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G.S. Langendijk a,b,*, D. Rechid a, K. Sieck a, D. Jacob a,b 

a Climate Service Center Germany (GERICS), Helmholtz-Zentrum Hereon, Fischertwiete 1, 20095 Hamburg, Germany 
b Faculty of Sustainability, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany   
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A B S T R A C T   

Climate extremes affected cities and their populations during the last decades. Future climate projections indi-
cate climate extremes will increasingly impact urban areas during the 21st century. Humidity related fluctuations 
and extremes directly underpin convective processes, as well as can influence human health conditions. Regional 
climate models are a powerful tool to understand regional-to-local climate change processes for cities and their 
surroundings. Convection-permitting regional climate models, operating on very high resolutions, indicate 
improved simulation of convective extremes, particularly on sub-daily timescales and in regions with complex 
terrain such as cities. This research aims to understand how crossing spatial resolutions from ~12.5 km to ~3 km 
grid size affect humidity extremes and related variables under future climate change for urban areas and its 
surroundings. Taking Berlin and its surroundings as the case study area, the research identifies two categories of 
unprecedented future extreme atmospheric humidity conditions happening under 1.5 ◦C and 2.0 ◦C mean 
warming based on statistical distributions, respectively near surface specific humidity >0.02 kg/kg and near 
surface relative humidity <30%. Two example cases for each future extreme condition are dynamically down-
scaled for a two months period from the 0.44◦ horizontal resolution following a double-nesting approach: first to 
the 0.11◦ (~12.5 km) horizontal resolution with the regional climate model REMO and thereafter to the 0.0275◦

(~3 km) horizontal resolution with the non-hydrostatic version of REMO. The findings show that crossing spatial 
resolutions from ~12.5 km to ~3 km grid size affects humidity extremes and related variables under climate 
change. Generally, a stronger decrease in moisture (up to 0.0007–0.005 kg/kg SH and 10–20% RH) and an 
increase in temperature (1–2 ◦C) is found on the 0.0275◦ compared to the 0.11◦ horizontal resolution, which is 
more profound in Berlin than in the surroundings. The convection-permitting scale mitigates the specific hu-
midity moist extreme and intensifies the relative humidity dry extreme in Berlin, posing challenges with respect 
to health for urban dwellers.   

1. Introduction 

Urban populations have become increasingly affected by climate 
extremes over the course of the last decades (Masson et al., 2020; Mishra 
et al., 2015; Rosenzweig et al., 2018). Climate projections indicate 
extreme events will further increase in frequency and intensity in the 
future under climate change (Alexander, 2016; IPCC et al., 2012; Myhre 
et al., 2019). Urban areas and its population are prone to the impacts of 
climate extremes, for instance heatwaves and heavy precipitation 
(Grimmond et al., 2010; Rosenzweig et al., 2018). Commonly investi-
gated underlying climatic variables, such as temperature and mean 
precipitation are relatively well understood for urban areas (Argüeso 

et al., 2016; Wiesner et al., 2018). Other climatic variables such as hu-
midity and particularly its extremes, are less commonly investigated 
despite their critical importance to urban areas. 

Humidity fluctuations and extremes are key to convective meteoro-
logical phenomena and related extreme events. It is a direct source of 
water influencing the intensity and frequency of precipitation events, 
droughts, as well as heatwaves (Fischer and Knutti, 2013; Hardwick 
Jones et al., 2010). High humidity levels combined with high temper-
atures result in greater thermal stress for humans, and can lead to 
increased mortality rates, especially during heat waves (Coccolo et al., 
2016; Raymond et al., 2020). Exposure to heat-humidity extremes is 
projected to increasingly pose health challenges to the global population 
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in the upcoming decades under 1.5◦ and 2.0 ◦C warming (Li et al., 2020). 
Whereas, low humidity levels can lead to more severe influenza epi-
demics by providing the right conditions for influenza spread and sur-
vival, particularly in fall and winter in temperate climates (Dalziel et al., 
2018; Davis et al., 2016; Lowen et al., 2007; Shaman and Kohn, 2009). 
Much of the observed wintertime increase of mortality in temperate 
regions is attributed to influenza (Shaman et al., 2010). This shows that 
humidity levels can impact human health. It is therefore pivotal to un-
derstand humidity fluctuations and extremes, particularly under future 
climate change. 

To gain a thorough understanding on humidity extremes and their 
impacts it is critical to advance the knowledge on the drivers of humidity 
extremes, at various spatial scales, and particularly in a multivariate 
context with a focus on process understanding (Bai et al., 2018; Fischer 
and Knutti, 2013; Sharma et al., 2013; Sillmann et al., 2017). Improved 
regional-to-local understanding of humidity extremes under climate 
change for cities supports the development of climate information 
tailored to the needs of urban decision-makers and stakeholders, to 
inform adaptation towards increased resilience in urban areas (Aerts and 
Botzen, 2014; Bai et al., 2018; Baklanov et al., 2018; Langendijk et al., 
2019a). Regional climate models (RCMs) are a powerful tool to under-
stand meteorological processes on regional-to-local scales under climate 
change, as they simulate multivariate dynamical interactions including 
those of urban areas and their surroundings. RCMs currently simulate a 
variety of horizontal grid resolutions, from roughly 50 km × 50 km, to 
12.5 km × 12.5 km, and further down to 3 km × 3 km grid resolutions 
(Jacob et al., 2020). The very high horizontal resolution of 3 km × 3 km, 
the so-called convection-permitting scale, offers promising prospects to 
improve the simulation of convective systems, clouds, and precipitation, 
particularly for areas with complex terrain such as cities (Ban et al., 
2014; Coppola et al., 2020; Masson et al., 2020; Prein et al., 2015). 
Previous studies indicate convection-permitting simulations particularly 
show large benefits on sub-daily timescales and for extreme values, 
compared to little improvements for mean values averaged over time 
(Argüeso et al., 2016; Prein et al., 2015). Despite being propitious, until 
now, no research investigated whether or not finer spatial resolutions 
improve the understanding and simulation of future humidity extremes 
for cities. 

Two main humidity variables are investigated in this research. 
Firstly, specific humidity, which is the amount of water vapor in relation 
to the total mass of water vapor and air combined, expressed in kilo-
grams of water vapor per kilogram of moist air. Secondly, relative hu-
midity, which indicates how saturated the air is compared to the water 
vapor fully saturated air could contain at a specific temperature, 
expressed as a percentage. The following abbreviation are used in this 
research for referring to specific humidity: SH, and relative humidity: 
RH. 

This study takes Berlin and its surroundings as the case study area. 
Prior research shows urban areas are generally less moist than its sur-
roundings, often referred to as the urban dry island (UDI) effect (Hage, 
1975; Langendijk et al., 2019b; Lokoshchenko, 2017). Langendijk et al. 
(2019b) indicates that Berlin shows an increase in specific humidity, and 
a decrease in relative humidity until the end of the century. The latter is 
stronger in Berlin than in its surroundings. It remains unknown how 
urban areas, for instance through this “drying” effect, influence the 
meteorological conditions characterizing humidity extremes. 

