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a b s t r a c t 

In robotic mobile fulfillment systems, human pickers don’t go to the inventory area to search for and 

pick the ordered items. Instead, robots carry shelves (called “pods”) containing ordered items from the 

inventory area to picking stations. At the picking stations, pickers put ordered items into totes; then these 

items are transported to the packing stations. This type of warehousing system relieves the human pick- 

ers and improves the picking process. In this paper, we concentrate on decisions about the assignment of 

pods to stations and orders to stations to fulfill picking for each incoming customer’s order. In previous 

research for an RMFS with multiple picking stations, these decisions are made sequentially with heuris- 

tics. Instead, we present a new MIP-model to integrate both decision problems. To improve the system 

performance even more, we extend our model by splitting orders. This means parts of an order are al- 

lowed to be picked at different stations. To the best of the authors’ knowledge, this is the first publication 

on split orders in an RMFS. And we prove the computational complexity of our models. We analyze differ- 

ent performance metrics, such as pile-on, pod-station visits, robot moving distance and throughput. We 

compare the results of our models in different instances with the sequential method in our open-source 

simulation framework RAWSim-O. The integration of the decisions brings better performances, and al- 

lowing split orders further improves the performances (for example: increasing throughput by 46%). In 

order to reduce the computational time for a real-world application, we have proposed a heuristic. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The most important and time-consuming task in a warehouse

is the collection of items from their storage locations to fufill cus-

tomer orders. The process is called order picking , which may con-

stitute about 50–65% of the operating costs. Therefore, the order

picking is considered as the highest-priority area for productivity

improvements (see De Koster, Le-Duc, & Roodbergen, 2007 ). Due

to the increasingly fast-paced economy, it is becoming more and

more important that the orders are processed in a short time win-

dow. 

In a traditional manual order picking system (also called a

picker-to-parts system ), the pickers spend 70% of their working time

on the tasks of search and travel (see Tompkins, 2010 ; for an

overview of manual order picking systems see De Koster et al.,
∗ Corresponding author. 
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007 ). The unproductive searching and traveling times require the

icker-to-parts system to have a large workforce, especially for

ompanies which have millions of small items in large warehouses,

uch as e-commerce companies like Amazon or retailers like Zara

nd Walmart, which provide both brick-and-mortar and online

hops. Dependent on the type of retailers, they are facing many

iverse customer orders each day (both single-line and multi-line

rders). Also, the workforce of such companies is under high pres-

ure due to the long traveling time (see Wulfraat, 2012 ). Kiva Sys-

ems LLC, now Amazon Robotics LLC, came up with a unique solu-

ion to avoid the unproductive times of human pickers in picker-to-

arts systems; therefore, this solution accelerates the order picking

rocess (see Wurman, D’Andrea, & Mountz, 2008 ). In such system,

obots are sent to carry storage units, so-called ”pods,” from the in-

entory area and bring them to human operators, who work only

t picking stations. At the stations, the items are picked according

o the customers’ orders. After picking, the robot transports the

od back to the storage area. There are also some other suppli-

rs of such systems, such as Scallog, Swisslog (KUKA), GreyOrange

nd Hitachi (see Banker, 2016 ). All of these systems may differ
under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Literatur overview in an RMFS. 

decision problems publications 

Strategic level : 

storage area dimensioning, Lamballais, Roy, and De Koster (2017) , 

workstation placement Lamballais, Roy, and De Koster (2019) 

Tactical level : 

number of robots Yuan, Dong, and Li (2016) , Yuan and Gong (2017) , 

Zou, Xu, De Koster et al. (2018) , Otten, Krenzler, Xie, Daduna, and Kruse (2019) 

Operational level : 

decisions for each incoming order about 

which robot carries Zhang, Yang, and Weng (2019) , Roy, Nigam, de Koster, Adan, and Resing (2019) 

which pod Boysen et al. (2017) 

along which path Cohen, Uras, and Koenig (2015) , Cohen, Wagner, Kumar, Choset, and Koenig (2017) , 

Merschformann et al. (2017) 

to which station 

decisions about where to 

put the used pod back to Merschformann (2017) , 

Weidinger, Boysen, and Briskorn (2018) , 

Krenzler, Xie, and Li (2018) 

decision rules Wurman et al. (2008) , 

Merschformann et al. (2019) 

simulation Merschformann et al. (2018) 

demonstration Xie et al. (2019) 

performance characteristics Hanson, Medbo, and Johansson (2018) 
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Table 2 

The operational decision problems in an RMFS. 

Decision problem Description 

Order Assignment: 

Replenishment Order Assignment (ROA) assignment of replenishment 

orders to replenishment stations 

Pick Order Assignment (POA) assignment of pick orders to 

picking stations 

Task Creation: 

Replenishment Pod Selection (RPS) selection of pods that will 

move to a replenishment station 

to store replenishment items 

Pick Pod Selection (PPS) selection of pods to use for 

picking the pick orders assigned 

at a picking station 

Pod Repositioning (PR) assignment of an available 

storage location to a pod that 

is not in the inventory area 

Task Allocation (TA) assignment of generated tasks for 

robots in RPS, PPS, PR and 

additional tasks such as idling 

Path Planning (PP) planning of the paths for the 

robots to execute 
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echnically in certain aspects, such as the lifting mechanism, but

hey share the same principle of the system (see the description

f such system in Section 2 ). This system is called robotic mobile

ulfillment system (RMFS). 

