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1 Introduction

Resilience is typically viewed as a property of natural systems and is defined as the

extent to which they can buffer exogenous shocks (Scheffer et al. 2001). Natural systems,

whether they are ecosystems, species populations or climate systems, tend to be robust

to small perturbations. But if shocks are large enough that a system crosses a threshold

or tipping point, its dynamics may be such that it collapses to a bad state. Examples of

natural systems characterized by limited resilience include populations with a minimum

population size below which extinction is inevitable (e.g., Gould 1972; Berck 1979;

van Kooten and Bulte 2000), ecological systems with complex interactions between the

various components of the system such as shallow lakes and semi-arid rangelands (e.g.,

Mäler et al. 2003; Anderies et al. 2002), and the Earth’s climate system, where events

like melting of the Greenland ice sheet or of the permafrost in the Northern Hemisphere

may cause the Earth’s climate to change dramatically (e.g., Ridley et al. 2010; Gough

and Leung 2002).

The extent to which a natural system is resilient against exogenous shocks is not

just a function of the underlying ecological processes; it also crucially depends on the

way in which the system is managed. An example in point is the stock of cod in the

North-East Arctic which collapsed in the late 1980s due to very high harvesting pressure

combined with a sudden shortage of its main prey species, capelin (Hersoug et al. 2000).

Poorly managed natural resource systems, including so-called open-access resources,

are generally less resilient to shocks than optimally managed systems. This does not

mean, however, that optimally managed systems never collapse. Optimal policy making

in the face of potential future negative disturbance requires comparing, in terms of

intertemporal social preferences, the benefits and costs of ex-ante precaution and of

ex-post restoration of the system – if restoration is physically possible at all. Hence,

resilience is not just an intrinsic feature of natural resources; institutions and preferences
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are likely to play an important role, too (Horan et al. 2011).

In this paper, we explore the impact of human preferences on the resilience of op-

timally managed economies that depend on more than one type of renewable natural

resource. We find two characteristics of preferences to be of key importance. The first is

– not surprisingly – the discount rate used by the social planner. For a given amount of

time needed for natural resources to return to their good state in the wake of a negative

shock, system restoration is less likely to be optimal the higher the social discount rate

– even if abstaining from intervening results in the demise of one or more resources.

The second key characteristic of preferences is more surprising: it is the extent to which

the various types of natural resources are substitutes or complements in the consumers’

utility function.1 While intuition would suggest that society’s willingness to protect a

natural resource from collapse would be larger the more it depends on its output, i.e.,

when natural resources are complements rather than substitutes in consumption, we find

the exact opposite. The reason is that if restoring the resource requires a moratorium

on its exploitation, it is less costly to do so if there are good substitutes available so that

postponing exploiting the resource does not reduce consumer welfare by much. While

we pay most attention to the impact of the discount rate and the degree of complemen-

tarity in resource consumption on the resilience of the resource-dependent economy, we

analyze the impact of other factors, too, including the rate of resource regeneration and

the opportunity costs of harvesting.

Over the past decade, many papers have tried to provide explanations for the collapse

of historic societies as diverse as those of Easter Island, the Anasazi, and the Maya

(Diamond 2005), as better insights into the fate of previous civilizations may help the

1In two previous papers (Baumgärtner et al. 2011; Derissen et al. 2011) we present a few numerical

examples where multiple steady states exist in a related model when natural resources are complements

in consumption, and when resources are exploited under pure open access. In this paper, we analytically

characterize the dynamic properties of the system under optimal forward-looking resource management.
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current one to better cope with today’s major environmental crises such as climate

change or biodiversity loss (Arrow et al. 1995, Taylor 2009). For example, Brander and

Taylor (1998) and Taylor (2009) develop models to explain the disappearance of the

civilization on Easter Island, suggesting that its demise may have been due to a nonlinear

interaction between population growth and the dynamics of natural resources, especially

forest resources, resulting in feast-and-famine cycles. While lack of property rights

and myopia are most likely the underlying causes of the collapse of the Easter Island

civilization, our paper suggests that depletion of the forest resource is not necessarily

suboptimal. To feed the population, fish need to be caught, and hence trees need to be

logged continuously to produce boats. Timber consumption and catching fish are thus

complements, and the instantaneous costs of reduced fishing activity to restore forest

stocks may have been too large compared to the long-run benefits of recovered timber

resources.

Modern society is admittedly much more complex than that of Easter Island, but our

model still provides important insights for the challenges we face today. For example,

because the availability of good substitutes is smaller the higher the level of physical

aggregation (e.g., protein intake from wild deer can easily be replaced by farmed beef,

but no good substitutes are available for the Earth’s climate system), dealing with

the large-scale environmental challenges posed today may even be more difficult than

previously thought.

The paper is organized as follows. In Section 2, we present a stylized model of an

economy that depends on the use of two types of renewable natural resources. In Sec-

tion 3, we derive the conditions for dynamically optimal resource use. In Section 4, we

use this information to analyze the steady states and path-dependence of the resource-

dependent economy. In particular, we study how the number of optimal steady states

and their stability properties depend on the degree of complementarity of the two re-

sources in consumption and on the social discount rate, providing both analytical results
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and numerical examples. We use the results to determine the consequences for optimal

resilience management of a resource-dependent economy in Section 5, taking into ac-

count the possibility that the stocks may be hit by a negative shock. We conclude by

discussing the implications of our model for the management of global natural resources

in Section 6.

2 Model of a natural-resource-dependent economy

The representative agent derives utility from the consumption of a (composite) manu-

factured good, y(t), and from the consumed quantities of two different natural-resource

goods, h1(t) and h2(t). The agent’s instantaneous utility function is specified as

u(y(t), h1(t), h2(t)) = y(t) + γ ln

[∑
j=1,2

hj(t)
1−κ

] 1
1−κ

, (1)

where γ > 0 is the weight the agent attaches to consumption of natural resources, and

1/κ is the elasticity of substitution between the two natural-resource goods.

The quasi-linear utility function (1) captures some stylized facts about preferences on

natural resources and manufactured goods. Considering that natural resources satisfy

basic needs, marginal utility, according to specification (1), goes to infinity (zero) as the

consumption of resources goes to zero (infinity). Marginal utility of the manufactured

good, in contrast, is constant. Hence, this good is not essential: marginal utility does not

go to infinity as consumption goes to zero. Next, utility function (1) is flexible in that it

allows the two natural-resource goods to be complements in consumption or substitutes,

depending on the value of κ. The two natural-resource goods are perfect substitutes in

consumption if κ → 0 and perfect complements if κ → ∞, with κ = 1 as the special

case where the sub-utility from consumption of resources is the Cobb-Douglas function.

Hence, κ measures the degree of complementarity of the two natural-resource goods in

consumption: the higher κ, the stronger the complementarity between the two. Finally,
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note that in case κ > 1, depletion of one or more resources (implying that h1(t) and/or

h2(t) equals zero) results in instantaneous utility being equal to minus infinity. This

suggests that it is never optimal to deplete either resource – but see Section 4.

The representative agent inelastically supplies one unit of labor on a competitive

labor market. Labor is allocated between the three activities of producing the manu-

factured good, y, and harvesting of the two natural resource stocks to produce resource

goods, h1 and h2. We assume that all goods-markets always clear, so that quantities

consumed of each of the three commodities equal the quantities supplied. Regarding the

production of the manufactured good, we assume that the quantity produced is a linear

function of just one input, labor, with constant marginal productivity equal to ω > 0.

