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1  | INTRODUC TION

Forest plantations are established globally to provide multiple eco-
system services such as the production of timber, fuel and pulpwood 
(FAO,  2010). Specifically, global afforestation and reforestation 

efforts are among the major nature-based solutions employed to 
combat the adverse impacts of climate change. Currently, 168 Mha 
of degraded and deforested land, mainly located in the tropics and 
subtropics, has been pledged as restoration areas under the ‘Bonn 
Challenge’ (IUCN,  2020). A large part of this area is intended for 
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Abstract
1.	 Forest structural complexity has been identified as an important driver for pro-

moting simultaneously biodiversity across trophic levels and multiple ecosystem 
services. However, we still have a limited understanding of the processes that lead 
to structural complex stands and how they evolve over time.

2.	 Using terrestrial laser scanning (TLS), we quantified a three-dimensional (3D) stand 
structural complexity index (SSCI) in an experimental plantation with a long gradi-
ent of tree species richness (1–24 species). The plantation was established in 2009, 
and we made use of a multi-temporal TLS dataset recorded during 2012–2019.

3.	 We found a positive relationship between tree species richness and structural 
complexity. This relationship became stronger over time. Ten years after plant-
ing, SSCI was on average two-fold higher in 16- and 24-species mixtures than in 
monocultures. Furthermore, we demonstrate that tree species richness promotes 
3D stand structural complexity indirectly by fostering a high vertical heterogene-
ity and thus greater spatial complementarity in canopy space.

4.	 Synthesis and applications. Our findings indicate that tree species richness plays 
a crucial role in promoting stand structural complexity in young plantations, and 
this role becomes more important already during early stand development. Thus, 
afforestation measures would benefit from planting multiple native tree species 
to initiate structurally complex stands.
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plantations of commercial trees, mostly as monocultures (Lewis 
et  al.,  2019). In recent years, however, there has been increasing 
criticism of monospecific stands due to their great susceptibility to 
adverse environmental conditions (e.g. storm, fire), pests, diseases 
and invasive species, and their negative effects on soil productivity 
and fertility (Liu et al., 2018; Piotto, 2008). Moreover, there is ro-
bust evidence of a strong positive relationship between tree species 
diversity and ecosystem services (e.g. primary productivity, carbon 
sequestration, nitrogen retention; Chen et  al.,  2020; Felipe-Lucia 
et  al.,  2018; Huang et  al.,  2018; Lang et  al.,  2014; Zemp, Gérard, 
et  al.,  2019). Diverse tree mixtures are also expected to promote 
species-rich communities across trophic levels (Schuldt et al., 2018) 
and have been found to show higher resistance to environmental 
stressors such as climate change (Fichtner et al., 2020). Importantly, 
Forrester and Bauhus (2016) and Schuldt et al. (2019) found that not 
only species richness and functional diversity but also the struc-
tural diversity of tree stands is a highly relevant mediator of these 
beneficial diversity effects. This is because growth characteristics, 
branching architecture and space occupation of trees affect the 
spatial complexity of the canopy space, microclimates and species 
interactions. Furthermore, the idea of ‘resilience’ or ‘adaptive’ com-
plexity has been introduced into forest and plantation management 
in recent years in order to promote the resilience or adaptive capac-
ity of managed stands to current and future environmental changes 
and stressors (Fahey et  al.,  2018). Management recommendations 
should therefore include measures to preserve and enhance struc-
tural complexity. From a scientific perspective, it is essential that we 
obtain a deeper understanding of the role of tree species richness in 
the restoration of stand structural complexity.

Species mixing has the potential to influence the canopy structure 
of tree communities because tree crown complementarity (i.e. the 
physical niche partitioning in canopy space) increases with tree spe-
cies richness (Kunz et al., 2019; Williams et al., 2017). Crown comple-
mentarity can be explained by the functional diversity of tree mixtures 
and by the diversity-driven plasticity of tree crowns. Recent work has 
shown that changes in crown morphological plasticity may be the re-
sult of shifts in tree biomass allocation induced by neighbourhood in-
teractions in mixed-species tree communities (Guillemot et al., 2020; 
Kunz et al., 2019). Notably, species mixing also leads to differences in 
the inner crown properties (Pretzsch, 2014). Trees growing in mixtures 
may have significantly more branches of the first orders and a higher 
sum of branch lengths than those in monocultures (Bayer et al., 2013; 
Guillemot et al., 2020; Kunz et al., 2019). As a result, these differences 
in the crown structure of individual trees enhance canopy space-use 
efficiency and, thus, above-ground resource utilisation in mixed-
species stands. At the same time, the canopy space is more heteroge-
neously structured and more complex (Hess et al., 2018).