.1. Research background 

In an RMFS environment, various optimization and allocation

roblems have to be solved in real time. An overview of an

MFS and other automated warehousing systems can be found in

zadeh, de Koster, and Roy (2017) and Boysen, de Koster, and Wei-

inger (2018) . Here we give you an short literature overview of

MFSs in Table 1 , which also includes new researches that are not

isted in both overview papers. The classification of three levels of

roblems is based on Merschformann, Lamballais, de Koster, and

uhl (2019) . 

In this work, we concentrate on operational problems. As

hown in Table 1 , there are usually the following decision prob-

ems in the order picking process in an RMFS (described in

urman et al., 2008 and Merschformann, Xie, & Li, 2018 ): Each

ime a new order arrives, we have to decide which robot carries

hich pod along which path to which station to fulfill picking. So

he order is first assigned to a station ( pick order assignment , in

hort: POA), and then one or several pods are assigned to that sta-

ion to fulfill that order ( pick pod selection , in short: PPS). Robots

re assigned to deliver pods to that station ( robot task allocation ),

hile path planning plans the paths for the robots. After a pod is

nished at a picking station, we have to decide where to put it

ack in the inventory area ( pod repositioning ). And there are two

ecisions for the replenishment process, namely replenishment or-

er assignment and replenishment pod station. Table 2 describes

he operational problems in an RMFS. 

.2. Contributions and paper structure 

We concentrate in this paper on the picking process, especially

OA and PPS. In the studies of the throughput performance of deci-

ion rules for multiple online decision problems in Merschformann

t al. (2019) , they concluded that POA should be paid more at-

ention in the literature and practice, since it affects the through-

ut performance of RMFS the most. In Boysen et al. (2018) , they

entioned that the existing research into order picking is under
he assumption that orders have already been assigned to stations

in other words: without optimization of POA), such as in Boysen,

riskorn, and Emde (2017) . 

Due to the importance of POA, POA and PPS should be opti-

ized together; however, the complexity is increased due to con-

idering all possible pods and multiple picking stations (see ex-

mples in Section 2.2 ). Therefore, the authors in Wurman et al.

2008) and Merschformann et al. (2019) provided heuristics to

olve POA and PPS sequentially, first POA and then PPS. We list

ere the contributions of our work: 

� We develop a new mathematical model to solve integrated POA

and PPS for multiple stations. 
� We extend our integrated model to allow split orders, so not

all parts of an order are picked at the same station. To the best

of the authors’ knowledge, this is the first publication on split

orders in an RMFS. The literature review of split orders can be

found in Section 2.3 . 
� We develop a heuristic for our new models to solve a real-

world instance. 
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Replenishment

Storage
Retrieval

Storage

Order picking

Order packing

Transport to packing 
sta�on

Retrieval

Retrieval

Order picking

Fig. 1. The central process of an RMFS. 

Table 3 

Terms related to orders. 

Term Description 

SKU stock keeping unit 

order line one SKU with the ordered quantity 

item a physical unit of one SKU 

pick order a set of order lines from a customer’s order 

split order a pick order that is separated into several parts 

replenishment order a number of physical units of one SKU 

backlog all unfulfilled orders 

Table 4 

The central components of an RMFS. 

Component Description 

pods movable shelves, on which inventory is stored 

storage area the inventory area where the pods are stored 

workstations: 

picking stations where pickers pick the order items 

packing stations where packers pack the pick order items and 

the split orders are consolidated 

replenishment stations where replenishment items are stored to pods 

robots moving underneath pods and carrying them to 

workstations 

conveyors transporting the pick orders between picking and 

packing stations to finish packing 
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� We extend our open-source simulation framework RAWSim-O

to evaluate the decisions made based on our new models. 

This paper is organized as follows: In the next section, we de-

scribe the RMFS and operational decision problems in detail. Af-

ter that, we will describe our idea of integrated POA and PPS and

split orders with examples. In Section 3 , a mathematical model of

integrated POA and PPS and the extensions with split orders are

described. We present simulation evaluations in Section 4.2 . Fi-

nally, we draw conclusions and give pointers for further research

in Section 5 . 

2. Problem description with examples 

In this section, we first describe the RMFS, and the decision

problems in an RMFS. After that, we will describe our idea of inte-

grated POA and PPS and split orders with examples. 

2.1. RMFS 

Firstly, we define some terms related to orders before explain-

ing the processes in an RMFS in Table 3 . 

The central components of an RMFS are listed in Table 4 . 
The pods are transported by robots between the inventory area

nd workstations. Fig. 1 shows the central process in a simplified

MFS from replenishment to packing: 

� Retrieval process : After the arrival of a replenishment order,

robots carry selected pods to a replenishment station to store

units in pods. Similarly, after receiving a pick order, robots carry

selected pods to a picking station, where the items for the order

lines are picked. Note that in order to fulfill pick orders, several

pods may be needed, since orders may have multiple lines. The

items in (parts of) an order are picked into a tote. 
� Storage process : After a pod has been processed at one or more

stations, it is brought back to a storage location in the storage

area. The retrieval and storage processes are based on Hoffman

et al. (2013) . 
� Transport to packing stations : Once a tote is filled, it is trans-

ported by a conveyor to packing stations for packing. 
� Packing process : If all items in an order are contained in a tote,

packers are prompted by computer to select the correct-sized

box and pack the items. A split order has items delivered via

multiple totes, since the items are picked by different pickers

(picking stations). In this case, packers first sort items from a

tote to a correct-sized box on the shelf so that the items from

that order are grouped together. Packers are prompted by com-

puter to put the box for the split order on one given position

on the shelf, and later to find the box in the shelf to put the

rest of that order into the box. We use the term shelf to clar-

ify that they might be different to the pods, since they do not

need to be moved. Once all the items of a split order are in

a box, the packer packs the box, and a space is open for the

next split order. This packing process is based on the packing

process in Amazon (see Toister, 2017 ). 

