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a b s t r a c t 

In robotic mobile fulfillment systems, human pickers don’t go to the inventory area to search for and 

pick the ordered items. Instead, robots carry shelves (called “pods”) containing ordered items from the 

inventory area to picking stations. At the picking stations, pickers put ordered items into totes; then these 

items are transported to the packing stations. This type of warehousing system relieves the human pick- 

ers and improves the picking process. In this paper, we concentrate on decisions about the assignment of 

pods to stations and orders to stations to fulfill picking for each incoming customer’s order. In previous 

research for an RMFS with multiple picking stations, these decisions are made sequentially with heuris- 

tics. Instead, we present a new MIP-model to integrate both decision problems. To improve the system 

performance even more, we extend our model by splitting orders. This means parts of an order are al- 

lowed to be picked at different stations. To the best of the authors’ knowledge, this is the first publication 

on split orders in an RMFS. And we prove the computational complexity of our models. We analyze differ- 

ent performance metrics, such as pile-on, pod-station visits, robot moving distance and throughput. We 

compare the results of our models in different instances with the sequential method in our open-source 

simulation framework RAWSim-O. The integration of the decisions brings better performances, and al- 

lowing split orders further improves the performances (for example: increasing throughput by 46%). In 

order to reduce the computational time for a real-world application, we have proposed a heuristic. 

© 2020 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The most important and time-consuming task in a warehouse 

is the collection of items from their storage locations to fufill cus- 

tomer orders. The process is called order picking , which may con- 

stitute about 50–65% of the operating costs. Therefore, the order 

picking is considered as the highest-priority area for productivity 

improvements (see De Koster, Le-Duc, & Roodbergen, 2007 ). Due 

to the increasingly fast-paced economy, it is becoming more and 

more important that the orders are processed in a short time win- 

dow. 

In a traditional manual order picking system (also called a 

picker-to-parts system ), the pickers spend 70% of their working time 

on the tasks of search and travel (see Tompkins, 2010 ; for an 

overview of manual order picking systems see De Koster et al., 

∗ Corresponding author. 

E-mail addresses: xie@leuphana.de (L. Xie), nils.thieme@stud.leuphana.de (N. 

Thieme), ruslan.krenzler@leuphana.de (R. Krenzler), hli@hanningzn.com (H. Li). 

2007 ). The unproductive searching and traveling times require the 

picker-to-parts system to have a large workforce, especially for 

companies which have millions of small items in large warehouses, 

such as e-commerce companies like Amazon or retailers like Zara 

and Walmart, which provide both brick-and-mortar and online 

shops. Dependent on the type of retailers, they are facing many 

diverse customer orders each day (both single-line and multi-line 

orders). Also, the workforce of such companies is under high pres- 

sure due to the long traveling time (see Wulfraat, 2012 ). Kiva Sys- 

tems LLC, now Amazon Robotics LLC, came up with a unique solu- 

tion to avoid the unproductive times of human pickers in picker-to- 

parts systems; therefore, this solution accelerates the order picking 

process (see Wurman, D’Andrea, & Mountz, 2008 ). In such system, 

robots are sent to carry storage units, so-called ”pods,” from the in- 

ventory area and bring them to human operators, who work only 

at picking stations. At the stations, the items are picked according 

to the customers’ orders. After picking, the robot transports the 

pod back to the storage area. There are also some other suppli- 

ers of such systems, such as Scallog, Swisslog (KUKA), GreyOrange 

and Hitachi (see Banker, 2016 ). All of these systems may differ 
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0377-2217/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

https://doi.org/10.1016/j.ejor.2020.05.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2020.05.032&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:xie@leuphana.de
mailto:nils.thieme@stud.leuphana.de
mailto:ruslan.krenzler@leuphana.de
mailto:hli@hanningzn.com
https://doi.org/10.1016/j.ejor.2020.05.032
http://creativecommons.org/licenses/by/4.0/


L. Xie, N. Thieme and R. Krenzler et al. / European Journal of Operational Research 288 (2021) 80–97 81 

Table 1 

Literatur overview in an RMFS. 

decision problems publications 

Strategic level : 

storage area dimensioning, Lamballais, Roy, and De Koster (2017) , 

workstation placement Lamballais, Roy, and De Koster (2019) 

Tactical level : 

number of robots Yuan, Dong, and Li (2016) , Yuan and Gong (2017) , 

Zou, Xu, De Koster et al. (2018) , Otten, Krenzler, Xie, Daduna, and Kruse (2019) 

Operational level : 

decisions for each incoming order about 

which robot carries Zhang, Yang, and Weng (2019) , Roy, Nigam, de Koster, Adan, and Resing (2019) 

which pod Boysen et al. (2017) 

along which path Cohen, Uras, and Koenig (2015) , Cohen, Wagner, Kumar, Choset, and Koenig (2017) , 

Merschformann et al. (2017) 

to which station 

decisions about where to 

put the used pod back to Merschformann (2017) , 

Weidinger, Boysen, and Briskorn (2018) , 

Krenzler, Xie, and Li (2018) 

decision rules Wurman et al. (2008) , 

Merschformann et al. (2019) 

simulation Merschformann et al. (2018) 

demonstration Xie et al. (2019) 

performance characteristics Hanson, Medbo, and Johansson (2018) 

technically in certain aspects, such as the lifting mechanism, but 

they share the same principle of the system (see the description 

of such system in Section 2 ). This system is called robotic mobile 

fulfillment system (RMFS). 

1.1. Research background 

In an RMFS environment, various optimization and allocation 

problems have to be solved in real time. An overview of an 

RMFS and other automated warehousing systems can be found in 

Azadeh, de Koster, and Roy (2017) and Boysen, de Koster, and Wei- 

dinger (2018) . Here we give you an short literature overview of 

RMFSs in Table 1 , which also includes new researches that are not 

listed in both overview papers. The classification of three levels of 

problems is based on Merschformann, Lamballais, de Koster, and 

Suhl (2019) . 

In this work, we concentrate on operational problems. As 

shown in Table 1 , there are usually the following decision prob- 

lems in the order picking process in an RMFS (described in 

Wurman et al., 2008 and Merschformann, Xie, & Li, 2018 ): Each 

time a new order arrives, we have to decide which robot carries 

which pod along which path to which station to fulfill picking. So 

the order is first assigned to a station ( pick order assignment , in 

short: POA), and then one or several pods are assigned to that sta- 

tion to fulfill that order ( pick pod selection , in short: PPS). Robots 

are assigned to deliver pods to that station ( robot task allocation ), 

while path planning plans the paths for the robots. After a pod is 

finished at a picking station, we have to decide where to put it 

back in the inventory area ( pod repositioning ). And there are two 

decisions for the replenishment process, namely replenishment or- 

der assignment and replenishment pod station. Table 2 describes 

the operational problems in an RMFS. 

1.2. Contributions and paper structure 

We concentrate in this paper on the picking process, especially 

POA and PPS. In the studies of the throughput performance of deci- 

sion rules for multiple online decision problems in Merschformann 

et al. (2019) , they concluded that POA should be paid more at- 

tention in the literature and practice, since it affects the through- 

put performance of RMFS the most. In Boysen et al. (2018) , they 

mentioned that the existing research into order picking is under 

Table 2 

The operational decision problems in an RMFS. 

Decision problem Description 

Order Assignment: 

Replenishment Order Assignment (ROA) assignment of replenishment 

orders to replenishment stations 

Pick Order Assignment (POA) assignment of pick orders to 

picking stations 

Task Creation: 

Replenishment Pod Selection (RPS) selection of pods that will 

move to a replenishment station 

to store replenishment items 

Pick Pod Selection (PPS) selection of pods to use for 

picking the pick orders assigned 

at a picking station 

Pod Repositioning (PR) assignment of an available 

storage location to a pod that 

is not in the inventory area 

Task Allocation (TA) assignment of generated tasks for 

robots in RPS, PPS, PR and 

additional tasks such as idling 

Path Planning (PP) planning of the paths for the 

robots to execute 

the assumption that orders have already been assigned to stations 

(in other words: without optimization of POA), such as in Boysen, 

Briskorn, and Emde (2017) . 

Due to the importance of POA, POA and PPS should be opti- 

mized together; however, the complexity is increased due to con- 

sidering all possible pods and multiple picking stations (see ex- 

amples in Section 2.2 ). Therefore, the authors in Wurman et al. 