Stand structural complexity can be defined as the degree of het-
erogeneity of the three-dimensional (3D) distribution of biomass 
(Ehbrecht et  al.,  2021 and the conceptual framework therein). It has 
been described in various ways, covering both indices that include 
only single stand structural attributes (e.g. horizontal tree distribu-
tion, stand density, tree size differentiation) and indices that combine 

several attributes (so-called ‘structural complexity indices’; Juchheim 
et  al.,  2019; McElhinny et  al.,  2005). Previous studies found varying 
relationships between tree diversity and stand structural complexity, 
ranging from positive to neutral responses (Hakkenberg et  al.,  2016; 
Neumann & Starlinger, 2001). All these measures of structural complex-
ity using conventional approaches, however, are based on one- or two-
dimensional attributes but do not consider the 3D nature of forest (stand) 
structures in detail. This lack might be a particular shortcoming when 
considering mixed-species stands, given the importance of diversity-
induced tree crown architectural changes and plasticity-driven canopy 
space exploitation. Furthermore, complex 3D stand structures emerge 
through time. Trees store carbon in long-lived structural elements, such 
as trunks and branches, and therefore can be considered ‘long-term re-
cords’ of the effects of tree–tree interactions and growth responses of 
the past. In addition to patterns of species richness and composition, 
such tree–tree interactions might be shaped by the extent of tree age-
disparity within a stand (i.e. even- vs. uneven-aged stands alongside with 
demographic variation and development). Analyses of stand structural 
complexity thus need to consider the temporal dynamics.

Terrestrial laser scanning (TLS) technology has proved to be 
an appropriate tool to quantify both the spatial and temporal dy-
namics of forest structural complexity (Liang et al., 2016). TLS is a 
time-efficient and non-destructive surveying technique for the mea-
surement of the 3D structural elements of trees and delivers a fully 
3D representation of tree stands. As such, it is a state-of-the-art 
technique that allows the study of forest structure in great detail 
and at high spatio-temporal resolution.

Ehbrecht et al.  (2017) developed a stand structural complexity 
index (SSCI) that is based on TLS data and measures forest structural 
complexity according to the 3D spatial arrangement of all visible 
vegetation objects within a single laser scan. The index is comprised 
of two elements, the mean fractal dimension (MeanFrac, Figure S1) 
scaled by the effective number of layers (ENL, Figure S2). MeanFrac 
depends on the density of structural elements (e.g. branches, twigs), 
whereas ENL describes the vertical stratification. Applying the SSCI 
to mature temperate forests of Germany, Ehbrecht et al. (2017) and 
Juchheim et al.  (2019) observed a positive, but saturating relation-
ship between the SSCI and tree diversity. These forests are species-
poor with one dominant tree species per plot and a few admixed 
species, with a maximum value of the exponential Shannon Index 
of about four. In a very young experiment (three years after plant-
ing) with six tree species planted in a tropical oil palm plantation, 
Zemp, Ehbrecht, et  al.  (2019) found the same relationship. At this 
very early stage of the experiment, MeanFrac showed the same pat-
tern as SSCI, whereas no significant relation between ENL and tree 
diversity was observed. In all three studies, however, the diversity 
gradient was rather short (exponential Shannon-Index mainly lower 
than three and max. tree species richness of six), and the question 
remains as to whether these findings hold in a highly diverse system 
spanning a long tree diversity gradient under experimentally con-
trolled conditions. Furthermore, as only one-time measurements 
were made and no time series analyses were conducted, the dynam-
ics of tree interactions remained unexplored.
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Here, we made use of TLS technology to analyse 3D stand struc-
tural complexity at a high resolution over multiple years in a large-
scale forest biodiversity ecosystem functioning (BEF) experiment 
established in 2009 in the Jiangxi Province in subtropical China 
(BEF-China; Bruelheide et al., 2014). We quantified the SSCI based 
on six annual TLS data recordings conducted during 2012–2019 in 
plots covering a diversity gradient of tree species richness (TSR) 
ranging from monocultures to 24-species mixtures. We hypothe-
sised that (a) TSR positively affects stand structural complexity, (b) 
TSR effects on stand structural complexity increase over time and (c) 
TSR effects on stand structural complexity are mainly mediated by 
changes of one of its elements, MeanFrac or ENL. We thus strive to 
determine to what extent and over what time-scale TSR can foster 
3D structural complexity in forest plantations.