Using e1(t) and e2(t) to denote effort allocated to respectively harvesting of resource

goods 1 and 2 at time t, the aggregate output of the manufactured good produced thus

equals

y(t) = ω

(
1−

∑
j=1,2

ej(t)

)
. (2)

Normalizing the sales price of the manufactured good to unity, linearity of the manu-

facturing production function (2) implies that the general equilibrium wage rate equals

ω – as long as manufacturing is still taking place. To ensure that this is the case, we

assume that ω > γ (see Appendix A.1), that is, the marginal product of manufacturing

should be larger than the weight the representative agent attaches to the consumption

of natural resource goods.

Regarding the natural resource sectors, we assume that resource goods are produced

according to the standard Schaefer production function (Gordon 1954, Schaefer 1957):

hj(t) = qj xj(t) ej(t), j = 1, 2 , (3)

where xj(t) is the size of the resource stock j at time t, and qj is a technology parameter

reflecting what share of the resource stock j can be harvested per unit of effort. Note

that the marginal product of labor, ej(t), allocated to harvesting resource j is larger the
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larger the size of the resource stock, xj(t).

Regarding the dynamics of the resource stocks, current harvesting hj(t) reduces the

remaining stock xj(t), but there is also natural regeneration. The change in the stock

size of resource j at time t, ẋj(t) ≡ dxj(t)/dt, equals the net natural growth of the

resource stock, fj(xj(t)), minus the quantity harvested, hj(t):

ẋj(t) = fj(xj(t))− hj(t), j = 1, 2 , (4)

where we assume that both resources regenerate according to the standard logistic

growth function (Verhulst 1838):

fj(xj(t)) = rj xj(t)

(
1− xj(t)

Kj

)
, j = 1, 2 . (5)

Here rj denotes the intrinsic (or maximum) growth rate of resource j, and Kj its carrying

capacity (or the maximum stock the ecosystem can sustain). Substituting (5) into (4),

our model implies that net natural growth of resource j is a function of just the size of

its stock and of the rate at which it is being harvested – there is no physical interaction

between the two resource stocks. We thus assume that the two stocks are geographically

separated, and that the only interaction between the two is via consumer preferences

(see also Halsema and Withagen 2008, Quaas and Requate 2011).

We assume that a social planner maximizes the representative household’s present

value of utility
∞∫
0

u(y(t), h1(t), h2(t)) e
−δ t dt , (6)

where δ > 0 is the social discount rate. This discount rate is assumed to reflect the

representative household’s impatience to consume, but possibly also the limited perma-

nence of society’s institutions. With a positive probability, the current institutions may

cease to exist at any given point in time by forces beyond the planner’s control.

To maximize (6), the social planner chooses the quantity harvested of each of the two

resources, h1(t) and h2(t), in every period as well as the amount of the manufactured
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good produced, y(t), taking into account constraints (1)–(5).2

3 Conditions for optimal resource use

The conditions for dynamically optimal resource use are derived in Appendix A.1 as

the necessary first-order conditions for the social planner’s maximization problem. In

the following, we use πj to denote the shadow price of consuming resource j. This

shadow price is equal to the direct marginal costs of harvesting, i.e., the cost of effort

needed to harvest an extra unit of resource j, plus the opportunity costs of reducing the

current resource stock with one unit, which are given by the shadow price of the stock

of resource j, µj.

Using (4) and the conditions for optimal resource use derived in Appendix A.1, we

obtain the following system of differential equations (i, j = 1, 2, j 6= i):

ẋj = fj(xj)− hj = fj(xj)− γ
π
− 1
κ

i∑
j=1,2

π
1− 1

κ
j

, (7)

π̇j =
[
δ − f ′j(xj)

] [
πj −

ω

qj xj

]
− ω fj(xj)

qj x2j
, (8)

that governs the optimal dynamics of the resource-dependent economy together with

the initial conditions, xj(0) = xj0, and the transversality conditions, e−δ t µj xj
t→∞−−−→ 0,

for both resources j = 1, 2. The interaction between the two resources is captured by

the harvesting term in Equation (7). Equation (8), in contrast, depends only on the

stock and shadow price of the resource j = 1, 2 itself.

The resilience of the resource-dependent economy is determined by the number of

optimal steady states, and their stability properties. A steady state is characterized

by ẋ1 = ẋ2 = 0 and π̇1 = π̇2 = 0. Using these conditions in (7) and (8) we obtain (for

2From here on, we omit the time indicators, unless it may cause confusion to do so.
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i, j = 1, 2 and j 6= i):

πj = πi

[
γ

πi fi(xi)
− 1

] κ
κ−1

, (9)

πj =
ω

qj xj

[
1 +

fj(xj)

xj
[
δ − f ′j(xj)

]] =
ω

qj xj

δ + rj
xj
Kj

δ − rj + 2 rj
xj
Kj

. (10)

Note that in Equation (10) the shadow price of consuming resource j is just a function

of the size of stock j, while the interaction between the two resources is captured in

Equation (9). Using (5), we can rewrite (10) as

xj(πj) =
Kj

4

√ 8 δ ω

rj qjKj πj
+

[
δ − rj
rj
− ω

Kj qj πj

]2
− δ − rj

rj
+

ω

Kj qj πj

 , (11)

while combining (9) and (10) yields:

πj(xi) =
ω

qi xi

δ + ri
xi
Ki

δ − ri + 2 ri
xi
Ki

γ qi
ω ri

δ − ri + 2 ri
xi
Ki[

δ + ri
xi
Ki

] [
1− xi

Ki

] − 1

 κ
κ−1

. (12)

Together, Conditions (11) and (12) give the optimal steady-state stock xj of resource j

as a function of the steady-state stock xi of resource i, the xj(xi)-isocline.

4 Steady states and path-dependence of optimal re-

source management

To be able to derive clear-cut analytical results, we assume in the following that the two

natural resources are governed by the same dynamic processes. That is, the parameters

of the biological growth functions are assumed to be the same, and so are the parameters

of the harvesting functions: r1 = r2 = r, K1 = K2 = 1, and q1 = q2 = q. Furthermore,

because (x1, x2) = (0, 0) is an absorbing state (see Equation 5), we assume throughout

the analysis that at least one of the resource stocks is initially strictly positive.

If the two resource stocks are driven by the same dynamic processes, there always

exists a unique interior symmetric steady state, as stated in the following lemma.
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Lemma 1. For symmetric resources, and if and only if max
{

2 r ω − γ q, rγ q − δ(γ q −

2 r ω)
}
> 0, there is one (and only one) symmetric steady state (xS1 , x

S
2) = (xS, xS),

where

xS =
1

2 r

[
r − δ − γ q

ω
+

√
(δ + r)2 +

(γ q
ω

)2]
> 0 . (13)

Proof: see Appendix A.2. �

The resource stocks in the symmetric interior steady state do not depend on the

degree of complementarity, κ, as both resources are used in equal quantities. Of course,

the sizes of the resource stocks do depend on the social discount rate, δ: the higher the

discount rate, the smaller the optimal resource stocks. If the condition 2 r ω > γ q is

met, however, the steady state stocks are positive even for δ → ∞. Higher weights on

resource consumption (γ), higher harvesting productivities (q) and lower productivity

levels in manufacturing (ω) make instantaneous resource harvesting more attractive –

especially if society does not care much about the future (i.e., if δ →∞). In that case,

stock depletion can still be avoided, but only if the intrinsic growth rate of the resource

(r) is sufficiently high.

