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REV I EW ART ICLE

Priority effects and ecological restoration
Emanuela W. A. Weidlich1,2,3 , Cara R. Nelson4 , John L. Maron5, Ragan M. Callaway5,
Benjamin M. Delory1 , Vicky M. Temperton1

Priority effects refer to the order or timing of species arrival, including how species that arrive early at a site either positively or
negatively affect establishment, growth, or reproduction of species that arrive later. Despite the clear implications of priority
effects for ecological restoration, there have been no reviews of how and where priority effects have been studied and the extent
to which findings can be applied to restoration. Here, we systematically review the literature on priority effects by (1) synthesiz-
ing information from papers that compared simultaneous and nonsimultaneous planting or sowing; (2) discussing the mecha-
nisms through which priority effects operate, (3) considering how these mechanisms might be manipulated to achieve
restoration goals; and (4) highlighting future research needed to improve the use of priority effects in restoration. In a term-
targeted search, we found 43 studies that experimentally manipulated the order of arrival of different species. Overall, these
concluded that even small delays in arrival time, as opposed to simultaneous arrival of species, can promote differences in sub-
sequent community composition as well as ecosystem functions. There were very few studies on the long-term stability of these
priority effects, and the majority were conducted in temperate grasslands. Our findings suggest that creating alternative veg-
etation states via priority treatments is a promising avenue for restoration. However, for the concept to be best operationalized
for restoration, we need research in more ecosystems that are priorities for restoration, and treatments that are followed over
extended time periods.

Key words: community assembly, competition, facilitation, historical contingency, plant order of arrival

Implications for Practice

• Judicious use of priority effects can promote the estab-
lishment of preferred native species and resist exotic
invaders.

• For priority effects to become a useful restoration tool, we
need more large-scale long-term experimental studies in a
wider variety of systems that also consider how long the
effects persist.

• The use of priority effects in restoration can be system-
specific, thus local knowledge of natural history is impor-
tant for success.

Introduction

Ecological restoration involves the reassembly of ecological
communities after degradation. As such, theory related to com-
munity assembly and succession is relevant to improve restora-
tion of degraded plant communities (Temperton et al. 2004;
Walker et al. 2007; Young et al. 2017; Wilsey 2020). Historical
contingency, that is the chance arrival of species after degrada-
tion, is key to community assembly and succession, but a
detailed and predictive understanding of contingency is still
emerging (Grman et al. 2013; Fukami 2015). We lack a general-
ized understanding of how contingency can influence ecosystem

structure and function, and especially in the context of
restoration.

Priority effects are important components of historical contin-
gency, and refer to the order or timing of species arrival, or “who
arrives when” (Alford & Wilbur 1985; Fukami 2015). For
example, priority effects include how species arriving early dur-
ing assembly either positively or negatively affect subsequent
plant establishment, growth, or reproduction (Vaughn &
Young 2015; Temperton et al. 2016; Delory et al. 2019a). Plant
communities with the same species pool, but differing in species
arrival order during assembly, may shift to alternative stable
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states, alternative transients states, or compositional cycles
(Fukami & Nakajima 2011; Fukami 2015). These priority
effects can have long-lasting effects on the structure and func-
tioning of plant communities and thus have important implica-
tions for restoration efforts (Martin & Wilsey 2012; Wilsey
et al. 2015; Weidlich et al. 2018).

One of the first experiments addressing priority effects was
performed by Harper in the early 1960s (see Morin 2011). He
planted two grass species either simultaneously or at different
times and found that this difference in planting time affected
the relative abundance of these species. Later, Connell and
Slatyer (1977) postulated that the first colonists at a disturbed
site may have positive (facilitative), negative (inhibition),
or neutral (tolerant) effects on later species. Quinn and
Robinson (1987) coined this term as the “priority effect,” focus-
ing primarily on how early-arriving species suppressed later
arrivals. Since then, studies reporting the importance of priority
effects for the structure and functioning of ecological communi-
ties have proliferated (Ejrnæs et al. 2006; Körner et al. 2008;
Grman & Suding 2010; Sarneel et al. 2016; Weidlich
et al. 2018).

