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Abstract: DC-DC converters are widely used in a large number of power conversion applications.
As in many other systems, they are designed to automatically prevent dangerous failures or control
them when they arise; this is called functional safety. Therefore, random hardware failures such
as sensor faults have to be detected and handled properly. This proper handling means achieving
or maintaining a safe state according to ISO 26262. However, to achieve or maintain a safe state, a
fault has to be detected first. Sensor faults within DC-DC converters are generally detected with
hardware-redundant sensors, despite all their drawbacks. Within this article, this redundancy is
addressed using observer-based techniques utilizing Extended Kalman Filters (EKFs). Moreover,
the paper proposes a fault detection and isolation scheme to guarantee functional safety. For this,
a cross-EKF structure is implemented to work in cross-parallel to the real sensors and to replace the
sensors in case of a fault. This ensures the continuity of the service in case of sensor faults. This idea
is based on the concept of the virtual sensor which replaces the sensor in case of fault. Moreover,
the concept of the virtual sensor is broader. In fact, if a system is observable, the observer offers a
better performance than the sensor. In this context, this paper gives a contribution in this area. The
effectiveness of this approach is tested with measurements on a buck converter prototype.

Keywords: DC-DC power converters; fault detection; Kalman filters; power system fault protec-
tion; safety

1. Introduction

Safety principles were initially considered in the military and nuclear areas and were
then transferred to transport, process and control industries. Particular sector standards,
dealing with safety critical points were defined afterwards. A large number of products
and processes satisfy the standards of IEC 61508, for instance, automotive safety products,
medical devices, sensors, actuators, diving equipment and process controllers. The inter-
national standard IEC 61508 (Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems) describes methods on how to apply, design, deploy
and maintain safety-related systems. The adaption of IEC 61508 for Automotive Elec-
tric/Electronic Systems is ISO 26262, which defines functional safety as: “The absence of
unreasonable risk due to hazards caused by malfunctioning behavior of electrical/elec-
tronic systems”. It further classifies malfunction of the electrical/electronic component into
two types of failures:

• Systematic failures
• Random failures.

Systematic failures are induced during development, manufacturing, or maintenance
(process issues) and can be addressed by safety management activities. Random failures
are hardware failures due to aging processes or random defects. They are addressed by
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safety mechanisms that detect or control faults to achieve or maintain a safe state of the
system. Some of these safety mechanisms are:

• Error correction code
• Hardware redundancy
• Built-in-self-test.

Detecting faults is one of the most challenging and important tasks in any field of
application, see [1,2]. In the presence of strong noise, detecting faults becomes a difficult
task. In [3], a new advancing coupled multi-stable stochastic resonance method, with two
first-order multi-stable stochastic resonance systems, namely CMSR, is proposed to detect
motor-bearing faults. Fault detection is also important in economy in which, very often,
fault assumes the meaning of risk. In [4], a novel first-hitting time model is established
to measure the relationship between the option reliability index and the value of risky
assets. Detecting faults and isolating them using observer-based techniques has been
applied to many technical fields. In this sense, a sensor fault detection scheme for induction
motors was proposed in [5]. An aircraft engine fault diagnostic system based on Kalman
Filters (KFs) was shown in [6]. Other examples for applied diagnosis systems are air
conditioning [7], multilevel converters [8] and DC-DC converters [9].

