Bulte 2003).

While previous studies have explained limited resilience by the dynam-

ics of natural resources and technology, i.e. by the constraints of economic

action, in this study we highlight the role of consumer preferences, i.e. on

3



the properties of the societal objective function. In particular, we study

the role of substitutability vs. complementarity of natural resources in con-

sumer preferences. This is a major shift in the interpretation and analysis

of resilience, from seeing (limited) resilience as an objective property of the

system to acknowledging its partially subjective, preference-based character.

For this sake, we develop and study a model with two renewable natural

resources which enter consumer preferences with a constant elasticity of sub-

stitution that represents the full spectrum between perfect substitutes and

perfect complements. Accordingly, the degree of complementarity between

resources – which is the inverse of the elasticity of substitution in consump-

tion – measures the strength of demand-side interactions between the two

resources. The other element in the objective function that determines (lim-

ited) resilience is the time horizon of resource use, i.e. the societal discount

rate. As most renewable natural resources are managed with some degree of

cooperation (Ostrom 1990), we study resource use that is optimally planned

rather than open-access resource use.

Our main results are conditions on the degree of complementarity of

resources in consumer preferences and on the societal discount rate under

which the dynamics of resource use features path dependency and limited

resilience, i.e. exhibits multiple stable steady states. We show that the re-

silience of natural-resource-dependent economies decreases with the degree

of complementarity between resources in consumer preferences.

The paper is organized as follows. In Section 2 we develop a stylized

model of an economy that depends on the use of two renewable natural re-

sources. Section 3 derives the conditions for the optimal management of these
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resources. In Section 4 we study how the number and stability properties of

optimal steady states depends on the degree of complementarity of the two

resources and on the societal discount rate, providing both analytical results

and numerical examples. Section 5 concludes and discusses implications for

current management of global natural resources.

2. Model of a natural-resource-dependent economy

We consider a representative individual whose needs for two natural re-

sources (h1 and h2) and a manufactured good (y) are described by the utility

function

u(y, h1, h2) = y + γ ln

[∑
j=1,2

h1−κj

] 1
1−κ

, (1)

where γ > 0 is the representative household’s weight of natural resources in

the utility function and κ is the strength of demand-side interactions between

the two resources. Its inverse 1/κ is the elasticity of substitution between

the consumption of different natural resources. For different values of κ > 0,

the degree of substitutability/complementarity between the natural resources

varies. For κ = 1, sub-utility from consumption of resources would be the

Cobb-Douglas function
√
h1 h1. For κ→ 0, the resources are perfect substi-

tutes in consumption. For κ → ∞, the resources are perfect complements.

Overall, a higher value of κ implies a higher degree of complementarity.

The dynamics of the resource stocks (xi), i = 1, 2 are described by the

following differential equations

ẋj = fj(xj)− hj (2)
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where the functions fj(·) describe the intrinsic growth of the resource stocks,

and hj denotes the aggregate harvest of resource j. The equation of motion

for resource j depends only on its own stock, i.e. we assume that the dynamics

of different resources are independent. Although, of course, in reality there

may exist ecological interactions between different natural resources, here

we assume independence in order to focus on the effects of the durability

of institutions and complementary needs. We specify the natural growth

functions fj(·) as logistic functions:

fj(xj) = rj xj

(
1− xj

Kj

)
(3)

where rj denotes the intrinsic growth rate and Kj the carrying capacity of

resource j. With regard to the harvesting technology we assume Schaefer

production functions (Gordon 1954, Schaefer 1957)

hj = qj xj ej , (4)

where qj is the productivity of harvesting the resource (in fisheries, it is often

referred to as the ‘catchability’), xj is the stock of the resource, and ej is the

effort, i.e. labor, used for harvesting resource j.

The representative household inelastically supplies one unit of labor on

a competitive market. Labor is divided across the two resource harvesting

sectors and the manufactured-goods sector that produces the numeraire. In

order to set up a general equilibrium model in a simple way, we assume that

labor is the only factor input for the production of the manufactured good,

and that production is through a constant-returns-to-scale technology, i.e.

each unit of labor produces ω > 0 units of output. Hence, aggregate output
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of manufactured goods is

w = ω

(
1−

∑
j=1,2

ej

)
(5)

and the (constant) competitive wage rate is equal to the marginal product

of labor, ω. To ensure a positive consumption of the numeraire commodity,

we assume ω > γ throughout the analysis (see footnote 2 below).

