Optimizing price levels in e-commerce applications
Funk, Burkhardt

Published in:
ICE-B 2009 - International Conference on e-Business, Proceedings

DOI:
10.5220/0002186700370043

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 12. Dez., 2023
OPTIMIZING PRICE LEVELS IN E-COMMERCE APPLICATIONS
An Empirical Study

Burkhardt Funk
Leuphana Universität Lüneburg, Scharnhorststraße 1, 21335 Lüneburg, Germany

Keywords: Electronic commerce, Pricing strategy, Price optimization, Price tests, Price dispersion, Non-interactive prices, Demand curve, Posted prices.

Abstract: Price dispersion in the Internet is a well studied phenomenon. It enables companies to adjust prices to a level appropriate to their strategy. This paper deals with question how Internet retailers should do so. The discussed method optimizes short-term profitability by determining the exact demand curve. The method involves the application of empirical price tests. For this purpose visitors of an Internet retailer are divided in statistically identical subgroups. Using the A-B testing method different prices are shown to each subgroup and the conversion rate as a function of price is calculated. We describe the organizational requirements, the technical approach, and the statistical analysis applied to determine the price optimizing the per-order profit. A field study carried out with a large Internet retailer is presented and shows that the company was able to optimize a specific price component and thus increase the contribution margin per order by about 7%. We conclude that the discussed method could be applied to answer further research questions such as the temporal variation of demand curves.

1 INTRODUCTION

Over the last years the pricing of products and services in the online channel has attracted significant attention from the research community (Chernev 2003, Daripa 2001, Kannan 2001, Spann 2004). Due to data availability most work has been done on interactive pricing schemes and auction theory with respect to Internet business models (Roth 2002). While interactive pricing schemes mostly apply to consumer-to-consumer scenarios (e.g. eBay) they are rarely used in business-to-consumer scenarios in which fixed prices (sometimes referred to as posted prices) dominate successful business models. In the area of fixed or non-interactive prices some work has gone into the study of price dispersion (Baye 2004, Brynjolfsson 2000) and price discrimination in different circumstances, for example under consideration of privacy issues (Böhme 2007, Odlyzko 2003).

Brynjolfsson and Smith (Brynjolfsson 2000) have shown empirically that the Internet cannot be considered to be a frictionless market but that price dispersion can be observed for a wide range of products (e.g. prices for books differ by an average of 33%). They argue that, with respect to prices, competition in a specific market and brand as well as trust in a specific company remain a source of heterogeneity among Internet retailers.

This result leaves room for companies to adjust their price level for specific products and services to the profit maximizing level. Empirical price tests have been suggested as the appropriate means for finding optimal "one-for-all" fixed prices (Baker 2001). To do so we apply the A-B testing method (Patzer 1996) and show that for standardized goods and services this approach supports price optimization.

The contribution of this paper is twofold. First, a method for optimizing fixed prices in e-commerce applications is proposed and discussed in detail for the first time in the scientific literature. Even though the potential of the method has been pointed out before, there has been no such detailed discussion. Second, results of and issues encountered during a field study carried out with a large German Internet retailer are presented.

The paper is organized as follows: in the next chapter we review related work, focusing on aspects of non-interactive pricing. In chapter 3 we describe
the method and the basic assumptions of our work. Chapter 4 deals with the environment of the field study and the organizational and technical implementation. The results section (chapter 5) presents sanitized data from the field study, shows how to derive the optimal price level and discusses the implications with respect to the average cost per acquisition. The conclusion briefly summarizes the major ideas of the paper and directs attention to where further research is needed.

2 RELATED WORK

With the advent of e-commerce it was assumed that the Internet would reduce consumer search costs and switching costs and that this would finally lead to more competition and lower prices. This argument was expected to take markets closer to the theoretical model of perfect competition (Daripa 2001). However, price dispersion is observed not only for heterogeneous products but also for homogeneous ones like books and DVDs.

This phenomenon has often been studied (see the paper from Baye et al. (Baye 2004) and for an overview (Bock 2007)) and a number of possible reasons have been suggested. Product differentiation among retailers is one explanation. Differentiation can happen along features, qualities, and services thus softening price competition. In addition the brand of a company and the loyalty of customers to it play an important role in avoiding price competition.