By the authors’ knowledge, there has been no study until now that 
investigates if increased model resolutions affects the simulation of 
urban-rural meteorological processes for unprecedented future humid-
ity extremes under climate change. Therefore, with a focus on Berlin, 
this first study is centered on the following research question: “How does 
crossing spatial resolutions from ~12.5 km to ~3 km grid size affect 
unprecedented future humidity extremes and related variables under 
climate change for Berlin and its surroundings?” 

2. Method 

The research contains three main methodological parts: 1) the 
identification of unprecedented future extreme conditions for the Berlin 
region; 2) new experiment set up for downscaling extremes; 3) analysis 
of the downscaled model output data. 

2.1. Research area 

Berlin and its surroundings are selected as the case-study region, 
because of the relatively flat regional topography, Berlin’s large city 
size, and the distinct urban-rural landscape heterogeneity. These aspects 
make Berlin and its surroundings suitable to investigate urban-rural 
contrasts using regional climate model output data. 

Berlin, the capital of Germany, is a large-scale city with around 3.6 
million inhabitants covering approximately 891.1 km2 (Amt für Statistik 
Berlin-Brandenburg, 2020), located in-land at approximately 52.52◦ N, 
13.4◦ E. The land cover of Berlin’s surroundings is roughly 50% agri-
cultural and grass land, 36% forest and 14% build up areas and water 
bodies (Fig. 1b) (Amt für Statistik Berlin-Brandenburg, 2020). The pri-
mary investigated domain is approximately 140 km by 140 km centered 
around Berlin (black rectangular, Fig. 1b). 

2.2. Identifying future extreme conditions 

2.2.1. Models and data 
The first step of the research identifies future extreme conditions 

related to atmospheric moisture, occurring under 1.5 ◦C and 2.0 ◦C 
global warming. This research uses the model output data produced by 
the “Half a degree Additional warming, Prognosis and Projected Im-
pacts” (HAPPI) project (Mitchell et al., 2017; Sieck et al., 2021). This 
dataset is a unique modelling effort that aims at generating large en-
sembles of climate model simulations which enable investigations on 
how the climate, and in particular extreme events, might differ from 
present day under 1.5 ◦C and 2.0 ◦C warmer futures than pre-industrial 
conditions. The HAPPI global circulation model (GCM) simulations use 
prescribed sea-surface temperatures (SST) for respective periods, 
following the Atmospheric Model Intercomparison Project (AMIP) style 
(Gates, 1992). Three simulation periods are selected: a historical decade 
(2006–2015) with observed SSTs, and two projected periods with 1.5 ◦C 
and 2.0 ◦C warmer global mean surface temperature than pre-industrial 
(1861–1880) conditions. For the latter two periods, CMIP5 mean SST 
anomaly patterns for the respective global warming are added to the 
observed SST pattern used for the historical decade. Lastly, greenhouse 
gas forcing is constructed from RCP2.6 and RCP4.5 emission scenarios, 
respectively. For each period a large ensemble of simulations are per-
formed, each member initialized with slightly different initial condi-
tions, leading to a large ensemble of possible climates. A detailed 
description of the HAPPI experiment design can be found in Mitchell 
et al. (2017). 

From the larger HAPPI consortium, the ensemble simulations from 
the GCMs are dynamically downscaled by the regional climate model 
REMO (Sieck et al., 2021). The REMO 2015-HAPPI version (Jacob et al., 
2012a) was applied for the standard European CORDEX domain on a 
0.44◦ (~50 km) horizontal resolution, using the boundary conditions 
from the HAPPI GCM model ECHAM6 (Stevens et al., 2013) with 100 
members per period, resulting in a total of 1000 model output years for 
each global warming period (3000 years of climate data). The large 
number of model output years can cover a wide range of possible ex-
tremes, leading to more robust statistics and results. The HAPPI model 
output data is available on a daily resolution. A further description of the 
downscaling approach can be found in Sieck et al. (2021). 

2.2.2. Extreme event distributions 
Statistical distributions of the historical, 1.5 ◦C, and 2.0 ◦C periods 

are calculated from the HAPPI data to identify future extreme conditions 
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under 1.5 ◦C and 2.0 ◦C global mean warming, particularly related to 
moisture. 

A domain centered around Berlin is selected, consisting of four grid 
boxes (Annex Fig. A1) that approximately match the primary domain of 
investigation showed in Fig. 1. The studied variables are: specific hu-
midity (SH), relative humidity (RH), 2m-temperature, 2m-minimum 
temperature, 2m-maximum temperature and precipitation. Two types of 
extreme value distributions are calculated in order to define categories 
of unprecedented future extreme events under and/or above a specific 
humidity threshold. Firstly, the generalized extreme value probability 
density function (GEV-PDF) over the 90th and 10th percentile of each 
variable is computed for each period over the spatially averaged domain 
(Annex Fig. A1). The GEV-PDF constructs a distribution over the values 
above the 90th and below the 10th percentile for all years for each 
variable. For RH and SH the 5th and 95th percentile distributions are 
also calculated. Secondly, the GEV-PDF is calculated over the block 
maxima and block minima of each variable for each year for all 
ensemble members in each period. The block maxima and minima are 
respectively the largest and smallest values within each simulated year. 
Based on the tails of the distributions the extreme conditions are selected 
that only happen under 1.5–2.0 ◦C mean warming and do not occur 
during the historical period. 

2.3. Downscaling 

2.3.1. Models 
The identified extreme conditions based on the HAPPI (0.44◦) model 

output data (ECHAM6 -REMO2015) are downscaled following a double- 
nesting approach with a first downscaling step to the 0.11◦ horizontal 
resolution (~12.5 × 12.5 km grid box size) by REMO (2015-HAPPI 
version) and thereafter to the 0.0275◦ horizontal resolution (~3 × 3 km 

grid box size) by applying the non-hydrostatic, convection-permitting 
version of REMO (REMO-NH, 2015-HAPPI version). 

The regional climate model REMO is a three-dimensional, hydro-
static limited-area model of the atmosphere that has been extensively 
used and tested in climate change studies for Europe (Jacob et al., 
2012b; Kotlarski et al., 2014). It originates from the ‘Europa-Modell’ of 
the German Weather Service (DWD) (Majewski, 1991). The physical 
parameterizations are largely based on the global climate model 
ECHAM-4 (Roeckner et al., 1996) and have been further developed over 
the course of the last decades. Model specifications can be found in 
Jacob et al. (2012a) and in Jacob and Podzun (1997). 

The land cover scheme within REMO follows a tile approach, based 
on three basic land surface types; land, water, and sea ice. Subgrid 
fractions are specifying further land cover types, including an urban sub- 
fraction. These fractions are not assumed to be located in a specific area 
of a grid box, but cover a percentage of the total grid box area, together 
summing up to 100 %. The turbulent surface fluxes and the surface ra-
diation flux are calculated separately for each tile and are subsequently 
averaged within the lowest atmospheric level using the respective areas 
as weights (Rechid and Jacob, 2006; Semmler, 2002). 

For the urban sub-fraction, the REMO model follows the so-called 
‘bulk’-approach. Sealed urban areas are represented as a rock surface, 
which is described in the model by a relatively high roughness length, 
high albedo, and no water storage capacities (Langendijk et al., 2019b). 
Langendijk et al. (2019b) indicates that the simple urban bulk-scheme 
shows the urban-rural contrast for temperature and humidity vari-
ables. The simple scheme is less skilled in simulating the timing of the 
peak of the urban heat island at night. 