To achieve functional safety, the term “hardware redundancy” often means redundant
sensors, with all its drawbacks, including extra costs. In general, in the field of fault
detection and safety, observers are used to establish a strategy to detect faults and errors.
In [10], a Fuzzy observer based on Takagi–Sugeno (T-S) Fuzzy systems for sensor faults
is proposed. In this work, sufficient conditions are obtained by determining the Fuzzy
observer gains to detect sensor faults. However, in most publications, the observer used
for fault detection is a KF-based scheme. The KF is one of the most important and widely
used algorithms in the field of identification and observation for systems of any nature.
After the seminal work proposed in [11], many different articles were proposed in the
field of state observation which were summarized in surveys and books, see, for instance,
the pioneer contributions in [12,13]. More application-oriented works are those in which
discrete nonlinear systems are considered, as it is done in [14]. In this publication, it is
shown that under certain conditions, the Extended Kalman Filter (EKF) is an exponential
observer, i.e., the dynamics of the estimation error is exponentially stable. This is proven
by the direct method of Lyapunov. An introduction to discrete KF and EKF can be found
in [15]. More recently, in [16–18] and in [19], the author proposed different EKF structures
for a valve control in an Otto motor application. Another emerging field in which EKFs
are very often applied is the field state of charge estimation for batteries [20–22]. An up-to-
date paper [23] shows further advancement of equivalent circuit model-based EKF. In the
technical domain of synchronous drives, the KF has already found its way to many market-
ready products. Nevertheless, there are still implementation pitfalls, which are addressed
by [24]. Within the domain of power electronics, observers are used for a broad variety of
tasks. The detection of grid fundamental and harmonic components for synchronization
using a KF is described in [25]. In many cases, EKFs are used to estimate parameters.
In [26], a new state observer dedicated to an online estimation of the model parameters is
proposed. An example for parameter estimation of DC-DC converters using a KF can be
found in [27]. Another approach to estimate parameters in this context is to use Adaptive
infinite impulse response (IIR) filters, as [28] shows. In [29], a KF is utilized to estimate
junction temperature of insulated gate bipolar transistor (IGBT) power modules.

For DC-DC converters, which need to be functionally safe by means of ISO 26262,
redundant sensors are the standard safety mechanisms. In this context, this paper applies
two crossing Extended Kalman Filters in order to estimate possible sensor faults as represented
in Figures 1 and 2. The idea is to cross the information obtained by the output state
estimation (output voltage and output current) to detect the fault and to replace the
faulty sensor.
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Figure 1. Conceptual scheme of Sensor Fault Detection.

Figure 2. Conceptual scheme of Sensor Fault Detection with a possible control scheme.

This idea is based on the concept of the virtual sensor. A virtual sensor works parallel
to the real sensor and replaces the real sensor in case of fault. Moreover, the concept of
the virtual sensor is broader. In fact, if a system is observable, the observer offers a better
performance than the sensor. The main contribution of this paper consists in the following:

• Building a DC-DC state space-averaged converter model;
• Developing an observer-based fault detection scheme, consisting of two crossing EKFs,

see Figures 1 and 2;
• Producing real measurements to show the effectiveness of the proposed technique.

The possible proposed scheme estimates the states of a DC-DC converter and detects
the occurrence of sensor faults. Within the context of functional safety, the scheme is meant
to work as a redundant sensoring structure implemented in software. The structure works
in a cross-parallel form to the real sensors. This directly addresses random hardware failures
by “achieving or maintaining a safe state” according to ISO 26262. More in depth, after a
fault is detected, the other KFs provide the current signal and/or the voltage signal. In the
case where no fault occurs, the signals Faultsafe Current and Faultsafe Voltage of Figure 1 and
in Figure 2 are the sensor signals. If a fault is detected, the sensed signals are the estimated
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states generated by the cross-KF. In particular, in Figure 2, a possible scheme is shown in
which we can see how this strategy can be utilized by a possible control scheme.

The paper is organized in the following way. Section 2 is devoted to the DC-DC
Converter Model. Section 3 deals with the state estimation using augmented and extended
Kalman filters. Section 4 shows the proposed method for fault detection and isolation.
Experimental results and conclusions close the paper. In Appendix A, the Matlab code for
fault detection scheme is shown explicitly for the user.