Furthermore, searching and comparing offerings of identical products from different sites is associated with costs. Hann and Terwiesch (Hann 2003) define these frictional costs as “the disutility related to learning to navigate through websites, the disutility of keying in order and payment information, the cognitive costs of comparing different offerings, and the opportunity cost of time for the online transaction”.

Price dispersion in the Internet enables (and forces) companies to set their own prices while taking into account their strategic goals. There is a large body of knowledge on how this can be accomplished in the offline world (Simon 1996). Setting prices is based on a customer’s willingness to pay, the cost structure of the company under consideration and the pricing policies of relevant competitors. In some cases “strategic” dumping prices or communication reasons (e.g. being perceived as a high quality provider) are involved when setting prices. More often prices are set in order to optimize short or medium-term profit. To do so the demand as a function of price has to be determined. Different methods have been employed to determine the demand curve: (i) customer and expert interviews, (ii) market observation, and (iii) lab and field experiments. Field experiments have two major problems in the offline world: (i) menu costs forbid changing prices often, thus reducing the possible granularity of price tests, (ii) price tests are carried out either at different locations at the same time or at the same location at different times – therefore, interpreting results requires taking into account potentially different environments. Online price tests can overcome these difficulties and lead to accurate and realistic demand curves, which can then be used to find the optimal prices with respect to profit maximization.

3 METHODOLOGY

3.1 Assumptions and Limitations

Visitors of an e-commerce site form a heterogeneous group in terms of characteristics such as age, sex, education, purchasing power, and, what is important for our work, the willingness-to-pay for a given product or service. However, provided that the group of all visitors is sufficiently large, dividing visitors randomly into subgroups (not necessarily of the same size) leads to these subgroups having identical characteristics as the base group. That means that for example the fraction of persons between 20 and 30 years old is – within the margin of statistical error – the same for each subgroup. To generate subgroups, visitors are assigned to one of the subgroups randomly (e.g. on a rolling basis) when they enter the e-commerce site. This facilitates the application of A-B tests for several purposes, e.g. the optimization of click-through rates for different landing pages.

The method works for standardized goods only and assumes that the price sensitivity of customers remains constant over time. It is obvious that this is a simplifying assumption which should be examined in more detail. Furthermore, the method requires the e-commerce site to have enough visitors and transactions (what ‘enough’ means is defined below) as well as to offer enough technical flexibility to vary posted prices. It should be emphasized that we do not address or propose price discrimination and visitor/customer segmentation based on accessible properties such as the internet service provider, the technical configuration of the browser, or the
3.2 Method Description

An e-commerce service involves several price components such as the prices for the product ordered, a service charge, an express shipping fee, a fee for using specific payment methods but also posted discounts on all these components. At the beginning of a study, using the method described in this paper, it has to be decided what price component should be observed and optimized and what the appropriate price range for this component might be. The price range may depend on e.g. competitor’s prices and own cost structures.

During the study, customers from each subgroup are provided with different (discrete) prices chosen from the above price range. Then conversion rates – that is the ratio of buyers to visitors – are calculated for each subgroup. This allows us to find the demand curve, which does not calculate the absolute amount as a function of price as is usually done, but instead the conversion rate as a function of price. If we disregard temporal changes of the demand curve due to, for example, seasonal or weather related fluctuations (see assumptions and limitations) we can determine the conversion rate with as much precision as desired, with the only limit being the statistical error which is related to the number of visitors and buyers in each subgroup. Given a range of prices to be tested the number of subgroups corresponds to the granularity of the price test. The number of possible subgroups in turn depends on the number of visitors and buyers in the period of time of the price test and the desired precision of the conversion rate.

Online price tests overcome the two major problems stated in the previous chapter: (i) once the proposed method in this paper is technically implemented the menu costs, and thus the cost of changing prices, decrease substantially, (ii) since the different prices are displayed virtually at the same time in (with respect to their characteristics) identical subgroups there are no differences between the environments.

In principle this approach is able to optimize the interplay of price components and use insights from studies like the one by Hamilton and Srivastava 0.

For example, the interplay between the product price P_i and a standard service charge S_j and how these prices are perceived by customers might be studied.