The hydrostatic approximation used in climate models fails for grid 
sizes smaller than 10 × 10 km (Prein et al., 2015) making the RCM’s 
solution less reliable at those spatial resolutions. Therefore the 

Fig. 1. Research area. (a) Germany and (b) a land-cover map indicating Berlin’s administrative boundaries (black polygon) and research domain including the 
surroundings (black rectangular). Land cover following CORINE land cover map (EEA, 2000; Langendijk et al., 2019b). 
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non-hydrostatic model version REMO-NH was developed to directly 
resolve the vertical momentum equation, leading to a better representa-
tion of small-scale mesoscale circulations and convection (Goettel, 2009). 
In addition, REMO-NH more accurately represents the surface and orog-
raphy fields. The non-hydrostatic formulation significantly improves 
model simulation output on fine horizontal resolutions, particularly for 
mountainous regions and urban areas (Argüeso et al., 2016; Ban et al., 
2014; Coppola et al., 2020; Prein et al., 2015). 

2.3.2. Set-up 
A downscaling experiment set-up is developed to downscale the 

identified extreme conditions from the 0.44◦ spatial scale to finer spatial 
and temporal resolutions, particularly tailored to the needs of this 
research. 

The domain sizes are defined for the 0.11◦ and 0.0275◦ horizontal 
resolutions to support the double-nesting approach. Matte et al. (2017) 
show that the distance needed for the small-scale features (so-called 
spatial spin-up) to develop is proportional to the jump of resolution 
(Matte et al., 2016). The boundaries used within our nesting approach 
(e.g. the boundaries of the nested model and our analysis domain) is 
respecting the spatial spin-up zone as recommended by Matte et al. 
(2017). The resulting domains for the double-nesting downscaling are 
presented in Fig. 2. The domains have a size of respectively 129 × 129 
grid boxes centered around Berlin for the 0.11◦, as well as for the 
0.0275◦ horizontal resolution. The domains are selected based on the 
above rationale, whilst balancing computing costs and the strength of 
the boundary forcing in order for the model to capture the extreme when 
downscaled. 

The appropriate spin-up time is determined to be around 15 days. 
This is comparable to spin-up times set by similar studies (Leps et al., 
2019; Matte et al, 2016, 2017). The spin-up time is tested for REMO 
(0.11◦) and REMO-NH (0.0275◦) for one case of each identified extreme. 
The following model output variables are investigated: SH, RH, 2m-tem-
perature, evaporation, soil wetness, soil temperature, deep soil tem-
perature, surface pressure, vertically integrated SH, and surface sensible 
heat flux. A stable state is found for most variables within 1–4 days after 
starting the simulation, and after ~10 days for 2m-temperature, surface 
pressure, evaporation, soil wetness (not shown). This is in line with 
studies by Denis et al. (2002) and Jerez et al. (2020). Following similar 
studies, the total simulation period for downscaling each extreme con-
dition is 2 months for the first downscaling step from 0.44◦ to 0.11◦

horizontal resolution, and 1.5 month for the second step from 0.11◦ to 
0.0275◦ horizontal resolution (Denis et al., 2002; Herceg et al., 2006; 
Leps et al., 2019; Matte et al, 2016, 2017). The nesting interval fre-
quency for downscaling the HAPPI data to the 0.11◦ horizontal resolu-
tions is 6-hourly, and 1-hourly for further downscaling from the 0.11◦ to 
the 0.0275◦ horizontal resolution. The time step for all downscaled 
simulations is 60 seconds. The downscaled model output data is avail-
able on an hourly temporal resolution. 

2.4. Data analysis 

The analysis of the model output data across the spatial resolutions 
(0.11◦, 0.0275◦) is focused on Berlin and its direct surroundings 
(Fig. 1b). In order to compare the results across the horizontal scales, a 
coherent masking approach is developed to distinguishing Berlin from 
its surroundings. The urban area is defined by the grid cells containing 
an urban fraction larger than 0.3 as prescribed by the REMO land surface 
cover scheme. The grid boxes with an urban fraction >0.3 outside of the 
administrative boundaries of Berlin are excluded from the city mask 
(black polygon, Fig. 1b). This approach is followed for both horizontal 
resolutions. The resulting city masks for 0.11◦ and 0.0275◦ horizontal 
resolutions cover relatively similar areas for Berlin, with the 0.0275◦

mask capturing the actual city size and boundaries more accurately 
(Fig. 3). The masks for the surroundings include all grid boxes outside 
the city mask and within the primary domain of interest of 140 km by 
140 km centered around Berlin (black rectangular, Fig. 1b). Table 1 
shows the amount of grid boxes for different urban fractions for Berlin 
on the 0.11◦ and 0.0275◦ horizontal resolutions. 

The downscaled extreme conditions are studied with a focus on un-
derstanding meteorological processes characterizing the extreme con-
ditions. The following 14 model output variables are spatially averaged 
over the grid boxes representing Berlin (black polygon Fig. 1) and its 
surroundings (black rectangle Fig. 1) and thereafter analyzed: SH, RH, 
2m-temperature, 2m-maximum temperature, 2m-minimum tempera-
ture, surface evaporation, relative soil moisture, soil temperature, sur-
face pressure, 10-m wind speed, vertically integrated SH (integrated 
over the total atmospheric column up to the model top), surface sensible 
heat flux, sensible latent heat flux, and total precipitation. The analysis 
particularly focusses on four aspects: 1) differences due to spatial reso-
lution (0.11◦ vs. 0.0275◦); 2) urban-rural contrast (Berlin vs. sur-
roundings); 3) comparison of cases (two examples of each selected 
extreme condition); 4) cross-comparing selected extreme conditions. 

One additional analysis is performed to understand if the models on 
the different horizontal resolutions (0.11◦ and 0.0275◦) behave similarly 
to the observations and in order to put the results for the humidity ex-
tremes into context. Observations are compared with historical model 
output data for the months when the selected extremes occur, for the 
time slice 1996–2005. The hourly in-situ measurements are obtained 
from the DWD Climate Data Center (DWD, 2019), stemming from ten 
observation stations, of which six are located in Berlin, and four in the 
surroundings of Berlin. The observation stations and their respective 
locations are presented in the appendix of Langendijk et al. (2019b). 
DWD does not provide in-situ observations for specific humidity. 
Therefore, specific humidity is derived from observed mean daily vapor 
pressure (e) in hPa and air pressure (P) in hPa from observations (DWD, 
2021), using the following formula (Stull, 2017): 

Specific humidity=
ε *e

P − e*(1 − ε) (1) 

Fig. 2. The domains for the double-nesting approach, the HAPPI (0.44◦) standard European domain (left), the 0.11◦-domain (middle) and the 0.0275◦- 
domain (right). 
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Where ε = 0.622 g vapor/g dry air is the ratio of gas constants for dry 
air to that for water vapor. 