We assume that a central government is in place that has the aim to

maximize the representative household’s present value of utility. Further-

more, the economy’s institutions are of limited permanence. With a positive

probability of, the current institutions may be cease to exist at any given

point in time by forces beyond the government’s control. We assume that

the societal discount rate δ captures both the representative household’s im-

patience to consume and the limited permanence of the institutions. The

government’s objective function is thus given by

∞∫
0

u(y, h1, h2) e
−δ t dt (6)

The government’s optimization problem is to choose total harvest of the two

resources, hj and output of the manufactured good (w) such as to maxi-

mize (6) subject to (5), (4), and the equations of motion for the natural

resources, equation (2).

When studying the resilience of the resource-dependent economy in the

following, we consider exogenous disturbances that hit the economy. Such

an exogenous disturbance is an unforeseen, one-time shock to the resource

stocks. Considering unforeseen, one-time shocks implies that, after a distur-

bance, the economy will follow the path of resource use that is optimal given
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the new initial stocks after the disturbance occurred.

3. Conditions for dynamically optimal resource use

To gain analytical insights into the dynamic properties of optimal resource

use, we consider the current-value Hamiltonian

H = γ
1

1− κ
ln

[∑
j=1,2

h1−κj

]
+ ω

(
1−

∑
j=1,2

hj
qj xj

)
+
∑
j=1,2

µj [fj(xj)− hj]

(7)

where µj are the shadow prices of the resource stocks. The first-order condi-

tions for the government’s optimization problem are

γ h−κj

[∑
j=1,2

h1−κj

]−1
=

ω

qj xj
+ µj j = 1, 2 (8)

ω hj
qj x2j

=
[
δ − f ′j(xj)

]
µj − µ̇j j = 1, 2 (9)

together with the transversality conditions e−δ t µj xj
t→∞−−−→ 0 and the condi-

tion that the initial resource stocks are given. For the following analysis, it

is more convenient to use the shadow price of resource consumption, which

we denote by πi, instead of the shadow price of the resource stocks, µi. Ac-

cording to condition (8), this shadow price is

πi =
ω

qj xj
+ µj, (10)

i.e., it is the sum of marginal harvesting cost and the shadow price µi of the

resource stock, which is gives the marginal opportunity cost of harvesting. We

obtain the consumption/harvest of resource i as a function of these shadow
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prices from (8) after few steps of rearranging2

hi = γ
π
− 1
κ

i∑
j=1,2

π
1− 1

κ
j

(11)

Using (11) in (2) and (11) as well as (10) in (9), we obtain the following

system of differential equations

ẋj = fj(xj)− γ
π
− 1
κ

i∑
j=1,2

π
1− 1

κ
j

(12)

π̇j =
[
δ − f ′j(xj)

] [
πj −

ω

qj xj

]
− ω fj(xj)

qj x2j
(13)

that governs the optimal dynamics of the resource-dependent economy to-

gether with the initial condition that the stocks at t = 0 are given and

the transversality conditions, which become e−δ t πj xj
t→∞−−−→ 0. The interac-

tion between the two resources is captured by the harvesting term in equa-

tion (12). Equation (13), by contrast, depends only on the stock and shadow

price of the resource j = 1, 2 itself.

The resilience of the resource-dependent economy is determined by the

number and stability properties of the optimal steady states. A steady state

is characterized by ẋj = 0 and π̇j = 0, j = 1, 2. With this, we obtain from

2Condition (11) shows that a positive consumption of the numeraire commodity is

guaranteed, as
∑
j=1,2

ω
qj xj

hj ≤
∑
j=1,2 πj hj = γ < ω.
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Equations (12) and (13) after few rearrangements

πj = πi

[
γ

πi fi(xi)
− 1

] κ
κ−1

with j, i ∈ {1, 2} and j 6= i (14)

πj =
ω

qj xj

[
1 +

fj(xj)

xj
[
δ − f ′j(xj)

]] with j ∈ {1, 2} (15)

=
ω

qj xj

δ + rj
xj
Kj

δ − rj + 2 rj
xj
Kj

(16)

where we have used (3) to obtain the last expression. Again, it is the first

of these equations that captures the interaction between the two resources.

Note that the right hand side of condition (14) may be expressed as a function

of the stock xi of resource i only (as both πi and fi(xi) depend only on xi),

while the left hand side is a function of the stock xj of resource j 6= i only.