.2. POA and PPS 

We concentrate in this paper on the online decisions for POA

nd PPS for multiple stations. For better clarification, online in our

ase does not mean that we consider orders that have arrived over

 number of time periods. In order to have enough optimization

otential, we assume that we know all orders in advance (for ex-

mple, we gather all orders that have come in the last hour in the

acklog). But our methods can support the decisions for the new

ncoming orders in each period (see Section 4.3 ). Instead, online

ecisions in our case means that we have to make decisions for

oth problems for each new period t . Period t − 1 is changed to

 if some jobs are finished at the stations while there are unful-

lled orders in the backlog. Also, situations such as the inventory

f pods and the positions of pods in the queues at stations can and

ill change from t − 1 to t . They are important for the POA and PPS
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ecisions and are hard to calculate exactly in advance, since errors

nd delays in previous time periods can affect them. For these rea-

ons, we make the decisions for the integrated POA and PPS just

efore the respective time period starts. This allows us to react to

he current situation and take errors or delays from previous pe-

iods into account. Furthermore, we test our results in a simula-

ion framework, which provides us with the actual information for

ach time period. In the literature, the online decisions for POA and

PS are usually solved sequentially for multiple stations (first POA,

hen PPS; see Wurman et al., 2008, Merschformann et al., 2019 ).

he sequential approach limits the information for both decisions.

herefore, the decisions for POA and PPS should be made simulta-

eously to achieve optimum performance, so we can use informa-

ions about all pods and orders, including those that are assigned

o stations and are unassigned. However, the complexity of solving

ntegrated POA and PPS is increased, and the integrated problem is

P-hard (see the proof in Section 3 ). We will describe the differ-

nce between sequential and integrated problems with Example 1 .

o the best of the authors’ knowledge, this is the first publication

bout the integrated POA and PPS for multiple stations. 

Objective Before we explain POA and PPS with examples, we

ant to firstly explain our objective of POA and PPS. An RMFS

ith higher throughput is better. Based on the performance anal-

sis of decision rules for multiple online decision problems in

erschformann et al. (2019) , they found that a high pile-on (the

umber of picks per handled pod) and a short distance traveled by

obots together is a indicator for the success of a decision rule ap-

lied in an RMFS (to achieve high throughput). In order to achieve

hat, we aim at minimizing the number of visits by pods to sta-

ions (in short: pod-station visits ) for each decision of the POA and

PS problems. If fewer pod-station visits are needed for the given

rders, a shorter distance traveled by the robots can be achieved,

nd higher pile-on can be expected to finish the given orders. Fur-

hermore, a smaller number of pod-station visits also causes fewer

hanges of pods, and the waiting time of human pickers between

hanges of pods is reduced (see Boysen et al., 2017 ; they also min-

mize pod-station visits for the assignment of pods to orders). An-

ther time component of human pickers is retrieving the items

rom their shelves, which is considered to be fixed. Due to the re-

uced waiting time, more orders can be handled within a mini-

al time. So, this matches the suggestion in Van Gils, Ramaekers,

aris, and de Koster (2018) for an efficient order picking in picker-

o-parts systems. 

xample 1. Fig. 2 (a) illustrates a small problem to fulfill four or-

ers 1, 2, 3 and 4. The different colors represent different SKUs

stock keeping units). For simplicity, the quantity of each SKU in

he orders is one. We have in total two picking stations. There is

wo empty totes at each station. In this example we assume that

ach tote can hold three items. Pod 1 is currently at station 1 and

od 2 at station 2, while pods 3 and 4 are in the storage area. 

Sequential POA and PPS In the sequential POA and PPS, we use

he same decision rule, Pod-Match , as in Merschformann et al.

2019) , which assigns the orders from the backlog to a station so

hat the items for the orders best match the pods that are already

ssigned to that station. Note that there is another more common

ecision rule in Merschformann et al. (2019) (called Common-Lines )

nd Wurman et al. (2008) , grouping similar orders at picking sta-

ions in POA. However, the decision rule Pod-Match for POA is

hown to perform better in Merschformann et al. (2019) , since this

ule uses information about assigned pods at stations in addition

o information about orders in the backlog. 

In Example 1 , in the POA problem we assign orders 2 and 3 to

tation 1 ( Fig. 2 (b)), since two of their items can be picked from

od 1 – the pod that is already at station 1. For the same reason,

e assign orders 1 and 4 to station 2. To fulfill the assigned or-
ers, both pods from the storage area, pods 3 and 4, are needed

t each station. After items from pods 1 and 2 are picked, they

re returned to the storage area. In the PPS, pod 3 visits station 1,

hile pod 4 visits station 2 ( Fig. 2 (c)). After picking in both sta-

ions, pods 3 and 4 switch stations so that the last item of each

rder can be picked ( Fig. 2 (d)). In total, 6 pod-station visits were

ecessary to fulfill both orders in this example, therefore the pile-

n can be calculated as 12 picks/6 pods = 2 picks/pod. 