We are interested in how the number of steady states depends on society’s pref-

erences, including the degree of complementarity of resources in consumption. The

following proposition yields a first result.

Proposition 1. The symmetric steady state is locally stable independent of the degree

of complementarity κ if either γ q < r ω or δ < r2 ω/ (2 (γ q − r ω)) ≡ δMSY .

Proof: see Appendix A.3. �

Combined with Lemma 1, Proposition 1 states that the steady-state level is inde-

pendent of κ if min{r ω− γ q, δMSY− δ} > 0. The reason is that if this condition is met,

the steady-state resource stock xS – as defined in (13) – is larger than the maximum-

sustainable-yield stock, xMSY.3 If γ q < r ω, demand for the resources (captured by

3The maximum-sustainable-yield stock level is defined as the level at which the amount that can
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γ) and productivity of resource extraction (captured by q) are so low relative to re-

source productivity (captured by r) and opportunity costs of harvesting (captured by

ω) that even under full myopia (δ → ∞, or equivalently: open access to resources)

the symmetric steady-state stocks are larger than the stocks that would generate the

maximum sustainable yield (see Appendix A.2). If γ q > r ω, one has xS = xMSY

if δ = r2 ω/ (2 (γ q − r ω)) ≡ δMSY, and hence the symmetric steady-state levels are

smaller than xMSY if and only if min{r ω − γ q, δMSY − δ} > 0.

We are interested in how preferences affect both the number of steady states and also

their stability. Proposition 1 states that if max {r ω − γ q, δMSY − δ} > 0, the symmetric

steady-state stocks are stable independent of κ. Having established this result, we now

move on to analyzing the case in which neither of these conditions is met. This means

that for the rest of the paper we explore all cases for which the following condition holds:

Condition 1: r ω < γ q < 2 r ω and δ > δMSY.

For all cases in which condition 1 holds, the steady state stocks are in between 0

and the maximum sustainable yield stock, and preferences now crucially affect both

the number of steady states and their stability. Therefore, we now turn to analyzing

the situations in which resources are either substitutes (Section 4.1) or complements

(Section 4.2) for all cases in which condition 1 is met.

4.1 Optimal dynamics when resources are substitutes

Let us now analyze the case where Condition 1 holds and where the degree of com-

plementarity of the two resources in consumption is such that they are substitutes in

consumption (i.e., κ < 1).

be harvested without reducing the stock, is maximal. For any x the sustainable harvesting level is

hj ≤ f(xj), and this amount is largest at the stock level where net resource regeneration is largest.

Solving f ′(xj) = 0 and using the equation of motion (5), we have xMSY = K/2 = 1/2.
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Proposition 2. When resources are substitutes (κ < 1) the following holds.

2a. If the condition

δ < r
γ q

γ q − ω r
≡ δ0 (14)

holds,4 there are three steady states: the symmetric steady state (xS1 , x
S
2) = (xS, xS) with

xS > 0, and two asymmetric steady states (xA, 0) and (0, xA), with

xA =
1

2 r

r − δ − 2 γ q

ω
+

√
(δ + r)2 +

(
2 γ q

ω

)2
 > 0 . (15)

2b. The symmetric steady state (xS, xS) is globally5 stable.

Proof: see Appendix A.4. �

Any optimal steady state, whether or not we assume that resources are identical, is

determined by the solution of the fixed-point equation x1(x2(x1)) = x1, where x1(x2)

and x2(x1) are determined by Equations (11) and (12) (for i, j = 1, 2 and j 6= i). When

resources are substitutes the isoclines are upward-sloping over the entire domain (see

Appendix A.4), and hence they only intersect once. Proposition 2 states that if κ < 1,

(xS, xS) is the only optimal steady state, as the asymmetric ones are unstable. That

means that xj = xA, x−j = 0 is achieved only if x−j0 = 0.

These results are illustrated in Figure 1.6 We will refer to the case where δ < δ0 (i.e.

4The subscript 0 refers to the result that xA = 0 for all δ > δ0 (cf. Proposition 2).

5By “global” we mean the entire state space, with the exception of the unstable steady state (0, 0)

and potentially the two unstable asymmetric steady states identified by Proposition 2a – which is a

subset of measure zero.

6 To construct the graphs in this and the following figures, we choose intrinsic growth rates of

r = 0.04 per year. With regard to the technological parameters, we assume ω = 0.1 and q = 0.1. The

weight of resources in utility is γ = 0.0667 = 0.667ω, which means that two thirds of the available

effort is spent harvesting resources. In Figure 1, we further use δ = 0.05, κ = 0.625 in panel (a), and

δ = 0.17, κ = 0.625 in panel (b). In Figure 2, we use δ = 0.09, κ = 1.667 in panel (a); δ = 0.09, κ = 5.0

in panel (b); δ = 0.17, κ = 1.667 in panel (c); and δ = 0.17, κ = 2.5 in panel (d). In Figures 3 and 4,

we use κA = 5.0 and κB = 1.667. In Figure 5 we use δ = 0.17.
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Figure 1: Phase diagrams for (a) low and (b) high social discount rates δ for the case

when resources are substitutes, κ < 1.

when Condition 14 holds) as the case of a low discount rate and to δ > δ0 as the case of

a high discount rate. Figure 1(a) shows the case of a low discount rate, where there are

two asymmetric steady states (xA, 0) and (0, xA) with xA > 0 (cf. Proposition 2). For

the case of a high discount rate, shown in Figure 1(b), (xS, xS) is the only non-trivial

steady state. To summarize, if κ < 1, the optimal steady state stocks of both resources

are strictly positive; corner solutions are only optimal if and only if one of the two

resource stocks is equal to zero initially.

4.2 Optimal dynamics when resources are complements

Let us now check whether this also holds for the case in which the two resource goods

are relative complements in consumption, κ > 1 (taking into account Condition 1).

Trivially, (0, 0) is a steady state, and from Lemma 1 we know that there always is an

interior symmetric steady state ((xS1, x
S
2) = (xS, xS)). However, it is easy to see that in

case resources are complements, there are two additional asymmetric steady states as

well: (0, 1) and (1, 0). With κ > 1 we have xj
t→∞−−−→ 1 if x−j(0) = 0: if one resource

has been depleted, harvesting the other one does not provide any utility, and hence the
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latter stock grows to its carrying capacity (recall we set K = 1). Below we also prove

that we may also have xj
t→∞−−−→ 1 if x−j(0) is positive but close to zero, but only if

the discount rate is sufficiently high or the degree of complementarity sufficiently large.

If this is the case, (1,0) and (0,1) are locally stable and hence the economy does not

necessarily end up in (xS, xS).

Before we can state this formally in Proposition 3, we first state two Lemmas:

Lemma 2. When resources are complements (κ > 1), the symmetric interior steady

state is locally stable if κ < κ̂(δ) and locally unstable if κ > κ̂(δ), where κ̂(δ) with

κ̂(δ) > 1 is defined by

κ̂(δ) ≡ −π
′(xS)

π(xS)

f(xS)

f ′(xS)
(16)

where π(xS) = ω
q xS

δ+r xS

δ−r+2 r xS
and xS (δ) is given by (13).