Equating (15) and (14), we obtain two conditions that determine the steady-

state stocks of the two resources j = 1, 2. Solving (16) for xj yields

xj(xi) =
Kj

4

√ 8 δ ω

rj qjKj πj
+

[
δ − rj
rj
− ω

Kj qj πj

]2
− δ − rj

rj
+

ω

Kj qj πj


(17)

with (from condition 14)

πj =
ω

qi xi

δ + ri
xi
Ki

δ − ri + 2 ri
xi
Ki

γ qi
ω ri

δ − ri + 2 ri
xi
Ki[

δ + ri
xi
Ki

] [
1− xi

Ki

] − 1

 κ
κ−1

(18)

Condition (17) with (18) gives the optimal steady-state stock of resource j

as a function of the steady-state stock xi of resource i, the xj(xi)-isocline.
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4. Resilience of the resource-dependent economy

4.1. Analytical results

To be able to derive clear-cut analytical results, we assume in the follow-

ing that both natural resources are governed by the same type of dynamics,

i.e. the parameters of the biological growth functions and of the harvesting

functions are the same: r1 = r2 = r, K1 = K2 = 1, and q1 = q2 = q. The ma-

jor analytical advantage of symmetric resources is that a unique symmetric

steady state exists.

Proposition 1. With symmetric resources, and if 2 r ω > γ q, one and only

one symmetric steady state (x?1, x
?
2) = (x?, x?) exists with

x? =
1

2 r

[
r − δ − γ q

ω
+

√
(δ + r)2 +

(γ q
ω

)2]
> 0 (19)

Proof. For a symmetric steady state x? = x?1 = x?2, we have from condi-

tion (15) that π?1 = π?2. With this, we conclude from condition (14) that the

steady state is determined by the equation 2 π f(x?) = γ. The only positive

solution to this equation is (19) (see appendix A.1)

The resource stocks in the symmetric steady state do not depend on the

degree of complementarity, κ, as in a symmetric steady state both resources

are used in equal quantities. Of course, the resource stocks do depend on the

societal discount rate, delta. It is easy to show that a larger discount rate

leads to lower resource stocks. If the condition 2 r ω > γ q holds, however,

the steady state stocks are positive even for δ →∞.

Any optimal steady state, whether it is symmetric or not, is determined

as the solution of the fixed point equation x1(x2(x1)) = x1, where both
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x1(x2) and x2(x1) are determined by equation (17). In the following we

study how the solutions to this fixed point equation depend on the degree of

complementarity κ between the two resources. In the Cobb-Douglas-case κ =

1 the steady-state stocks of the two resources can be determined independent

of each other: we see from equation (11) that in this case the steady-state

condition (14) is replaced by the condition r xi (1 − xi) = γ/(2 πi). In the

following we study the case of weak and strong demand-side interactions,

i.e. the cases where complementarity of the resources is weaker (κ < 1) or

stronger (κ > 1) than in the Cobb-Douglas case. We will use the following

lemma.

Lemma 1. 1. For weak demand-side interactions, i.e. if κ < 1, the xj(xi)-

isoclines are strictly increasing over the whole range of xi, x
′
j(xi) > 0 for

xi ∈ [0, 1].

2.a For strong demand-side interactions, i.e. if κ > 1, the xj(xi)-isoclines

are strictly decreasing for a range of large xi, i.e. a x̄i ≥ 0 exists such that

x′j(xi) < 0 for xi ∈ [x̄i, 1].

2.b For strong demand-side interactions, i.e. if κ > 1, and if δ > r γ q
γ q−ω r , the

xj(xi)-isoclines have the properties that xj(0) = xj(1) = 0, with an interior

maximum.

Proof. see appendix A.2.

Proposition 1 shows that one (interior) steady state always exists. The

questions are (i) whether this steady state is unique and (ii) if not, what are

the stability domains of the different steady states. We consider the case of

a low degree of complementarity (κ < 1) first.
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Proposition 2. For weak demand-side interactions, i.e. if κ < 1, the sym-

metric steady state x? = x?j = x?i > 0 given by (19) is the unique optimal

steady state for any set of initial conditions (except for the zero-measure set

of initial conditions where either x1(0) = 0 or x2(0) = 0 or both).