2. DC-DC Converter Model

Many approaches are proposed to model DC-DC converters and one of the most
popular review contributions can be found in [30] in which a clear picture on the general
law and framework of the development of next-generation step-up DC-DC converters is
presented. Real reviews and classifications of various step-up DC-DC converters based on
their characteristics and voltage-boosting techniques are using concrete examples carried
out. Another general overview on these devices can be found in [31], even though, more
oriented on the dual-active-bridge isolated bidirectional DC-DC converter. One of these
approaches is to describe the converter by means of a hybrid system model (see, e.g., [32]).
Through this, a highly accurate model can be achieved in which the switching frequency
directly indicates the sample time for the solver. Because of this, these kind of models lead
to a high computational effort. The field of multi-harmonic modeling for DC-DC converters
is recently reconsidered, for instance, in [33]. In [33], the proposed modeling technique is
based on the large-signal averaged model of the PWM switch cell and on the Fourier series
expansion. Since the aim of this paper is to detect sensor faults within a real time scenario,
this model type is not reasonable. Another approach is to average over one switching
period, which leads to a highly reduced dynamic of the model. There are several methods
known from the literature which follow this general idea. In [34], most of these modeling
techniques are covered. Within this reference, the methods are called “The Basic AC
Modeling Approach”, “State-Space Averaging”, “Circuit Averaging” and “Averaged Switch
Modeling”. In this article, the “State-Space Averaging” technique is chosen, because it
leads to the most compact mathematical description of the system. A synchronous buck
converter as shown in Figure 3 is considered in this contribution. It is assumed that the
DC-DC converter only works in continuous conduction mode. This assumption means that
the converter does not work under light or no-load conditions, which for most applications
is a sufficient working condition. To apply averaging techniques, a first step is to separate
the model by its switch positions.

Figure 3. Equivalent circuit of a Buck Converter.

Therefore, the circuit shown in Figure 3 is separated into two subintervals. The length
of these intervals depends on the switching frequency fs =

1
Ts

and the duty cycle D of the
pulse width modulated (PWM) switch control input. During the first subinterval, where
switch T1 is closed (switch T2 open), the equivalent circuit reduces to the one shown in
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Figure 4. For this interval now, the differential equations in form of Equations (1) and (2)
are derived:

d
dt

x(t) = A1x(t) + B1u(t) (1)

y(t) = C1x(t) + E1u(t). (2)

Figure 4. Equivalent circuit for T = DTs.

For the second interval, where switch T2 is closed (T1 open), the remaining circuit is
shown in Figure 5.

Figure 5. Equivalent circuit for T = (1− D)Ts = Ts.

The next step is to derive differential Equations (3) and (4):

d
dt

x(t) = A2x(t) + B2u(t) (3)

y(t) = C2x(t) + E2u(t). (4)

To obtain a description for the whole system, the subintervals are merged by:

A = DA1 + (1− D)A2, (5)

B = DB1 + (1− D)B2, (6)

C = DC1 + (1− D)C2, (7)

E = DE1 + (1− D)E2, (8)

where the A, B, C, E are averaged matrices for a full switching interval. Applying this
method on the examined system in Figure 3, the averaged system matrices obtained are:
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A =


− RCin

RCout+RCout Rin+2 RCin
Rloss+2 Rin Rloss+2 D RCin

Rin

2 L (RCin
+Rin)

D Rin
L (RCin

+Rin)
RCout−2 Rout

2 L Rout

− D Rin
Cin (RCin

+Rin)
− 1

Cin (RCin
+Rin)

0

1
2 Cout

0 − 1
2 Cout Rout

, (9)

B =


D RCin

L (RCin
+Rin)

1
Cin (RCin

+Rin)

0

, C =

 1 0 0
0 1 0
0 0 1

, E =
[

0
]
, X =

 IL
VCin
VCout

, U =
[

Vin
]
, (10)

with

Rloss = Ron + RL,

Rout = Rsens + Rload.