The model data consists out of EURO-CORDEX REMO2015 transient 
model simulations on a 0.11◦ horizontal resolution driven by the MPI- 
ECHAM6 model, and the REMO-NH (version 2015, driven by REMO 
2015) model output data on convection-permitting scales produced as a 
part of the European Climate Prediction system project (EUCP) for the 
period 1996–2005 (Lowe et al., 2020). The main variables of interest are 
investigated, respectively RH, SH and temperature, to understand the 
general differences between the horizontal resolutions and observations. 

3. Results 

The result section is divided into two main parts: 1) identification of 
unprecedented future extreme conditions and respective meteorological 
process understanding; 2) analysis of the downscaled extreme condi-
tions across spatial and temporal scales. The discussion of the results is 
directly carried out while presenting the findings throughout the results 
section. 

3.1. Future extreme conditions 

3.1.1. Identification of future extreme conditions 
Statistical distributions are calculated based on the HAPPI data 

(0.44◦, ECHAM6-REMO2015) to identify future extreme conditions (see 
section 2.2.2). Generally, the investigated domain shows a shifted mean 
with warmer (~1–2 ◦C) and more humid (SH) conditions under 1.5 ◦C 
and 2.0 ◦C, which is more profound under 2.0 ◦C (Annex, Fig. A2). The 
90th and 95th percentile distributions for relative humidity show a 
decrease in RH for 1.5 ◦C and 2.0 ◦C compared to historical simulations, 
and an increase in RH for the 5th and 10th percentile distributions. The 
RH block maxima and minima distributions both show a slight decrease 
in moisture for 1.5 ◦C and 2.0 ◦C warming compared to the historical 
decade, particularly for the block minima. The percentile distributions 
for precipitation do not show a clear tendency. The precipitation block 
maxima shows increased frequency and intensity of rain extremes, 
particularly under 2.0 ◦C warming (Annex, Fig. A2). 

Generally, there is an increase in the intensity and frequency visible 
for the tail-extremes under 1.5 ◦C and 2.0 ◦C warming compared to the 

historical decade, for the block maxima distributions for 2m-tempera-
ture, 2m-minimum temperature, 2m-maximum temperature, precipita-
tion, SH, and for the block minima distributions for RH. These tail- 
extremes are more profound under 2.0 ◦C warming than 1.5 ◦C warm-
ing (Annex, Fig. A2). 

This research particularly concerns moisture related variables, 
respectively SH and RH. Based on the above findings, the block maxima 
for SH and block minima for RH are therefore further investigated to 
identify future extreme conditions. Fig. 4 shows the respective distri-
butions for SH (block maxima) and RH (block minima). In the tails of 
both distributions, roughly above 0.02 kg/kg SH and below 30 % RH, 
extreme conditions occur that only happen under 1.5 ◦C and 2.0 ◦C 
warming, and not during the historical decade. The thresholds SH>0.02 
kg/kg and RH<30 % are therefore selected to further investigate 
extreme conditions. 

The selected thresholds, SH>0.02 kg/kg and RH<30 %, occur 0 days 
in the historical decade simulated by the HAPPI ensemble members. For 
SH>0.02 kg/kg, the threshold is surpassed 2 days under 1.5 ◦C warming, 
and 10 days under 2.0 ◦C warming. For RH<30 %, the threshold is 
surpassed 6 days under 1.5 ◦C warming, and 5 days under 2.0 ◦C 
warming. These extreme condition days occur in different years of the 
simulated decades and within different ensemble members of the HAPPI 
dataset. In-situ observations for relative humidity daily means (DWD, 
2019) show that, although extreme conditions of around 30–40% exists, 
no extreme conditions of RH<30 % occurred in Berlin and its sur-
roundings during the respective simulated historical period 
(2006–2015). The specific humidity values derived from the DWD 
in-situ observations for 2006–2015 do not show values larger than 0.02 
kg/kg. This indicates that the selected extreme conditions, SH>0.02 
kg/kg and RH<30 %, are a category of unprecedented future extreme 
humidity events. 

3.1.2. Meteorological process understanding of future extreme conditions 
The main meteorological characteristics are investigated for the 

extreme condition days surpassing the SH>0.02 kg/kg and RH<30 % 
thresholds, in order to understand whether the extreme conditions show 
similarities and to identify representative extreme conditions for further 
downscaling. This analysis also verifies if the extreme conditions are an 
artifact of one ensemble member, or a result of odd, not physically 
plausible, model behavior. 

The findings show that all extreme condition SH>0.02 kg/kg days 
occur in July and August, and are characterized by very high specific 
humidity values (SH: 0.020–0.023 kg/kg), mean daily temperature of 
around 30 ◦C, and maximum daily values reaching almost 40 ◦C shortly 
before and during the peak of the extreme condition. Generally, warm 
air can hold more moisture than cold air, therefore the high specific 
humidity levels are expected to occur during these warm summer days. 
No precipitation occurs during the extreme condition and the incoming 
shortwave radiation is relatively high (250 W/m2) compared to the 
mean of the historic decade (100 W/m2) (Table 2). During the weeks 
before the extreme condition precipitation occurs within regular 
bounds, providing the soil with sufficient moisture content (soil mois-
ture >0.7). This enables relatively high latent heat fluxes and therefore 

Fig. 3. Masks for Berlin, based on urban fraction > 0.3 for 0.11◦ (left) and 0.0275◦ (right) horizontal resolutions.  

Table 1 
Amount of grid boxes for different urban fractions for Berlin on the 0.11◦ and 
0.0275◦ horizontal resolutions.   

Amount of grid boxes 

Urban fraction 0.11◦ 0.0275◦

>0.3 5 76 
>0.4 3 63 
>0.5 3 60 
>0.6 2 47 
>0.7 2 42 
>0.8 0 30 
>0.9 0 20 
1 0 18  
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high evaporation rates shortly before and during the extreme condition 
(Table 2). These meteorological conditions are driven by the synoptic 
weather conditions of a warm front, where temperatures and moisture 
rise after the warm front replaced the cold air mass. Before the warm 
front passes precipitation is likely to occur, and after the warm front the 
skies become clear, and temperatures as well as humidity levels in-
crease. This is the so-called warm sector. The combination of the above 
meteorological characteristics lead to extreme days with SH>0.02 kg/ 
kg. A visualization describing the meteorological processes is provided 
in Fig. 5. In addition, Table 2 shows the mean values of all extreme 
conditions for each variable, as well as the comparison to the respective 
overall mean values of the historical decade. 

All extreme condition RH<30 % days occur in November, and are 
characterized by very low relative humidity (RH: 23–30 %) and specific 
humidity (SH: 0.0016–0.0020 kg/kg) values (Table 2). During the 
autumn months before the extreme condition occurs, the relative soil 
moisture is lower than usual for most (approx. 80 %) ensemble members 
(not shown). In the course of the days before the extreme only little 

precipitation occurs. The mean daily temperature is around 9 ◦C. The 
incoming shortwave radiation is lower than the historical average, as 
well as the relative soil moisture and latent heat flux (Table 2). The 
meteorological characteristics indicate that this extreme is driven by the 
synoptic weather condition of a passing cold front. The high wind speeds 
(~6.7 m/s) are also typical for a fast moving cold front (Fig. 5, Table 2). 
After the cold front passes the skies clear up, surface pressure increases, 
and the dry air advection leads to low humidity levels (Spänkuch et al., 
2011). The combination of the above meteorological characteristics lead 
to the extreme days with RH<30 %. A visualization describing the 
meteorological processes is provided in Fig. 5. 