In restoration, manipulating the order of arrival of plants, or
groups of plants, can lead to communities that differ in structure
and function, which together with other biotic and abiotic filters
can help achieve desired plant communities (Hobbs &
Norton 2004; Temperton et al. 2019). For example, in some sys-
tems it might be necessary to manipulate the identity of early-
arriving species to promote positive interactions between
early- and late-arriving species (e.g. Zwiener et al. 2014). Padilla
and Pugnaire (2006) reviewed how such facilitation by early-
arriving nurse species has been used in restoration of degraded

lands. Understanding these patterns of variation and their drivers
is critical for improving restoration outcomes. For instance, pri-
ority effects may not be evident in systems with strong equilib-
rium dynamics, but they might be important drivers of assembly
in systems that easily shift into multiple alternative states
(Chase 2003; Vannette & Fukami 2014; D’Antonio et al. 2017).
Thus, strategies for using priority effects in restoration efforts
are likely to be system-specific.

Restoration often involves manipulating which plant species
are introduced, sown, planted, or transferred to a disturbed or
degraded site at a given time (Weidlich et al. 2020). If the order
of arrival of these species can affect ecosystem functioning or
community composition over time, then priority effects can
determine successful or unsuccessful restoration. This can be
important for sustaining preferred species and resisting unde-
sired species such as exotic invaders. Steering restored commu-
nities along particular temporal trajectories or toward particular
ecosystem functions by using priority effects can be a powerful
tool (Fig. 1). Examples in the literature include reducing inva-
sive species (Abraham et al. 2009; Stuble et al. 2016; Lang
et al. 2017), sustaining species that promote pollinator commu-
nities (Pocock et al. 2012), improving nutrient cycling, or
increasing ecosystem productivity (Popp et al. 2017).

There have been thorough reviews of the mechanisms of his-
torical contingency (Fukami 2015), community assembly and
restoration (Young et al. 2001, 2005), and exotic invasions
(Thomsen et al. 2011; D’Antonio et al. 2017; Hess et al. 2019).
However, to date there are no summary reviews showing how
and where priority effects have been studied (either native
vs. native, or native vs. exotics). This information is needed to
advance our basic understanding of priority effects in

Figure 1. Examples illustrating how priority effects might foster restoration within a plant functional group or species approach. (A) The potentially strong
facilitative role of legumes when they arrive before nonlegumes. (B) A situation where one plant functional group was sown later than two others, for instance
sowing a mixture of forbs and legumes first, and grasses arriving later, which might promote facilitation and allow deep rooting forbs species to establish before
more shallow rooting grasses. (C) Priority effects caused by natives that resist invasion by later arriving exotic. (D) Species that grow fast and provide shade may
suppress invasive species, to the benefit of native species arriving later. Symbols with same color represent the same plant functional group.
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community assembly and to the practice of ecological restora-
tion. Here, we systematically review the literature on priority
effects, and synthesize information from papers that compared
simultaneous and nonsimultaneous planting or sowing. We then
discuss mechanisms by which priority effects operate, with an
eye toward how these mechanisms can be manipulated to
achieve particular restoration goals. Finally, we highlight key
gaps in the literature and suggest where future research is needed
to better our understanding of how best to manipulate priority
effects to advance restoration.

Literature Review

We conducted a literature search inWeb of Science using the fol-
lowing terms: “PRIORITYEFFECT”or “PRIORITYEFFECTS”
and “PLANT*,” refined into seven categories (Ecology, Plant Sci-
ences,EvolutionaryBiology,Forestry,BiodiversityConservation,
EnvironmentalScience,Biology)and twodocument types(articles
and reviews). Our survey addressed onlyEnglish-language papers
published until December 2019.We chose this set of keywords to
focus on studies that explicitly compared simultaneous and nonsi-
multaneous sowing or planting. In order to focus solely on studies
that experimentallymanipulated plant order of arrival, other prior-
ityeffect-related termssuchas facilitation, regeneration,seedbank,
or soil legacy were not included in our literature search.

We found 138 articles (Table S1) in our literature search, with
the annual rate of studies increasing dramatically since roughly
2000 (Fig. 2A). Of this total, 62 papers used the term priority
effect only to interpret their findings, 43 articles experimentally
tested priority effects (comparing simultaneous and nonsimulta-
neous sowing/planting; Table S3), and 18 papers investigated
the role of early-arriving species in the context of natural regen-
eration. Eight articles examined how evolutionary dynamics

affect priority effects of early-arriving lineages
(e.g. Wittmann & Fukami 2018), while seven papers evaluated
sowing communities with different species richness rather than
manipulating order of arrival (Carter & Blair 2012; Plückers
et al. 2013). Most of the studies tested or discussed priority
effects with the motivation to apply results to management prac-
tices in restoration (Fig. 2B), indicating the applied relevance of
priority effects.