These matrices fully describe the average system response. For the purpose of control
design, often an AC small signal model is sufficient. This can be calculated with the
following equations:

dx̂(t)
dt

= Ax̂(t) + Bû(t)

+ [(A1 − A2)X + (B1 − B2)U]d̂(t), (11)

ŷ(t) = Cx̂(t) + Eû(t)

+ [(C1 − C2)X + (E1 − E2)U]d̂(t), (12)

where the quantities x̂(t), û(t), ŷ(t), d̂(t) are small AC variations around the equilibrium
solution. The steady state and output vectors are calculated by:

X = −A−1BU,

Y = (−CA−1B + E)U,
(13)

where X, U, Y, D are the DC equilibrium components:

• X =̂ equilibrium state vector;
• U =̂ equilibrium input vector;
• Y =̂ equilibrium output vector;
• D =̂ equilibrium duty cycle.

3. State Estimation Using Augmented Extended Kalman Filters

Since the model of the considered DC-DC converter was derived in the previous
section, an observer based on the model can be designed. Due to the fact that the model
described by Equations (11) and (12) is nonlinear in nature, the nonlinearity is taken into
account in this step. For this task, there are several approaches known from the literature.
This broad field of applications makes the KF and its extended version one of the most used
estimation structures in the field of control systems. In this section, an EKF is implemented.
Although the KF can be written as a single equation, it is more often described with two
phases: the “Predict” and the “Update” phase. The “Predict” phase makes use of the
previous estimation to predict the current state. Within the “Update” phase, the current
prediction is combined with the current observation (measurement). This leads to an
improved state estimation. These two phases can be summarized by the equations listed
from Equation (14) to Equation (20).
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PREDICT PHASE

Predicted (a priori) state estimate:

x̂k|k−1 = f (x̂k−1|k−1, uk). (14)

Predicted (a priori) error covariance:

Pk|k−1 = FkPk−1|k−1FT
k + Qk. (15)

UPDATE PHASE

Innovation (or measurement pre-fit) residual:

ỹk = zk − Hk x̂k|k−1. (16)

Near-optimal Kalman gain:

Kk =
Pk|k−1HT

k

Rk + HkPk|k−1HT
k

. (17)

Updated (a posteriori) state estimate:

x̂k|k = x̂k|k−1 + Kk ỹk. (18)

Updated (a posteriori) estimate covariance:

Pk|k = (I − Kk Hk)Pk|k−1. (19)

Measurement post-fit residual:

ỹk|k = zk − Hk x̂k|k. (20)

To set up the filter, the following matrices have to be determined:

• F =̂ state transition matrix;
• H =̂ measurement matrix;
• R =̂ covariance matrix of measurement noise;
• Q =̂ covariance matrix of process noise.

For the state estimation within the fault detection scheme, EKFs are used. It has,
in general, the same structure as its regular version. The difference is that, the measure-
ments or the state transition model, or both, are nonlinear. Due to this, the discrete time
structure of the filter is utilized.

The state transition matrix F can be calculated by discretizing and calculating the
Jacobian matrix of the model described in Section 2. Since the load Rload of the DC-DC
converter can change while the converter is working, it has to be taken into account.
Therefore, another state is introduced by an augmented state variable Rout through the
following differential equation:

d
dt

Rout(t) ≈ 0, (21)

which states, in accordance with [15], the expression of a random constant which in the
discrete form assumes the following expression: Rk = Rk−1 + wRk , where wRk represents
the corresponding Gaussian white process noise associated with this equation. This state
extends the model defined in Section 2 to four states, which need to be considered during
further procedures. Next, the measurement matrix H needs to be determined. This
matrix follows from the output equation, the system defined in Section 2 adding the
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augmented state. For practical implementations of the Kalman filter, the main difficulty
is obtaining a good estimate for the noise covariance matrices Rk and especially Qk. Rk
contains the variance of the measurement. It can often be determined by knowing the
standard deviation of the sensor system that is used in the system. Supposing a sensor
has a standard deviation of σ, its R simply is R = [σ2], due to the fact that variance is the
square of the standard deviation. Determining the matrix for the process noise Qk is a more
challenging task. Procedures to adapt process noise covariance and measurements noise
covariance matrices are known in the literature. In [35], different algorithms and methods
are presented to calculate these two matrices using training data. The approach to guess
this matrix is taken from [36], within this publication. Here, a set of discretely sampled
points is used to parameterize this covariance matrix of the KF. In this way, the process
noise covariance matrix is calculated with a sample of measurements. The process noise
covariance is determined via calculations based on these measurements. By assuming that
some measurements can be done on the system, the main idea of this approach is to utilize
the sample mean of N measurements to obtain an estimate of this matrix. The sample
mean vector can be defined as:

X̄ =
1
N

N

∑
i=1

xi. (22)

Using these values as expected values, the deviation between observation and the
sample mean can be computed as (see [37]):

g = x̂k|k − X̄. (23)

In matrix form, this is:

G =


x̂1 − X̄1 x̂1 − X̄2 . . . x̂1 − X̄n
x̂2 − X̄1 x̂2 − X̄2 . . . x̂2 − X̄n

...
...

. . .
...

x̂n − X̄1 x̂n − X̄2 . . . x̂n − X̄n

. (24)

From this, the covariance matrix can be calculated as:

Q = G · GT =


σ2

1 σ12 . . . σ1n
σ21 σ2

2 . . . σ2n
...

...
. . .

...
σn1 σn2 . . . σ2

n

. (25)

σ represents the standard deviation of the states. This means, in the considered case, the ma-
trix describes the variance between estimated states and the mean of measurement sample
on the main diagonal. The other entries are the standard deviations between estimated
states and different state measurement samples. For the sake of brevity, the details for
the calculations of all these matrices are omitted. However, all necessary calculations are
described within this section and the observer is implemented.

4. Residual-Based Fault Detection and Isolation

Now that the model and observer have been derived in the previous sections, the next
step is to detect and isolate sensor faults. Therefore, every sensor under observation is
equipped with a KF. In the case being considered, the voltage sensor and the current sensor
are measuring the output voltage and the output current. Because these measurements are
not equal to the states defined in Section 2, the following equations are used to fit the states
to the measurements:

Iout = IL − CoutV̇Cout , (26)

Vout = VCout + RCout CoutV̇Cout . (27)
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For one observer, the measurement is the current and the estimated states are the
remaining ones including the augmented state Rout. The other observer is provided by the
voltage sensor data as measurements and estimates of the other states.

To detect and isolate sensor faults, measured and estimated states are compared with
each other. If the deviation exceeds a limit, a first a fault is detected. After this recognition,
the fault is isolated utilizing several logic operations (see Appendix A). Figure 6 shows the
general workflow of how faults are detected and isolated.

Figure 6. General process of sensor fault detection and isolation.

The outputs of the fault detection scheme are called “Faultsafe States” from now
on, in order to clearly separate them from measurements and estimated states. Firstly,
the estimated and measured states are compared to each other. If they are equal (within
a residual), the output (“Faultsafe State”) equals the measured states. If not, a fault is
detected. In such a case, the fault has to be isolated, which means a distinction must be
made between a current sensor fault and a voltage sensor fault. In case of a current sensor
fault, the “Faultsafe Current” is set to the estimated current and the “Faultsafe Voltage”
remains as the measured voltage. The exact opposite is the case in the event of a voltage
sensor fault, meaning that the “Faultsafe Voltage” is set to the estimated voltage and the
“Faultsafe Current” remains as the measured current. This guarantees that the proposed
scheme in the event of a single sensor fault provides correct state signals for a controller.
For better traceability and to gain a deeper insight, the program code of this procedure is
provided in Appendix A.

5. Experimental Results

Since the general structure of the fault detection and isolation approach were derived
in the previous sections, they have to be validated. For this purpose, a buck converter
prototype was constructed (see Figure 7).

Figure 7. Buck converter prototype.
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In order to generate PWM signals and do measurements, a “dSPACE DS1103” system
was used. A “PeakTech 2275” electronic load functions as variable load. Furthermore,
a “Grundig PN300” laboratory power supply was used to feed the system with power.
The complete system installation is shown in Figure 8.

Figure 8. System for test purposes.