All the extreme days of each individual extreme condition, SH>0.02 
kg/kg and RH<30 %, show similar meteorological characteristics. This 
similarity among the extreme days implies that the identified extreme 
conditions (SH>0.02 kg/kg and RH<30 %) are not physically improb-
able model artifacts. 

The extreme condition days are generally slightly extremer under 
2.0 ◦C than under 1.5 ◦C warming, up to 0.03 kg/kg moister (SH) and 3 
% less moist (RH). Particularly for SH>0.02 kg/kg the extreme days 
occur more frequent under 2.0 ◦C warming, respectively 10 days 
compared to 2 days under 1.5 ◦C warming. Warm air can hold more 
moisture than cold air, therefore it can be expected that higher global 
mean global temperatures could lead to more extreme moist days, 
particularly in summer. In total 4 ensemble members, 2 ensemble 
members each for both RH<30 % and SH>0.02 kg/kg, show two 
consecutive days of the extreme condition under 2.0 ◦C warming. No 
consecutive extreme days occur under 1.5 ◦C. This indicates humidity 
extremes might occur more frequent and could last longer under 2.0 ◦C 
warming compared to 1.5 ◦C warming, and could potentially become 
even more profound under stronger temperature increase. This is in line 
with previous studies, such as Alexander (2016) and IPCC et al. (2012). 
For each threshold (SH>0.02 kg/kg and RH<30 %) two ensemble 
member extreme condition examples, further referred to as cases, are 
selected for further downscaling. The cases are picked from the simu-
lated decades with a 2.0 ◦C warmer future in order to understand the 
more extreme possible future conditions for Berlin and its surroundings. 
For both extreme conditions, SH>0.02 kg/kg and RH<30 %, the first 
example case (Case1) is a single day peak extreme condition and the 

Fig. 4. The block maxima for SH (left) and block minima for RH (right) distributions based on the HAPPI ensemble members for the historical decade (1996–2005), 
1.5 ◦C and 2.0 ◦C simulated periods. 

Table 2 
Daily mean values calculated over all ensemble members of each extreme con-
dition for 1.5 ◦C and 2.0 ◦C future warming, compared to the overall mean of the 
historical decade (1996–2005).   

SH>0.02 kg/kg RH<30 % 

Variables 1.5◦C 2.0◦C 1.5◦C 2.0◦C 
SH (kg/kg) 0.02015 0.0211 0.0019 0.0017 
RH (%) 79 74 27 26.25 
2m-temperature (◦C) 29.4 30.4 8.5 9 
2m-maximum temperature (◦C) 36 37 11.3 13 
2m-minimum temperature (◦C) 23.5 24.5 7 6.5 
Soil wetness (m) 0.37 0.38 0.34 0.22 
Relative soil moisture (%) 0.86 0.88 0.79 0.51 
Surface pressure (Pa) 101700 101400 101060 102000 
Shortwave radiation (W/m2) 259 261 44 66 
Longwave radiation (W/m2) 425 433 277 271 
Sensible heat flux (W/m2) 5 10 − 35 − 38 
Latent heat flux (W/m2) 143 65 12 7 
Precipitation (kg/m2/s) 0.00001 0.000019 ~0 ~0 
Surface wind speed (m/s) 2.6 2.6 6.7 6.7  

Fig. 5. Schematic visualization of meteorological characteristics of the extreme conditions SH>0.02 kg/kg (left) and RH<30 % (right), mean values for 2.0◦C 
warming (see Table 2). 
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second example case (Case2) is an extreme condition lasting two 
consecutive days. The meteorological differences between the example 
cases of each extreme conditions are relatively similar. Therefore the 
final example cases for downscaling are arbitrarily selected from the 
available cases based upon the above criteria. The cases are labelled 
according to their extreme, respectively for SH>0.02 kg/kg CaseSH1 
and CaseSH2, and for RH<30 % CaseRH1 and CaseRH2. 

The example cases for each extreme condition can be described as 
follows. CaseSH1, with a peak value of 0.021 kg/kg SH, occurs in HAPPI 
ensemble member number 32 on 14 July in year 9 within the simulated 
decade under 2.0 ◦C warming. With a peak value of 0.023 kg/kg SH, 
CaseSH2 is simulated by HAPPI ensemble member number 87 and 
happens on 7 and 8 August in year 7. For RH<30 % CaseRH1, with a 
bottom low of 27 % RH, originates from HAPPI ensemble member 
number 26 and occurs on 10 November of year 2 of the simulated decade 
under 2.0 ◦C warming. With its lowest value of 25 % RH, CaseRH2 
happens on 1 and 2 November in year 4 within the simulation of HAPPI 
ensemble member number 6. 

3.2. Extremes across scales 

3.2.1. Downscaled extreme conditions 
Following the described double nesting approach (section 2.2.), 

Case1 and Case2 of each extreme condition, respectively SH>0.02 kg/kg 
and RH<30 %, are dynamically downscaled from 0.44◦ to 0.11◦, and 
thereafter from the 0.11◦ to the 0.0275◦ horizontal resolution (Fig. 2). 

A 1.5 month time series for all four downscaled cases, CaseSH1, 
CaseSH2, CaseRH1, and CaseRH2, is presented in Fig. 6 (SH>0.02 kg/ 
kg, top row; RH<30 %, bottom row). The model output data shows that 
all four cases occur approximately around the same dates as in the 
original HAPPI data (0.44◦), on the 0.11◦ as well as on the 0.0275◦

horizontal resolution. The extreme cases are clearly detectable for Berlin 
and its surroundings. CaseSH1 and CaseRH1 do not surpass the extreme 
conditions thresholds anymore, respectively SH>0.02 kg/kg and 
RH<30 %. Nevertheless an extreme peak is still clearly visible for these 
downscaled cases, almost reaching the respective extreme conditions 
thresholds. CaseSH2 and CaseRH2 do surpass the respective extreme 
conditions thresholds. This can be explained by the fact that Cases1 only 

just surpasses the extreme thresholds in the HAPPI data (by 0.001 kg/kg 
for CaseSH1 and 3 % for CaseRH1), and both Cases2 are two consecutive 
days in the HAPPI data and therefore result in more profound extreme 
values when downscaled to finer resolutions. In addition, the selected 
domain for downscaling has been relatively small with a strong 
boundary forcing, which enables the extreme condition to persist across 
model grid resolutions. 