Table 1: P_i und S_j represent the different prices charged in the price test. $CR_{i,j}$ is the observed conversion rate at prices P_i and S_j. The price test involves using 16 subgroups.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>$CR_{1,1}$</td>
<td>$CR_{1,2}$</td>
<td>$CR_{1,3}$</td>
<td>$CR_{1,4}$</td>
</tr>
<tr>
<td>S_2</td>
<td>$CR_{2,1}$</td>
<td>$CR_{2,2}$</td>
<td>$CR_{2,3}$</td>
<td>$CR_{2,4}$</td>
</tr>
<tr>
<td>S_3</td>
<td>$CR_{3,1}$</td>
<td>$CR_{3,2}$</td>
<td>$CR_{3,3}$</td>
<td>$CR_{3,4}$</td>
</tr>
<tr>
<td>S_4</td>
<td>$CR_{4,1}$</td>
<td>$CR_{4,2}$</td>
<td>$CR_{4,3}$</td>
<td>$CR_{4,4}$</td>
</tr>
</tbody>
</table>

This involves offering the subgroups a number of combinations regarding the individual price components and calculating the conversion rate (Table 1). This also allows the study of price-dependent substitution effects between products. These studies are only limited by the number of visitors and buyers per subgroup needed for a statistically valid statement, and so the number of possible subgroups.

3.3 Phases

The price test is carried out in three phases (see figure 1). In the first phase we fix the price component to be studied, the range containing the expected profit-maximizing price and the duration of the test needed for statistical validity. In addition the technical (generating subgroups, providing them consistently with different prices, collecting data) and organizational requirements (communication policies, customer service training) have to be taken care of. The second phase, which we call the live phase, is subdivided into two time periods. In the first period all visitors are assigned to one of the subgroups at their first visit and are shown the respective price for the subgroup. Alternatively, for high traffic sites only a fraction of all customers are selected to participate in the price test (as in the field study), since this fraction is already large enough to allow for valid conclusions. In the second period of the live phase the changed prices are only shown to those visitors who already visited the site during the first period of the live phase (how visitors are identified is discussed in the next chapter). Visitors who ‘enter’ the store for the first time in the second period are shown a standard price. This procedure allows recording the effect of changed prices on the customer retention rate. The third phase concerns data analysis and interpretation.
4 IMPLEMENTATION

4.1 General Aspects

The kind and scope of technical changes required for the price test depend on the technical system being used in the front- and backend and its flexibility.

The two most important technical requirements for a successful price test consist of the reliable identification of visitors (as far as possible) as well as a consistent communication of the specific price per subgroup based on their identification. These requirements have to be fulfilled for both the front- and the backend. In the frontend cookies and URL encoded session IDs can be used for the identification of visitors and their assignment to a subgroup, in the backend only customers are handled and thus, the identification is easy. Visitors that does not permit persistent cookies should be excluded from the price test and be showed a standard price. If visitors delete cookies regularly they may be quoted different prices for the same product in consecutive visits. An alternative approach to using cookies for identifying subgroups is to use a so-called fingerprint, which is generated based on the technical configuration of a visitor’s browser (user agent, operating system, version, resolution). This approach is robust against cookies being deleted, but may lead to subgroups not being identical in their characteristics. For example Firefox users could share a greater willingness to buy a given product than users of Internet Explorer and so influence the conversion rate independently of the price. To avoid displaying different prices to a visitor who uses different computers is almost impossible and would require the visitors to identify themselves by login before seeing prices, which is uncommon in B2C systems.

Besides ensuring the re-identification of visitors the system must guarantee that the posted prices are the ones that are actually processed in the financial system and that a customer is charged accordingly. The posted prices also have to be taken into account, both in electronic (confirmation email, FAQs) and in paper-based (invoice) communication with the customer. Ensuring these technical requirements are fulfilled can, depending on the technical platform being used, involve considerable expense.

4.2 Field Study

We will illustrate the technical implementation of the price test using our field study (Knoop 2004). The research site is a German e-commerce site with an annual revenue of about 100 million euros at the time of the study. The site offers a large number of products (>10,000), whose individual prices vary only slightly between the company’s and its competitors. The technical platform is a Java-based, proprietary web application which is operated, maintained and further developed by the IT department of the company. The backend system was also individually developed for the company.