Proof: see Appendix A.5. �

We will refer to the case 1 < κ < κ̂(δ) as the resources being mild complements and

to the case κ > κ̂(δ) as the resources being strong complements.7

Lemma 2 indicates that the degree of complementarity may have an important in-

fluence on the stability of steady states, including the symmetric one. We next use

this result to derive conditions under which other interior steady states exist and to

characterize their respective stability properties.

Lemma 3. When resources are complements (κ > 1),

3a. for a low discount rate (δ < δ0) and strong complementarity (κ > κ̂(δ)) there are

two locally stable asymmetric interior steady states (xA1 , x
A
2 ) and (xA

′

1 , x
A′

2 ) = (xA2 , x
A
1 )

(with xA1 > 0, xA2 > 0 and xA1 6= xA2 ).

7 Note that because κ̂ is a function of δ, the definitions of mild and strong complementarity depend

on the level of the discount rate. A specific degree of complementarity, κ, may be considered ‘mild’ for

some values of δ, and ‘strong’ for others – depending on whether κ is smaller than κ̂(δ), or not. We

will come back to this at the end of this subsection.
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3b. for a high discount rate (δ > δ0) and mild complementarity (κ < κ̂(δ)) there are

two unstable asymmetric interior steady states (xA1 , x
A
2 ) and (xA

′

1 , x
A′

2 ) = (xA2 , x
A
1 ) with

xA1 > 0, xA2 > 0 and xA1 6= xA2 .

Proof: see Appendix A.6. �

Combined with Lemma 1, Lemma 3 indicates that there can be multiple interior

steady states. This may come as a surprise, as the resource dynamics are given by

logistic growth equations and thus perfectly convex. The objective function, however,

depends on the stock sizes of the two resources, as the costs of harvesting resource j

depend on xj, and hence the economy may be characterized by multiple steady states

(see also Arrow and Kurz 1970).

Note that δ0 is lower the higher are γ and q, and the lower is ω. If several interior

steady states exist (i.e., if κ > κ̂(δ) and δ < δ0 or if 1 < κ < κ̂(δ) and δ > δ0), none of

them can be globally stable. This gives rise to the following proposition:

Proposition 3. 3a. for mild complements (1 < κ < κ̂(δ)) and a low discount rate

(δ < δ0), there are three steady states, (xS, xS), (1, 0) and (0, 1), of which (xS, xS) is

locally stable;

3b. for strong complements (κ > κ̂(δ)) and a low discount rate (δ < δ0), there are

five steady states, (xS, xS), (1, 0), (0, 1), (xA1 , x
A
2 ) and (xA2 , x

A
1 ), of which (xA1 , x

A
2 ) and

(xA2 , x
A
1 ) are locally stable;

3c. for mild complements (1 < κ < κ̂(δ)) and a high discount rate (δ > δ0), there are

five steady states, (xS, xS), (1, 0), (0, 1), (xA1 , x
A
2 ) and (xA2 , x

A
1 ), of which (xS, xS), (1, 0)

and (0, 1) are locally stable;

3d. for strong complements (κ > κ̂(δ)) and a high discount rate (δ > δ0), there are

three steady states, (xS, xS), (1, 0), (0, 1), of which (1, 0) and (0, 1) are locally stable.

Proof: a) and d) follow from Lemma 2; b) and c) follow from Lemma 3. �
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Proposition 3 states that, unlike in the case of resources being substitutes, the sym-

metric steady state is locally stable if and only if both the discount rate and the degree

of complementarity are sufficiently low. This is because the present value of the ben-

efits of building up the relatively small stock are larger the lower is the discount rate,

while the costs of doing so are larger the stronger the complementarity between the two

resources. Building up a stock requires reducing per-period extraction, and using little

of the relatively scarce resource implies that utility during the transition phase is quite

low – as the reduced use of the relatively scarce resource can hardly be compensated by

a more intensive use of the relatively abundant one. Therefore, the higher the degree

of complementarity, the less likely it is that society is willing to invest in building up

stocks, and the more so the more impatient it is.

If the two resources are complements and the discount rate is sufficiently small (δ <

δ0), Proposition 3 states that there are three steady states in the system’s interior (case

3b) – unless complementarity is fairly weak (1 < κ < κ̂(δ); see case 3a). Proposition 3a is

illustrated in Figure 2 (a); whatever the initial steady state stocks, society is sufficiently

patient to be willing to invest in building up the relatively small stock – because the

degree of complementarity is not very strong so that during the transition phase the

decrease in welfare can be kept limited by using more of the relatively abundant stock.

In case 3b, illustrated in Figure 2 (b), society is patient enough to ensure the existence

of an interior stable steady state, but the high degree of complementarity between the

two resources limits the attractiveness to build up both resource stocks. This leads to

a path dependency of the economy. For any initial relative stock size ((x1(0), x2(0)),

x1(0) 6= x2(0)), the steady state stock of the initially scarce resource is relatively small,

while the steady state stock of the initially abundant resource is relatively large.

If the two resources are complements and the discount rate is sufficiently large (δ >

δ0), Proposition 3 states that there are two additional steady states in the system’s

interior (case 3c) – unless complementarity is too strong (κ > κ̂(δ); see case 3d). Figure 2
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Figure 2: Phase diagrams for different degrees of complementarity κ > 1 of the resources

and different social discount rates δ.

(c) illustrates case 3c with δ > δ̂ and 1 < κ < κ̂(δ). The three interior steady states are

denoted by A, S, and A′. The two asymmetric steady states A and A′ are saddle-point

stable. The dotted lines C and C′ depict the saddle point trajectories that would lead

to these steady states. Thus, if δ > δ0 and 1 < κ < κ̂(δ), the initial stocks determine

which steady state is optimal – (xS, xS), (1,0), or (0,1). For all initial states in between

C and C′ the optimal paths lead to the symmetric steady state S. For initial states to

the west (south) of the saddle path C (C′), it is optimal to continue harvesting both
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low discount rate high discount rate

δ < δ0 δ > δ0

substitutes κ < 1 (xS, xS) (xS, xS)

mild complements 1 < κ < κ̂(δ)
regime I

(xS, xS)

regime II

(xS, xS), (1, 0), (0, 1)

strong complements κ > κ̂(δ)
regime III

(xA1 , x
A
2 ), (xA2 , x

A
1 )

regime IV

(0, 1), (1, 0)

Table 1: Summary of locally stable steady states.

resources at reasonably high rates until the initially scarcest resource is depleted in the

limit t → ∞, while the initially most plentiful stock grows logistically until it reaches,

in the limit, its carrying capacity K = 1. In the limit, the level of well-being would

be minus infinity (cf. the utility function (1)), but with a sufficiently impatient society

(condition δ > δ̂ holds) the discount factor would tend to zero faster than the level of

well-being would decrease.

Finally, the two alternative interior steady states (xA1 , x
A
2 ) and (xA2 , x

A
1 ) vanish if

δ > δ0 and κ > κ̂(δ), and moreover (xS, xS) loses its (local) stability; see Proposition 3d

and Figure 2 (d). Here, the complementarity of resources and the rate of discount are so

high that the collapse of the resource-dependent economy is optimal for almost any set

of initial conditions. The only exception is the case where the economy initially is on the

saddle-path to the symmetric steady state, i.e. where x1(0) = x2(0) holds exactly. So, if

society starts harvesting in the Garden of Eden (where both x1(0) and x2(0) are equal

to 1 – their maximum levels), the symmetric steady state may eventually be reached –

but only if no shocks occur to either stock.