2  | MATERIAL S AND METHODS

2.1 | Study site

The BEF-China tree diversity experiment is located in Jiangxi province 
in southeast subtropical China (29.08°–29.11°N, 117.90°–117.93°E, 
100–300 m a.s.l.; Bruelheide et al., 2014). The natural forest around 
the study site consists of subtropical mixed broad-leaved species, 
both deciduous and evergreens. The mean annual temperature is 
16.7℃ and mean precipitation is 1,821  mm/year (averaged from 
1971 to 2000; Yang et al., 2013).

The experiment consists of two sites (A and B), established in 
2009 and 2010, respectively, with a total of 566 plots comprising 
tree species richness levels from 1 to 24 and different species com-
positions (with a random allocation of richness levels and composi-
tion to plots; see Bruelheide et al., 2014 for more details). On each 
plot, covering 25.8 × 25.8 m, 400 trees were planted in a regular grid 
with a planting distance of 1.29 m, with species randomly assigned 
to planting positions. Here, we analyse data from 49 plots of site A 
(for details on sample plot selection, see Methods S1). Plots have 
an experimentally established tree species richness gradient of 1, 2, 
4, 8, 16 and 24 species, on 20, 15, 6, 3, 3 and 2 plots respectively. 
Each plot in our study was scanned at least twice using TLS within 
the period between 2012 and 2019 (see Table  S1). Due to faster 
and lighter TLS systems, more plots have been scanned within the 
recent years 2015–2019 compared to 2012–2014. Because of that, 
we also tested our hypotheses in a subsample of 30 plots that were 
repeatedly scanned in 2013, 2015 and 2019. The plots included in 
our analyses showed tree mortality rates less than 80% (based on 
the inventory from 2016, see below). Further plot information is pro-
vided in Table S1.

2.2 | Terrestrial laser scanning data

Terrestrial laser scanning data were collected using a FARO Focus 
S120 and a FARO Focus X130 laser scanner in 2019, a FARO Focus 

S120 in 2016, 2015 and 2014 and a FARO Photon Scanner in 2013 
and 2012 (FARO Europe, Korntal-Münchingen, Germany; for a de-
tailed description of scan campaigns, see Kunz et al., 2019). All scan 
campaigns were conducted in February–March under leaf-off condi-
tions of the deciduous tree species. A single scan was captured at 
the centre of each plot. We used a spatial resolution of 10,240 points 
per 360°, corresponding to a resolution of around 6 mm at a distance 
of 10 m. The laser scanner was set up on a tripod at 1.3 m height. All 
scans were performed under clear skies and almost windless condi-
tions. For a test on the dependency of SSCI values on scanner posi-
tion and leaf conditions, see Methods S2.

2.3 | Stand structural complexity index

For each single scan from the plot centre, we computed the SSCI 
according to Ehbrecht et  al.  (2017) (for detailed explanations of 
how the index works, see Ehbrecht et al., 2021). Prior to the SSCI 
computation, all scans were filtered for possible noise and stray 
points using a statistical outlier removal filter (SOR, N = 10, SD = 3) 
in CloudCompare 2.9.1 software. To ensure that the index only in-
cluded points representing the plot structure, we restricted the 
point cloud to a radius of 10 m around the scan position (~315 m²).

The SSCI is defined as:

where ‘MeanFrac’ is the mean fractal dimension index and ‘ENL’ is the 
effective number of layers.

To calculate the MeanFrac (Ehbrecht et  al.,  2017), each point 
cloud was divided into 2,560 cross sections. The points of each 
cross section were sorted by angle and combined in a polygon. The 
MeanFrac was calculated as the mean value of the fractal dimension 
of the 2,560 cross sections (cf. Figure S1). For the calculation of ENL 
(Ehbrecht et al., 2016), we converted the 10 m radius point cloud to 
a voxel grid. We applied a slope correction to align the layers parallel 
to the ground surface. Then, we quantified the proportion of filled 
voxels in relation to the total voxels of each slice, and the ENL was 
computed using the inverse Simpson Index (for details on the calcu-
lation of ENL and slope correction, see Methods S3 and Figure S2).