In the preparatory phase (outlined in section 3), we decided at the beginning of the project that rather than test individual product prices we would study the optimization of the service charge collected with each order. With respect to the technical implementation we decided to use cookies to identify users participating in the price test. When a visitor arrived on the web site during the live phase it was checked whether he already had a cookie related to the price test. If not, a cookie was set containing information about which subgroup the visitor had been assigned to. If there was already a “price test cookie”, it was used to show the appropriate service charge for the subgroup. In addition to the cookie, a session ID was generated that contained an ID referring to the appropriate
subgroup (SGID). Since the shop system supported URL rewriting (hence URLs contained the SGID), users who bookmarked the site and deleted the cookies could still be identified as belonging to a particular subgroup. Furthermore the SGID was used to communicate and use prices consistently throughout the shopping process of the visitor, even when cookies were not enabled by the user.

The first time the visitor saw the service charge was in the electronic basket. Therefore the conversion rate for each subgroup was not determined as the plain ratio of buyers to total visitors but as the ratio of buyers (with a certain SGID) to visitors (with the same SGID) who entered the electronic basket at least once during their session and so were able to see the service charge (in the following chapter this value is referred to as \(CR_{Basket}\)).

The first phase (including project set-up, software design and implementation as well as internal communication and preparation) took about six weeks. The first part of the live phase took about 6 days, the second part about 3 weeks. Results were presented 3 months after the beginning of the project.

Alongside the technical requirements there are also organizational ones. Obviously price tests should be managed by the department/people responsible for price management in the company taking into account what the limits with respect to strategic positioning and competitors are. Furthermore, before starting the price test employees who actively enter into contact with customers of the website (especially service staff) or who are contacted by customers need to be informed and trained in how to deal with price enquiries by telephone and email, canceling orders and possible complaints about different prices caused by the price test. In the latter case the service staff was asked to communicate the display of different prices as a technical error and to apologize by sending out a €5 gift certificate to the complaining visitor/customer. As long as the number of gift certificates sent out is small it does not impact the price test.

5 RESULTS

Before the price test the service charge was €2.50 per order. At the beginning we decided to investigate the price range between €0.00 and €7.50. In order to be able to reach valid conclusions after a short period of time it was decided to test four values for the service charge (€0.00/ €2.50/ €5.00/ €7.50). Following basic statistics with respect to the necessary sample size, the required time period for the test can be estimated by:

\[T_{test} = \frac{N_{sub}}{CI} \frac{C_{R_{Basket}}}{\sigma} \left(1 - C_{R_{Basket}}\right) \]

where \(N_{sub}\) is the number of subgroups (=4), \(CI\) is the chosen confidence interval (=1\(\sigma\)), \(\varepsilon\) is the allowed error (=1\%), \(C_{R_{Basket}}\) is the ratio of buyers to visitors who have seen the electronic basket (~40%, as an approximate value before the price test was carried out), and \(V_{b}\) is the number of visitors seeing the electronic basket per day (=1,500 per day, here only a fraction of all visitors to the website participated in the price test). A calculation using company data from the field study leads to necessary time period for the study \(T_{test}\) of 6.4 days. The price test was carried out on 6 consecutive days and yielded the following results.

Figure 2: For each of the 4 subgroups there is one data point shown in the figure above covering the range from €0.00 to €7.50. The sample size is about 1,900 for each data point and so the error is about +/- 1.1%, slightly above the planned value of 1.0%, which is due to the fact that the sample size turned out to be a bit lower than expected.

5.1 Interpretation

Figure 2 shows the dependency of the basket conversion rate \(C_{R_{Basket}}\) as a function of the service charge \(SC\). As expected, the conversion rate decreases (statistically significant) with the service charge, indicating the customer’s decreasing willingness to pay the increasing service charge. It should be emphasized that each data point (and the corresponding samples) consists of sales with a wide variety of products and a wide range of prices. Nevertheless, allowing for standard deviation the samples are identical. At this point the exact functional dependency is not important for the argument and thus we decided not to use theoretical
functions from microeconomics. For practical purposes, in the field study the empirical data were fitted using a second order polynomial function CR_{fit}:

$$CR_{fit} = (-2.2 \pm 0.6) \times 10^{-3} \cdot SC^2 + (6.2 \pm 5.1) \times 10^{-2} \cdot SC + (0.385 \pm 0.006)$$