CaseSH1 and CaseSH2 of the SH>0.02 kg/kg extreme condition are 
surpassing the threshold of SH>0.02 kg/kg on additional dates besides 
the expected extreme event date in the downscaled simulation period, 
for the 0.11◦ and thereafter the 0.0275◦ horizontal resolution (Fig. 6). 
These extreme conditions are not present in the HAPPI (0.44◦) data (not 
shown). These additional extreme conditions are on 19 July and around 
30 July for CaseSH1, particularly surpassing the SH>0.02 kg/kg 
threshold around 30 July. A less distinct extreme condition can be found 
for CaseSH2 on 14 August, with a peak SH value of almost 0.2 kg/kg 
(Fig. 6). CaseRH1 and CaseRH2 of the RH<30 % extreme condition are 
spread over approximately 3–4 days on the 0.11◦ and 0.0275◦ horizontal 
resolution, compared to 1 day (Case1) and 2 days (Case2) at the 0.44◦

horizontal resolution. 
The additional occurrence of the extremes for SH>0.02 kg/kg and 

the prolonged duration of the extremes for RH<30 % can be explained as 
follows. The coarser resolution (0.44◦) averages values within a grid box 
over a relatively large area, as well as averages over the temporal res-
olution of a day mean. The land-atmosphere interactions and its fluxes 
get better resolved when the grid resolution increases to the 0.11◦ and 
thereafter the 0.0275◦ horizontal resolution. The finer grid boxes can 
generate larger and more peak values, resulting in additional extremes. 
Following similar rationale for the temporal scales, resolving fine tem-
poral resolutions of up to an hour can prolong the duration of the 
extreme condition. This corresponds with similar findings for low-level 
aerosol concentration peaks in REMO by Pietikäinen et al. (2012). 

Spatial maps are presented in Fig. 7 showcasing CaseSH1 and 
CaseRH1 during the peak hour of the extreme condition. The city 
boundaries and inner city differences are increasingly visible for Berlin 
on the 0.0275◦ horizontal resolutions for CaseSH1, showing a clear 
urban dry island. CaseRH1 shows Berlin moister than its surroundings 
on the 0.11◦ and hardly any urban-rural contrast on the 0.0275◦

Fig. 6. The 1.5 month time series for Case1 and Case2 of both extreme conditions (SH>0.02 kg/kg, upper row; RH<30 %, bottom row) on 0.11◦ and 0.0275◦

horizontal resolutions, for Berlin and its surroundings. 
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horizontal resolution. The reason behind the latter finding is further 
explained in section 3.2.3. 

3.2.2. Context of the extremes 
Before further analyzing the downscaled extreme conditions in more 

detail, the following analysis is presented to provide supporting context 
to interpret the results. Historical model output data from the EUCP 
dataset is compared with in-situ observations (DWD, 2021, 2019), for 

Berlin and its surroundings, on the 0.11◦ and 0.0275◦ horizontal reso-
lution. Fig. 8 shows boxplots for the variables RH, SH, and temperature 
for the period 1996–2005, averaged over the months in which the 
extreme conditions occur, respectively July and August (SH>0.02 
kg/kg), and October and November (RH<30 %). 

The boxplots show that overall the models (0.11◦ and 0.0275◦) are in 
line with the observations. Relative humidity is lower in Berlin than its 
surroundings for the observations and model data, by approximately 5 

Fig. 7. Spatial maps for Berlin and its surroundings on the 0.11◦ (top row) and 0.0275◦ (bottom row) horizontal resolutions for SH for the peak hour of CaseSH1 (left 
column), and for RH for the peak hour of CaseRH1 (right column). 

Fig. 8. Boxplots comparing observations with EUCP model output data of REMO (0.11◦) and REMO-NH (0.0275◦) for the variables RH, SH (no in-situ observations 
available through DWD), and temperature for the period 1996–2005, for the months in which the extreme conditions occur, respectively July and August (SH>0.02 
kg/kg), and October and November (RH<30 %). 
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%. Specific humidity is lower in Berlin than its surroundings for the 
observations, by 0.0001 kg/kg in October–November and 0.0012 kg/kg 
in July–August. This urban-rural SH contrast is not well captured by the 
model data in October–November, but is captured in July–August on the 
0.0275◦ horizontal resolution, showing a clear added value on the 
convection-permitting scale for these months. The temperature is higher 
by 1–2 ◦C in Berlin. This urban-rural contrast is largest in summer 
months, underpinning the SH>0.02 kg/kg extreme condition. The ob-
servations for October and November show a larger urban-rural contrast 
than the model simulations, for both RH (approx. − 4 percentage points) 
and temperature (+1–2 ◦C). Overall, the observations are not clearly 
closer to the 0.11◦ or to the 0.0275◦ horizontal resolution. Concluding, 
when looking at these mean values no substantial added value is derived 
from going to finer resolutions except for the specific humidity urban- 
rural contrast (Fig. 8). 

3.2.3. Added value of convection-permitting simulations 
The downscaled cases, Case1 and Case2, for each extreme condition, 

SH>0.02 kg/kg and RH<30 %, are further analyzed to understand the 

differences between the spatial resolutions, for Berlin and its sur-
roundings. Fourteen model output variables are studied for five days 
around the extreme condition, 2–3 days before as well as 2–3 days after 
the extreme peak. The 5-day time series are based on the spatial average 
calculated over the grid boxes representing Berlin (see black polygon 
Fig. 1, and Fig. 3) and its surroundings (black rectangle Fig. 1). The 
analysis focusses on four main aspects: 1) differences between spatial 
resolutions (0.11◦ vs. 0.0275◦); 2) urban-rural contrast (Berlin vs. sur-
roundings); 3) comparing the cases (Case1 vs. Case2 of each extreme 
condition); 4) comparing the extreme conditions (SH>0.02 kg/kg vs. 
RH<30 %). 

To visually guide the analysis, Fig. 9 presents plots for eight selected 
key variables showing the computed differences between Berlin and its 
surroundings (difference = Berlin – surroundings), for the 0.11◦ and the 
0.0275◦ horizontal resolution, for each case (Case1 and Case2), and for 
each extreme condition SH>0.02 kg/kg (Fig. 9A) and RH<30 % 
(Fig. 9B). The full time series, for all the fourteen model output variables 
are presented in the Annex (Fig. A3, Fig. A4, and Table A1). 

Overall, the meteorological characteristics of the downscaled cases 

Fig. 9A. Differences plots during the 5 days around the downscaled extreme condition SH>0.02 kg/kg for each case (Case1 and Case2). Differences between Berlin 
and its surroundings calculated for the 0.11◦ and the 0.0275◦ resolution (difference = Berlin-surroundings). 
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are in line with the meteorological characteristics and synoptic situation 
described for each extreme condition on the 0.44◦ horizontal resolution 
based on the HAPPI simulations (section 3.1.2, Fig. 5, and Table 2). 
Among Case1 and Case2 of each of the extreme conditions, SH>0.02 kg/ 
kg and RH<30 %, similar overall meteorological characteristics are 
found (Annex Fig. A3 and Fig. A4). This implies that REMO captures the 
extreme events and its meteorological conditions adequately in the 
downscaled simulations. However, detailed differences are found 
investigating the downscaled cases further. 