Some well-known studies that use nurse plants to evaluate the
effects of the initial species on assembly were not included in our
review because they did not experimentally manipulate plant
order of arrival. For example, studying successional dynamics
in central Amazonian, Norden et al. (2011) found that differences
in recruitment (caused by the species that first colonized) were
the major drivers of alternative states. Other examples of studies
have found that tropical forest restoration can use exotic trees as
nurse plants to establish late successional tree species and
speed up the recovery of forest functions (Ashton et al. 2014;
Brancalion et al. 2020). In Costa Rica, planting tree seedlings
in small patches has been proposed as a good alternative restora-
tion method that facilitates forest recovery (Holl et al. 2011;
Zahawi et al. 2013). This “applied nucleation” is less expensive
than fully planting large areas, and a cost-efficient alternative to
large-scale plantings (Corbin & Holl 2012). Even though these
studies can be considered a type of priority effect, we did not
include them in our review, because they did not have simulta-
neous planting or sowing as an experimental control treatment.

General Patterns From Studies That Tested Priority
Effects

Priority effects can be asymmetric, contingent on environment
and species composition, andpersistent or not (Younget al. 2017)

Figure 2. (A) Number of studies published per year on priority effects in plant communities. (B) Frequency of studies performed within a restoration context for
each pool of papers. Among the 138 articles that mentioned plant priority effects, only 43 studies experimentally manipulated order/timing of arrival. The
literature search was conducted until December 2019.
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and in this context, 42 of the 43 studies that experimentally
manipulated the order of arrival of different species found evi-
dence for some sort of priority effect. For example, Sarneel
et al. (2016) found that small differences in arrival time affected
plant community assembly and diversity, both in the greenhouse
and in the field. A number of experiments found that sowing
legumes before other functional groups resulted in greater above-
ground biomass production over time (Körner et al. 2008; von
Gillhaussen et al. 2014;Weidlich et al. 2017) and lower total root
length density and biomass in the upper layers of soil (Weidlich
et al. 2018). The only study that found no evidence of priority
effects when comparing simultaneous and nonsimultaneous
plantings was Mason et al. (2013). Using a mesocosm experi-
ment, they tested whether manipulating the order of arrival of

three plant functional groups typical of Australian coastal dune
communities (grasses, herbs, and shrubs) would increase resis-
tance of native communities to an exotic species. They found that
manipulating the arrival order of native functional groups did not
improve the resistance of plant communities to invasion by the
exotic, which established successfully regardless of native prior-
ity. The authors argued that the resource use by the native species
used in the experiment was insufficient to affect germination of
the exotic due to its lower resource requirements.

The 43 studies that experimentally manipulated the order of
arrival of species were performed in four different biomes
(Fig. 3A), but 30 of them (70%) were in temperate grasslands.
The over-representation of temperate ecosystems, particularly
grasslands, derived from 63% of the studies being in North

Figure 3. The majority of experiments that manipulated plant order/timing of arrival were performed in North America and Europe (A), in the greenhouse or in
the field (B), and lasted less than a year (C). In the majority of studies, priority effects were created using a sowing interval shorter than a month (D) and involved
either natives only or natives and exotics (E).
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America (27 papers) and 33% in Europe (14 papers), where
around one-third of the landscape is grassland and grass-
dominated landscapes. Also, the high proportion of studies in
grasslands may reflect the fact that they are easier to manipulate
than shrub- and tree-dominated systems. There were far fewer
studies in tropical and subtropical wooded and grassland sys-
tems. However, because of our search terms, as noted above,
our analysis does not take into account a substantial number of
tropical studies of “nurse trees” as restoration tools, and such
facilitation is inherently a priority effect (e.g. Aerts et al. 2007;
Anthelme et al. 2014; Bertoncello et al. 2016; Section Synthesis
of General Mechanisms Driving Priority Effects and Their Rel-
evance to Restoration below).