SSCI, MeanFrac and ENL were computed using R 4.0.2 (R Core 
Team,  2018) with the packages VoxR (Lecigne et  al.,  2014) and sp 
(Pebesma & Bivand, 2005).

2.4 | Inventory-based structural indices

The trees in the core area of each plot have been measured since 2010 
using traditional inventory methods (Li et al., 2014). Information on 
survival, species identity, stem diameter 5 cm above ground (ground 
diameter GD) and tree height were collected for each year between 
2010 and 2016. We calculated inventory-based indices of struc-
tural complexity (in the vertical and horizontal domain) using the 
standard deviation (SD), coefficient of variation and Gini-coefficient 

SSCI = MeanFrac
ln(ENL)

,
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(Cowell, 2011) of GD and tree height for each plot and tested the 
relationship between these indices and TSR. We also calculated the 
mortality per plot using the last complete inventory data available 
from the year 2016.

2.5 | Statistical analyses

We fitted linear mixed-effects models (Zuur et al., 2009) to evaluate 
the effects of TSR and study year on stand structural complexity. To 
test for temporal dependency of TSR effects, we also considered the 
interaction TSR × year. Tree species composition and its interaction 
with year (correlated random slope), as well as study plot, were used 
as crossed random effects (Figure S3). Year 0 was considered as the 
year of plantation, 2009. The models were fitted separately to SSCI, 
MeanFrac, ENL and inventory-based structural complexity indices. 
To test whether our results depended on the consistency of tempo-
ral measurements, we additionally fitted the models to a subsample 
containing those 30 plots that were consistently scanned in 2013, 
2015 and 2019. Fixed factors were standardised around their mean 
value with a standard deviation of one before fitting the models. 
Prior to analyses, the dependent variables and TSR were log2 trans-
formed to meet model assumptions (i.e. homogeneity, independence 
and normality; Zuur et al., 2009). Residuals plots showed no violation 
of these assumptions. To test the relationship between all the struc-
tural complexity indices applied, we calculated Pearson's correlation 
coefficients.

To test how the SSCI–TSR relationship varies with species iden-
tity, we separately fitted linear regression models for 16 species 
measured in 2019. We analysed those tree species that were present 
in at least four of the analysed plots from 2019 (Table S2).

Furthermore, we conducted a path analysis to explore driv-
ers for SSCI using a piecewise approach that allows for the im-
plementation of random effects (using the same random structure 
as described above; Lefcheck,  2016). We tested the hypothesis 
that TSR effects on SSCI were mediated by changes in MeanFrac 

and/or ENL. We further hypothesised that changes in MeanFrac, 
ENL and SSCI are driven by stand development (study year). All 
variables were standardised and transformed as described above 
and the model fit was evaluated based on Fisher's C statistics 
(Lefcheck, 2016).

All statistical analyses were performed in R 4.0.2 (R Core 
Team, 2018) using the packages lmerTest (Kuznetsova et al., 2017), 
piecewiseSEM (Lefcheck, 2016) and MuMIn (Barton, 2019).

3  | RESULTS

In general, we observed a positive relationship between TSR 
and structural complexity (Figure  1, Table  1, Figures  S4 and S5, 
Tables  S3 and S4). Importantly, these effects became stronger 
over time for the TLS-based indices, as indicated by the significant 
two-way interactions (Figure 1, Table 1). Ten years after planting, 
we found a twofold increase of the SSCI in 16- and 24-species 
mixtures compared to monocultures. MeanFrac decreased slightly 
with TSR during the first years, while these effects became neu-
tral to positive over time (Figure 1b, Table 1). These relationships 
were qualitatively the same when fitting the models to those plots 
that were repeatedly measured in 2013, 2015 and 2019 (Table S3, 
Figure S4).