For the sake of completeness, the parameters of the DC-DC converter prototype used
here are shown in Table 1.

Table 1. Variables and parameters.

Symbol Value Description

IL(t) – Current through the inductance (State variable)
VCin(t) – Input capacitor Voltage (State variable)
VCout(t) – Output capacitor Voltage (State variable)
Rout(t) – Load (Augmented state variable)

D – Duty cycle
RL 0.075 Ω Winding resistance of inductance

RDS(ON) 0.0395 Ω ON resistance of switch
Vin 10 V Input voltage
Rin 0.0001 Ω Resistance associated to the source input
RCin 0.095 Ω Resistance associated to the input capacitor
RCout 0.095 Ω Resistance associated to the output capacitor
Cin 180 µF Input capacitance
Cout 180 µF Output capacitance
Ts 10−4 s Sample time

The tests are done in a closed loop. As a first test, the Kalman filter response is tested
by ramping up the duty cycle from D = 0 to D = 0.5 within one second. For Rload = 2.5 Ω,
the response is shown in Figure 9. It can be seen that the first Kalman filter follows the
measured signal nearly exactly. The second filter follows the voltage measurement exactly,
which is a consequence of being its measured state. The current estimation reaches the
steady state in about 0.3 s after D is constant (after the transient is completed).



Sensors 2021, 21, 6516 11 of 18

0 2 4 6 8 10
t [s]

-4

-2

0

2

4

I ou
t [A

]

I
out

 Measurement

I
out

 Kalman
1

I
out

 Kalman
2

0 2 4 6 8 10
t [s]

-1

0

1

2

3

4

5

6

V
ou

t [V
]

V
out

 Measurement

V
out

 Kalman
1

V
out

 Kalman
2

Figure 9. Ramp response for D = 0 to D = 0.5 at Rload = 2.5 Ω.

As depicted in Figure 10 with Rload = 5 Ω, both filters react in a similar manner. The
Kalman2 filter now attains its steady state in approximately 0.4 s after the duty cycle is con-
stant.
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Figure 10. Ramp response for D = 0 to D = 0.5 at Rload = 5 Ω.

Comparing the different ramp-up tests with each other, it can be observed that for all
tests, the voltage estimation is very accurate and fast. However, the current estimation for
the second Kalman filter is less accurate until steady state is reached. Considering that the
load is also an estimated state, this highly depends on its starting value. Other factors that
can explain this behavior are:

• The starting values of the Kalman filters for the current estimation and especially
the covariances;

• Current measurement becomes more inaccurate with smaller currents;
• Current sensor only works with a minimal current.

Within the possible control scheme of Figure 2, the voltage loop is the outer loop. This
means that the voltage controller provides the setpoint for the current controller. Therefore,
a slower response of the current estimation will only slightly influence the controller
response. A second test validates the sensor fault detection scheme. Here, the converter is
operated at a constant duty cycle of D = 0.5 and the sensor is disconnected at a random
time. After a fault is detected, the other KF provides the current signal. In the case where
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no fault occurs, the signals IoutFaultsa f e and VoutFaultsa f e are the sensor signals. If a fault
is detected, the signals are the estimated states generated by the cross-KF. As shown in
Figure 11, a current sensor fault occurs at t ≈ 4.8 s. In this case, no interruption of the
IoutFaultsa f e signal can be determined. For the voltage, the signal is still provided by the
sensor. To recall, after a fault is detected, the other KFs provide the current signal and/or
the voltage signal. In the case where no fault occurs, the signals Faultsafe Current and
Faultsafe Voltage of Figures 1 and 2 are the sensor signals. If a fault is detected, the signals
are the estimated states generated by the cross-KF. In Figures 11 and 12, it is possible to see
how the KFs “replace” the faulted signal. In particular, in Figure 2, a possible scheme is
shown in which we can see how this strategy can be utilized.
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Figure 11. Current Sensor Fault at Rload = 2.5 Ω.
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Figure 12. Current Sensor Fault at Rload = 5 Ω.