Integrated PPS and POA In the integrated PPS and POA approach,

e have more information while assigning orders to stations, since

ods and orders are assigned to stations at the same time. This

llows us to find optimal solutions that might not be intuitive at

rst glance and would not be found by the sequential POA and PPS.

ote that we use information about all pods, including assigned

nes at stations and unassigned ones in the storage area, but this

ay increases the complexity to solve both problems. 

Using the same initial state as in the previous explanation of

he sequential POA and PPS in Example 1 (see Fig. 3 (a)), we in-

egrate these two decisions and assign orders and pods such that

he number of pod-station visits is minimized. This leads to the

ssignment of orders 1 and 2 and pod 3 to station 1, and orders 3

nd 4 and pod 4 to station 2 (see Fig. 3 (b) and 3 (c)). This results

n a pile-on of 3 (12 picks/4 pods) compared to 2 (12 picks/6 pods)

n the sequential example and only requires 4 pod-station visits to

ulfill all orders instead of 6. 

Based on this example, we can see the benefit of integrating

OA and PPS by using information about the inventory of all pods

n these decisions. Therefore, we present a mathematical model in

his paper that integrates POA and PPS for multiple stations and

akes information about the inventory of all pods into account. 

.3. Allowing split orders in our integrated approach 

In our integrated approach mentioned above, an order is only

llowed to be assigned to a single station. The second contribution

f this paper is to allow split orders in our integrated approach.

nd we also prove that the models to allow split orders are NP-

ard (see Section 3 ). A split order means that we divide an order

nto two or more parts for picking (perhaps at different stations). A

imilar term, “splitting orders,” can be traced back to 1979, when

t was used by Armstrong, Cook, and Saipe (1979) . They used split

rders to keep batch sizes constant in batch picking. In Il-Choe and

harp (1991) and De Koster, Le-Duc, and Zaerpour (2012) split or-

ers are used as part of the zoning in traditional picker-to-parts

arehouses, in which a storage area is split into multiple parts

called zones), each with a different order picker. When an order

ontains several SKUs that are stored in different zones, the SKUs

or the order are picked separately in each zone and merged later

or shipping. To the best of the authors’ knowledge, this is the first

ublication on split orders in an RMFS. 

According to the following example, we expect allowing split

rders in an RMFS provide a better solution. 

xample 2. Fig. 4 illustrates the decision problem when assign-

ng orders and pods to two picking stations. We have one empty

ote at each station, while we have two identical orders 1 and 2 in

he backlog (in Fig. 4 (a)). We assume that each tote can hold two

tems. These two orders contain SKUs shown in blue and orange.

hese two SKUs are located in two different pods, namely pod 1

ith the orange SKU and pod 2 with the blue SKU. Fig. 4 (b) shows

he optimal solution to the problem without split orders. We need

od 1 to visit station 1 and pod 2 to visit station 2; after that, pod

 visits station 1 and pod 1 visits station 2. In total, we need four

isits by pods to the stations to fulfill both orders. Instead, if we

plit orders 1 and 2 into blue and orange parts (see Fig. 4 (c)), the

lue ones can be picked from pod 2 at station 2, while the orange
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1 2 3

orders

41 2 3 4

station 1

station 2

pod 1

pod 2

pod 3

pod 4

(a) Initial state

station 1

station 2

1 4

2 3

pod 1

pod 2

pod 3

pod 4

(b) POA: orders 2 and 3 � station 1,
orders 1 and 4 � station 2

station 1

station 2

1 4

2 3

pod 1

pod 2

pod 3

pod 4

(c) PPS I: pod 3 � station 1, pod 4 �
station 2

station 1

station 2

1

3

pod 1

pod 2 pod 3

pod 4

(d) PPS II: pod 4 � station 1, pod 3 �
station 2

Fig. 2. An example for the sequential POA and PPS (best viewed in color). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l  

d  

i  

a

 

d  

d  

o  

p  

o  

s  

s

 

 

 

 

 

i  

a  

c  

i  

c  

t  
ones can be picked from pod 1 at station 1. This allows both orders

to be fulfilled with only two visits by pods to the stations instead

of four. Note that in this paper we don’t use one empty tote for

exactly one order, but for several items, to enable comparison be-

tween the solutions with and without split orders. We will explain

more about this in Section 3.1 in the paragraph Capacity of a pick-

ing station . 

However, the split orders might need additional consolidation

time in packing stations, where customers’ orders are packed and

ready for shipping. We ignore this time in our study, we will de-

scribe that in Section 3.1 . 

3. Mathematical model 

In this section, we describe the assumptions in Section 3.1 be-

fore we present our mathematical model of integrated POA and

PPS (we call it the integrated model ), and extend it with two vari-

ants of allowing split orders. 

3.1. Assumption 

SKUs All different SKUs in orders are available in pods. We as-

sume that the quantity of the order line for each SKU is one. This

assumption is consistent with common practice, since the number

of items per order line is low. If a pod contains a SKU, then we

assume that there are enough items in that pod to fulfill all orders

for that SKU. 
Pregenerated orders We store pregenerated orders in the back-

og before the beginning of optimization, so we get the same or-

ers for testing different approaches. From time to time, no new

ncoming orders are stored to the backlog for the optimization. Our

pproaches terminate if the backlog is empty. 