(2008) and Merschformann et al. (2019) provided heuristics to 

solve POA and PPS sequentially, first POA and then PPS. We list 

here the contributions of our work: 

• We develop a new mathematical model to solve integrated POA 

and PPS for multiple stations. 
• We extend our integrated model to allow split orders, so not 

all parts of an order are picked at the same station. To the best 

of the authors’ knowledge, this is the first publication on split 

orders in an RMFS. The literature review of split orders can be 

found in Section 2.3 . 
• We develop a heuristic for our new models to solve a real- 

world instance. 
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Replenishment

Storage
Retrieval

Storage

Order picking

Order packing

Transport to packing 
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Fig. 1. The central process of an RMFS. 

Table 3 

Terms related to orders. 

Term Description 

SKU stock keeping unit 

order line one SKU with the ordered quantity 

item a physical unit of one SKU 

pick order a set of order lines from a customer’s order 

split order a pick order that is separated into several parts 

replenishment order a number of physical units of one SKU 

backlog all unfulfilled orders 

Table 4 

The central components of an RMFS. 

Component Description 

pods movable shelves, on which inventory is stored 

storage area the inventory area where the pods are stored 

workstations: 

picking stations where pickers pick the order items 

packing stations where packers pack the pick order items and 

the split orders are consolidated 

replenishment stations where replenishment items are stored to pods 

robots moving underneath pods and carrying them to 

workstations 

conveyors transporting the pick orders between picking and 

packing stations to finish packing 

• We extend our open-source simulation framework RAWSim-O 

to evaluate the decisions made based on our new models. 

This paper is organized as follows: In the next section, we de- 

scribe the RMFS and operational decision problems in detail. Af- 

ter that, we will describe our idea of integrated POA and PPS and 

split orders with examples. In Section 3 , a mathematical model of 

integrated POA and PPS and the extensions with split orders are 

described. We present simulation evaluations in Section 4.2 . Fi- 

nally, we draw conclusions and give pointers for further research 

in Section 5 . 

2. Problem description with examples 

In this section, we first describe the RMFS, and the decision 

problems in an RMFS. After that, we will describe our idea of inte- 

grated POA and PPS and split orders with examples. 

2.1. RMFS 

Firstly, we define some terms related to orders before explain- 

ing the processes in an RMFS in Table 3 . 

The central components of an RMFS are listed in Table 4 . 

The pods are transported by robots between the inventory area 

and workstations. Fig. 1 shows the central process in a simplified 

RMFS from replenishment to packing: 

• Retrieval process : After the arrival of a replenishment order, 

robots carry selected pods to a replenishment station to store 

units in pods. Similarly, after receiving a pick order, robots carry 

selected pods to a picking station, where the items for the order 

lines are picked. Note that in order to fulfill pick orders, several 

pods may be needed, since orders may have multiple lines. The 

items in (parts of) an order are picked into a tote. 
• Storage process : After a pod has been processed at one or more 

stations, it is brought back to a storage location in the storage 

area. The retrieval and storage processes are based on Hoffman 

et al. (2013) . 
• Transport to packing stations : Once a tote is filled, it is trans- 

ported by a conveyor to packing stations for packing. 
• Packing process : If all items in an order are contained in a tote, 

packers are prompted by computer to select the correct-sized 

box and pack the items. A split order has items delivered via 

multiple totes, since the items are picked by different pickers 

(picking stations). In this case, packers first sort items from a 

tote to a correct-sized box on the shelf so that the items from 

that order are grouped together. Packers are prompted by com- 

puter to put the box for the split order on one given position 

on the shelf, and later to find the box in the shelf to put the 

rest of that order into the box. We use the term shelf to clar- 

ify that they might be different to the pods, since they do not 

need to be moved. Once all the items of a split order are in 

a box, the packer packs the box, and a space is open for the 

next split order. This packing process is based on the packing 

process in Amazon (see Toister, 2017 ). 

2.2. POA and PPS 

We concentrate in this paper on the online decisions for POA 

and PPS for multiple stations. For better clarification, online in our 

case does not mean that we consider orders that have arrived over 

a number of time periods. In order to have enough optimization 

potential, we assume that we know all orders in advance (for ex- 

ample, we gather all orders that have come in the last hour in the 

backlog). But our methods can support the decisions for the new 

incoming orders in each period (see Section 4.3 ). Instead, online 

decisions in our case means that we have to make decisions for 

both problems for each new period t . Period t − 1 is changed to 

t if some jobs are finished at the stations while there are unful- 

filled orders in the backlog. Also, situations such as the inventory 

of pods and the positions of pods in the queues at stations can and 

will change from t − 1 to t . They are important for the POA and PPS 
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decisions and are hard to calculate exactly in advance, since errors 

and delays in previous time periods can affect them. For these rea- 

sons, we make the decisions for the integrated POA and PPS just 

before the respective time period starts. This allows us to react to 

the current situation and take errors or delays from previous pe- 

riods into account. Furthermore, we test our results in a simula- 

tion framework, which provides us with the actual information for 

each time period. In the literature, the online decisions for POA and 

PPS are usually solved sequentially for multiple stations (first POA, 

then PPS; see Wurman et al., 2008, Merschformann et al., 2019 ). 

The sequential approach limits the information for both decisions. 

Therefore, the decisions for POA and PPS should be made simulta- 

neously to achieve optimum performance, so we can use informa- 

tions about all pods and orders, including those that are assigned 

to stations and are unassigned. However, the complexity of solving 

integrated POA and PPS is increased, and the integrated problem is 

NP-hard (see the proof in Section 3 ). We will describe the differ- 

ence between sequential and integrated problems with Example 1 . 

To the best of the authors’ knowledge, this is the first publication 

about the integrated POA and PPS for multiple stations. 

Objective Before we explain POA and PPS with examples, we 

want to firstly explain our objective of POA and PPS. An RMFS 

with higher throughput is better. Based on the performance anal- 

ysis of decision rules for multiple online decision problems in 

Merschformann et al. (2019) , they found that a high pile-on (the 

number of picks per handled pod) and a short distance traveled by 

robots together is a indicator for the success of a decision rule ap- 

plied in an RMFS (to achieve high throughput). In order to achieve 

that, we aim at minimizing the number of visits by pods to sta- 

tions (in short: pod-station visits ) for each decision of the POA and 

PPS problems. If fewer pod-station visits are needed for the given 

orders, a shorter distance traveled by the robots can be achieved, 

and higher pile-on can be expected to finish the given orders. Fur- 

thermore, a smaller number of pod-station visits also causes fewer 

changes of pods, and the waiting time of human pickers between 

changes of pods is reduced (see Boysen et al., 2017 ; they also min- 

imize pod-station visits for the assignment of pods to orders). An- 

other time component of human pickers is retrieving the items 

from their shelves, which is considered to be fixed. Due to the re- 

duced waiting time, more orders can be handled within a mini- 

mal time. So, this matches the suggestion in Van Gils, Ramaekers, 

Caris, and de Koster (2018) for an efficient order picking in picker- 

to-parts systems. 

Example 1. Fig. 2 (a) illustrates a small problem to fulfill four or- 

ders 1, 2, 3 and 4. The different colors represent different SKUs 

(stock keeping units). For simplicity, the quantity of each SKU in 

the orders is one. We have in total two picking stations. There is 

two empty totes at each station. In this example we assume that 

each tote can hold three items. Pod 1 is currently at station 1 and 

pod 2 at station 2, while pods 3 and 4 are in the storage area. 

Sequential POA and PPS In the sequential POA and PPS, we use 

the same decision rule, Pod-Match , as in Merschformann et al. 

(2019) , which assigns the orders from the backlog to a station so 

that the items for the orders best match the pods that are already 

assigned to that station. Note that there is another more common 

decision rule in Merschformann et al. (2019) (called Common-Lines ) 

and Wurman et al. (2008) , grouping similar orders at picking sta- 

tions in POA. However, the decision rule Pod-Match for POA is 

shown to perform better in Merschformann et al. (2019) , since this 

rule uses information about assigned pods at stations in addition 

to information about orders in the backlog. 