Proof. For κ < 1 any steady state must be symmetric, as the following

argument shows: Let x? = x?1 = x?2 be a symmetric steady state. Since xj(xi)

is monotonically increasing (Lemma 1), it may be inverted, such that a steady

state is determined by x2(x
?) = x−11 (x?). For symmetric resources, we have

x2(x) = x1(x) for all x. Assume w.l.o.g. that x′j(x
?) > 1. Then, x′i(x

?) =

1/x′j(x
?) < 1. Thus, no asymmetric steady state is possible. Furthermore,

only one symmetric steady state with x? > 0 exists (Proposition 1).

A low degree of complementarity between resources thus ensures that the

optimal development of the resource-dependent economy is also sustainable

in the sense that in the steady state, the stocks of both resources are strictly

positive and provide strictly positive resource rents. This may be completely

different for a high degree of complementarity, κ > 1.

Proposition 3. For strong demand-side interactions, i.e. if κ > 1 two asym-

metric steady states (x??1 , x
??
2 ) and (x??2 , x

??
1 ) with x??1 > 0, x??2 > 0 and

x??1 6= x??2 exist in addition to the symmetric steady state (x?1, x
?
2) = (x?, x?)

if the following conditions hold: (i) δ > r γ q
γ q−ω r and (ii) κ < −π′(x?)

π(x?)
f(x?)
f ′(x?)

,

where π(x?) = ω
q x?

δ+r x?

δ−r+2 r x?
and x? is given by (19).

Proof. see appendix A.3

If several interior steady states exist, none of them is globally stable. This

means that separate sets of initial conditions exist for which different steady
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states are optimal. In the setting with two resources, considered here, these

borders of these sets are initial conditions where the planner would optimally

move to a third steady state.3

The first of the two conditions for several interior steady states to exist

is that the discount rate is higher than a threshold value that is determined

by the natural growth rate r of the resources, the weight γ of resources in

utility and the technological parameters ω and q. It the discount rate gets

higher than the threshold value, the symmetric steady state looses its global

stability.

The second condition given in Proposition 3 is that the elasticity of sub-

stitution between the two resources exceeds a given threshold value (which,

obviously, is smaller than one). If the elasticity of substitution would be

below this threshold value, the symmetric steady state would be the only

interior steady state, but it would be optimal only for an almost empty set

of initial conditions. For most initial conditions, it would be optimal to de-

plete one of the resources, while the other one, which becomes useless if the

complement is gone, ultimately reaches its natural equilibrium value. That

is, the optimal steady states are (0, 1) and (1, 0).

4.2. Numerical examples

The numerical examples considered in this section are not meant to quan-

titatively resemble any specific resource-dependent economy. We have chosen

intrinsic growth rates of 4% per year. Many natural resources such as ma-

3In models with one state variable, these borders are called Skiba-points after Skiba

1978. Here, the borders are curves rather than points.
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rine fish stocks and different types of forests exhibit intrinsic growth rates

in this order of magnitude. With regard to the technological parameters,

we assume ω = 0.1 and q = 0.1. The weight of resources in utility is

γ = 0.0667 = 0.667ω, which means that two thirds of time would have

been spent harvesting resources.

These parameters fulfill the condition 2 r ω = 0.008 > γ q = 0.0667. For

δ > r γ q/(γ q − ω r) = 0.1, Condition (i) of Proposition 3 is fulfilled.

We varied the two other parameters of the model, i.e. the degree of com-

plementarity κ and the discount rate δ in the calculations. We focus on the

case of strong demand-side interactions, i.e. on a degree of complementarity

κ > 1, as for weak demand-side interactions, κ < 1, the steady state is unique

(Proposition 2).

Figure 1 shows the phase diagrams of the optimal resource dynamics given

by Equations 12 and 13. In phase diagram (a) the degree of complementarity

is κ = 1.66 and the societal discount rate is δ = 17%. For the phase diagram

(b) we have used the same degree of complementarity as in (a), but the

discount rate is only 9%. For the phase diagram (c) we have used the same

discount rate as for diagram (a), but a higher degree of complementarity,

namely κ = 2.5.

For δ = 17% = 0.17 > r γ q/(γ q − ω r) = 0.1, Condition (i) of Proposi-

tion 3 is fulfilled. Condition (ii) is fulfilled for δ = 17% if κ < −π′(x?)
π(x?)

f(x?)
f ′(x?)