Only 17 studies (37%) were performed in natural field com-
munities, while 22 experiments were in greenhouses (48%),
and 7 in outdoor common gardens with constructed communi-
ties (15%; Fig. 3B). Most experiments (24 papers, 56%) lasted
less than 1 year (Fig. 3C), which is mainly due to the large num-
ber of greenhouse experiments conducted under controlled con-
ditions. Such experiments typically last less than a year, but are
particularly useful to better understand the mechanisms leading
to priority effects in plant communities.

We found a small number of field experimental studies, and
only a few of them lasted more than 3 years. They were per-
formed in North American (Collinge & Ray 2009; Martin &
Wilsey 2012, 2014; Werner et al. 2016; Young et al. 2017;
Wohlwend et al. 2019) or European grasslands (Weidlich
et al. 2017, 2018). Most of these experiments showed strong
and persistent effects of plant order of arrival on the structure
and functioning of plant communities, and highlighted the
potential of using priority effects as a restoration tool. Martin
and Wilsey (2012) established a grassland field experiment in
which the identity and timing of arrival (spring or summer) of
four early-emerging native species was manipulated. A seed
mixture containing common prairie species was added at the
same time as early-emerging species (no priority effect) or a year
later (with priority effect). After 5 years, they found higher
diversity, lower invasion by exotics, and higher aboveground
biomass production in plots sown in spring and without priority
effects. These results persisted up to 8 years after the start of the
experiment and were not affected by the addition of seeds to
increase native species propagule pressure (Martin & Wil-
sey 2014). Collinge and Ray (2009) manipulated the order of
arrival of two groups of species including grasses and nonlegu-
minous forbs at a field site in California, giving species from one
group a 12-month advantage over later ones. They found strong
evidence for priority effects, with most species being more
abundant in pools where they were sown first. However, these
priority effects faded over time and were not evident for the
majority of species 7 years after the start of the experiment. In
another study performed in California grasslands, Werner
et al. (2016) reported results from an 8-year priority effect in
which native grasses and forbs were planted either simulta-
neously or with a 1-year priority over the other functional group.
Plots in which grasses and forbs were grown on their own were
also included. Overall, they found that temporal priority per-
sisted for the 8 years for some species and resulted in different

community compositions. Similarly, Young et al. (2017) tested
four priority effect scenarios at three restoration sites in Califor-
nia grasslands. They investigated the extent to which giving a
2-week or a 1-year seeding advantage to native perennial grasses
over exotic annual grasses, as well as giving native grasses and
forbs a 1-year seeding advantage over the other functional
group, would affect the structure of plant communities. They
found that manipulating plant order of arrival can strongly affect
interspecific relationships and benefit subordinate plant species,
but that these priority effects were sometimes asymmetric and
contingent on environmental factors and species composition.
In a 7-year restoration experiment in U.S. prairies, Wohlwend
et al. (2019) tested how the timing of arrival of an invasive
legume (Lespedeza cuneata) and native grasses and forbs would
affect the structure of plant communities and whether or not
results met specific restoration goals. Early arrival of native spe-
cies (over the exotic legume) led to a desired restoration out-
come with plant communities having a greater abundance of
native species and a lower abundance of non-native species. In
Europe, a 4-year grassland experiment located in Germany
showed that sowing legumes before grasses and forbs resulted
in greater aboveground biomass production in some years
(Weidlich et al. 2017) and a lower root length density and bio-
mass in the topsoil layer (Weidlich et al. 2018). In addition,
results from this experiment also highlighted the strong inter-
linkage existing between priority and biodiversity effects in
grasslands (Delory et al. 2019a).

The time interval between the first and second sowing used in
the nonsimultaneous treatments in experiments testing priority
effects varied from 5 days to 3 years (Fig.3D), but in 18 studies
(42%) it lasted less than a month. Thus, our survey showed that
even small delays in arrival time can promote differences in the
community (as opposed to simultaneous sowings), but also that
a large number of studies did not determine the stability of these
effects. Two of the 43 experimental studies tested different sow-
ing intervals (von Gillhaussen et al. 2014; Young et al. 2017),
and both concluded that a longer interval between sowings can
create stronger priority effects. Young et al. (2017) compared
two experiments that delayed the arrival of exotic annual grasses
for 2 weeks versus 1 year and found that final native perennial
cover was greater when the initial priority effect was allowed
to establish for a longer time. Testing priority effects, sowing
density, and interval in European grasslands, von Gillhaussen
et al. (2014) found that longer intervals between the first and sec-
ond sowings of different functional groups led to experimental
communities that were more productive. Interestingly, the prior-
ity effect on aboveground community biomass found by von
Gillhaussen et al. (2014) was stronger than sowing density or
sowing interval effects.