In Example 1 , in the POA problem we assign orders 2 and 3 to 

station 1 ( Fig. 2 (b)), since two of their items can be picked from 

pod 1 – the pod that is already at station 1. For the same reason, 

we assign orders 1 and 4 to station 2. To fulfill the assigned or- 

ders, both pods from the storage area, pods 3 and 4, are needed 

at each station. After items from pods 1 and 2 are picked, they 

are returned to the storage area. In the PPS, pod 3 visits station 1, 

while pod 4 visits station 2 ( Fig. 2 (c)). After picking in both sta- 

tions, pods 3 and 4 switch stations so that the last item of each 

order can be picked ( Fig. 2 (d)). In total, 6 pod-station visits were 

necessary to fulfill both orders in this example, therefore the pile- 

on can be calculated as 12 picks/6 pods = 2 picks/pod. 

Integrated PPS and POA In the integrated PPS and POA approach, 

we have more information while assigning orders to stations, since 

pods and orders are assigned to stations at the same time. This 

allows us to find optimal solutions that might not be intuitive at 

first glance and would not be found by the sequential POA and PPS. 

Note that we use information about all pods, including assigned 

ones at stations and unassigned ones in the storage area, but this 

way increases the complexity to solve both problems. 

Using the same initial state as in the previous explanation of 

the sequential POA and PPS in Example 1 (see Fig. 3 (a)), we in- 

tegrate these two decisions and assign orders and pods such that 

the number of pod-station visits is minimized. This leads to the 

assignment of orders 1 and 2 and pod 3 to station 1, and orders 3 

and 4 and pod 4 to station 2 (see Fig. 3 (b) and 3 (c)). This results 

in a pile-on of 3 (12 picks/4 pods) compared to 2 (12 picks/6 pods) 

in the sequential example and only requires 4 pod-station visits to 

fulfill all orders instead of 6. 

Based on this example, we can see the benefit of integrating 

POA and PPS by using information about the inventory of all pods 

in these decisions. Therefore, we present a mathematical model in 

this paper that integrates POA and PPS for multiple stations and 

takes information about the inventory of all pods into account. 

2.3. Allowing split orders in our integrated approach 

In our integrated approach mentioned above, an order is only 

allowed to be assigned to a single station. The second contribution 

of this paper is to allow split orders in our integrated approach. 

And we also prove that the models to allow split orders are NP- 

hard (see Section 3 ). A split order means that we divide an order 

into two or more parts for picking (perhaps at different stations). A 

similar term, “splitting orders,” can be traced back to 1979, when 

it was used by Armstrong, Cook, and Saipe (1979) . They used split 

orders to keep batch sizes constant in batch picking. In Il-Choe and 

Sharp (1991) and De Koster, Le-Duc, and Zaerpour (2012) split or- 

ders are used as part of the zoning in traditional picker-to-parts 

warehouses, in which a storage area is split into multiple parts 

(called zones), each with a different order picker. When an order 

contains several SKUs that are stored in different zones, the SKUs 

for the order are picked separately in each zone and merged later 

for shipping. To the best of the authors’ knowledge, this is the first 

publication on split orders in an RMFS. 

According to the following example, we expect allowing split 

orders in an RMFS provide a better solution. 

Example 2. Fig. 4 illustrates the decision problem when assign- 

ing orders and pods to two picking stations. We have one empty 

tote at each station, while we have two identical orders 1 and 2 in 

the backlog (in Fig. 4 (a)). We assume that each tote can hold two 

items. These two orders contain SKUs shown in blue and orange. 

These two SKUs are located in two different pods, namely pod 1 

with the orange SKU and pod 2 with the blue SKU. Fig. 4 (b) shows 

the optimal solution to the problem without split orders. We need 

pod 1 to visit station 1 and pod 2 to visit station 2; after that, pod 

2 visits station 1 and pod 1 visits station 2. In total, we need four 

visits by pods to the stations to fulfill both orders. Instead, if we 

split orders 1 and 2 into blue and orange parts (see Fig. 4 (c)), the 

blue ones can be picked from pod 2 at station 2, while the orange 
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1 2 3

orders

41 2 3 4

station 1

station 2

pod 1

pod 2

pod 3

pod 4

(a) Initial state

station 1

station 2

1 4

2 3

pod 1

pod 2

pod 3

pod 4

(b) POA: orders 2 and 3 → station 1,
orders 1 and 4 → station 2

station 1

station 2

1 4

2 3

pod 1

pod 2

pod 3

pod 4

(c) PPS I: pod 3 → station 1, pod 4 →
station 2

station 1

station 2

1

3

pod 1

pod 2 pod 3

pod 4

(d) PPS II: pod 4 → station 1, pod 3 →
station 2

Fig. 2. An example for the sequential POA and PPS (best viewed in color). 

ones can be picked from pod 1 at station 1. This allows both orders 

to be fulfilled with only two visits by pods to the stations instead 

of four. Note that in this paper we don’t use one empty tote for 

exactly one order, but for several items, to enable comparison be- 

tween the solutions with and without split orders. We will explain 

more about this in Section 3.1 in the paragraph Capacity of a pick- 

ing station . 

However, the split orders might need additional consolidation 

time in packing stations, where customers’ orders are packed and 

ready for shipping. We ignore this time in our study, we will de- 

scribe that in Section 3.1 . 

3. Mathematical model 

In this section, we describe the assumptions in Section 3.1 be- 

fore we present our mathematical model of integrated POA and 

PPS (we call it the integrated model ), and extend it with two vari- 

ants of allowing split orders. 

3.1. Assumption 

SKUs All different SKUs in orders are available in pods. We as- 

sume that the quantity of the order line for each SKU is one. This 

assumption is consistent with common practice, since the number 

of items per order line is low. If a pod contains a SKU, then we 

assume that there are enough items in that pod to fulfill all orders 

for that SKU. 

Pregenerated orders We store pregenerated orders in the back- 

log before the beginning of optimization, so we get the same or- 

ders for testing different approaches. From time to time, no new 

incoming orders are stored to the backlog for the optimization. Our 

approaches terminate if the backlog is empty. 

Split order Splitting an order means separating the original or- 

der into two or more parts (up to the number of SKUs in the or- 

der). If an order is not split, we ensure that all order lines in that 

order are assigned for picking at the same station (within a time 

period). If an order is split, this constraint is relaxed by allowing 

order lines for that order to be assigned to more than one picking 

station or more than one time period. There are two variants of a 

split order: 

split among stations: all order lines for a pick order are as- 

signed in the same period but may be assigned to different 

picking stations (see Example 1 in Section 1 ) 

split over timesteps: order lines for a pick order may be as- 

signed in different time periods and to different picking sta- 

tions (see an example in Appendix A ) 

Capacity of a picking station Commonly, the capacity of a pick- 

ing station is defined as the number of orders that can be handled 

at a time ( order capacity ). According to Wulfraat (2012) , the typi- 

cal station can support 6 to 12 orders to be picked at a time. The 

introductory example of split orders shows that traditional order 

capacity is incompatible with split orders, since simply counting 

the number of assigned orders does not work anymore when only 
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Fig. 3. Same example as in Fig. 2 (see Fig. 3 (a)), but the decision is made by the integrated POA and PPS (see Fig. 3 (b) and 3 (c)) (best viewed in color). 

parts of an order are assigned to the station. Instead, we introduce 

in this paper a new way to define the capacity of a picking station 

– limited by the number of items to be handled at a time – that 

works for both, whole orders and split orders. We call this type 

of capacity item capacity . Another advantage of item capacity is a 

fairer distribution of workload among all stations, since the num- 

ber of assigning items equals the number of picks. Note that the 

number of items in each order differs and reflects the number of 

picks. 

Capacity of a packing station Orders that are not split can be 

packed directly by packers as soon as they arrive at the packing 

stations. Split orders require storage space on shelves at packing 

stations to wait until all parts of the order are picked. Once all 

parts of a split order are picked, it can be packed and one space 

on the shelf becomes free for the next split order. The capacity 

of a packing station is therefore defined as the number of shelves 

multiplied by the number of boxes which can be stored on a shelf. 

We set the total capacity of all packing stations to a parameter C , 

and we assume it is large enough for all necessary split orders 

in this paper. This assumption is supported by the calculation in 

Appendix B . In our calculation, up to 78 split orders can be stored 

on a shelf. And usually, in practice, there is more than one packing 

station. If more split orders are required, then additional shelves 

can be installed at packing stations. However, the situation might 

differ from one company to another. Therefore, our model can be 

easily extended to support a limited packing capacity, as shown in 

Section 4.3 . 