Split order Splitting an order means separating the original or-

er into two or more parts (up to the number of SKUs in the or-

er). If an order is not split, we ensure that all order lines in that

rder are assigned for picking at the same station (within a time

eriod). If an order is split, this constraint is relaxed by allowing

rder lines for that order to be assigned to more than one picking

tation or more than one time period. There are two variants of a

plit order: 

split among stations: all order lines for a pick order are as-

signed in the same period but may be assigned to different

picking stations (see Example 1 in Section 1 ) 

split over timesteps: order lines for a pick order may be as-

signed in different time periods and to different picking sta-

tions (see an example in Appendix A ) 

Capacity of a picking station Commonly, the capacity of a pick-

ng station is defined as the number of orders that can be handled

t a time ( order capacity ). According to Wulfraat (2012) , the typi-

al station can support 6 to 12 orders to be picked at a time. The

ntroductory example of split orders shows that traditional order

apacity is incompatible with split orders, since simply counting

he number of assigned orders does not work anymore when only
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Fig. 3. Same example as in Fig. 2 (see Fig. 3 (a)), but the decision is made by the integrated POA and PPS (see Fig. 3 (b) and 3 (c)) (best viewed in color). 
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arts of an order are assigned to the station. Instead, we introduce

n this paper a new way to define the capacity of a picking station

limited by the number of items to be handled at a time – that

orks for both, whole orders and split orders. We call this type

f capacity item capacity . Another advantage of item capacity is a

airer distribution of workload among all stations, since the num-

er of assigning items equals the number of picks. Note that the

umber of items in each order differs and reflects the number of

icks. 

Capacity of a packing station Orders that are not split can be

acked directly by packers as soon as they arrive at the packing

tations. Split orders require storage space on shelves at packing

tations to wait until all parts of the order are picked. Once all

arts of a split order are picked, it can be packed and one space

n the shelf becomes free for the next split order. The capacity

f a packing station is therefore defined as the number of shelves

ultiplied by the number of boxes which can be stored on a shelf.

e set the total capacity of all packing stations to a parameter C ,

nd we assume it is large enough for all necessary split orders

n this paper. This assumption is supported by the calculation in

ppendix B . In our calculation, up to 78 split orders can be stored

n a shelf. And usually, in practice, there is more than one packing

tation. If more split orders are required, then additional shelves

an be installed at packing stations. However, the situation might

iffer from one company to another. Therefore, our model can be
asily extended to support a limited packing capacity, as shown in

ection 4.3 . 

Conveyor We assume that the conveyors between picking and

acking stations are long enough to temporarily store orders and

arts of them. The conveyors serve as a buffer to synchronize the

icking and packing stations. 

Consolidation time for split orders We consider the consolidation

ime as the additional time for the packer to pack the split orders.

ased on the packing process in Amazon (described at the end of

ection 2.1 , and the part of Fig. 4 on the right-hand side), shelves

re used in the packing station to temporarily store split orders.

ach time a part of a split order arrives, the packer puts this part

nto the corresponding box on the shelf. Once all items of the split

rder are in the box, the packer packs the box, and a space is open

or the next split order. This process is almost the same as the pro-

ess for a normal order, i.e. folding a new box, putting all items in

he box and packing it. The additional time for packers caused by

he split orders is the searching time for the correct split-order box

n the shelf, which we consider to be minimal since the position of

he box is stored on the computer. Therefore, we ignore this time

n our study. 

Maximal order size We assume that every order in the backlog

an fit into some picking station. That means the maximal item ca-

acity of the largest picking station is not smaller than the number

f items of the largest order. 
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1 21 2

orders

station 1

station 2

pod 1

pod 2

station 1

station 2

(a) Initial state

station 1

station 2

pod 1

pod 2

1

2

station 1

station 2

station 1

station 2pod 1

pod 2

1

2

station 1

station 2

(b) Without split orders: Þrst, pod 1 �
station 1 and pod 2 � station 2 (upper
part); then, pod 2 � station 1 and pod
1 � station 2 (lower part)

station 1

station 2

1/2

1/2

station 1

station 2

pod 1

pod 2

(c) With split orders: pod 1 � station
1 and pod 2 � station 2

Fig. 4. A solution for without and with split orders (best viewed in color). 
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Queue There is a queue at each station (for example, in Fig. 3 (b),

pod 1 and pod 3 are in the queue at station (1). The space in a

queue is limited. Each time a pod leaves the queue, one pod can

be added at the end of the queue. Pods leave a station once their

inventory cannot be used anymore to fulfill any further assigned

orders. If pod 1 leaves the queue, pod 3 moves forwards to the

picker. 

Period Once there is enough free item capacity at a station and

there are unfilled orders in the backlog, the time period is changed

from t to t + 1 for all t ≥ 1. The required amount of free item ca-

pacity is defined as the capacity that is needed to fit the smallest

available order. In t = 0 , no orders are assigned or picked at any
icking station. All pods are in the storage area, so there are no

ods waiting at picking stations. At t = 1 we start to assign orders

rom the backlog and pods to picking stations. Each time t changes,

he current situation in the warehouse (such as which pods are

urrently in storage or on their way to stations, free capacity at

tations, inventory of pods, decreasing order backlog) is updated

nd used to compute the next decisions. This way, we can handle

rrors or delays in the execution of previous decisions. The model

escribed in this section is solved in each period t using informa-

ion about the current state of the warehouse. 