For a reduced electrical load of Rload = 5 Ω as displayed in Figure 12, the behavior
remains similar.

Next, the voltage sensor fault detection is tested. The general test scenario remains
the same. The sensor is randomly disconnected while the converter runs at a constant duty
cycle of D = 0.5. Doing so yields the response as shown in Figure 13. In fact, in Figure 13
and in Figure 14, it is possible to see how the KFs “replace” the faulted signal. It can be
observed that, in such a situation, the fault detection takes some time to register the fault.
From Figure 15, it is possible to see a particular of the voltage sensor fault. The transient
takes around 100 ms and the recognition of the faults is around 99% of the tested cases.
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Figure 13. Voltage Sensor Fault at Rload = 2.5 Ω.
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Figure 14. Voltage Sensor Fault at Rload = 5 Ω.
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Figure 15. Particular of the voltage Sensor Fault at Rload = 5 Ω.

A further increase of Rload to 5 Ω leads to a response as it is depicted in Figure 14.
The behavior remains similar to the first test.

From Figure 15, it is possible to see a particular of the voltage sensor fault. The tran-
sient takes around 100 ms.

The next test is performed in the following way. The sensor is disconnected at a
random time and afterwards, the load is changed from Rload = 2.5 Ω to Rload = 5 Ω. For a
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current sensor fault, the behavior is depicted in Figure 16. In addition, in Figure 16 and in
Figure 17, it is possible to see how the KFs “replace” the faulted signal.
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Figure 16. Current Sensor Fault at Rload = 2.5 Ω with load change to Rload = 5 Ω.
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Figure 17. Voltage Sensor Fault at Rload = 2.5 Ω with load change to Rload = 5 Ω.

The same test with the voltage sensor produces the following response (Figure 17).
Under all tested scenarios, the fault detection detected the sensor fault. From a

functional safety point of view, there are two possibilities to handle the detected faults:

• Switching off the converter by setting D = 0;
• Continue operation with estimated signals.

From the definition of functional safety, “to achieve or maintain a safe state”, both
handling options are in agreement with ISO 26262.

Remark 1. In the field of EKFs, typically, we are not able to prove the convergence of the estimation
algorithm. The reason of that is rooted in the non-convexity of the optimization problem due to the
nonlinear (switching) nature of the system. Nevertheless, the EKFs generate very good practical
results in terms of performance, see [12]. In fact, if the filters are well tuned, the EKFs reach a
good suboptimal performance almost always. Nevertheless, the tuning problem is in general a
hard problem, in particular, if an adaptation of the process and of the measurement noise matrices
is needed. In this specific case, due the stationarity of the problem, once the tuning process is
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realized, the EKFs offer a good result without any adaptation. The method used in this paper is
taken from [36] and is sketched in Equations (22)–(25).

6. Conclusions and Future Perspectives

The manuscript focuses on achieving functional safety within a DC-DC converter,
without having hardware-redundant sensors. For this purpose, the converter under inves-
tigation is modeled. Since the proposed fault detection and isolation scheme are based on
EKF, a brief description for this algorithm is given. Basing on this knowledge, a residual-
based fault detection and isolation scheme are described. The proposed structure consists
of a cross-combination of EKFs. This means that, the EKFs work in parallel with a sensor,
but it is provided with the measurement of another one. Real measurements are included to
show the effectiveness of the application. Future work includes the possibility to apply this
algorithm to different architectures of DC-DC converters and to test also different control
strategies such as, for instance, Sliding Mode Control. Due the structural non-convexity
of the EKFs, in order to improve also the performance of the EKFs, a Particle Swarm
Optimization Method can be possibly applied to improve the tuning of the EKFs.
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Nomenclature

A State-transition averaged matrix for a full switching interval
B Input averaged matrix for a full switching interval
C Output averaged matrix for a full switching interval
E Input-output averaged matrix for a full switching interval
D Duty cycle of the pulse width modulated (PWM) switch control input
A1 State-transition matrix during the first subinterval T = DTs

where switch T1 is closed and switch T2 open,
see Figures 3 and 4

B1 Input matrix during the first subinterval T = DTs
where switch T1 is closed and switch T2 open,
see Figures 3 and 4