Conveyor We assume that the conveyors between picking and 

packing stations are long enough to temporarily store orders and 

parts of them. The conveyors serve as a buffer to synchronize the 

picking and packing stations. 

Consolidation time for split orders We consider the consolidation 

time as the additional time for the packer to pack the split orders. 

Based on the packing process in Amazon (described at the end of 

Section 2.1 , and the part of Fig. 4 on the right-hand side), shelves 

are used in the packing station to temporarily store split orders. 

Each time a part of a split order arrives, the packer puts this part 

into the corresponding box on the shelf. Once all items of the split 

order are in the box, the packer packs the box, and a space is open 

for the next split order. This process is almost the same as the pro- 

cess for a normal order, i.e. folding a new box, putting all items in 

the box and packing it. The additional time for packers caused by 

the split orders is the searching time for the correct split-order box 

on the shelf, which we consider to be minimal since the position of 

the box is stored on the computer. Therefore, we ignore this time 

in our study. 

Maximal order size We assume that every order in the backlog 

can fit into some picking station. That means the maximal item ca- 

pacity of the largest picking station is not smaller than the number 

of items of the largest order. 
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Fig. 4. A solution for without and with split orders (best viewed in color). 

Queue There is a queue at each station (for example, in Fig. 3 (b), 

pod 1 and pod 3 are in the queue at station (1). The space in a 

queue is limited. Each time a pod leaves the queue, one pod can 

be added at the end of the queue. Pods leave a station once their 

inventory cannot be used anymore to fulfill any further assigned 

orders. If pod 1 leaves the queue, pod 3 moves forwards to the 

picker. 

Period Once there is enough free item capacity at a station and 

there are unfilled orders in the backlog, the time period is changed 

from t to t + 1 for all t ≥ 1. The required amount of free item ca- 

pacity is defined as the capacity that is needed to fit the smallest 

available order. In t = 0 , no orders are assigned or picked at any 

picking station. All pods are in the storage area, so there are no 

pods waiting at picking stations. At t = 1 we start to assign orders 

from the backlog and pods to picking stations. Each time t changes, 

the current situation in the warehouse (such as which pods are 

currently in storage or on their way to stations, free capacity at 

stations, inventory of pods, decreasing order backlog) is updated 

and used to compute the next decisions. This way, we can handle 

errors or delays in the execution of previous decisions. The model 

described in this section is solved in each period t using informa- 

tion about the current state of the warehouse. 

Shared storage policy Items of the same SKU are randomly 

spread over multiple pods. In Boysen et al. (2017) , where this pol- 
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icy is called mixed-shelves storage , the authors showed that this 

policy is efficient. 

Pods selection Our model computes the smallest possible set of 

pods to fulfill all assigned orders at each station in each period, 

without considering the distance between the selected pods and 

picking stations. 

Sequencing of pods During each period t we need to know the 

sequence of pods at each station. As our model only calculates the 

optimal sets of pods for each station, we use the following policy 

to create a sequence of pods: Robots begin immediately to carry 

all assigned pods to the respective stations and the sequencing of 

pods is decided by the order of their arrival at the station. This 

ensures that station idle times are kept at a minimum. 

Without replenishment We assume that there is enough inven- 

tory for all orders, so no replenishment is required. 

3.2. Integrated model 

Firstly, we define the notation for the following model. 

Sets : 

P Set of pods 

S Set of currently available picking stations 

P s Set of pods P s ⊆ P that are currently at station s 

P SKU 
i 

Set of pods P SKU 
i 

⊆ P that include SKU i 

O Set of current orders in the backlog 

I o Set of SKUs I o ⊆ I that constitutes an order o ∈ O

Parameters : 

C s Current capacity of each picking station s ∈ S

Decision variables : 

x ps 

{
1 , pod p ∈ P is assigned to station s ∈ S 

0 , else 

y os 

{
1 , order o ∈ O is assigned to station s ∈ S 

0 , else 

y ios {
1 , SKU i ∈ I o of order o ∈ O is assigned to station s ∈ S 

0 , else 

u s Amount of unused capacity for a station s ∈ S

The integrated model is invoked in the simulation each time the 

time period t is changed. However, for simplicity the parameter t is 

not used in the model. Note that all sets, parameters and decision 

variables may change for each time period t . 

Min 

∑ 

p∈P 

∑ 

s ∈S 
x ps + 

∑ 

s ∈S 
W u · u s (1) 

s.t. y os = y ios , ∀ i ∈ I o , o ∈ O, s ∈ S (2) 

∑ 

s ∈S 
y os ≤ 1 , ∀ o ∈ O (3) 

∑ 

o∈O 

∑ 

i ∈I o 
y ios + u s = C s , ∀ s ∈ S (4) 

∑ 

p∈P SKU 
i 

x ps ≥ y ios , ∀ i ∈ I o , o ∈ O, s ∈ S (5) 

x ps = 1 , ∀ p ∈ P s , s ∈ S (6) 

y os ∈ { 0 , 1 } , ∀ o ∈ O, s ∈ S (7) 

y ios ∈ { 0 , 1 } , ∀ i ∈ I o , o ∈ O, s ∈ S (8) 

x ps ∈ { 0 , 1 } , ∀ p ∈ P, s ∈ S (9) 

u s ∈ Z ≥ 0 , ∀ s ∈ S (10) 

In the integrated model given above, we aim at minimizing the 

number of pods used in each period, while keeping the unused 

capacity of stations as low as possible. Constraint set (2) sets the 

value of y os to 1 for all assigned order/station tuples and ensures 

that, if an order is assigned to a station, all order lines in the order 

are assigned to the same station as this order. And if an order is 

not assigned to any station, none of its order lines can be assigned 

to a station. Constraint set (3) ensures that each order can be as- 

signed to at most one station. Constraint set (4) ensures that the 

number of assigned items equals the amount of available capac- 

ity minus the amount of unused capacity u s at each station s ∈ S . 

Each u s increases the value of the cost function (assuming W u > 0). 

Constraint set (5) ensures that for each order line of an order that 

is assigned to a station, at least one pod p ∈ P i is assigned to the 

same station. Constraint set (6) ensures that pods that were as- 

signed in previous periods and are currently on their way to a sta- 

tion or in a station’s queue stay assigned to that station. Constraint 

sets (7) –(9) ensure that the respective variables can only have bi- 

nary values while (10) ensures that u s can only have non-negative 

integer values. 

Proposition 1. The integrated model always has a feasible solution 

which we can find in polynomial time. 

Proof. See Appendix C . �

Proposition 2. The optimal solution of the integrated model is NP- 

hard. 

Proof. See Appendix C . �

3.3. Split-among-stations model 

This model is an extension of the integrated model from the 

previous section. Now we allow splitting the SKUs in an order be- 

tween two or more stations. We need the following additional de- 

cision variables. 

Additional decision variables : 

y o 

{
1 , order o ∈ O is assigned 

0 , else 

e o the number of additional assigned picking stations for an order o ∈ O

Min 

∑ 

p∈P 

∑ 

s ∈S 
x ps + 

∑ 

s ∈S 
W u · u s (1) 

s.t. (4) − (10) 

y os ≥ y ios , ∀ i ∈ I o , o ∈ O, s ∈ S (2.1) ∑ 

s ∈S 
y os ≥ y o , ∀ o ∈ O (3.1) 

∑ 

s ∈S 
y ios = y o , ∀ i ∈ I o , o ∈ O (11) 

y o ≥ y os , ∀ o ∈ O, s ∈ S (12) 

∑ 

i ∈I o 
y ios ≥ y os , ∀ o ∈ O, s ∈ S (13) 

y o ∈ { 0 , 1 } , ∀ o ∈ O (14) 

The cost function (1) and constraints (4) –(10) are carried over 

from the previous model. Constraint set (2) is relaxed, so that the 

order lines for an order don’t have to be assigned to the same sta- 

tion anymore (see constraint set (2.1)), but y os is still set to 1 for all 
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Fig. 5. Overview of the simulation process (see Merschformann et al., 2018 ). 

stations the order is assigned to. Constraint set (3) is also relaxed, 

to allow for the assignment of an order to more than one station 

(see constraint set (3.1)). Constraint set (11) now ensures that if 

an order is active (at least one order line is assigned to a station), 

all of its order lines have to be assigned to stations. Constraint set 

(12) sets the value of y o to 1 for each order that is assigned to 

at least to a station. Constraint set (13) ensures that an order can 

only be assigned to a station if at least one order line of the order 

is assigned to that station. Constraint set (14) ensures that y o is a 

binary variable for each o ∈ O. 