=

1.88. That means, for the phase diagram (a), both conditions of Propo-

sition 3 are fulfilled. For phase diagram (b), condition (i) is not fulfilled,

while for phase diagram (c), condition (ii) is not fulfilled. Accordingly, three

interior steady states exist for the parameters used in diagram (a), while
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Figure 1: Phase diagrams for different degrees of complementarity κ of the resources and

different societal discount rates δ.
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exactly one interior steady state exists for the parameters used to construct

diagrams (b) and (c). The stability properties of the steady states are de-

termined by the eigenvalues of the Jacobian at the steady state (given in

appendix A.4). For phase digram (a) in figure 1, the eigenvalues of the Jaco-

bian are (−0.0146, 1.90·10−3, 0.168, 0.185) for the steady states A and A′, and

(−0.0121,−1.84 ·10−3, 0.172, 0.182) for the steady state S. For phase diagram

(b) the eigenvalues of steady state S are (−0.0155,−6.65·10−3, 0.0966, 0.105),

and for phase diagram (c) the eigenvalues of steady state S are (−0.0121, 3.76·

10−3, 0.166, 0.182)

Figure 1 (a) shows the most interesting dynamics, as three interior steady

states exist. The two asymmetric steady states A and A′ are saddle-point

stable. The dotted lines depict the saddle-path that would lead to these

steady states. For all initial states of the resource stocks, the optimal paths

would tend towards the symmetric steady state S. For initial states to the

east of the saddle path in the north-west, the optimal steady state is C, while

for initial states below the saddle path in the south-east, the optimal steady

state is C′.

The symmetric steady state in Figure 1 (c) is globally stable. In Figure 1

(b), the complementarity of resources and the rate of discount are so high

that the collapse of the natural-resource-dependent economy is optimal for

almost any set of initial conditions. The only exception is the case where the

economy initially is on the saddle-path to the symmetric steady state, i.e.

where x1(0) = x2(0) holds exactly.

The dependency of the equilibria and their stability domains on (a) the

discount rate and (b) the degree of complementarity of the two resources is
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illustrated in the bifurcation diagrams shown in Figure 2. In the graphs, solid

lines depict an (almost) globally stable equilibrium, dotted lines (almost)

unstable equilibria , and dashed lines locally stable equilibria.

5. Conclusion

We have analyzed how characteristics of consumer preferences affect the

(limited) resilience of natural-resource dependent economies. Thereby, we

have focused on the complementarity of resources in the satisfaction of hu-

man needs, and the societal discount rate. We have derived conditions on the

degree of complementarity and on the discount rate for which the optimal dy-

namics of resource use features multiple steady states and path-dependence.

We have shown that the resilience of natural-resource-dependent economies

decreases with the degree of complementarity between resources in consumer

preferences.

Pointing to the strength of economic interactions between different re-

sources for an explanation of the systems stability properties opens poten-

tially fruitful perspectives for the discussion of stability of economic systems.

Generally, we hypothesize that the stability of economic systems decreases

with the strength of demand-side interactions.
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Figure 2: Bifurcation diagrams: steady states as function of discount rate (top) and degree

of complementarity (bottom). Solid lines depict an (almost) globally stable equilibrium,

dotted lines (almost) unstable equilibria , and dashed lines locally stable equilibria.
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A.1 (Symmetric steady state). Using (15) and (3) in the condition 2 πj f(x?) =

γ for a symmetric steady state yields

2
ω

q

δ + r x?

δ − r + 2 r x?
r (1− x?) = γ (A.1)

(δ + r x?) r (1− x?) =
γ q

2ω
(δ − r + 2 r x?) (A.2)

δ r + (r − δ) r x? − (r x?)2 =
γ q

2ω
(δ − r + 2 r x?) (A.3)

(r x?)2 +
(
δ − r + 2

γ q

2ω

)
r x? = r δ − γ q

2ω
(δ − r) (A.4)(

2 r x? + δ − r +
γ q

ω

)2
= (δ + r)2 +

(γ q
ω

)2
(A.5)

Solving for x? yields

x? =
1

2 r

[
r − δ − γ q

ω
±
√

(δ + r)2 +
(γ q
ω

)2]
(A.6)

A.2 (Proof of Lemma 1). Ad 1. Note first that any real-valued solution

to (14) requires that πj, j = 1, 2 is positive. Using (3) in (15), this leads to the

conclusion that for any steady state xj > (r − δ)/(2 r). Differentiating (15)

with respect to xj and using (3) yields

dπj
dxj

= − ω

q

2 [r xj]
2 + [δ] [δ − r + 4 r xj]

x2j [δ − r + 2 r xj]
2 (A.7)

This implies that the shadow price of harvest of resource j is monotonically

decreasing with the stock xj, as xj > (r−δ)/(2 r). In a similar way, it is easily

verified that d2πj/dx
2
j > 0 for the relevant range of stocks, xj > (r− δ)/(2 r).