Looking into the SH>0.02 kg/kg extreme condition, the two down-
scaled cases (CaseSH1 and CaseSH2) show that the urban area mitigates 
the high specific humidity levels, indicating a clear urban dry island 
effect, which is enhanced on the convection permitting scale (Fig. 10). 
On the 0.0275◦ horizontal resolution the SH decreases up to 0.005 kg/kg 
and the RH up to 20 % compared to the 0.11◦ horizontal resolution 
(Fig. 9A–a,b). Concerning the urban-rural contrast, Berlin is up to 10 % 
RH and up to 0.008 kg/kg SH less moist than its surroundings (Fig. 9A–a, 
b). Nevertheless, the city still faces high SH levels up to 0.016 kg/kg 
(CaseSH1) and 0.020 kg/kg (CaseSH2) on the 0.11◦ horizontal resolu-
tion (Fig. 10). The SH peak values are lower in Berlin for the 0.0275◦

horizontal resolutions, with SH levels up to 0.013 kg/kg (CaseSH1) and 
0.016 kg/kg (CaseSH2) (Fig. 10). It implies extreme moist summer days 
will be less humid in Berlin than its surroundings under 2.0 ◦C global 
warming, particularly on the 0.0275◦ horizontal resolution. 

The results for the RH<30 % extreme condition show, despite a small 
urban-rural contrast, that the downscaled extreme events will be less 
moist on the convection permitting scale, particularly in Berlin. On the 
0.0275◦ horizontal resolution the SH decreases up to 0.0007 kg/kg and 
the RH up to 10 % compared to the 0.11◦ horizontal resolution 
(Fig. 9B–a,b). Only a small urban-rural moisture contrast is found, 
especially on the 0.0275◦ horizontal resolution. Interestingly, Berlin is 
moister (RH and SH) than its surroundings for the 0.11◦ horizontal 
resolution for both cases during the bottom low of the extreme condition 
(Fig. 10). This reverses for RH on the 0.0275◦ horizontal resolution, 
where Berlin shows lower relative humidity levels than its surroundings, 
particularly for CaseRH1 (Figs. 7 and 10). The small urban-rural contrast 
and slight urban drying effect for CaseRH1 on the 0.0275◦ horizontal 
resolution corresponds with the Boxplots (Fig. 8), which show a small 
urban-rural RH contrast in October and November. The findings for the 
RH<30 % extreme condition indicate an intensification of the dry 

Fig. 9B. Differences plots during the 5 days around the downscaled extreme condition RH<30 % for each case (Case1 and Case2). Differences between Berlin and its 
surroundings calculated for the 0.11◦ and the 0.0275◦ resolution (difference = Berlin-surroundings). 
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extreme condition on the convection-permitting scale during the peak of 
the extreme events, particularly for CaseRH1. 

Overall, the results for both extreme humidity conditions, SH>0.02 
kg/kg and RH<30 %, show that the convection-permitting scale is less 
moist than the 0.11◦ horizontal resolution, especially in Berlin compared 
to its surroundings. 

The intensified moisture reduction on the 0.0275◦ horizontal reso-
lution in Berlin can be explained by the fact that urban areas are rep-
resented in the REMO model through a sealed “rock” surface. The urban 
representation is characterized by a greater heat capacity and reduced 
water storage, resulting in higher soil temperatures, lower soil moisture, 
and reduced surface evaporation, explaining the reduced humidity 
levels and higher temperatures in Berlin compared to its surroundings 
(Langendijk et al. 2019a). The model results for the respective variables 
show this urban effect clearly for both extreme conditions (Fig. 9A/B, 
Annex; Fig. A2, Fig. A3). Higher temperatures of approximately 
0.5 ◦C–4.0 ◦C are found for both extreme conditions in Berlin compared 
to its surroundings, which is more profound by ~1.0 ◦C for the 0.0275◦

compared to 0.11◦ horizontal resolution (Fig. 9A/B-c). Furthermore, the 
soil moisture in Berlin is up to 0.3 lower than its surroundings, and the 
urban-rural soil moisture contrast is up to 0.1 larger on the 0.0275◦ than 
on the 0.11◦ horizontal resolution (Fig. 9A/B-h). In addition, the soil 
temperature in Berlin is up to 0.25 ◦C higher than its surroundings 
(Fig. 9A/B-g), and the urban-rural soil temperature contrast is approx-
imately 0.05 ◦C larger on the 0.0275◦ than 0.11◦ horizontal resolution. 
The surface evaporation is up to 0.35 mm less in Berlin than its sur-
roundings, and the urban-rural evaporation contrast is up to 0.2 mm 
larger on the 0.0275◦ compared to the 0.11◦ horizontal resolution 
(Fig. 9A/B-d). 

Clearly, the typical urban characteristic are more pronounced on the 
0.0275◦ than on the 0.11◦ horizontal resolution. This is mainly due to 
the larger amount of urban grid boxes on the 0.0275◦ horizontal reso-
lution (Fig. 3). In addition, these grid boxes contain a larger urban 
fraction, of around 0.6–1, compared to the 0.11◦ horizontal resolution, 
with no grid boxes containing an urban fraction larger than 0.8 
(Table 1). Therefore, the urban grid boxes on the convection-permitting 
scale are better resolved, particularly leading to a stronger reduction in 

moisture and stronger warming, especially in Berlin compared to its 
surroundings. 

In summary, the presented results in this chapter show the 
convection-permitting scale resolves Berlin, and its typical urban char-
acteristics, more pronounced than the 0.11◦ horizontal resolution. For 
both extreme conditions, SH>0.02 kg/kg and RH<30 %, the 0.0275◦

horizontal resolution is drier and warmer than the 0.11◦ horizontal 
resolution, particularly in Berlin compared to its surroundings. The 
convection-permitting scale mitigates the SH>0.02 kg/kg moist extreme 
and intensifies the RH<30 % dry extreme. 

4. Discussion 

This research shows how crossing spatial resolutions from ~12.5 km 
to ~3 km grid size affects two humidity extreme conditions, SH>0.02 
kg/kg and RH<30 %, occurring under 2 ◦C global mean temperature 
change, comparing Berlin to its surroundings. The results section 
directly discussed the outcomes in detail, therefore this discussion sec-
tion focuses on key aspects underpinning the study. 

The results of this research indicate temporal mean values only show 
limited differences and improvements going to finer horizontal resolu-
tions, except for the specific humidity urban-rural contrast in July–Au-
gust which shows added value on the 0.0275◦ horizontal resolution 
(Fig. 8). For the extreme conditions, and its drivers, changes in the 
variables are clearly visible for all the downscaled cases on the finer 
scales, particularly for Berlin (Fig. 9). This is in line with Ban et al. 
(2014) and Prein et al. (2015), who indicate convection-permitting 
simulations show larger benefits in the tail-distributions compared to 
mean values. 

Climate model projections are inherently subject to uncertainty. 
Regional climate models are dependent on global climate models for 
their boundary conditions, feeding in the large scale climate conditions. 
Global climate models may not simulate all key dynamical patterns 
adequately that influence natural variability and related extremes on the 
local scale, such as atmospheric blocking, jet stream position, or tele-
connections (Sillmann et al., 2017). The HAPPI method, by its design, 
specifically targets to reduce the uncertainty in climate model responses 

Fig. 10. 5-day time series around the extreme conditions, SH>0.02 kg/kg (top row) and RH<30 % (bottom row), for respectively SH and RH, showing Case1 and 
Case2, for Berlin and its surroundings, for the spatial resolutions 0.0275◦ and 0.11◦. 
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and internal variability, in order to understand the impact of an addi-
tional half degree of warming from 1.5 ◦C to 2.0 ◦C (Mitchell et al., 
2017). Nevertheless, the identified extreme conditions of this research 
remain subject to internal variability and related uncertainties. Addi-
tionally, dynamical downscaling methods can result in model artifacts. 
For instance the choice of domain, spin-up, and nesting approach may 
result in a too strong or too weak boundary forcing, leading to mis-
representing extremes while downscaling to finer resolutions (Bellprat 
et al., 2019; Matte et al., 2016; Sillmann et al., 2017; von Trentini et al., 
2019). 