Proposition 3. Every solution of the integrated model also solves the 

split-among-stations model. There is always a feasible solution of the 

split-among-stations model. The split-among-stations model always 

provides a solution that is better than, or equally good as, the inte- 

grated model. 

Proof. See Appendix C . �

Proposition 4. The optimal solution of the split-among-stations 

model is NP-hard. 

Proof. See Remark 1 in Appendix C . �

3.4. Split-over-time model 

This model is an extension of the split-among-stations model 

from the previous section. Here we also allow every order to be 

split over different time periods. This means some SKUs for an or- 

der may be assigned in one period while the others will stay in the 

backlog to be assigned in later periods. We define one additional 

binary variable. 

Additional decision variable : 

y b 
io 

{
1 , SKU i ∈ I o , o ∈ O is moved back to the backlog 

0 , else 

Min 

∑ 

p∈P 

∑ 

s ∈S 
x ps + 

∑ 

s ∈S 
W u · u s (1) 

s.t. (2 . 1) − (3 . 1) , (4) − (10) , (12) − (20) ∑ 

s ∈S 
y ios + y b io = y o , ∀ i ∈ I o , o ∈ O (11.1) 

y b io ∈ { 0 , 1 } , ∀ i ∈ I o , o ∈ O (15) 

All constraints from the previous model are carried over, ex- 

cept for constraint set (11) . Constraint set (11.1) is relaxed to allow 

not assigning all order lines of an order at once (see constraint set 

(11.1)). The new constraint set (15) ensures that the value of y b 
io 

is 

binary. 

Proposition 5. Every solution of the split-among-stations model also 

solves the split-over-time model. There is always a feasible solution of 

the split-over-time model. The split-over-time model always provides 

a solution that is better than, or equally good as, the split-among- 

stations model. 

Proof. See Appendix C . �

Proposition 6. The optimal solution of the split-over-time model is 

NP-hard. 

Proof. See Remark 1 in Appendix C . �

4. Computational evaluation 

In this section, we describe the parameters and results of the 

computational evaluation. We first describe the open-source simu- 

lation framework used for this paper in Section 4.1 . Next, we show 

the results of the simulation in Section 4.2 . In Section 4.3 , we make 

some remarks regarding the assumptions that were made in our 

computational evaluation from a practical point of view. 

4.1. Simulation framework 

In the following evaluation we use RAWSim-O from 

Merschformann et al. (2018) , an open-source, agent-based and 

event-driven simulation framework providing a detailed view 

of an RMFS. The source code is available at www.rawsim-o.de . 

Fig. 5 shows an overview of the simulation process, which is 

managed by the core simulator instance. The tasks of the simulator 

include: 

• updating agents , which can resemble real entities, such as 

robots and stations 
• passing decisions to optimizers , which can either decide imme- 

diately or buffer multiple requests and release the decision later 
• exposing information to a visualizer , which allows optional vi- 

sual feedback in 2D or 3D. 

The hierarchy of decision problems regarding the assignment 

of replenishment orders, pick orders and pods to station is illus- 

trated in Fig. 6 . We develop a new optimizer, called POA & PPS , 

to make integrated decisions for both POA and PPS. Furthermore, 

http://www.rawsim-o.de
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we extend the new optimizer to support split orders. And we de- 

fine new type of capacity for each station, called item capacity, in 

RAWSim-O. If a replenishment order needs to be assigned to a re- 

plenishment station, the optimizers of ROA and RPS are responsi- 

ble for choosing a replenishment station and a pod. This results in 

an insertion request, i.e. a request for a robot to bring the selected 

pod to the given workstation. If a picking order needs to be as- 

signed to a picking station, the new optimizer POA & PPS submits 

all necessary information in the simulator to our model and con- 

verts its solution into extraction requests in the simulator. Extrac- 

tion requests contain both, the item that needs to be picked and 

the pod that it should be picked from. The model is in this case ei- 

ther the integrated model in Section 3.2 , the split-among-stations 

model in Section 3.3 or the split-over-time model in Section 3.4 . 

Our models were implemented in the python API of Gurobi Opti- 

mizer. Note that in Merschformann et al. (2018) , first the POA op- 

timizer is called and the extraction requests are generated; after 

that, the PPS optimizer is called. In other words, pods are only as- 

signed to stations after orders have already been assigned. More- 

over, in our new optimizer, extraction requests for an order can 

be assigned to different stations to support split orders. We define 

the item capacity as the sum of the extract requests at one station 

for each (part of an) order that has at least one unfulfilled request 

at that station. Furthermore, the system generates a store request 

each time a pod needs to be transported back from a station to a 

storage location, and the PR optimizer decides on the storage loca- 

tion for that pod. The TA optimizer assigns robots to these tasks. 

All tasks result in robot trips, which are planned by a PP optimizer. 

The simulation framework conceptually consists of three differ- 

ent inputs: 

• instance configuration: contains orders, initial inventory and 

available SKUs (see Section 4.1.1 ) 
• layout configuration: determines the characteristics and dimen- 

sions of the warehouse layout (see Section 4.1.2 ) 
• optimizer configuration: specifies the decision rules for all op- 

erational problems in an RMFS (see Section 4.1.3 ). 

We describe these three inputs for our experiments in this pa- 

per in the following sections. 

4.1.1. Instance generation 

First, we describe how we generate SKUs and orders, and how 

to fill the pods. The set of SKUs is generated as I = { i 1 , ..., i | I | }. For 

each order o 1 , ..., o | O | the number of different SKUs in it is deter- 

mined by a truncated (1 to | I |) geometric distribution with p = 0 . 4 

(see Fig. 7 for | I| = 20 ). And the number of items for a SKU is set 

to 1. It is typical in online retailing that most of the orders contain 

very few line items, such as in Bozer and Aldarondo (2018) and 

Fig. 7. Probabilities of order lengths for | I| = 20 . 

Fig. 8. Probabilities of SKUs for | I| = 20 . 

Onal, Zhang, and Das (2017) . The SKUs in the order are then cho- 

sen by sampling without replacement from I using the probabil- 

ity mass function of a geometric distribution with p = 5 / | I| , to ac- 

count for the varying demand for different SKUs. Fig. 8 shows the 

probabilities of SKUs for | I| = 20 . 

A shared storage strategy (as described in Bartholdi & Hackman, 

2017 ) is applied to fill the pods. To determine the initial inventory 



90 L. Xie, N. Thieme and R. Krenzler et al. / European Journal of Operational Research 288 (2021) 80–97 

Fig. 9. Simulation layout. 

Table 5 

Instance parameters. 

Symbol Description Values 

| O | Number of orders 50, 150, 250 

| I | Number of SKUs 20, 100 

| P | Number of pods 50, 100 

α SKUs per pod 2, 3 

of the pods, lists of all SKUs in randomized order are concatenated 

until the combined list includes at least | P | · α elements. Then, for 

each pod p 1 , ..., p | P | , the inventory is determined by cutting off the 

first α items in the list. 

We generate instances with different parameters from Table 5 . 

By considering all possible combinations of the parameters, we 

generate 24 instances. We test all methods in this paper with the 

pregenerated instances to see the efficiency of the different algo- 

rithms. In a real RMFS, the orders would not be known at the 

start of the simulation but would instead be received during run- 

time. Our methods are also compatible with this type of order- 

generation (see Section 4.3 ). 

4.1.2. Layout 

The layout is identical for most of the test instances and is il- 

lustrated in Fig. 9 : 428 pods (blue squares), 504 storage locations 

in 2 × 4 blocks, 4 picking stations (red squares) and 8 robots (gray 

circles). The length of station queues is 12. As we are focusing on 

the decisions made in the order picking process, we disregard the 

replenishment process. When the number of pods is higher than 

the value of P , only | P | pods have an inventory and the empty 

pods are not taken into consideration. The capacity of picking sta- 

tions is similar to that used in Boysen et al. (2017) . Boysen et al. 

(2017) used an order capacity of 6 orders. Since we use item ca- 

pacity instead of order capacity, we multiply 6 by 2.5, the mean of 

the distribution used to determine the number of items per order 

(described in Section 4.1.1 ), which leads to an item capacity of 15. 