Shared storage policy Items of the same SKU are randomly

pread over multiple pods. In Boysen et al. (2017) , where this pol-
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cy is called mixed-shelves storage , the authors showed that this

olicy is efficient. 

Pods selection Our model computes the smallest possible set of

ods to fulfill all assigned orders at each station in each period,

ithout considering the distance between the selected pods and

icking stations. 

Sequencing of pods During each period t we need to know the

equence of pods at each station. As our model only calculates the

ptimal sets of pods for each station, we use the following policy

o create a sequence of pods: Robots begin immediately to carry

ll assigned pods to the respective stations and the sequencing of

ods is decided by the order of their arrival at the station. This

nsures that station idle times are kept at a minimum. 

Without replenishment We assume that there is enough inven-

ory for all orders, so no replenishment is required. 

.2. Integrated model 

Firstly, we define the notation for the following model. 

Sets : 

P Set of pods 

S Set of currently available picking stations 

P s Set of pods P s ⊆ P that are currently at station s 

P SKU 
i 

Set of pods P SKU 
i 

⊆ P that include SKU i 

O Set of current orders in the backlog 

I o Set of SKUs I o ⊆ I that constitutes an order o ∈ O

Parameters : 

C s Current capacity of each picking station s ∈ S

Decision variables : 

x ps 

�
1 , pod p ∈ P is assigned to station s ∈ S 

0 , else 

y os 

�
1 , order o ∈ O is assigned to station s ∈ S 

0 , else 

y ios �
1 , SKU i ∈ I o of order o ∈ O is assigned to station s ∈ S 

0 , else 

u s Amount of unused capacity for a station s ∈ S

The integrated model is invoked in the simulation each time the

ime period t is changed. However, for simplicity the parameter t is

ot used in the model. Note that all sets, parameters and decision

ariables may change for each time period t . 

in 

� 

p∈P 

� 

s ∈S 

x ps + 

� 

s ∈S 

W u · u s (1) 

.t. y os = y ios , ∀ i ∈ I o , o ∈ O, s ∈ S (2) 

� 

s ∈S 

y os ≤ 1 , ∀ o ∈ O (3) 

� 

o∈O 

� 

i ∈I o 

y ios + u s = C s , ∀ s ∈ S (4) 

� 

p∈P SKU 
i 

x ps ≥ y ios , ∀ i ∈ I o , o ∈ O, s ∈ S (5) 

 ps = 1 , ∀ p ∈ P s , s ∈ S (6) 

 os ∈ { 0 , 1 } , ∀ o ∈ O, s ∈ S (7) 

 ios ∈ { 0 , 1 } , ∀ i ∈ I o , o ∈ O, s ∈ S (8) 

 ps ∈ { 0 , 1 } , ∀ p ∈ P, s ∈ S (9) 
t  
 s ∈ Z ≥ 0 , ∀ s ∈ S (10) 

In the integrated model given above, we aim at minimizing the

umber of pods used in each period, while keeping the unused

apacity of stations as low as possible. Constraint set (2) sets the

alue of y os to 1 for all assigned order/station tuples and ensures

hat, if an order is assigned to a station, all order lines in the order

re assigned to the same station as this order. And if an order is

ot assigned to any station, none of its order lines can be assigned

o a station. Constraint set (3) ensures that each order can be as-

igned to at most one station. Constraint set (4) ensures that the

umber of assigned items equals the amount of available capac-

ty minus the amount of unused capacity u s at each station s ∈ S .

ach u s increases the value of the cost function (assuming W u > 0).

onstraint set (5) ensures that for each order line of an order that

s assigned to a station, at least one pod p ∈ P i is assigned to the

ame station. Constraint set (6) ensures that pods that were as-

igned in previous periods and are currently on their way to a sta-

ion or in a station’s queue stay assigned to that station. Constraint

ets (7) –(9) ensure that the respective variables can only have bi-

ary values while (10) ensures that u s can only have non-negative

nteger values. 

roposition 1. The integrated model always has a feasible solution

hich we can find in polynomial time. 

roof. See Appendix C . �

roposition 2. The optimal solution of the integrated model is NP-

ard. 

roof. See Appendix C . �

.3. Split-among-stations model 

This model is an extension of the integrated model from the

revious section. Now we allow splitting the SKUs in an order be-

ween two or more stations. We need the following additional de-

ision variables. 

Additional decision variables : 

y o 

�
1 , order o ∈ O is assigned 

0 , else 

e o the number of additional assigned picking stations for an order o ∈ O

in 

� 

p∈P 

� 

s ∈S 

x ps + 

� 

s ∈S 

W u · u s (1) 

s.t. (4) − (10) 
y os ≥ y ios , ∀ i ∈ I o , o ∈ O, s ∈ S (2.1)
� 

s ∈S 

y os ≥ y o , ∀ o ∈ O (3.1) 

� 

s ∈S 

y ios = y o , ∀ i ∈ I o , o ∈ O (11) 

 o ≥ y os , ∀ o ∈ O, s ∈ S (12) 

� 

i ∈I o 

y ios ≥ y os , ∀ o ∈ O, s ∈ S (13) 

 o ∈ { 0 , 1 } , ∀ o ∈ O (14) 

The cost function (1) and constraints (4) –(10) are carried over

rom the previous model. Constraint set (2) is relaxed, so that the

rder lines for an order don’t have to be assigned to the same sta-

ion anymore (see constraint set (2.1)), but y os is still set to 1 for all
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Fig. 5. Overview of the simulation process (see Merschformann et al., 2018 ). 
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stations the order is assigned to. Constraint set (3) is also relaxed,

to allow for the assignment of an order to more than one station

(see constraint set (3.1)). Constraint set (11) now ensures that if

an order is active (at least one order line is assigned to a station),

all of its order lines have to be assigned to stations. Constraint set

(12) sets the value of y o to 1 for each order that is assigned to

at least to a station. Constraint set (13) ensures that an order can

only be assigned to a station if at least one order line of the order

is assigned to that station. Constraint set (14) ensures that y o is a

binary variable for each o ∈ O. 