We summarize all results in Table 1. If resources are substitutes (κ < 1) and if re-

source j is relatively abundant (xj(0)/x−j(0) is relatively large), the costs of building

17



up resource −j are relatively small because the reduced use of resource −j can at least

partly be compensated by a more intensive use of resource j. Indeed, we find that the

welfare costs in the transition phase are always smaller than the net present value of

the benefits of eventually having x1 = x2 = xS – that is, for the relevant case where

max {2 r ω − γ q, rγ q − δ(γ q − 2 r ω)} > 0; see Lemma 1.8 If the resources are comple-

ments (κ > 1) , it may still be optimal to build up the relatively scarce resource stock

towards its symmetric steady state level xS, but not if the degree of complementarity is

too high (that is, if κ > κ̂(δ)). For high levels of complementarity the economy tends

towards asymmetric steady states, which are located in the interior if and only if the

benefits of partially building up the relatively scarce resource are sufficiently high – that

is, if the discount rate is sufficiently low.

Before we turn to the analyzing the economy’s resilience in more detail, it is impor-

tant to note that the conditions on δ and κ (cf. 14 and 16) are not independent – as

already suggested in footnote 7. The following lemma characterizes this relationship in

more detail.

Lemma 4. κ̂(δ) is monotonically decreasing from κ̂(δMSY) = +∞ to lim
δ→∞

κ̂(δ) = γ q/(2 (γ q−

r ω)) ≡ κ > 1.

Proof: see Appendix A.5. �

The properties of κ̂(δ) are illustrated in Figure 3. Lemma 4 states that κ̂ is decreasing

in δ: the higher the discount rate, the more likely it is that two resources are being

labeled ‘strong complements’, and hence the less likely it is that society is willing to

invest in building up the initially relatively scarce one.

Lemma 4 implies an alternative definition for ‘mild’ and ‘strong’ complementarity.

Using δ̂ to denote the level of the discount rate that solves κ̂(δ) = κ, resources with

8Note that this holds a fortiori if min{r ω − γ q, δMSY − δ} > 0 also holds, because then the sym-

metric steady state is interior as well as locally stable for all values of κ anyway – see Proposition 1.

18



IVIII

III

social discount rate δ

d
eg

re
e

o
f

co
m

p
le

m
en

ta
ri

ty
κ̄

(δ
)

κ

δ̂(κB)δ0δ̂(κA)

κA

κ?

κB

1

Figure 3: Threshold degree of complementarity as a function of the social discount rate

(for δ > δMSY).

a degree of complementarity equal to κ are defined to be mild (strong) complements

if δ < δ̂(κ) (δ > δ̂(κ)). Hence, in reference to Table 1, for (xS, xS) to be stable for a

pair of resources with degree of complementarity equal to κ (that is, for Regimes I or

II to apply), the discount rate should be smaller than δ̂(κ) (so that the resources are

mild complements; κ < κ̂(δ)). Furthermore, the corner steady states (1, 0) and (0, 1)

are stable for δ > δ0 (Regimes II and IV) and unstable for δ < δ0 (Regimes I and III).

Hence, Regime I applies if δ < min{δ0, δ̂(κ)}. Regarding the issue of which of the two

conditions (δ < δ0, or δ < δ̂) is more stringent, let us denote with κ? the value of κ for

which the conditions (14) and (16) coincide.9 This is represented in Figure 3 as follows.

For a specific level κ = κA > κ?, δ̂(κA) < δ0, while for κ = κB < κ?, δ̂(κB) > δ0. That

is, defining κ? = κ̂(δ0), we have δ̂ > δ0 (δ̂ < δ0) for all κ < κ? (κ > κ?).

9Note that this value κ? exists and is unique, as δ0 > δMSY (recall that γ q > r ω; see condition 1).
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Figure 4: Bifurcation diagrams: steady state stock sizes as function of discount rate

for (a) mild and (b) strong complements. Red solid lines depict an (almost) globally

stable equilibrium, magenta dotted lines locally stable equilibria and blue dashed lines

(almost) unstable equilibria. Roman numbers I–IV refer to the regimes identified in

Table 1.

4.3 Bifurcation diagrams

Having established the dynamics of the resource stocks for various levels of δ and κ > 1,

let us now turn to the question how these two key parameters affect the economy’s

resilience. Suppose that the economy is in steady state and that it is hit by an exogenous

shock, does the economy return to its original steady state? In Figure 4 we depict the

steady states of the economy as a function of δ (with κ > 1). In Figure 4(a) κ is

sufficiently close to 1 that we have δ̂ < δ̂ (that is, κ < κ?), while Figure 4(b) is drawn

for a larger κ such that δ̂ < δ0 (i.e., κ > κ?). The bifurcation diagrams summarize

the resilience properties of the various cases as identified in Proposition 3, and roman

numbers I-IV indicate the regime the economy is in, where the regimes are defined in

Table 1; see also Figure 3.

Figure 4(a) shows how the stability properties depend on the discount rate for κ < κ?

so that δ0 < δ̂. At low levels of δ (δ < min{δ0, δ̂}), the economy is in regime I as

identified in Table 1, so there is just one optimal steady state. This steady state is
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globally stable, and hence the economy will return to it as long as the exogenous shock

perturbing the system does not directly exhaust any of the two resources. For larger

δ such that δ0 < δ < δ̂, consumers are more impatient or society’s institutions are of

limited permanence (δ > δ0), but given the actual degree of complementarity (κ), the

discount rate is still sufficiently small (δ < δ̂) that the resources can still be labeled

mild complements (1 < κ < κ̂(δ)). That means that the economy is in Regime II, and

the relevant phase diagram is now Figure 2(c). Hence, there are three interior steady

states, two of which are unstable (A and A′, depicted as the upper and lower branches in

Figure 4)(a), and one locally stable one (S, in the middle between A and A′). If a shock

moves the system outside the region bounded by the unstable equilibria A and A′, it is

optimal for society to ultimately deplete one of the resources. If that happens, society

stops harvesting the other resource – because of the complementarity between the two

resources, marginal utility of resource good j is equal to zero if the quantity harvested

from resource −j is zero. Intuitively, if a shock negatively affects the size of one resource

stock, restoring that stock to its steady state would require reduced harvesting levels for

quite a long time. If society is sufficiently impatient or if its institutions are sufficiently

brittle, it actually prefers to continue harvesting (and consuming) both stocks until one

of the two is depleted. Finally, for even higher levels of δ such that δ > δ̂, the discount

rate is sufficiently high that the resources can now be labeled strong complements (see

Regime IV) and hence the economy loses its resilience altogether – the basin of attraction

for S has shrunk to zero, as it has become an unstable steady state itself. The relevant

phase diagram is now Figure 2 (d): the two saddle-point stable branches disappear, and

any shock, however small, will result in the ultimate depletion of one of the resources.

Figure 4(b) is drawn for κ > κ? so that δ̂ < δ0. For discount rates close to 0 (so that

δ < min{δ̂, δ0}), the symmetric steady state is globally optimal, and the economy is in

Regime I. For levels of δ such that δ̂ < δ < δ0, the discount rate itself is still ‘low’, but

it is sufficiently high that the resources can now be labelled ‘strong complements’. That
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means that the economy is in Regime II, and the relevant phase diagram is Figure 2

(b): two asymmetric interior steady states are stable. And if the discount rate is even

higher (that is, δ > δ0 >δ̂), the economy is in Regime IV, and only the corner steady

states are stable.