4.1.3. Decision rules 

Table 6 lists the decision rules for all operational problems in 

the evaluation. The definitions of these can be found in Table 2 . 

The POA and PPS decision rules selected for the sequential ap- 

proach are based on Merschformann et al. (2019) , since these com- 

Table 6 

Decision rules. 

Decision Problem Sequential Integrated (without/with split orders) 

POA Pod-Match Model 

PPS Demand Model 

ROA not relevant not relevant 

RPS not relevant not relevant 

PR Nearest Nearest 

PP WHCA ∗n WHCA ∗n 

binations achieved the best throughput. The rule Pod-Match for the 

POA problem selects the pick order from the backlog that best 

matches the pods already assigned to the station. Out of all pods 

that could fulfill at least part of an assigned order, the decision 

rule Demand for PPS chooses the pod whose inventory is in most 

demand when combining all unfulfilled orders. The ROA and RPS 

problems are concerned with the replenishment process and thus 

not relevant to our tests. The decision rule Nearest for PR assigns 

the closest parking space to each pod leaving a picking station. For 

the PP problem, non-volatile windowed hierarchical cooperative A 

∗

(called WHCA 

∗
n ) from Merschformann, Xie, and Erdmann (2017) is 

used. In this algorithm, A 

∗ is used to find the optimal path with- 

out considering collisions for each robot, while a space-time reser- 

vation table is used within a limited time window to avoid colli- 

sions between robots. Non-volatile means that the existing path 

and reservation are stored for each robot within a limited time 

window. The model used for POA and PPS to test our integrated 

approach is the integrated model described in Section 3 and both 

of its extensions for split orders. 

4.2. Simulation results 

Each combination of method and instance is simulated ten 

times to lessen the effect of randomness caused by other optimiz- 

ers and simulation components. Testing was done on 12 Intel Xeon 

X5650 Cores with 24 Gigabyte RAM. The following performance 

metrics are tested: 

• the number of pod-station visits per order 
• the distance driven by robots per order 
• pile-on: the number of picks per pod-station visit 
• throughput: picks per hour. 
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Fig. 10. Normalized pod-station visits per order. 

Fig. 11. Normalized robot distances per order. 

The parameter W u is set to 2, since we aim to fully utilize 

the picking station’s capacity whenever possible. The highest pos- 

sible cost of assigning an additional SKU is 1 (one additional pod 

needed, just for this SKU), therefore any value of W u greater than 

1 ensures that as many orders as possible are assigned. Further pa- 

rameters used in the simulation can be found in Appendix D , such 

as parameters for robot movement. 

Fig. 10 shows the average number of pod-station visits per or- 

der relative to the sequential approach for each instance set of 

50, 150 and 250 orders. Compared to the sequential approach for 

the number of pod-station visits per order: the integrated model 

improves this performance by 20% to 30% for different instance 

sets, the split-among-stations model (in short in figures and ta- 

bles: split) shows improvements of about 50%, and the split-over- 

time model (in short in figures and tables: timesplit) improves on 

the sequential solution by 57% to 80% for different instance sets. 

Fig. 11 shows similar improvements for the average distances 

driven by robots to complete an order for each instance set. The 

correlation between pod-station visits and distances driven by 

robots confirms our assumption in Section 1 , that distances driven 

by robots can be reduced by minimizing the number of pod-station 

visits. As the layout shown in Fig. 9 demonstrates, the distance be- 

tween the inventory area and a picking station is in most cases 

greater than the distance between any two picking stations. Both a 

pod coming from the inventory area to a station and a pod com- 

ing from another picking station count as pod-station visits. In the 

Fig. 12. Normalized pile-on (best viewed in color). 

Fig. 13. Picks per hour (best viewed in color). 

sequential approach, pods may have to be transported directly be- 

tween stations, because the orders that share the same pods are 

assigned to different stations. Therefore, there are pods moving be- 

tween picking stations. In the integrated approach, we try to assign 

orders which share the same pods to the same stations; therefore, 

it reduces the number of pods moving between picking stations. 

This explains why the distances per robot in the integrated ap- 

proach do not show as much of an improvement as pod-station 

visits per order compared to the sequential approach. 

Fig. 12 shows the average pile-on of all methods for each in- 

stance set of 50, 150 and 250 orders. Our approach with split or- 

ders causes more picks per pod-station visit (PSV), especially in 

the split-over-time model (up to 5.5 times as many picks per PSV) 

(best viewed in color). 

In Fig. 13 we get the average picks per hour for each instance 

set of 50, 150 and 250 orders. From 30% up to 46% more picks per 

hours can be achieved by the split-among-stations and split-over- 

time. 

Fig. 14 illustrates the total computing times for each instance 

set of 50, 150 and 250 orders. The total computing time for the in- 

tegrated approaches with and without split orders are much larger 

than those for the sequential approach. We divide the total com- 
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Fig. 14. Computing time for the first period and others (best viewed in color). 

Table 7 

Computing time per simulation time for t > 1. 

Instance set Sequential Integrated Split Timesplit 

50 0.07% 0.17% 0.24% 0.61% 

150 0.07% 1.4% 3.46% 6.41% 

250 0.07% 3.39% 9.67% 14.67% 

Table 8 

Computing time t > 1 per order (in seconds). 

Instance set Sequential Integrated Split Timesplit 

50 0.01 0.03 0.03 0.08 

150 0.01 0.21 0.4 0.62 

250 0.01 0.48 1.06 1.34 

puting time into the time at t = 1 and the time of the remaining 

periods t > 1. The period at t = 1 takes a lot of time, since no or- 

ders or pods have previously been assigned to any stations and 

therefore more decisions are necessary than in the following pe- 

riods. As this usually happens at most once a day (when the sys- 

tem is stopped and then restarted), we can consider it a warm- 

up. It is more interesting to see the periods t > 1, since most deci- 

sions are made in those periods. Note that the decisions at t = 1 

in the split-over-time model are faster than those in the integrated 

and split-among-stations models. The reason is that the split-over- 

time model can easily find the best possible solution in the first 

timestep, where only one pod is needed at each station. Table 7 

shows the total computing time of the decisions in t > 1 in rela- 

tion to the simulation time. We deem computing times acceptable 

as long as they are lower than the total simulation time. In our 

tests, computing the decisions took at most around 15% of the sim- 

ulation time (split-over-time, 250-order instance set). The average 

time for the assignment of one order is at most 1.5 seconds (see 

Table 8 ). 

Fig. 15. Example of the heuristic method. 

4.2.1. A Heuristic method for a real-world instance 

The Canadian logistics company Think logistics (see 

ThinkLogistics, 2012 ) owns an RMFS, which stores 20 0 0 SKUs 

in 217 pods. And there are 15 robots used in the system. We 

generated an instance of 20 0 0 orders and 25 SKUs per pod, and 

tested it in the similar layout as in Fig. 9 (15 instead of 8 robots 

were used). SKUs and orders were generated as described in 

Section 4.1.1 . The computational time of our integrated models 

increased extremly for such instance. Therefore, we developed a 

heuristic method to accelerate the computational time. The main 

idea is instead of considering all orders in the backlog as input for 

our models, we select only part of them ( n ≤ |O| ) in the following 

way: First, all orders in the backlog are sorted according to the 

percentage of orders lines in each respective order for which a 

pod containing the sku currently is in a stations queue (in short: 

match). Then the best n orders are selected. Fig. 15 shows an 

example to explain this heuristic method. We have two orders 1 

and 2 in the backlog and we want to pick up n = 1 order. And 

pod 1 visits currently station 1. We have one open tote in station 

1 and the match of order 1 to pod 1 is 100%, since all items of 

order 1 are stored in pod 1. The match of order 2 to pod 1 is 50%. 

So order 1 should be firstly picked from the backlog. 

We test this method for different n in all instance sets (50-, 

150-, 250-order) and model variants to analyze the effect n has on 
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Fig. 16. Computational time vs. the number of pick-station visits for the 250-order instance set by prefiltering n orders ( n is from 10 to 250) (best viewed in color). 

computing time and the quality of the solution (number of pick- 

station visits). The results of different n between 10 and 250 for 

250-order instances in the split-among-stations model are illus- 

trated in Fig. 16 . The results of other instance sets show a simi- 

lar distribution for the integrated approaches. By using the heuris- 

tic method, we can save more than 55% in computing time while 

pod-station visits rise by 1% compared to the optimal results of 

the split-among-stations model (see order count 50 in Fig. 16 and 

order count 250 is the optimal solution). 