Twenty-two studies (51%) compared priority effects between
native and exotic species, while 21 papers (49%) tested interac-
tions between native species (Fig. 3E). Studies testing the effects
of an exotic arriving before or after a native species were mostly
in North America (17 papers; 77%), whereas tests of natives ver-
sus natives were more common in Europe (11 papers; 52%). In
North America, South America, and Australasia, invasive exotic
species strongly limited restoration success. Recent reviews
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have shown that there are more studies of controlling invasive
species in restoration in North America compared to other coun-
tries (Kettenring & Adams 2011; Weidlich et al. 2020). Thus,
the main goal of using priority effects derived from native spe-
cies was to make communities more resistant to invasion
(Funk et al. 2008). In contrast, researchers in Europe tended to
alter the order of arrival of different plant functional groups in
order to study ecosystem functions (Weidlich et al. 2018), or
to increase diversity and yield (Bullock et al. 2001, 2007), and
less to investigate exotic invasion (Delory et al. 2019b).

Synthesis of General Mechanisms Driving Priority
Effects and Their Relevance to Restoration

Understanding the mechanisms that drive priority effects is
essential. Using a niche-based framework, Fukami (2015) pro-
posed grouping priority effects mechanisms into two broad pro-
cesses: niche preemption and niche modification. In niche
preemption, the species that arrives first reduces the resources
available to late-arriving species, resulting in inhibition. In niche
modification, early-arriving species affect the identity of the spe-
cies able to further establish by modifying the types of niches
available for late-arriving species, resulting in either inhibition
or facilitation. These two processes can be divided into direct
and indirect competition, and direct and indirect facilitation.
Direct competitive effects might include disproportionate
resource uptake or allelopathy (Aschehoug et al. 2016), whereas
indirect competition may occur through complex multispecies
interactions (Levine et al. 2017), associational vulnerability to
consumers (Barbosa et al. 2009), or changes in soil biota that
suppress other species (Lekberg et al. 2018). Direct facilitative
effects include providing shade, enhancing soil moisture
through hydraulic lift, or increasing soil fertility, whereas indi-
rect effects may be manifest through associational defenses or
changes in soil biota that favor other species (Callaway 2007).

Combining both direct and indirect inhibitory mechanisms,
Grman and Suding (2010) suggested that priority effects arise
from asymmetric competition and soil legacies. Asymmetric
competition occurs when interacting plants that differ in size
create unbalanced competitive interactions, with the large plant
having a much higher chance of outcompeting the smaller one.
Soil legacies occur when the presence of a specific plant species
affects the microbial community in ways that affect the plant
itself or other individuals of the same or different species. On
the other hand, Gómez-Aparicio et al. (2004) found that tree
seedlings planted under different nurse shrub species experi-
enced both direct and indirect facilitation.

These inhibitory and facilitative processes that drive priority
effects are difficult to use in restoration because general predic-
tions of which processes are occurring or most important are dif-
ficult to make because of context specificity. This is because
system-specific or species-specific information and in-depth nat-
ural history expertise are often necessary, although trait-based
assessments allow some generalization. For example, if preferred
species are succulent, they are highly likely to need nurse species
(Valiente-Banuet et al. 2006; Romo-Campos et al. 2013), and the
same is likely to be true for late-successional perennial species in