5 Optimal resilience management of the resource-

dependent economy

In Section 4 we have studied the (multiple) steady states and path-dependence of the

optimally managed resource-dependent economy, answering the question whether, for

given δ, κ and all other parameters of the economy, society is willing to invest in building

up the initially relatively scarce resource, yes or no, for specific levels (and ratios) of

x1(0) and x2(0). Clearly, this is relevant in itself, but it also provides the necessary

input for the analysis of the optimal management of the resource-dependent economy.

If a shock to the economy results in a specific ratio of x1/x2 6= 1, is it optimal for society

to bring the economy back to the state where x1 = x2 = xS, or not?

In this section we build on the previous two sections’ results to analyze the con-

sequences a one-time random shock ∆ = (∆1,∆2) hitting the resource stocks at time

T , such that the stock variables shift from the current state (x1(T ), x2(T )) to another,

disturbed state (x1(T +dt), x2(T +dt)) = (x1(T )−∆1, x2(T )−∆2) an infinitesimal time

increment dt later. The random shock ∆ is distributed over some bounded support Ω.

After such a disturbance, the social planner reoptimizes its harvesting and production

plans to maximize (6) given the post-shock stock sizes (as well as Equations 1–5). We

will focus on parameter values where κ > 1 and the economy is in Regime II, as this

is the most interesting case with one stable steady state with positive stock sizes (the

symmetric steady state (xS, xS)) and two stable steady states where one stock is depleted

(the corners (0, 1) and (1, 0)).
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The social planner’s optimization problem at time t = 0 before the resource stocks

are hit by the random shock at time T is

max
y(t),h1(t),h2(t)

T∫
0

u(y(t), h1(t), h2(t)) e
−δ t dt+ e−δ T E {V (x1(T )−∆1, x2(T )−∆2)} (17)

subject to (2)–(5) and using (x1(0), x2(0)) = (xS, xS) as initial stocks. We use E to

denote the expectation operator over the random disturbance at time T . Furthermore,

the value function V (x1, x2) is defined as

V (x1, x2) = max
y(t),h1(t),h2(t)

∞∫
T

u(y(t), h1(t), h2(t)) e
−δ (t−T ) dt (18)

subject to (2)–(5) with initial state (x1, x2)

The first-order conditions that determine the optimal development of the economy

before the shock are identical to those given in Appendix A.1, except for the transver-

sality conditions at T . These transversality conditions require that the shadow price µj

of resource stock j = 1, 2 must equal the expected marginal value of the stock after T ,

i.e. µj(T ) = E{Vxj(x1(T )−∆1, x2(T )−∆2)}.

We numerically study the optimal development of the economy before the shock

for two different degrees of complementarity, κ = 1.5 and κ = 1.8. Given the other

parameter values as specified in footnote 6, we have 1 < κ < κ̂(δ) and δ > δ̂ for

both values of κ, and hence the economy is in Regime II as identified in Table 1. The

corresponding phase diagrams are drawn in Figure 5(a) and (b). For initial states to

the west (south) of the saddle path C (C′), it is optimal to continue harvesting both

resources at reasonably high rates until the initially scarcest resource is depleted in the

limit t → ∞, while the initially most plentiful stock grows logistically until it reaches,

in the limit, its carrying capacity K = 1. The range of post-shock values of x1 and x2

for which (0,1) or (1,0) are optimal, is clearly larger for κ = 1.8 than for κ = 1.5. So

how does this difference in resilience affect the society’s optimal management plans?
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Figure 5: Phase diagrams (top), value functions (middle), and optimal paths of resource

stocks before a shock at time T = 100 (bottom) for a degree of complementarity of

κ = 1.5 (left) and κ = 1.8 (right).
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We proceed as follows. First, we numerically approximate the value function V (x1, x2)

using the collocation method for solving the Bellman equation corresponding to the plan-

ner’s optimization problem (Miranda and Fackler 2002).10 The resulting value functions

are shown in Figure 5(c) and (d). They are smooth over the whole domain. We further

assume that the economy initially is in the symmetric steady state (xS, xS). At time

T = 100, the stock of resource 1 is reduced by ∆1 = 0.25 with probability p = 0.5, while

there is no shock to the stock of resource 2 (∆2 = 0 with probability p = 1). Next,

we derive the optimal time path before the shock by numerically solving the open-loop

optimization problem (17), using the previously computed value function V (x1, x2) to

determine the appropriate transversality conditions.11 The resulting time paths for the

two resource stocks are shown in Figure 5(e) and (f).

Consistent with intuition, the optimal stock size of resource 1 increases over time

to insure against the potential shock at T=100. To increase the stock of resource 1,

harvest has to be reduced. As a consequence, harvest of the complementary resource 2

decreases as well, and the stock of resource 2 also increases. Still, two additional results

are surprising. First, the anticipated effect of the shock starts affecting the optimal

management plan only a relatively short period before the negative shock hits (with

a 50% probability) at time T = 100; for t < 75, the optimal steady state is still the

symmetric steady state (xS, xS). Second, the optimal trajectories of x1 are very similar

for the two values of κ. The considerably lower resilience of the economy for κ = 1.8

has hardly any influence on optimal management before a shock hits the economy.

For illustration, we also compute the optimal path of the economy for an initial state

10Programming codes are available from the authors. We use Matlab (version 7.11.0) with the

CompEcon toolbox provided by Miranda and Fackler (2002). For the collocation method, we use two-

variate Chebychev polynomials of degree 70 in the domain [0.01, 0.99] × [0.01, 0.99]. Approximation

residuals are below 10−7 over the whole domain.

11We use Matlab’s built in solver for boundary value problems, bvp5c.
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(x1(T )−∆1, x2(T )), using the closed-loop solution to the optimization problem given by

the value function. The resulting trajectories are also shown in Figure 5(a) and (b). For

the lower degree of complementarity, κ = 1.5, the symmetric steady state is ultimately

approached again after the shock. For the higher degree of complementarity, κ = 1.8,

by contrast, the optimal steady state after the shock is the corner steady state (0, 1).

6 Conclusion

We analyzed how characteristics of consumer preferences affect the (limited) resilience

of natural-resource-dependent economies. We focused on two specific characteristics of

preferences, the degree of complementarity of resources in the satisfaction of human

needs, and the social discount rate. We derived conditions on the degree of complemen-

tarity and on the discount rate for which the optimal dynamics of resource use features

multiple steady states and path-dependence. We established that if parameters are such

that the symmetric steady-state stocks are larger than the maximum-sustainable-yield

ones (that is, if Condition 1 is violated), this symmetric steady state is always stable,

independent of whether the two resources are substitutes in consumption or comple-

ments.