For testing the large instance, we chose n = 40 and solved 

with split-over-time method, since this method brings the best 

performance, but it reqires more computational time. Compared to 

the sequential solution, we can reduce the number of pod-station 

visits by 60%, same is the reduced distances drived by robots. 47% 

more picks per hours can be achieved, while the average compu- 

tational time of each order is 4.6 seconds, which is acceptable. We 

simulated this instance ten times and the testing was done on Intel 

Xeon E5-2670 16 Cores with 24 GB RAM. 

4.3. Practical remarks 

Some assumptions in Section 3.1 might differ from real-world 

scenarios. In this section we discuss them from a practical point of 

view. 

• Real-world orders: in this paper we use pregenerated instances 

to test the performance of different approaches. Instead, in a 

real RMFS, new orders would constantly come in while the op- 

timization algorithms are running. Even completely new SKUs 

could be stocked during the optimization. To account for this, 

our simulation RAWSim-O was recently extended by an inter- 

face to an ERP system to allow for its use as a robot control 

system in real warehouses, as described in Xie, Li, and Thieme 

(2019) . This new feature of the simulator could also be used in 

conjunction with the content presented in this paper, to imple- 

ment the model presented here in a real warehouse and use 

real instances instead of pregenerated testing instances. 
• Considering orders with deadlines: in this paper we don’t gen- 

erate orders with deadlines. The reason for that is we want to 

see maximum effects of our methods. However, our heuristic 

can be easily extended to select the orders with tight deadlines 

first. 

• Reduced size of queues: We set the size of the queue at each 

picking station to be 12 (see Section 4.1.2 ). Based on our ob- 

servation in the simulation, the queue is rarely full; one of the 

main reasons for this is that we minimize the number of pod- 

station visits. And allowing split orders reduces the number 

of pod-station visits by up to 80%. In general, fewer pods are 

brought to queues. So, allowing split orders might cause the 

additional positive side-effect that the required space at pick- 

ing stations is reduced. 
• Capacity of packing stations: for the results shown above, we 

assumed the capacity of packing stations for split orders to be 

large enough to store all possible split orders. As this capacity 

might differ from one company to another, a situation where 

not enough capacity is available to allow for the splitting of all 

orders is conceivable. In order to consider this situation, we can 

extend, for example, the models in Sections 3.3 and 3.4 with 

the following parameters, variables and constraints. We need 

two additional parameters: C for the total capacity of packing 

stations (in other words: number of available split orders) and 

N for the number of stations. The binary variable y l o is activated 

if order o ∈ O is split, while n l counts the number of currently 

active split orders from the previous periods. Note that, this 

number is decreased by one if one split order is picked com- 

pletely. ∑ 

s ∈S 
y os − e o = y o , ∀ o ∈ O (3.2) 

y l o ≥ e o /N, ∀ o ∈ O (16) 

y l o ≤ e o , ∀ o ∈ O (17) 

n 

l + y l o ≤ C (18) 

y l o ∈ { 0 , 1 } , ∀ o ∈ O (19) 

e o ∈ Z ≥ 0 , ∀ o ∈ O (20) 

In constraint set (3.2), e o is counted as the number of addi- 

tional stations to finish picking order o . Constraint sets (16) and 
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Fig. 17. An example of using separators in totes (LocusBot). 

(17) make sure that y l o is equal to one if e o ≥ 0, while constraint 

set (18) makes sure that the number of split orders is less than 

C . Constraint set (19) defines y l o as binary variables for each or- 

der o ∈ O, while constraint set (20) ensures that e o can only 

have non-negative integer values. 

To see the impact that a limited capacity of packing stations 

has on the solution, we tested the 250-order instance set for 

a packing station capacity of 10. When applying this limited 

capacity to the split-among-stations model, pod-station visits 

were reduced by 35% compared to the sequential approach, in- 

stead of nearly 50% when packing capacity is not limited. Sim- 

ilar effect can be achieved by the split-over-time model. But 

the split-over-time model needs higher packing capacity, since 

some incomplete orders stay longer in packing stations. Note 

that the capacity limit of 10 is an extreme case and the solu- 

tion is still better than that of the sequential approach. In the 

real world, higher capacities are possible. 
• Item capacity: this capacity is used for comparing the sequen- 

tial and integrated approaches. The capacity of a picking station 

in the real world is limited by the number of totes, which de- 

pends on the size of a tote. There are the following possibilities 

to apply our approaches without changing the layout of picking 

stations: 
• using different sizes of totes, with smaller ones for split or- 

ders 
• using separators in totes for split orders (an example: Lo- 

cusBot in Fig. 17 ). 
• Reliability of the simulation: as described in Xie et al. (2019) , 

the simulation framework RAWSim-O was extended to connect 

to an ERP system and industry robots. So the optimizers in the 

simulation, including the newly developed ones in this paper, 

can be applied directly in real-world scenarios. 

5. Conclusions 

In an RMFS, the decision on the assignment of orders to sta- 

tions (POA) affects the throughput of the whole system the most 

(see Merschformann et al., 2019 ). Moreover, the decision on the as- 

signment of pods to stations (PPS) should be made together with 

POA to get better results (see Example 1 in Section 2.2 ). Therefore, 

we developed novel methods to solve both POA and PPS for multi- 

ple stations and make online decisions that minimize the number 

of visits by pods to stations (in short: pod-station visits) to ful- 

fill all customer orders. First, we introduced a new mathematical 

model to integrate POA and PPS (in short: integrated). Second, we 

extended the integrated model to allow for split orders. An order 

is split when not all of its parts are assigned together to a sta- 

tion. Two variations of split orders are considered: split-among- 

stations (all order lines of a pick order have to be assigned in the 

same time period, but may be assigned to different picking sta- 

tions) and split-over-time (order lines of a pick order may be as- 

signed in different time periods and to different picking stations). 

In the instances we tested, the number of pod-station visits could 

be reduced by up to 30% using the integrated model, 50% using 

the split-among-stations model and up to 80% using the split-over- 

time model compared to the state-of-the-art sequential approach 

described in Merschformann et al. (2019) . 

Additionally, we analyzed the simulation results with regard to 

three additional performance metrics, namely robot distances, pile- 

on and picks per hour (throughput). According to our experiments, 

a reduction in pod-station visits induces a reduction in robot dis- 

tances and by definition it comes with higher pile-on. The picks 

per hour can be increased, due to the shorter waiting time of pick- 

ers, caused by more efficient order assignments which require the 

robots to drive less distance and therefore better supply the sta- 

tions with pods to pick from. 

The running times for our test instances with 50, 150 and 250 

orders were acceptable; however, we needed a heuristic method 

to test a real-world instance with 20 0 0 orders. For instances of 

that size, it is not practicable to consider all unfulfilled orders in 

the models at each period; moreover, not all orders are suitable in 

each period. Therefore, we selected 40 best orders according to our 

heuristic in each period to submit to the model. Still, a 60% reduc- 

tion in pod-station visits and distances driven by robots could be 

achieved using the split-over-time model, and 47% more picks per 

hours can be achieved with acceptable running times. 

We additionally discussed some assumptions for the mathemat- 

ical models from a practical point of view, such as the extension 

of the split-among-stations model to support limited capacity of 

packing stations. 

Since an RMFS is a new type of warehousing system, the con- 

cepts specific to RMFSs have not received much scholarly atten- 

tion. For example, the implementation of priority zones (see Flipse, 

2011 ). These zones are located in the proximity of workstations to 

store pods which might be used in the near future. Determining 

the optimal size of priority zones would also be interesting. 
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Appendix A. Example of the split-over-time approach 

We have in this example one open position for station 1, 

while we have two identical orders 1 and 2 in the backlog (in 

Fig. A.18 (a)). These two orders contain SKUs shown in blue and or- 

ange. These two SKUs are located in two different pods, namely 

pod 1 with the orange SKU and pod 2 with the blue SKU. By al- 

lowing the orders 1 and 2 to be split into blue and orange parts, 

the orange ones can firstly be picked from pod 1 at station 1 in 

period 1, while one position is open at station 2 (see Fig. A.18 (b)). 
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Fig. A1. An example of the split-over-time approach. 

Fig. B1. Positions of the boxes in size S (left) and M (right) within a tier of a shelf. 