general, such as in oak woodland restoration (Callaway &
D’Antonio 1991; Perea & Gil 2014). At more geographic or
landscape scales, theory indicates that a need for facilitators
might be more common in abiotically harsh conditions such as
arid or alpine ecosystems (see Castro et al. 2004). For example,
Dalotto et al. (2018) found evidence that nurse species play a
key role in regenerating coastal sandy dunes in Southern Brazil,
where their presence is critical for maintaining ecosystem diver-
sity and functioning. Padilla and Pugnaire (2006) noted that facil-
itation “has a practical side when applied to the restoration of
degraded environments, particularly drylands, alpine, or other
limiting habitats.” Gómez-Aparicio et al. (2004) conducted a
meta-analysis of experimental plantings of tree seedlings under
different potential nurse shrub species and found much stronger
facilitation in a dry year than wet years, at drier and hotter low
altitudes, and on sunny slopes than on shaded slopes. But, facil-
itation can also promote restoration in many other systems. Evi-
dence of facilitation in more moderate environments does
suggest that its role may have been overlooked because of
assumptions derived from the stress gradient hypothesis
(Temperton et al. 2007; Holmgren & Scheffer 2010).

The judicious use of facilitative mechanisms may be advanta-
geous early on in restoration, but priority effects caused by facil-
itation can also have a “dark side” (Lucero et al. 2019).
Depending on the mechanism, exotic invasive species may be
more strongly facilitated than natives (Maron & Connors 1996;
Bulleri et al. 2008). Lucero et al. (2019) found that the highly
invasive Eurasian annual grass Bromus rubens occurred at far
greater abundance under shrubs than away from shrubs in many
sites across the Mojave and San Joaquin deserts (U.S.A.). The
very high density of B. rubens under shrubs correlated with very
low abundances of native species. Desert shrubs commonly
form “islands of fertility,” and exotic invaders often benefit dis-
proportionally from nutrient enrichment. Aschehoug and Call-
away (2014) found that enriched soil fertility beneath Quercus
douglasii trees shifted competitive advantages toward exotic
annual species, to the virtual exclusion of native Nassella
pulchra. Thus, nutrient enrichment as a facilitative priority
effect may be problematic in restoration projects with a high
potential for exotic invasions.

Nurse species can also have species-specific effects and
mechanisms (Callaway 1998) that can be important in restora-
tion. Gómez-Aparicio et al. (2004) compared the nurse effects
of many different shrub species and found that legumes, small
shrubs, and spiny shrubs showed consistent positive effects on
tree seedlings, but that rockroses had negative effects on seed-
lings. These results, in general, suggest that knowledge about
the ecological traits, behavior, and natural history of species
involved in facilitation in the restoration process is important.

The apparent suppression of natives by facilitated exotics
(e.g. Lucero et al. 2019) illustrates how competitive priority
effects may impede restoration (Dormann et al. 2000; Rinella
et al. 2015). For example, in striking contrast to facilitative pro-
cesses in shrub restoration in the semiarid Mediterranean
(Gómez-Aparicio et al. 2004; Rinella et al. 2015), Putz and
Canham (1992) found that intense competition from several
shrub species for soil resources and light created strong negative
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priority effects in disturbed northeastern United States forests by
retarding colonization by late successional tree species. How-
ever, competitive mechanisms varied with conditions; below-
ground competition was strongest in resource-poor soil and
competition for light more important at fertile sites.

Although competitive priority effects can impede succession
and restoration outcomes in some cases, in others competitive
priority effects could enhance restoration objectives by provid-
ing resistance to exotic invaders (D’Antonio &Meyerson 2002).
A number of studies suggest that giving natives a head start
may help to resist invasion (Dickson et al. 2012; Ulrich &
Perkins 2014; Cleland et al. 2015). For example, Delory
et al. (2019a, 2019b) manipulated the timing of arrival of an
exotic invasive species in Europe and the composition of the
native community and found that inhibitory priority effects cre-
ated by natives can decrease the risk of invasion by the exotic
Senecio inaequidens. Stuble et al. (2016) varied the order of
arrival of native and exotic species in a mesocosm experiment
and found that both benefited from arriving early, but late arrival
of exotic species affected their establishment less than that of
late natives.

Competition among plants may be for resources, or through
the release of harmful chemicals that negatively influence other
species (Aschehoug et al. 2016). Allelopathy, or negative inter-
actions mediated by chemistry, has been cited frequently as a
mechanism promoting exotic invasion (Callaway &
Ridenour 2004; Murrell et al. 2011), but whether allelopathic
priority may frequently impede restoration is not clear.
Lankau (2012) transplanted the late successional Quercus rubra
at eight different sites where the exotic Alliaria petiolata
occurred. These sites varied in their invasion history and soil alle-
lochemical concentrations. He found that native seedlings grew
faster at sites with a longer history of invasion and lower allelo-
chemical concentrations. He also found that the benefits of inoc-
ulating soil with native soil biota had stronger positive effects on
the growth of the native species in newly invaded sites with more
highly allelopathic invader populations. Lankau’s results provide
circumstantial evidence for allelopathy as a direct mechanism
that can influence restoration, but the chemical effects of the
exotic may be indirect, functioning through the suppression of
mycorrhizae (Callaway et al. 2008), as suggested by the effects
of soil biota inoculation in Lankau’s research.