The temporal development of TSR effects, however, differed 
among the inventory-based indices (Table S4, Figure S5). The pos-
itive relationship between the SD of GD and TSR was present from 
the first study year and remained constant over time (i.e. no signif-
icant interaction with year), whereas the positive relationship be-
tween the SD of tree height and TSR became stronger with time (i.e. 
positive interaction with year). In contrast, TSR effects varied with 
year for the coefficient of variation and the Gini coefficient of GD, 
but not for those of tree height (Table S4). All inventory-based in-
dices were closely positively correlated to each other, whereas the 
correlations between SSCI and the inventory-based indices were 
mostly nonsignificant (Figure S6).

F I G U R E  1   Temporal changes in the relationship between tree species richness and different components of stand structural complexity 
(a: stand structural complexity index (SSCI); b: mean fractal dimension (MeanFrac); c: effective number of layers (ENL)). Lines show the 
predictions of linear mixed-effects models, and symbols indicate observed values
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The positive relationship between TSR and SSCI was consistent 
across species: In 2019, all species showed a positive relationship 
between SSCI and TSR, meaning that monocultures display lower 
stand structural complexity than the mixtures where they were 
present (Figure 2). The relationship between TSR and SSCI was sig-
nificant at p < 0.01 for six species (Table S2). Tree mortality did not 
affect SSCI (p = 0.29).

The path model resulted in a good fit to the data (Fisher C = 1.25, 
df  =  2, p  =  0.536) and TSR, ENL, MeanFrac and Year accounted 
for 97% of the variation in SSCI. ENL (p  <  0.001) and MeanFrac 
(p < 0.001) had a positive direct effect on SSCI with ENL being the 
strongest driver for changes in SSCI (Figure 3). We found no signif-
icant direct pathway between TSR and SSCI (p  =  0.375). Instead, 
TSR enhanced SSCI indirectly via increasing ENL (p = 0.020) and not 
via increasing MeanFrac (p = 0.431), indicating that TSR effects on 
SSCI are mediated by changes in ENL. ENL, in turn, was positively 
related to stand development (p < 0.001), while SSCI and MeanFrac 
were not directly affected by changes over time (SSCI: p = 0.849; 
MeanFrac: p = 0.486).

4  | DISCUSSION

Ten years after establishment, we found a significant positive re-
lationship between 3D stand structural complexity (expressed as 
TLS-data-based SSCI) and TSR across a broad diversity gradient 
in a subtropical experimental tree plantation, thus confirming our 
first hypothesis that TSR positively affects stand structural com-
plexity. This is an important finding because it demonstrates that, 
already in young plantations, management decisions can consider-
ably contribute to the improvement of stand structural complexity. 
Stand structural complexity, in turn, is considered a key component 
of biodiversity in tree communities and an important driver of vari-
ous ecosystem functions. For example, there is evidence that stand 
structural complexity positively affects the abundance and species 
richness of consumers (Schuldt et al., 2019), the robustness of mul-
titrophic interactions (Fornoff et al., 2019), as well as the resilience 
to current and future environmental changes and stressors (Fahey 
et al., 2018).

Our findings are in part consistent with those from other studies 
using TLS-based SSCI assessments (Ehbrecht et al., 2017; Juchheim 
et al., 2019; Zemp, Ehbrecht, et al., 2019), but differ with regard to an 
important element: While those studies observed a nonlinear posi-
tive relation with saturation at relatively low tree diversity, we found 
that log-SSCI consistently increased with log-TSR across a long gra-
dient of TSR (up to 24-species mixtures). This discrepancy might be 
partially explained by differences in the aboveground biomass of for-
ests of different biomes, since subtropical tree species (as analysed 
in the present study) have the potential to accumulate significantly 
higher amounts of biomass in their canopy as compared to temper-
ate tree species (Keeling & Phillips, 2007), but potentially also by the 
length of the diversity gradient itself and by the limited representa-
tion of plots with very high diversity levels in the studies by Ehbrecht TA
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et al. (2017), Juchheim et al. (2019) and Zemp, Ehbrecht, et al. (2019). 
The temperate forests of Central Europe are generally poor in tree 
species, and accordingly, the tree diversity gradient in the studies 
by Ehbrecht et al. (2017) and Juchheim et al. (2019) was narrow. A 
cessation of the increase of the SSCI with increasing tree diversity 
already occurred at exponential Shannon index values of about 2. 

