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A transfer operator based computational study of mixing processes in
open flow systems

Anna Klünker1,∗ and Kathrin Padberg-Gehle1,∗∗

1 Institut für Mathematik und Didaktik, Leuphana Universität Lüneburg, 21335 Lüneburg, Germany

We study mixing by chaotic advection in open flow systems, where the corresponding small-scale structures are created by
means of the stretching and folding property of chaotic flows. The systems we consider contain an inlet and an outlet flow
region as well as a mixing region and are characterized by constant in- and outflow of fluid particles. The evolution of
a mass distribution in the open system is described via a transfer operator. The spatially discretized approximation of the
transfer operator defines the transition matrix of an absorbing Markov chain restricted to finite transient states. We study the
underlying mixing processes via this substochastic transition matrix. We conduct parameter studies for example systems with
two differently colored fluids. We quantify the mixing of the resulting patterns by several mixing measures. In case of chaotic
advection the transport processes in the open system are organized by the chaotic saddle and its stable and unstable manifolds.
We extract these structures directly from leading eigenvectors of the transition matrix.

© 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH

1 Transfer-operator and its numerical approximation in open systems

Let T : (A,B(A))→ (X,B(X)) be a measurable and nonsingular transformation that maps an initial particle inA ⊂ X ⊂ Rd

to its new position after a given timestep τ (open system). The evolution of the mass distribution f over A under T can be
described by an affine operator: L1(A)→ L1(A), defined by PAf+ς , where PA is the conditional Perron-Frobenius operator
[1] and ς describes the new mass that is released into the system after time-step τ . The linear operator PA : L1(A)→ L1(A)
is defined by ∫

B

PAfdµ =

∫

T−1B

fdµ for all B ∈ B(A).

Using Ulam’s method [2], a spatially discretized approximation of PA is given by the substochastic matrix P with entries
estimated as

Pij =
µ(Bi ∩ T−1(Bj))

µ(Bi)
,

where {B1, B2, . . . , Bn}, is a fine partition of A and µ is the Lebesgue measure on A. The evolution of the mass distribution
vector v over A can now be described as an affine transformation vP + σ, where σ is the discrete source that is injected into
the system after time-step τ . Under the assumption that all particles can finally leave A and that the source σ is constant, the
matrix P defines the transition matrix of an absorbing Markov chain restricted to finite transient states. Assuming that the
underlying velocity field in our system is time-periodic with period τ , then the Markov chain is time-homogeneous and the
mass distribution converges to the invariant mass distribution vinv = σ(I −P )−1 (fixed point of the affine transformation) [3].

2 Mixing in open systems: Example set-up

Let a system with domain X contain an inlet and an outlet flow region, X1 and X3, as well as a mixing region X2 (see Fig.1).
Two types of particles in the system are advected by velocity field

u(x, y, t) =

{
uw(x, y), for (x, y) ∈ X1 ∪X3

uw(x, y) + um(x, y, t), for (x, y) ∈ X2

,

where uw is a constant homogeneous velocity field and um is the velocity field of a time-periodic mixer.
Here, as velocity field of the time-periodic mixer we use the well-known periodically perturbed double gyre flow [4], whose

phase portrait contains two counter-rotating gyres separated by a periodically moving separatrix.
In the outlet region a “periodic” pattern is formed after some time, which we want to quantify with respect to the mixing

quality. Therefore, we consider the open subsystem with domain A containing an inlet flow region Ain, the mixing region
Amix and an outlet flow region Aout, which fully describes the pattern.
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We partition the domain A in 49152 square boxes and
calculate the transition matrix P . As constant source we
use a signed mass distribution σ, describing the two types
of particles. Fig. 1: Set-up of the double gyre mixer

2.1 Mixing measures

We consider the following mixing measures: the sample
variance (as measure of the intensity of segregation), the
mean length scale (as measure of the scale of segrega-
tion) [5, 6] and the mix variance (a multiscale measure
of mixing that considers a concentration field to be well-
mixed if its averages over arbitrary open sets are uni-
form) [7]. In Fig.2 we show the results of a parameter
study. We vary the double gyre parameter ε, which con-
trols the maximum displacement of the separatrix, and
apply the different mixing measures to the invariant mass
distribution vinv restricted to the outlet region Aout. The
mixing measures show peaks in the mixing quality for
similar parameter values. Three corresponding mass dis-
tributions on Aout are included in the figure. In further
parameter studies, the mixing variance has been shown
to be robust to numerical changes in the calculation of P .
For future work, spectral mixing measures that take into
account information on two types of fluid could be useful.

Fig. 2: Different measures of mixing applied to vinv restricted to
Aout. Red: sample variance, blue: relative mix variance, purple:
mean length scale

2.2 Organizing structures

Most fluid material has a transient behavior and leaves the open system relatively fast, but some material intersects with its
original domain. This region is a chaotic saddle. Particles near the stable manifold of a chaotic saddle stay longer in the
system and follow the unstable manifold of a chaotic saddle on their way out [8].
In Fig.3a we follow a bulb of particles at time t = 0 (cyan
and blue) to t = 10 (pink and orange). The cyan parti-
cles remain in the system after 10 time steps (colored in
pink). This reveals the unstable manifold (pink) and the
stable manifold (cyan). Instead of following particles, we
can extract these structures now directly from the leading
left and right eigenvectors of our substochastic transition
matrix P . In Fig.3b-c the leading two left and the lead-
ing two right eigenvectors of the transition matrix P are
shown. The support of a left eigenvector approximates
an unstable manifold. The support of a right eigenvector
approximates a stable manifold. The intersection of the
support of the two left and right eigenvectors (dark blue)
approximates two chaotic saddles (see Fig.3d). To opti-
mize mixing, it would be interesting to study how these
organizing structures can be manipulated.

a)

b) c)

d)

Fig. 3: a Evolution of a set of particles. Position of the particles af-
ter 0 (cyan and blue) and 10 (pink and orange) time steps. b Leading
two left eigenvectors of the transition matrix P . c Leading two right
eigenvectors. d Support of the leading two left and right eigenvec-
tors.
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[7] G. Mathew, I. Mezić, and L. Petzold, Physica D: Nonlinear Phenomena 211(1-2), 23–46 (2005).
[8] H. Aref et al., Rev. Mod. Phys. 89(Jun), 025007 (2017).

www.gamm-proceedings.com © 2021 The Authors Proceedings in Applied Mathematics & Mechanics published by Wiley-VCH GmbH