C1 Output matrix during the first subinterval T = DTs
where switch T1 is closed and switch T2 open,
see Figures 3 and 4
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E1 Input-Output matrix during the first subinterval T = DTs
where switch T1 is closed and switch T2 open,
see Figures 3 and 4

A2 State-transition matrix during the second subinterval T = (1− D)Ts
where switch T1 is closed and switch T2 open
see Figures 3 and 5

B2 Input matrix during the second subinterval T = (1− D)Ts
where switch T1 is closed and switch T2 open
see Figures 3 and 5

C2 Output matrix during the second subinterval T = (1− D)Ts
where switch T1 is closed and switch T2 open
see Figures 3 and 5

E2 Input-Output matrix during the second subinterval T = (1− D)Ts
where switch T1 is closed and switch T2 open
see Figures 3 and 5

Appendix A. Matlab Code for Fault Detection Scheme

Listing A1. Matlab commands for fault detection.

1 function[Iout,I_Fault,Vout,V_Fault]= ...
2 fcn(IoutM,IoutK1,IoutK2,VoutM,VoutK1,VoutK2)
3

4 I_Fault=0;
5 V_Fault=0;
6 ConI1=abs(IoutM-IoutK1)
7 ConI2=abs(IoutM-IoutK2)
8 ConV1=abs(VoutM-VoutK1)
9 ConV2=abs(VoutM-VoutK2)

10 CondI2=abs(IoutK2(k)-IoutK2(k-1))
11

12 if ConI2>res1 && ConV2<res2 && ConI1<res3
13 if CondI2 < res4
14 I_Fault=1;
15 else
16 I_Fault=0;
17 end
18 else
19 I_Fault=0;
20 end
21

22 if ConV1>res5 && ConI1<res6 && ConV2>res7
23 V_Fault=1;
24 else
25 V_Fault=0;
26 end
27

28 if I_Fault==1 && V_Fault==0
29 Iout=IoutK2;
30 Vout=VoutM;
31 elseif V_Fault==1
32 Iout=IoutM;
33 Vout=VoutK1;
34 else
35 Iout=IoutM;
36 Vout=VoutM;
37 end

Within this code listed in Listing A1, variables ending in “M” are measurements. “K1”
and “K2” denote an estimation by the first or the second Kalman filter. The “res” term
denotes several residuals and “k” marks the actual time step.
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Appendix B. Jacobian

Starting from the discrete state transition matrix, with the following calculations, the
Jacobian matrix, implemented in the Extended Kalman Filter, can be derived:

Ad = I3×3 + Ts A (A1)

and, thus,

Ad =


1− Ts

RCin
RCout+RCout Rin+2 RCin

Rloss+2 Rin Rloss+2 D RCin
Rin

2 L (RCin
+Rin)

Ts
D Rin

L (RCin
+Rin)

Ts
RCout−2 Rout

2 L Rout

−Ts
D Rin

Cin (RCin
+Rin)

1− Ts
1

Cin (RCin
+Rin)

0

Ts
1

2 Cout
0 1− Ts

1
2 Cout Rout

. (A2)

If the augmented state Rout is considered, then the Jacobian matrix is as follows:

Jd =


1− Ts

RCin RCout+RCout Rin+2 RCin Rloss+2 Rin Rloss+2 D RCin Rin

2 L (RCin+Rin)
Ts

D Rin
L (RCin+Rin)

Ts
RCout−2 Rout

2 L Rout
Ts
−RCout
2 L R2

out

−Ts
D Rin

Cin (RCin+Rin)
1− Ts

1
Cin (RCin+Rin)

0 0

Ts
1

2 Cout
0 1− Ts

1
2 Cout R2

out

0 0 0 1

. (A3)

It is to recall that Ts = 10−4 which implies a sampling frequency of 10 kHz.
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