If the optimal stocks are smaller than the maximum-sustainable-yield ones, the de-

gree of complementarity of resources crucially affects the stability of the symmetric

steady state. While one may expect that society is more willing to invest in regenerat-

ing relatively scarce resources if they are complements than when they are substitutes,

we find the exact opposite. If resources are substitutes in consumption, the economy

always ends up in the symmetric steady state – independent of the initial stocks. If

resources are complements in consumption, however, the economy is characterized by

limited resilience; alternative steady states exist that are locally stable, and the sym-

metric steady state may even become unstable – if the discount rate is sufficiently high.
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The intuition behind these results is as follows. Allowing the relatively small stock to

regenerate requires reducing the rate at which it is being harvested. Such a reduction

reduces instantaneous utility, but more so if the two resources are complements than if

they are substitutes – if they are substitutes (complements), the drop in welfare can (can

not) be limited by increasing the use of the relatively abundant resource. Hence, the

costs of moving the system to its symmetric steady state are larger the higher the degree

of complementarity, and if society is sufficiently impatient, it may even be optimal to

always let the initially least abundant resource go extinct.

So, we find that society’s willingness to invest in regenerating stocks is smaller the

stronger the complementarity between the two resources, and hence one would expect

that anticipating this, society would be willing to apply more stringent ‘safe minimum

standards’ if it considers resources to be complements rather than substitutes. Surpris-

ingly, we only find very little evidence for this; in anticipation of negative shocks society

is willing to invest in larger stocks in order to better buffer the economy against them,

but numerical analyses suggest that this willingness is not very sensitive to the degree

of complementarity. The higher the degree of complementarity, the smaller the basin of

attraction of the symmetric steady state, but the propensity to invest in larger buffers

is not much larger.

In real-world economies there are many more resources than just two, and they may

be pairwise complements, or substitutes. The higher the level of aggregation of the

analysis – that is, at the ecosystem level or even at the level of climate systems – the

higher the degree of complementarity tends to be, and our model predicts that even

under optimal management, the economy’s resilience tends to be smaller the higher

the stakes. In our numerical examples we find that by itself this is not really cause

for concern because the sheer fact that resource depletion is more likely to be optimal

if resources are complements, also implies that it is more costly to prevent resource

collapse – because building up buffer stocks is more costly, too. The extent to which
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the results hold for specific stocks or ecosystems, is an empirical question.

Appendix

A.1 Conditions for optimal resource use

Rewriting (3) as ej = hj/ (qjxj), the current-value Hamiltonian is as follows:

H =
γ

1− κ
ln

[∑
j=1,2

h1−κj

]
+ ω

(
1−

∑
j=1,2

hj
qj xj

)
+
∑
j=1,2

µj [fj(xj)− hj] (19)

where µj is the shadow price of the resource stock j; j = 1, 2. The first-order conditions

of the social planner’s optimization problem are

γ h−κj

[∑
i=1,2

h1−κi

]−1
=

ω

qj xj
+ µj ≡ πj j = 1, 2 (20)

ω hj
qj x2j

=
[
δ − f ′j(xj)

]
µj − µ̇j j = 1, 2 (21)

together with the transversality conditions e−δ t µj xj
t→∞−−−→ 0 and for given initial sizes

of the resource stocks xj(0) = xj0 for j = 1, 2. For the following analysis, it is more con-

venient to use the shadow price of resource consumption, πj (as defined in Equation 20)

than the shadow price of the resource stock, µj.

From Equation (20) we obtain harvest as a function of the shadow prices,

hj = γ
π
− 1
κ

j∑
i=1,2

π
1− 1

κ
i

. (22)

Equation (22) shows that a positive consumption of the numeraire commodity is guar-

anteed because
∑

j=1,2
ω

qj xj
hj ≤

∑
j=1,2 πj hj = γ < ω, where the last inequality holds

by assumption.

A.2 Proof of Lemma 1

In a symmetric steady state xS1 = xS2 = xS, which implies that πS
1 = πS

2 = πS; see (10).

From (9) we infer that xS is implicitly determined by 2 πSf(xS) = γ. Using (10) and (5),
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this condition can be rewritten as

(
2 r xS + δ − r +

γ q

ω

)2
= (δ + r)2 +

(γ q
ω

)2
Solving for xS yields the unique positive solution given in Equation (13) provided

r − δ − γ q

ω
+

√
(δ + r)2 +

(γ q
ω

)2
> 0

⇔ δ (γ q − 2 r ω) < γ q r.

A.3 Proof of Proposition 1

(i) We will use in the following that π′(xS) < 0. To prove this, note first that any real-

valued solution to (9) requires that πj, j = 1, 2 is positive, which means that δ > f ′(xj)

for both resource stocks in steady state. Differentiating (10) with respect to xj and

using (5) yields

π′j(xj) = −ω
q

2 (r xj)
2 + δ (δ − r + 4 r xj)

x2j (δ − r + 2 r xj)
2 < 0

as xj > (r − δ)/(2 r). In a similar way, it is easily verified that π′′j (xj) > 0.

(ii) We now analyze the local stability of the symmetric steady state by considering

the Jacobian matrix of the dynamic system (7) and (8). Using 2πS f(xS) = γ, in

symmetric steady state the Jacobian is equal to

JS =



f ′(xS) 0 κ+1
κ

f(xS)
2π(xS)

κ−1
κ

f(xS)
2π(xS)

0 f ′(xS) κ−1
κ

f(xS)
2π(xS)

κ+1
κ

f(xS)
2π(xS)

−
(
δ − f ′(xS)

)
π′(xS) 0 δ − f ′(xS) 0

0 −
(
δ − f ′(xS)

)
π′(xS) 0 δ − f ′(xS)


(23)

where xS is stock size and π(xS) is the shadow price of harvest in the symmetric steady

state, both of which are independent of κ (see Lemma 1). The four eigenvalues of the
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Jacobian are

λ1,2 =
1

2

[
δ ±

√
(δ − 2 f ′(xS))2 − 4

π′(xS)

π(xS)
f(xS) (δ − f ′(xS))

]
(24)

λ3,4 =
1

2

[
δ ±

√
(δ − 2 f ′(xS))2 − 4

π′(xS)

κπ(xS)
f(xS) (δ − f ′(xS))

]
. (25)

All four eigenvalues are real-valued, as π(xS) > 0, f(xS) > 0, π′(xS) < 0, and δ > f ′(xS).

It follows directly that λ1 > 0 and λ3 > 0. (xS, xS) is always stable (independent of κ)

if both λ2 and λ4 are negative. The last eigenvalue λ4 is negative if

δ2 <
(
δ − 2 f ′(xS)

)2 − 4
π′(xS)

κπ(xS)
f(xS)

(
δ − f ′(xS)

)
⇔ 0 > f ′(xS)

(
κ+

π′(xS)

π(xS)

f(xS)

f ′(xS)

)
(26)

and similarly the condition for λ2 < 0 is

0 > f ′(xS)

(
1 +

π′(xS)

π(xS)

f(xS)

f ′(xS)

)
. (27)

If xS > 1/2 ≡ xMSY, we have f ′(xS) < 0, so that conditions (26) and (27) are always

met.