As for indirect facilitation, indirect competition is more diffi-
cult to detect or to use in predictable ways in a restoration con-
text than direct competition. Priority effects involving indirect
competition may occur when early-arriving species attract con-
sumers that attack desired late-arriving species in restoration,
or when they create strong plant–soil feedbacks that inhibit later
species. Priority effects involving indirect competition may also
occur when some species modify competition among other spe-
cies (Metlen et al. 2013).

Restoration success often depends on indirect relationships
with beneficial soil microbes that form symbiotic relationships
with plant roots (Harris 2009; Neuenkamp et al. 2019). These
relationships can change over time with reciprocal feedback
effects of symbionts on plants and plants on symbionts. Such

plant–soil feedbacks, which can involve the effects of soil biota
as a whole, correspond with successional sequences of species
(Kardol et al. 2006; van de Voorde et al. 2011), and thus are
likely to affect restoration outcomes (Eviner & Hawkes 2008).
We know of no experiments that have fully tested the reciprocal
feedback process in the context of restoration (as opposed to
succession), but tests of particular components suggest that the
role of feedbacks in priority effects may be exceptionally strong.
For example, Middleton and Bever (2012) experimented with
early, mid, and late successional plant species planted near to
or far from nurse plants that had received inoculation with native
soil biota or not. They found negative effects of inoculation on
early successional plants but positive effects of inoculation on
mid to late successional plants, suggesting that feedback rela-
tionships in the context of restoration can contribute to priority
effects that may be crucial to restoring late successional commu-
nities. Brinkman et al. (2017) found that conditioning degraded
fen soil with plant species common in intact fen meadows pro-
duced more biomass of desired Carex species than when soils
were conditioned with species from degraded fens. They pro-
posed that growing typical fen meadow plant species in soil
favored priority effects that improved the growth of other fen
meadow species (also see Larios & Suding 2014). In contrast,
Yelenik and Levine (2011) found that plant–soil feedbacks did
not match patterns of reestablishment of native plant species.
They reported that climate and direct competition had stronger
effects on native seedlings.

Knowledge Gaps and Future Perspectives

The Need for Large-Scale and Long-Term Experimental Studies
in the Field

Most of the experiments in our review lasted less than a year
(24 of 43) and most of these short-term studies were performed
under controlled conditions in a greenhouse (20 of 24).
Although experiments performed under controlled conditions
are well suited to investigate the mechanisms creating priority
effects in plant assemblages, we see three main arguments call-
ing for more long-term field experiments conducted in a variety
of biomes and ecosystems. First, long-term field experiments
would allow ecologists to investigate how persistent priority
effects are in a variety of environments (Vaughn &Young 2015;
Werner et al. 2016; Weidlich et al. 2017). Second, the setup of
multiple experiments with the same design at different locations
and/or different time points would allow tests of the importance
of site and year effects for priority effects (Stuble et al. 2017;
Werner et al. 2020). Third, we argue that some coexistence
mechanisms would be more accurately tested in the field than
in experiments where root growth is constrained by the size of
pots or mesocosms. For instance, if the extent to which below-
ground spatial resource partitioning is affected by plant order
of arrival, a field experiment using resource tracers (Jesch
et al. 2018) or investigating how roots are distributed in the soil
(Oram et al. 2018) would be ideal.
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The Need to Evaluate Other Metrics of Priority Effects in Addition
to Aboveground Biomass

In experiments evaluating priority effects, aboveground bio-
mass was the most common variable measured (27 of the
84 response variables measured, 32%; Table S2). This may not
be sufficient to evaluate all aspects of priority effects, as other
parameters might lead to different results. For instance, Körner
et al. (2008) assessed aboveground and belowground productiv-
ity in the context of priority effects, as did Weidlich et al. (2017,
2018). Both Körner et al. (2008) and Weidlich et al. (2017,
2018) found that when legumes were sown first, plants invested
less in roots and more in shoots, thus producing different
directional priority effects aboveground and belowground.
Results from these studies highlight that, depending on the var-
iable measured during an experiment, we may miss important
dimensions of priority effects. Additionally, the use of metrics
allowing the standardized quantification of priority effects might
facilitate the comparison of results between studies (e.g. Sarneel
et al. 2016; Delory et al. 2019a, 2019b).