Proposition 3. Every solution of the integrated model also solves the

split-among-stations model. There is always a feasible solution of the

split-among-stations model. The split-among-stations model always

provides a solution that is better than, or equally good as, the inte-

grated model. 

Proof. See Appendix C . �

Proposition 4. The optimal solution of the split-among-stations

model is NP-hard. 

Proof. See Remark 1 in Appendix C . �

3.4. Split-over-time model 

This model is an extension of the split-among-stations model

from the previous section. Here we also allow every order to be

split over different time periods. This means some SKUs for an or-

der may be assigned in one period while the others will stay in the

backlog to be assigned in later periods. We define one additional

binary variable. 

Additional decision variable : 

y b 
io 

�
1 , SKU i ∈ I o , o ∈ O is moved back to the backlog 

0 , else 

Min 

� 

p∈P 

� 

s ∈S 

x ps + 

� 

s ∈S 

W u · u s (1) 

s.t. (2 . 1) − (3 . 1) , (4) − (10) , (12) − (20) 
� 

s ∈S 

y ios + y b io = y o , ∀ i ∈ I o , o ∈ O (11.1) 

y b io ∈ { 0 , 1 } , ∀ i ∈ I o , o ∈ O (15)

All constraints from the previous model are carried over, ex-

cept for constraint set (11) . Constraint set (11.1) is relaxed to allow
ot assigning all order lines of an order at once (see constraint set

11.1)). The new constraint set (15) ensures that the value of y b 
io 

is

inary. 

roposition 5. Every solution of the split-among-stations model also

olves the split-over-time model. There is always a feasible solution of

he split-over-time model. The split-over-time model always provides

 solution that is better than, or equally good as, the split-among-

tations model. 

roof. See Appendix C . �

roposition 6. The optimal solution of the split-over-time model is

P-hard. 

roof. See Remark 1 in Appendix C . �

. Computational evaluation 

In this section, we describe the parameters and results of the

omputational evaluation. We first describe the open-source simu-

ation framework used for this paper in Section 4.1 . Next, we show

he results of the simulation in Section 4.2 . In Section 4.3 , we make

ome remarks regarding the assumptions that were made in our

omputational evaluation from a practical point of view. 

.1. Simulation framework 

In the following evaluation we use RAWSim-O from

erschformann et al. (2018) , an open-source, agent-based and

vent-driven simulation framework providing a detailed view

f an RMFS. The source code is available at www.rawsim-o.de .

ig. 5 shows an overview of the simulation process, which is

anaged by the core simulator instance. The tasks of the simulator

nclude: 

� updating agents , which can resemble real entities, such as

robots and stations 
� passing decisions to optimizers , which can either decide imme-

diately or buffer multiple requests and release the decision later
� exposing information to a visualizer , which allows optional vi-

sual feedback in 2D or 3D. 

The hierarchy of decision problems regarding the assignment

f replenishment orders, pick orders and pods to station is illus-

rated in Fig. 6 . We develop a new optimizer, called POA & PPS ,

o make integrated decisions for both POA and PPS. Furthermore,

http://www.rawsim-o.de
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Fig. 7. Probabilities of order lengths for | I| = 20 . 

Fig. 8. Probabilities of SKUs for | I| = 20 . 
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2  
e extend the new optimizer to support split orders. And we de-

ne new type of capacity for each station, called item capacity, in

AWSim-O. If a replenishment order needs to be assigned to a re-

lenishment station, the optimizers of ROA and RPS are responsi-

le for choosing a replenishment station and a pod. This results in

n insertion request, i.e. a request for a robot to bring the selected

od to the given workstation. If a picking order needs to be as-

igned to a picking station, the new optimizer POA & PPS submits

ll necessary information in the simulator to our model and con-

erts its solution into extraction requests in the simulator. Extrac-

ion requests contain both, the item that needs to be picked and

he pod that it should be picked from. The model is in this case ei-

her the integrated model in Section 3.2 , the split-among-stations

odel in Section 3.3 or the split-over-time model in Section 3.4 .

ur models were implemented in the python API of Gurobi Opti-

izer. Note that in Merschformann et al. (2018) , first the POA op-

imizer is called and the extraction requests are generated; after

hat, the PPS optimizer is called. In other words, pods are only as-

igned to stations after orders have already been assigned. More-

ver, in our new optimizer, extraction requests for an order can

e assigned to different stations to support split orders. We define

he item capacity as the sum of the extract requests at one station

or each (part of an) order that has at least one unfulfilled request

t that station. Furthermore, the system generates a store request

ach time a pod needs to be transported back from a station to a

torage location, and the PR optimizer decides on the storage loca-

ion for that pod. The TA optimizer assigns robots to these tasks.

ll tasks result in robot trips, which are planned by a PP optimizer.