After that, the blue ones are picked from pod 2 at station 2 in pe- 

riod 2 (see Fig. A.18 (c)). This allows both orders to be fulfilled with 

two visits of pods to the stations. 

Appendix B. Calculation example for the capacity of a packing 

station 

As mentioned before, the capacity of a packing station de- 

pends on the number of parking shelves and their sizes. Ac- 

cording to Wulfraat (2012) , the typical size of a shelf is 

99cm × 99cm × 244cm. And we have two common sizes of 

boxes, namely 25cm × 17.5cm × 10cm and 37.5cm × 30cm × 13.5cm 

(see DHL Packsets in sizes S and M in https://www.dhl.de/ 

en/privatkunden/pakete-versenden/verpacken.html ). As shown in 

Fig. B.19 (a) and B.19 (b), we can store 12 and 6 boxes within a tier 

of a shelf for the boxes in sizes S and M respectively. Then we as- 

sume we store boxes in size S in half of the shelves, and boxes 

in size M in the other half. By considering spaces for open boxes 

and usable vertical spaces of a shelf, we assume 100centimetres of 

vertical space is available for five tiers of boxes with sizes S, while 

another 100centimetres is available for three tiers of boxes with 

size M. Based on these assumptions, we get to store 78 boxes in 

total on a shelf. In other words, we can store 78 split orders on a 

shelf. 

Appendix C. Omitted Proofs 

In this section we prove that the models in Section 3 always 

have feasible solutions. 

Proof of Proposition 1. By the assumption about Maximal order 

size in Section 3.1 , there exists an order o ′ such that o ′ has no more 

items than capcity C s ′ at some station s ′ ∈ S . Let us select this or- 

der and the corresponding pods for our solution. 

Formally this means: Set x ps := 1 for all p ∈ P s as required by 

(6) . Set y o ′ := 1 and y o := 0 otherwise. Set y o ′ s ′ := 1 and set y os := 0 

otherwise. Then (3) holds. Set y io ′ s ′ := 1 for all i ∈ I o ′ and y ios := 0 

otherwise. Then (2) holds. By the choice of o ′ and s ′ constraint 

(4) holds too. Finally, we set x ps ′ := 1 for all p ∈ P 

SKU 
i 

with i ∈ I o ′ , 
then (5) is fulfilled. Thus we have constructed a feasible solution. 

To find order o ′ and to set to set correspoding variables, we only 

need polynomial time. �

Proof of Proposition 2. The main idea of the proof is that we can 

select parameters for the integrated model with available stations 

set S := { 1 , . . . , k } from Section 3.2 in such a way that Eqs. (1) –(10) 

solve a given set covering problem. That means, given a set of sets 

A := A 1 , . . . , A n , the universe U := 

⋃ n 
i =1 A i , and a set B ⊂ U . Find a 

minimal index set J ⊂ { 1 , . . . , n } such that corresponding sets A i 

cover the set B , or formally, B ⊂ ⋃ n 
j∈ J A i . 

We define an order o 1 which has the same elements as the set 

B 1 := B . We assume that the capacities of all the stations C s , s ∈ S
are equal the size of the order o 1 . Furthermore, we create disjoint 

orders o 2 , . . . , o k and define correspondsing disjoint sets B 2 , . . . , B k , 

which do not share any elements from the universe U . All the or- 

ders form the set of current orders in the backlog O := { o s | s ∈ S} . 
For every order o i , i ∈ { 2 , . . . , k } we also define additional set 

A n + i −1 := B i +1 . We define a set of pods P = { 1 , . . . , n, n + 1 . . . , n + 

k } such that every pod p in P has the same elements as set A p . 

Now we force the integrated model to assign all the orders 

o 1 , . . . , o k . In order to do it, we set the weight W u := | B | + 1 . Be- 

cause every order o ∈ O needs maximaly | o s | = | B | pods, it is 

cheaper to use as many available capacities as possible. Because 

we have k orders, k stations, and the size of every order is the 

same as avaialble capacity of any station, the optimal solution will 

assign all the orders and no capacity will be left. That means, for 

every optimal solution, the unused capacity is u s = 0 for all s ∈ S . 

Therefore x ps in (1) also solves 

Min 

∑ 

p∈P 

∑ 

s ∈S 
x ps . (C. 1) 

Let x ′ ps be an optimal solution of the integrated problem. Be- 

cause this solution minimizes ( C. 1 ), it describes a minimal set of 

pods to fulfill all the orders o 1 , . . . , o k . Formally, we define an index 

https://www.dhl.de/en/privatkunden/pakete-versenden/verpacken.html
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set 

J ∗ := 

{
p ∈ P : ∃ s ∈ S : x ′ ps = 1 

}
(C. 2) 

then the index set J ∗ is a mininal set with 

k ⋃ 

s =1 

B s ⊂
⋃ 

p∈ J∗
A p . (C. 3) 

Recall, B 2 , . . . , B k are the same as A n +1 , . . . , A n + k −1 with no ele- 

ments from universe U . Thus, J := J ∗ \ { n + 1 , . . . , n + k − 1 } solves 

our initial set covering problem 

B = B 1 ⊂
⋃ 

p∈ J ∗\{ n +1 , ... ,n + k −1 } 
A p = 

⋃ 

p∈ J 
A p . (C. 4) 

�

Remark 1. The proof of Proposition 2 also proves that the split- 

among-stations model is NP-hard if x ′ t p is the optimal solution for 

(1) , subject to constraints (2.1), (3.1), (4) - (10) , and (11) - (14) . This is 

because, after we found an optimal solution x ′ ps , we do not require 

every order o ∈ O to be assigned to only one station to construct a 

minimal index set J . 

The proof of Proposition 2 also proves that the split-over-time 

model is NP-hard, when we use the optimal solution of the split- 

over-time model for x ′ t p . The constant W u forces any optimal so- 

lution of the split-over-the time problem to use all available ca- 

pacities. Because we have capacity for all orders in the backlog, 

no orders will be split in time. Thus, any optimal solution of the 

split-over-the time model is simultaniously an optimal solution of 

split-among-stations model, which is NP-hard. 

Proof of Proposition 3. We show that every solution of the inte- 

grated model also solves the split-among-stations. Let (x ′ ps ) p∈P,s ∈S , 
(y ′ o ) o∈O , (y ′ os ) o∈O,s ∈S , and (y ′ 

ios 
) o∈O,i o ∈I o ,s ∈S be a solution of the in- 

tegrated model. From (2) follows (2.1). Set e ′ o := 0 for all o ∈ I o , 
then from (3) follows (3.1), (12) and (20) . Substitute (2) into (3) , 

then (11) follows. If we sum (3) on both sides of the equation over 

i ∈ I o we get 
∑ 

i o ∈I o y 
′ 
ios 

= 

∑ 

i o ∈I o y 
′ 
os ≥ y ′ os and therefore (13) holds. 

From the first part of this proof and Proposition 1 , it follows 

that there is a feasible solution for the split-among-stations model. 

Finally, we have the same objective function (1) . Because the 

split-among-station problem is an optimization problem, its opti- 

mal solution is either 

(x ′ ps ) p∈P,s ∈S , (y ′ o ) o∈O , (y ′ os ) o∈O,s ∈S , (y ′ 
ios 

) o∈O,i o ∈I o ,s ∈S or better. �

Proof of Proposition 5. The proof is analogous to the proof 

of Proposition 3 . Let (x ′ ps ) p∈P,s ∈S , (y ′ o ) o∈O , (y ′ os ) o∈O,s ∈S , and 

(y ′ 
ios 

) o∈O,i o ∈I o ,s ∈S , (e ′ o ) o∈O , be a solution of the split-among-stations 

model. Set all y ′ b 
i o 

:= 0 , then (11.1) holds. Furthermore, we have 

the same objective function (1). With the same argumentation as 

in the proof of Proposition 3 , we conclude all the statements of 

Proposition 5 . �

Appendix D. Additional parameters in the simulation 

Table D.9 

Parameters of robot movement and time for picking units. 

Parameter Value 

Robot acceleration/deceleration 1 m 
s 2 

Robot maximum velocity 1 . 5 m 
s 

Time needed for a full turn of a robot 2.5 s 

Time needed for lifting and storing a pod 2.2 s 

Time needed for picking a unit 7 s 

Time needed for handling a unit at picking station 13 s 
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