In order to find the optimal service charge the full economics of the company under consideration had to be taken into account. In this paper we initially make the following simplifying assumptions (more realistic assumptions would not change the main results of the study): the service charge should be set in such a way that it maximizes the average contribution margin of a visitor who has seen the electronic basket. We assume that the contribution margin of a single order is given by $CM_{prod} + SC - CS$, where CM_{prod} is the average contribution margin of the products sold in an average order and CS ($= €3.00$) is the internal order fulfillment cost (including e.g. postage, wages, machines). For our analysis CM_{prod} ($= €18.00$) is assumed to be independent of SC, even though the average revenue in a subgroup per visitor (and thus the contribution margin) might be positively correlated with SC, since it is likely that the willingness to accept a higher service charge will rise with increasing revenue. Formally, the problem is to find

$$SC : \max ACM_{visitor}$$

$$ACM_{visitor} = CR_{fit}(SC)(CM_{prod} - CS + SC)$$

where $ACM_{visitor}$ is the average margin contributed by each visitor who sees the electronic basket at least once during his visit. Applying the above values the optimal service charge is about €5.50 compared to a service charge of €2.50 at the beginning of the field study. By setting the service charge to €5.50, the average contribution margin per visitor $ACM_{visitor}$ could be increased by 7% from €6.78 to €7.25.

5.2 Long-term Impact

The procedure described above optimizes the contribution margin of an individual visitor with respect to his first order. As an indicator for the long-term impact on customer retention we use the repeat buyer rate (what fraction of customers comes back after their initial order?) for the respective subgroups. It should be emphasized that the repeat buyer rates were calculated only for the test period.

![Figure 3: For each subgroup the fraction of buyers that bought again during the test period is determined.](image)

Figure 3 shows only a slight dependency of the repeat buyer rate on the service charge. The slope of the linear function in fig. 3 is 0.27 ± 0.31 % per EUR and thus not significantly different from 0. More data would be needed to prove or exclude such a dependency. A negative correlation between the repeat rate and the service charge would indicate that some customers are willing to buy once at a higher service charge but subsequently use alternative offerings. In order to optimize long-term profit this relationship would have to be taken into account in future studies.

5.3 Customer Complaints

During the study there were less than 10 complaints from customers by email and telephone related to the observation of different prices. The majority of these complaints came from existing customers who knew the original service charge and first noticed the supposed increase after ordering. These customers were not told the reason for the change but instead received a €5.00 gift certificate. The overall complaint rate was lower than that expected at the beginning of the field study and had no influence on the outcome.

6 CONCLUSIONS AND FURTHER WORK

This paper deals with one of the fundamental questions in economics: what is the optimal price of products and services? The method described in this paper enables e-commerce companies to determine the exact demand curve represented by the conversion rate as a function of price. The accuracy of this method is only limited by statistical means. The field study shows that employing the method
involves only limited expense and effort while significantly increasing the profitability of the company under consideration.

There is a large body of research around the topic of price dispersion in the Internet but only a limited amount of work has gone into studying what are the resulting degrees of freedom for companies and how they should use them. This paper opens substantial opportunities for future studies on this topic. Research questions include for example: (i) How does the demand curve change over time? (ii) What impact do the brand awareness of a company and the uniqueness of its products have on the demand curve? (iii) What kinds of reciprocal dependencies are there between price components of an order (Hamilton 2008)? (iv) Can user groups be identified that demonstrate varying degrees of willingness to pay? (v) Do we have to take customer lifetime value into account when optimizing the long-term profitability?

This paper is meant as a starting point for discussion and further research related to optimizing prices in e-commerce by determining the exact demand curve for products and services in different circumstances.

ACKNOWLEDGEMENTS

The comments from the unknown referees are gratefully acknowledged.

REFERENCES

Knoepfle, M., Effective pricing policies for E-Commerce Applications – a field study, internal thesis, University of Applied Science Lüneburg, 2004
Spann, M., Skiera, B., Schäfers, B., Measuring individual frictional costs and willingness-to-pay via name-your-price mechanisms, Journal of Interactive Marketing, vol. 18, no. 4, 2004