(iii) The stock sizes in the symmetric steady state are larger than the maximum

sustainable yield stocks xMSY = 1/2 if and only if

r − δ − γ q

ω
+

√
(δ + r)2 +

(γ q
ω

)2
> r

⇔ (δ + r)2 +
(γ q
ω

)2
>:
(
δ +

γ q

ω

)2
⇔ δ

(
1− γ q

r ω

)
+
r

2
>:0

which holds if either γ q < r ω or δ < r2 ω/ (2 (γ q − r ω)) ≡ δMSY.
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A.4 Proof of Proposition 2

We shall first show that for κ < 1 we have x′j(xi) > 0 for all xi. Total differentiation

of (9) leads to

π′j(xj)
dxj
dxi

= π′i(xi)

[
γ

πi f(xi)
− 1

] κ
κ−1

−
γ
[

γ
πi f(xi)

− 1
] 1
κ−1

κ−1
κ
f(xi)

[
π′i(xi)

πi
+
f ′(xi)

f(xi)

]
(28)

The first term on the right hand side is negative because π′i(xi) < 0 (cf. Appendix A.3)

and because γ > πi f(xi); see (9). The last factor (in brackets) of the second term on

the right hand side is negative, too:

π′i(xi)

πi
+
f ′(xi)

f(xi)
= −2 [r xi]

2 + δ [δ − r + 4 r xi]

[δ + r xi] [δ − r + 2 r xi]
+

1− 2xi
xi [1− xi]

= −δ [δ + 2 r xi] + r2 [1− 2xi [1− xi]]
[1− xi] [δ + r xi] [δ − r + 2 r xi]

< 0. (29)

We use this to show that for κ < 1 any steady state must be symmetric. Let (x1, x2) =

(xS, xS) be a symmetric steady state. Since xj(xi) is monotonically increasing, it may

be inverted, such that a steady state is determined by x2(x
S) = x−11 (xS). For symmetric

resources, we have x2(x) = x1(x) for all x. Assume without loss of generality that

x′j(x
S) > 1. Then, x′i(x

S) = 1/x′j(x
S) < 1. Thus, no asymmetric steady state is possible.

Furthermore, only one symmetric steady state with xS > 0 exists (Lemma 1).

For κ < 1, the problem is also well-defined if one of the resource stocks is zero

from the very beginning. In this case, the first-order conditions for the optimal the

steady-state stock of the resource with positive stock reads

ω hj
q x2j

=
[
δ − f ′j(xj)

] [ γ
hj
− ω

q xj

]
(30)

ω

γ q
r2 (1− xA)2 =

[
δ − r (1− 2xA)

] [
1− ω

γ q
r (1− xA)

]
. (31)

Solving for xA leads to (15). It is straightforward to verify that this steady state is at a

positive stock level if condition (14) holds.
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A.5 Proofs of Lemmas 2 and 4

By condition 1, we have f ′(xS) > 0. With this, the eigenvalue λ4 of the Jacobian at

the symmetric steady state (see Appendix A.3) is negative if κ < κ̂(δ) and positive if

κ > κ̂(δ), as is easily verified using condition (26).

Next, we show that κ̂ is monotonically decreasing with δ and that κ̂(δ) > 1. This

shows that the eigenvalue λ2 of the Jacobian at the symmetric steady state (see Ap-

pendix A.3) is always negative. Hence, the symmetric steady state is stable if κ < κ̂(δ)

and unstable if κ > κ̂(δ).

As f ′(xS)
δ→δMSY−−−−−→ 0, we have κ̂(δ)

δ↘δMSY−−−−−→ +∞. By differentiating (16) with respect

to δ for δ > δMSY (condition 1), we obtain

κ̂′(δ) = κ̂(δ)

(
π′′(xS)

π′(xS)
− π′(xS)

π(xS)
+
f(xS)

f ′(xS)
− f ′′(xS)

f ′(xS)

)
dxS

dδ

which is negative, as dxS/dδ < 0 (cf. Lemma 1); π(xS) > 0, π′(xS) < 0, and π′′(xS) > 0

(cf. Appendix A.4); and as f(xS) > 0, f ′(xS) > 0 (because δ > δMSY) and f ′′S) < 0.

By condition 1 and according to Lemma 1 the minimal xS is

lim
δ→∞

xS = 1− γ q

2 r ω
> 0.

Under condition 1, we thus obtain

lim
δ→∞

κ̂(δ) =
γ q
2 r ω

γ q
r ω
− 1

=
γ q

2 (γ q − r ω)
=

γ q

γ q − (2 r ω − γ q)
> 1.

A.6 Proof of Lemma 3

We shall consider the xj(xi) isoclines, as given by Equations (11) and (12). With

r1 = r2 = r, K1 = K2 = 1, and q1 = q2 = q, these two equations become

xj(πj) =
1

4

√ 8 δ ω

r q πj
+

(
δ − r
r
− ω

q πj

)2

− δ − r
r

+
ω

q πj

 (32)

πj(xi) =
ω

q xi

δ + r xi
δ − r + 2 r xi

[
γ q

ω r

δ − r + 2 r xi
(δ + r xi) (1− xi)

− 1

] κ
κ−1

(33)
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First, from Equation (33) we have πj(xi)
xi→1−−−→ +∞ and hence xj(xi)

xi→1−−−→ 0 from

Equation (32).

We shall secondly show that for δ > δ0 we have xj(xi)
xi↘0−−−→ 0, while for δ < δ0

a xi > 0 exists such that xj(xi)
xi↘xi−−−→ +∞. Consider the expression in brackets in

Equation (33). For the case δ < δ0 it is zero when

xi =

√(
δ + r

2 r

)2

+
(γ q
r ω

)2
−
(
δ − r
2 r

+
γ q

r ω

)
≡ xi > 0.

Hence, πj(xi) = 0 and xj(xi)
xi↘xi−−−→ +∞ by Equation (32).

For δ > δ0, the expression in brackets in Equation (33) is positive even for xi = 0.

Thus, πj(xi)
xi↘0−−−→= +∞ and xj(xi)

xi↘0−−−→ 0 by Equation (32).

These two arguments together imply that for δ > δ0, we have x2(x1(x)) < x for x

sufficiently close to 1, while for δ < δ0, we have x2(x1(x)) > x for x sufficiently close

to 1.

Third, for κ < κ̂(δ) the symmetric steady state is locally stable (Lemma 2) which

implies that x2(x1(x
S + ε)) > xS + ε for some small ε > 0 (put differently, we have

x′j(x
S) < −1). For κ > κ̂(δ) the symmetric steady state is locally unstable (Lemma 2)

which implies that x2(x1(x
S + ε)) < xS + ε for some small ε > 0 (put differently, we have

x′j(x
S) > −1).

Now for 3a), we have x2(x1(x
S+ε)) < xS+ε for some small ε > 0 and x2(x1(x)) > x for

some x sufficiently close to 1. Since x2(x2(·)) is continuous, the equation x2(x1(x
A)) = xA

must have a solution xA > xS. As the symmetric steady state is unstable, the asymmetric

steady states are stable (Arrow and Kurz 1970).

As for 3b), we have x2(x1(x
S+ε)) > xS+ε for some small ε > 0 and x2(x1(x)) < x for

some x sufficiently close to 1. Since x2(x2(·)) is continuous, the equation x2(x1(x
A)) = xA

must have a solution xA > xS. As the symmetric steady state is stable, the asymmetric

steady states are unstable (Arrow and Kurz 1970).
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Verhulst, P., 1838. Notice sur la loi que la population suit dans son accroissement.

Correspondance Mathematique et Physique 10, 113–121.

36


	Introduction
	Model of a natural-resource-dependent economy
	Conditions for optimal resource use
	Steady states and path-dependence of optimal resource management
	Optimal dynamics when resources are substitutes
	Optimal dynamics when resources are complements
	Bifurcation diagrams

	Optimal resilience management of the resource-dependent economy
	Conclusion
	Conditions for optimal resource use
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Proposition 2
	Proofs of Lemmas 2 and 4
	Proof of Lemma 3