Total differentiation of (14) leads to

dπj
dxj

dxj
dxi

=
dπi
dxi

[
γ

πi f(xi)
− 1

] κ
κ−1

−
γ
[

γ
πi f(xi)

− 1
] 1
κ−1

κ−1
κ
f(xi)

[
1

πi

dπi
dxi

+
f ′(xi)

f(xi)

]
(A.8)
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The first term on the right hand side is negative, dπi/dxi < 0, and as by

equation (14) γ/(πi f(xi) > 1. The last factor (in brackets) of the second

term on the right hand side is negative, too:

1

πi

dπi
dxi

+
f ′(xi)

f(xi)
= −2 [r xi]

2 + δ [δ − r + 4 r xi]

[δ + r xi] [δ − r + 2 r xi]
+

1− 2xi
xi [1− xi]

= −δ [δ + 2 r xi] + r2 [1− 2xi [1− xi]]
[1− xi] [δ + r xi] [δ − r + 2 r xi]

< 0 (A.9)

For κ > 1, the first factor of the last term in Equation (A.8) is positive. In

conclusion, we have dxj/dxi > 0, as dπj/dxj < 0.

Ad 2. If xi = 1, we have πi|xi=1 = ω/qi > 0, i.e. the shadow price of resource

use equals the marginal harvesting cost, as the shadow price of the stock is

zero. Using this in (14), we have (with κ > 1) πj
xi→1−−−→ ∞, i.e. harvest

(equal to natural growth) of stock i is zero in the steady state (only) if the

shadow price of the complementary resource j is prohibitively high. This, in

turn, implies xj(1) = 0 (by equation 17). As xj(xi) ≥ 0 and as xj(xi) is

continuous in xi < 1, it follows that x′j(xi) < 0 in a neighborhood of 1.

Ad 3. That xj(1) = 0 has been shown in the last paragraph. Under the

condition given in the lemma, we find

lim
xi→0

[
γ

πi f(xi)
− 1

] κ
κ−1

=

[
γ

ω
q

δ
δ−r r

− 1

] κ
κ−1

=
[γ q
ω r

[
1− r

δ

]
− 1
] κ
κ−1

(A.10)

which is real and greater than zero for

γ q

ω r

[
1− r

δ

]
> 1 (A.11)

r

δ
< 1− ω r

γ q
=
γ q − ω r
γ q

(A.12)

δ > r
γ q

γ q − ω r
(A.13)
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Since, by condition (15), πi
xi→0−−−→ ∞, it follows from (14) that πj

xi→0−−−→ ∞.

Using this in (17) shows xj(0) = 0. Since xj(xi) must be positive for some

xi ∈ [0, 1], this function must assume an interior maximum in the domain

[0, 1].

A.3 (Proof of proposition 3). The symmetric steady state exists in any case

(proposition 1). We now show that under the conditions given in the propo-

sition, two more interior steady states exist. For this sake we show that

the equation x2(x1(x2)) = x??2 must (also) have a solution x??2 > x?. From

lemma 1 (2.b) we have that x2(x1(1)) = x2(0) = 0 < 1. In the sym-

metric steady state, we have x2(x
?) = x1(x

?) = x?, π1 = π2 = π(x?),

dπ1/dx1 = dπ2/dx2 = π′(x?) and γ/(π(x?) f(x?))−1 = 1 (see appendix A.2).

Under the condition κ < −π′1
π1

f(x?)
f ′(x?)

, we have x′2(x
?) < −1 < 1/x′1(x

?), as

equation (A.8) simplifies to

dxj
dxi

= 1− 2κ

κ− 1

[
1 +

π1
dπ1
dxi

f ′(x?)

f(x?)

]
(A.14)

< 1− 2κ

κ− 1

[
1− 1

κ

]
= 1− 2 = −1 (A.15)

Hence, x2(x
? − ε) > x1(x

? − ε) for some small ε > 0. Since both x2(·) and

x1(·) are continuous, the equation x2(x1(x2)) = x??2 must have a solution

x??2 > x?.
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A.4 (Jacobian matrix at steady state).
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(A.16)

26


	Introduction
	Model of a natural-resource-dependent economy
	Conditions for dynamically optimal resource use
	Resilience of the resource-dependent economy
	Analytical results
	Numerical examples

	Conclusion