Commonly scientific studies relate their findings to observations to 
gain understanding about uncertainties and biases to enhance the 
robustness of the results. Because it is virtually impossible to compare 
unprecedented future extreme conditions that did not happen in the past 
with observations, this research took a physical process-understanding 
approach. The in-depth meteorological characterization of the extreme 
conditions validated the physical plausibility of the extremes and the 
underlying drivers. To further enhance the robustness of the presented 
results it could be desirable to assess in more detail how the spatial 
differences and urban-rural contrasts found in this study relate to nat-
ural and internal variability, as well as to the uncertainty arising from 
the downscaled model simulations. In addition, it would be beneficial to 
understand if slightly less extreme conditions would have similar 
meteorological characteristics to the downscaled extremes investigated 
in this research. 

The results show the convection-permitting scale resolves Berlin, and 
its typical urban characteristics, more pronounced than the 0.11◦ hori-
zontal resolution. The convection permitting scale mitigates the 
SH>0.02 kg/kg moist extreme and intensifies the RH<30 % dry 
extreme. This indicates that the convection permitting scale is able to 
better capture the urban characteristics than the HAPPI data (Annex; 
Fig. A1), as well as the 0.11◦ resolution. To ensure we adequately 
simulate climate change extremes and impacts in cities, it is important to 
move towards convection-permitting resolutions. 

The REMO model represents urban areas through a bulk-scheme. 
Forgone studies show that including a sophisticated urban parameteri-
zation scheme or an urban model can enhance the urban heat island 
effect, improve the diurnal cycle, and potentially lead to stronger 
warming and increased drying in urban areas compared to the bulk- 
approach (Daniel et al., 2019; Karlický et al., 2018; Langendijk et al., 
2019b). This implies the reduced moisture and enhanced warming 
found for Berlin on finer spatial resolutions in this study might get more 
profound using sophisticated urban schemes. It would be important for 
further studies to include urban parameterizations in regional climate 
models to adequately capture the urban effects, particularly on the 
convection-permitting scale (Daniel et al., 2018; Hertwig et al., 2021). 

The SH>0.02 kg/kg and RH<30 % unprecedented extreme condi-
tions may have important implications for human health. The moist 
extreme, SH>0.02 kg/kg, is mitigated in Berlin, particularly on the 
convection-permitting resolution, resulting in a reduction of moisture in 
the city. This implies that urban dwellers would be slightly less affected 
by the moist extreme than people living in the rural areas, potentially 
leading to a reduced mortality rate. Nevertheless, it is important to note 
that this unprecedented extreme moist condition happening under 
2.0 ◦C warming would imply an overall increase in favorable conditions 
for heat stress compared to the historical period. The RH<30 % extreme 
provides favorable conditions for the spread and survival of influenza. 
The convection-permitting resolution shows that Berlin is drier than its 
surroundings, potentially leading to increased influenza in the city with 
negative effects on the health of urban dwellers. 

This research focuses solely on two humidity extreme conditions in 
Berlin and its surroundings. It would be important to understand the 
changes and benefits on the convection-permitting resolution for 
different types of extremes and for other cities. Further studies on 
climate extremes in urban areas, with additional regional climate 
models that potentially include sophisticated urban schemes, could be 

beneficial to compare the results of this study. 

5. Summary and conclusions 

This research investigates how crossing spatial resolutions from 
~12.5 km to ~3 km grid size affects humidity extremes and related 
variables under 2 ◦C global mean temperature change for Berlin and its 
surroundings. Two meteorologically plausible unprecedented categories 
of future extreme humidity conditions are identified for Berlin and its 
surroundings based on statistical distributions of the HAPPI data, 
respectively SH>0.02 kg/kg and RH<30 %. Two example cases of each 
extreme condition are downscaled following a double-nesting approach, 
from the 0.44◦ to the 0.11◦ horizontal resolution by REMO and there-
after from the 0.11◦ to the 0.0275◦ horizontal resolution with REMO- 
NH. The differences between the spatial resolutions and the urban- 
rural contrast are analyzed for Berlin and its surroundings, following a 
meteorological process-understanding approach. 

The main results show that the convection-permitting scale resolves 
Berlin, and its typical urban characteristics, more pronounced than the 
0.11◦ horizontal resolution. The 0.0275◦ horizontal resolution is less 
moist than the 0.11◦ horizontal resolution for the downscaled cases of 
both extreme conditions, for SH>0.02 kg/kg (0.005 kg/kg SH and 20 % 
RH) and for RH<30 % (0.0007 kg/kg SH and 10 % RH). Higher tem-
peratures of approximately 1.0 ◦C–2.0 ◦C are found for both extreme 
conditions for the 0.0275◦ simulations compared to 0.11◦ horizontal 
resolution. The differences between the 0.11◦ to the 0.0275◦ horizontal 
resolution are generally more profound in Berlin compared to its sur-
roundings, especially indicating warmer temperatures and a stronger 
decrease in moisture (RH and SH) on the 0.0275◦ horizontal resolution 
in the city. This urban drying effect and the associated urban-rural 
contrast is larger for the SH>0.02 kg/kg extreme condition compared 
to the RH<30 % extreme condition, particularly on the convection- 
permitting scale. The convection-permitting scale mitigates the 
SH>0.02 kg/kg moist extreme and intensifies the RH<30 % dry 
extreme. 

The enhanced reduction in moisture is predominantly due to the 
increase of urban grid boxes with larger urban fractions on the 0.0275◦

horizontal resolution compared to the 0.11◦ horizontal resolution. On 
the 0.0275◦ horizontal resolution the underpinning variables show 
higher 2-m temperatures, higher soil temperatures, lower soil moisture, 
reduced surface evaporation, and lower wind speeds, especially in 
Berlin. This implies the sealed urban surface is resolved more profoundly 
on the 0.0275◦ horizontal resolution. It demonstrates the improved 
capability of the convection-permitting simulations to capture the 
typical urban drying effect in Berlin for the two extreme conditions. 

The results for the SH>0.02 kg/kg extreme condition imply that 
extreme moist summer days will be less humid in Berlin than its sur-
roundings under 2.0 ◦C global warming, particularly when simulated on 
the convection-permitting scale. This humidity reduction could partly 
mitigate human heat stress in the city during the extreme event 
compared to its surroundings, potentially reducing the mortality rate. 
The RH<30 % extreme condition, with its low relative humidity values, 
could possibly favor the spread and survival of influenza particularly in 
Berlin, leading to negative health effects. Follow-up studies would be 
needed to further investigate the relationships between the extremes 
and various sectors, and applications. This could inform the develop-
ment of climate information and services for urban areas, as well as the 
modelling needs and directions for RCM developments in the context of 
cities. 
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