In an experimental enrichment plantation of six native broadleaved 
tree species in commercial oil palm monocultures in tropical Sumatra, 
Indonesia, the tree species richness gradient ranged, in the majority 
of cases from 0 to 3, with only two five-species and one six-species 
plots (Zemp, Ehbrecht, et al., 2019). It thus remains open whether 
considerably longer tree diversity gradients in the temperate and the 
tropical biome would yield a similar linear increase in 3D stand struc-
tural complexity with increasing tree species richness, as observed 
in our subtropical plantation.

4.1 | Temporal changes in TSR−stand structural 
complexity relationships

Another important factor that might influence the mode of the 
relationships between tree diversity and SSCI is the age of the 
trees. This is of particular relevance in communities with long-
living individuals such as trees, as they record the history of past 
growth and interactions with the environment in long-lasting 
woody structures. In accordance with our second hypothesis, 
stand development proved to be an important predictor for 
structural complexity: Whereas relationships between TSR and 
SSCI were slightly negative at the beginning of the measurement 
period in 2012–2013 (i.e. in the third and fourth year after plant-
ing), they proved to be strongly positive after 10  years. This is 
a clear indication that the importance of positive species inter-
actions (e.g. resource partitioning and facilitation) strengthened 
over time. This in turn might be a key mechanism underlying posi-
tive TSR−SSCI relationships. Due to the high planting density in 
BEF-China, early onset of tree–tree interactions was observed 
already in the first years after planting (Li et al., 2014). However, 
diversity-mediated patterns in biomass allocation resulting in 
morphological adjustments in the 3D tree architecture and hence 

F I G U R E  2   Relationship between 
tree species richness (TSR) and stand 
structural complexity index (SSCI) for 16 
tree species measured in 2019. TSR = 1 
means that the plot was planted as a 
monoculture. Dotted lines show non-
significant (p > 0.1), solid lines indicate 
significant (p < 0.1) relationships. Symbols 
indicate observed values jittered to 
facilitate visibility
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F I G U R E  3   Path model linking the effects of tree species 
richness (TSR), effective number of layers (ENL), mean fractal 
dimension (MeanFrac), stand development (year) and stand 
structural complexity (SSCI). Solid arrows denote significant causal 
relationships (*p < 0.05, **p < 0.01, ***p < 0.001), while non-
significant (p > 0.05) relationships are indicated by dotted arrows. 
Numbers beside arrows (standardised path coefficients) and arrow 
width denote the effect size of the pathways. Percentage values 
(blue) are explained variances of fixed-effects only (marginal R² 
values)
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positive diversity−productivity relationships need time to de-
velop (Kunz et al., 2019). Zemp, Ehbrecht, et al., (2019) conducted 
a single measurement 3 years after planting and found that the 
variability of SSCI was mainly explained by species identity ef-
fects rather than tree species interactions. However, the authors 
expected this pattern to change over time as trees develop larger, 
more complex and plastic crowns. In line with Zemp, Ehbrecht, 
et  al.  (2019), we observed a high variation of SSCI values in 
monocultures within the individual study years. This might be 
attributed largely to major trait differences among the planted 
tree species in BEF-China, which in turn result in substantial 
differences in growth rates (Li et  al.,  2014, 2017). In our study, 
however, we can exclude strong species identity effects on the 
overall TSR−SSCI relationship, since the positive relationship be-
tween TSR and SSCI in 2019 was consistent across the 16 tree 
species most abundant in our study, meaning that all the species, 
independently of their traits, showed lower stand structural com-
plexity in monocultures than in mixtures 10 years after planting. 
This also suggests that differences in mortality rates are of minor 
importance. Based on the findings of Bruelheide et al. (2011), we 
do not expect a reduction of structural complexity in species mix-
tures in the long term, because, in a natural forest nearby the ex-
perimental site, young and old stands did not differ with respect 
to species composition or richness.