The Need to Study Priority Effects in More Biomes or Vegetation
Types, and to Test Weather Effects

The large majority of studies on priority effects in our analysis
were in temperate grasslands, possibly because grasslands are
much more degraded by humans than other biomes. Thus, more
studies are needed in other commonly restored habitats such as
wetlands, forests, heathlands, and savannas. Tropical and sub-
tropical ecosystems, which harbor many of the global biodiver-
sity hotspots, and have received global commitments to
landscape restoration (Brancalion et al. 2019a), represented only
one study (2%). This paper tested the role of order of arrival in
resistance to common invasive grass species (Evangelista
et al. 2017). Since the mechanisms creating priority effects
likely depend on environmental conditions, their importance
may not be the same in biomes with different climates, species
richness, consumer pressures, or susceptibilities to invasion by
exotic species. In order to understand better the general impor-
tance of priority effects and their applicability for restoration
activities, we argue that there is a need to set up replicated exper-
iments testing similar priority effect scenarios in different
biomes and vegetation types.

Interannual variation in weather can create “year effects” in
the composition of plant communities. Thus, very similar resto-
ration approaches may produce very different outcomes depend-
ing on the year restoration was initiated (see Vaughn &
Young 2010; Werner et al. 2020). However, few studies have
experimentally tested how the year of initiation of a priority
effect experiment affects the structure and functioning of plant
communities, and what would be the main environmental
drivers. For example, the structure of experimental plant com-
munities in California grasslands differed between years and
sites (Stuble et al. 2017), illustrating the importance of
weather-driven year effects in driving restoration outcomes.
Using a large dataset of data collected at several grassland resto-
ration sites, Groves et al. (2020) found that temperature and

precipitation in the planting year affected the relative dominance
of different native and non-native species. If the strength and
direction of priority effects are sensitive to climate conditions
during early establishment, understanding local and global gen-
eralities in climate, or year effects is important.

The Need to Study How Priority Effects Determine Multiple
Functions in Landscapes and Its Feasibility for Implementation in
Restoration

Producing multifunctional landscapes in ecological restoration,
to mitigate both biodiversity and climate issues, requires fram-
ing land management in a multifunctional landscape context
(Manning et al. 2018). At times, restoring biodiversity and car-
bon storage can occur simultaneously, whereas in other cases
achieving a key outcome may preclude achieving other impor-
tant outcomes (Temperton et al. 2019). Thus, studies that mea-
sure multifunctionality are important and needed. It might be
possible to create priority effects that project landscape patches
toward particular trajectories, for instance, inducing communi-
ties to becomemore resistant to plant invasion (Hess et al. 2019),
or increase biomass production and hence also methane yields
for bioenergy use by sowing plant functional groups first
(Popp et al. 2017). However, implications in relation to restora-
tion goals should be pondered, striving to maximize ecosystem
service bundles where possible, but also clearly weighting dif-
ferent desired outcomes (sensu Manning et al. 2018), since a
process designed to achieve high biodiversity might be different
than one aiming for increasing productivity.

Additionally, the feasibility to implement priority effects in
restoration need to be tested. The cost-effectiveness of using pri-
ority effects in restoration needs to be assessed in order to verify
whether, in practice, the gains of manipulating species order of
arrival would compensate for the cost of a second intervention
(a second sowing/planting). Recent studies have shown that eco-
logical restoration success is higher for passive than for active
restoration in tropical forests (Crouzeilles et al. 2017), and that
natural and assisted regeneration is less expensive than active
restoration in tropical forests (Brancalion et al. 2019b). Consid-
ering these two important findings, priority effects could be used
to assist such kind of passive restoration in areas with low poten-
tial for natural regeneration, reducing further interventions and
costs in the neotropics.
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