The simulation framework conceptually consists of three differ-

nt inputs: 

� instance configuration: contains orders, initial inventory and

available SKUs (see Section 4.1.1 ) 
� layout configuration: determines the characteristics and dimen-

sions of the warehouse layout (see Section 4.1.2 ) 
� optimizer configuration: specifies the decision rules for all op-

erational problems in an RMFS (see Section 4.1.3 ). 

We describe these three inputs for our experiments in this pa-

er in the following sections. 

.1.1. Instance generation 

First, we describe how we generate SKUs and orders, and how

o fill the pods. The set of SKUs is generated as I = { i 1 , ..., i | I | }. For

ach order o 1 , ..., o | O | the number of different SKUs in it is deter-

ined by a truncated (1 to | I |) geometric distribution with p = 0 . 4
see Fig. 7 for | I| = 20 ). And the number of items for a SKU is set

o 1. It is typical in online retailing that most of the orders contain

ery few line items, such as in Bozer and Aldarondo (2018) and
nal, Zhang, and Das (2017) . The SKUs in the order are then cho-

en by sampling without replacement from I using the probabil-

ty mass function of a geometric distribution with p = 5 / | I| , to ac-

ount for the varying demand for different SKUs. Fig. 8 shows the

robabilities of SKUs for | I| = 20 . 

A shared storage strategy (as described in Bartholdi & Hackman,

017 ) is applied to fill the pods. To determine the initial inventory
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Fig. 9. Simulation layout. 

Table 5 

Instance parameters. 

Symbol Description Values 

| O | Number of orders 50, 150, 250 

| I | Number of SKUs 20, 100 

| P | Number of pods 50, 100 

� SKUs per pod 2, 3 

of the pods, lists of all SKUs in randomized order are concatenated 

until the combined list includes at least | P | · � elements. Then, for 

each pod p 1 , ..., p | P | , the inventory is determined by cutting off the 

first � items in the list. 

We generate instances with different parameters from Table 5 . 

By considering all possible combinations of the parameters, we 

generate 24 instances. We test all methods in this paper with the 

pregenerated instances to see the efficiency of the different algo- 

rithms. In a real RMFS, the orders would not be known at the 

start of the simulation but would instead be received during run- 

time. Our methods are also compatible with this type of order- 

generation (see Section 4.3 ). 

4.1.2. Layout 

The layout is identical for most of the test instances and is il- 

lustrated in Fig. 9 : 428 pods (blue squares), 504 storage locations 

in 2 × 4 blocks, 4 picking stations (red squares) and 8 robots (gray 

circles). The length of station queues is 12. As we are focusing on 

the decisions made in the order picking process, we disregard the 

replenishment process. When the number of pods is higher than 

the value of P , only | P | pods have an inventory and the empty 

pods are not taken into consideration. The capacity of picking sta- 

tions is similar to that used in Boysen et al. (2017) . Boysen et al. 

(2017) used an order capacity of 6 orders. Since we use item ca- 

pacity instead of order capacity, we multiply 6 by 2.5, the mean of 

the distribution used to determine the number of items per order 

(described in Section 4.1.1 ), which leads to an item capacity of 15. 

4.1.3. Decision rules 

Table 6 lists the decision rules for all operational problems in 

the evaluation. The definitions of these can be found in Table 2 . 

The POA and PPS decision rules selected for the sequential ap- 

proach are based on Merschformann et al. (2019) , since these com- 

Table 6 

Decision rules. 

Decision Problem Sequential Integrated (without/with split orders) 

POA Pod-Match Model 

PPS Demand Model 

ROA not relevant not relevant 

RPS not relevant not relevant 

PR Nearest Nearest 

PP WHCA ∗n WHCA ∗n 

binations achieved the best throughput. The rule Pod-Match for the 

POA problem selects the pick order from the backlog that best 

matches the pods already assigned to the station. Out of all pods 

that could fulfill at least part of an assigned order, the decision 

rule Demand for PPS chooses the pod whose inventory is in most 

demand when combining all unfulfilled orders. The ROA and RPS 

problems are concerned with the replenishment process and thus 

not relevant to our tests. The decision rule Nearest for PR assigns 

the closest parking space to each pod leaving a picking station. For 

the PP problem, non-volatile windowed hierarchical cooperative A 

∗

(called WHCA 

∗
n ) from Merschformann, Xie, and Erdmann (2017) is 

used. In this algorithm, A 

∗ is used to find the optimal path with- 

out considering collisions for each robot, while a space-time reser- 

vation table is used within a limited time window to avoid colli- 

sions between robots. Non-volatile means that the existing path 

and reservation are stored for each robot within a limited time 

window. The model used for POA and PPS to test our integrated 

approach is the integrated model described in Section 3 and both 

of its extensions for split orders. 

4.2. Simulation results 

Each combination of method and instance is simulated ten 

times to lessen the effect of randomness caused by other optimiz- 

ers and simulation components. Testing was done on 12 Intel Xeon 

X5650 Cores with 24 Gigabyte RAM. The following performance 

metrics are tested: 

� the number of pod-station visits per order 
� the distance driven by robots per order 
� pile-on: the number of picks per pod-station visit 
� throughput: picks per hour. 
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