4.2 | Relationship between TSR and inventory-
based stand structural complexity indices

Although all inventory-based indices displayed the same overall 
positive relation with TSR as SSCI, the development over time was 
different. Importantly, all TSR−inventory-based index relationships 
were positive from the beginning (i.e. year 2012). The indices based 
on the ground diameter (GD) either showed no significant (SD of 
GD) or a decreasing impact of TSR over time (coefficient of varia-
tion and Gini-coefficient of GD). By contrast, we found a slightly 
or non-significant increasing effect of TSR on all indices based on 
tree height over time. These observations suggest that, unlike the 
SSCI, the inventory-based indices showed strong species identity 
effects with high variability in GD and tree height due to species-
specific differences in growth rates. Over time, GD appeared to 
be more evenly distributed across TSR levels, whereas a less even 
distribution in height developed. In addition, tree mixtures showed 
higher productivity, mainly driven by a neighbourhood-mediated 
enhancement of individual-tree growth (Fichtner et al., 2018; Kunz 
et al., 2019). We hypothesise that a tree's height growth is of higher 
priority than diameter growth when light is the main growth-limiting 
factor (Falster & Westoby, 2003; Pretzsch, 2009). In dense young 
plantations, like those in our study, preferential biomass investments 
in height growth are, therefore, to be expected (Li et al., 2017). For 
the tree species mixtures, competitive reduction has been found to 
be the main driving mechanism of positive diversity effects for fast-
growing species (Fichtner et al., 2017).

4.3 | Role of density (MeanFrac) versus vertical 
stratification (ENL) in the relationship between 
TSR and SSCI

Our finding that the positive effects of TSR on SSCI are mediated by 
ENL rather than MeanFrac suggests that TSR promotes stand struc-
tural complexity indirectly by allowing for greater complementarity 
in canopy space (i.e. vertical stratification). The lack of a strong im-
pact of TSR on MeanFrac may be partly explained by the regular 
(rasterised) pattern in which the trees were planted in the BEF-China 
experiment. Nevertheless, there is a temporal trend that might lead 
towards a positive relation between TSR and MeanFrac in the future, 
probably due to differences in mortality rates (i.e. self-thinning with 
a loss of the suppressed individuals). In contrast, ENL was a strong 
mediator of the TSR effects on SSCI and was also significantly posi-
tively related to stand development. This coincides with our find-
ing of a highly variable height growth of the trees analysed, which 
then fosters a strong vertical differentiation of crown elements (i.e. 
branches) in higher mixtures. Species mixtures often show a higher 
crown complementarity than monocultures (Williams et al., 2017), 
in particular as a result of neighbourhood-driven changes in crown 
architecture (Guillemot et al., 2020; Kunz et al., 2019). Specifically, 
diversity-mediated changes may lead to a higher biomass allocation 
to branches, increased crown size, more sinuous crowns, higher 
branch ramification and more even vertical distribution of crown 
volume (Bayer et al., 2013; Guillemot et al., 2020; Kunz et al., 2019; 
Lang et al., 2012; Olivier et al., 2016). As a result, canopy space is 
more complex (and partly more heterogeneously structured), which 
in turn may cause increased canopy packing (Ehbrecht et al., 2016; 
Morin et al., 2011; Pretzsch, 2014; Williams et al., 2017).

4.4 | Management implications and conclusions

Given the huge area of afforestation projects currently in progress 
worldwide, particularly in Asia (Yang et al., 2010), the selection of 
appropriate tree species is key to achieving the intended ecosystem 
functions and services (IUCN,  2020; Tang & Li,  2013). However, 
many afforestation projects still utilise a limited range of the poten-
tially available tree species typical of a respective site, and possibly 
miss opportunities related to such afforestation programmes (Gong 
et al., 2020). Taking subtropical forest plantations as an example, our 
study provides evidence that increasing the tree species richness 
of plantations has a positive influence on stand structural complex-
ity, which in turn may foster the stands' resistance or resilience to 
environmental stressors or natural disturbances (Seidl et al., 2016). 
In the absence of sufficient knowledge about which species should 
be planted in mixtures for afforestations, the best current approach 
is to plant a large number of species. Our study demonstrates that 
species richness per se generally supports a high stand structural 
complexity with all its beneficial consequences. Tree species rich-
ness mainly promotes vertical heterogeneity, which supports eco-
system functions and services such as timber production or carbon 
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sequestration (Guillemot et  al.,  2020; Williams et  al.,  2017; Zemp, 
Ehbrecht, et al., 2019), but also positively affects the species diver-
sity or abundance of higher trophic levels (Knuff et al., 2020; Schuldt 
et  al.,  2019) as well as the robustness of multitrophic interactions 
(Fornoff et al., 2019). Afforestation projects should therefore use a 
broad range of the tree species native to a respective site in order to 
promote both the functioning of the newly established forests (in-
cluding related services) and the biodiversity they potentially host.
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