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REVIEW Open Access

A review of fire effects across South
American ecosystems: the role of climate
and time since fire
Melisa A. Giorgis1,2* , Sebastian R. Zeballos1, Lucas Carbone1, Heike Zimmermann3, Henrik von Wehrden4,
Ramiro Aguilar1, Ana E. Ferreras1, Paula A. Tecco1,2, Esteban Kowaljow1,2, Fernando Barri5, Diego E. Gurvich1,2,
Pablo Villagra6,7 and Pedro Jaureguiberry1

Abstract

Background: Fire is an important driver of ecosystem dynamics worldwide. However, knowledge on broad-scale
patterns of ecosystem and organism responses to fires is still scarce. Through a systematic quantitative review of
available studies across South America, we assessed fire effects on biodiversity and abundance of different
organisms (i.e., plants, fungi, invertebrates, and vertebrates), plant fitness, and soil properties under four climate
types, and time since the last fire (i.e., early and late post fire). We addressed: (1) What fire effects have been studied
across South America? (2) What are the overall responses of biodiversity, abundance, fitness, and soil properties to
fires? (3) How do climate and time since fire modulate those responses?

Results: We analyzed 160 articles reporting 1465 fire responses on paired burned and unburned conditions. We found
no effect of fire on biodiversity or on invertebrate abundance, a negative effect on woody plant species and vertebrate
abundance, and an increase in shrub fitness. Soil in burned areas had higher bulk density and pH, and lower organic
matter and nitrogen. Fire effect was significantly more positive at early than at late post fire for plant fitness and for soil
phosphorus and available nitrogen. Stronger negative effects in semiarid climate compared to humid warm climate
suggest that higher temperatures and water availability allow a faster ecosystem recovery after fire.

Conclusions: Our review highlights the complexity of the climate–fire–vegetation feedback when assessing the
response of soil properties and different organisms at various levels. The resilience observed in biodiversity may be
expected considering the large number of fire-prone ecosystems in South America. The recovery of invertebrate
abundance, the reduction of the vertebrate abundance, and the loss of nitrogen and organic matter coincide with the
responses found in global reviews at early post-fire times. The strength of these responses was further influenced by
climate type and post-fire time. Our synthesis provides the first broad-scale diagnosis of fire effects in South America,
helping to visualize strengths, weaknesses, and gaps in fire research. It also brings much needed information for
developing adequate land management in a continent where fire plays a prominent socio-ecological role.

Keywords: abundance, biodiversity, biomass, climate, effect size, fire impact, fire response, fitness, meta-analysis,
soil properties
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Resumen

Antecedentes: El fuego es un importante modulador de la dinámica de los ecosistemas en el mundo. Sin
embargo, el conocimiento a gran escala de los patrones de respuesta de ecosistemas y organismos es aún escaso.
A través de una revisión sistemática cuantitativa de los estudios disponibles a lo largo de Sudamérica, abordamos
los efectos del fuego sobre la biodiversidad, abundancia de diferentes organismos (i.e., plantas, hongos,
invertebrados y vertebrados), aptitud de las plantas y propiedades del suelo bajo diferentes condiciones climáticas
(i.e., cuatro tipos climáticos), y tiempo transcurrido desde el último incendio (i.e., tiempo post-fuego temprano y
tardío). Respondimos: (1) ¿Qué efectos del fuego se han estudiado en Sudamérica? (2) ¿Cuáles son las respuestas
generales de la biodiversidad, abundancia, aptitud y propiedades del suelo al fuego? (3) ¿Cómo el clima y el tiempo
post-fuego modulan esas respuestas?

Resultados: Analizamos 160 artículos que reportaron 1465 respuestas al fuego de sitios apareados quemados y no
quemados. No encontramos efectos del fuego sobre la biodiversidad y abundancia de invertebrados, encontramos
efectos negativos sobre la abundancia de especies de plantas leñosas y de vertebrados, y un incremento en la
aptitud de los arbustos. El suelo en sitios quemados tuvo mayor densidad aparente y pH, y menor materia orgánica
y Nitrógeno. El efecto del fuego fue significativamente más positivo en tiempos post-fuego tempranos que en
tardíos para aptitud de las plantas, y para el Fósforo y Nitrógeno disponible del suelo. Además, encontramos
efectos negativos más fuertes en climas semiáridos que en climas húmedos cálidos, sugiriendo que altas
temperaturas y disponibilidad de agua permiten una mayor recuperación de los ecosistemas después del fuego.

Conclusiones: Nuestro estudio destaca la complejidad de las relaciones clima–fuego–vegetación para abordar las
respuestas de las propiedades del suelo y de diferentes organismos a varios niveles. La resiliencia observada en la
biodiversidad puede ser esperada dado el alto número de ecosistemas propensos al fuego en Sudamérica. La
recuperación de la abundancia de invertebrados, la reducción de la abundancia de vertebrados, y las pérdidas de
Nitrógeno y Materia Orgánica coincide con las respuestas encontradas en revisiones globales en tiempos cortos
después del fuego. La tendencia de estas respuestas estuvo además influenciada por el tipo de clima y tiempo post
fuego. Nuestra síntesis provee el primer diagnóstico a gran escala de los efectos del fuego en Sudamérica,
ayudando a visualizar las fortalezas, debilidades y vacíos en los estudios del fuego. También brinda información
muy necesaria para el desarrollo de estrategias adecuadas de manejo en un continente en el cual el fuego juega
un papel socio-ecológico preponderante.

Introduction
Fire is an important driver in the dynamics of terrestrial
ecosystems, influencing many attributes, functions, and
processes (Bowman et al. 2009; Staver et al. 2011; Archibald
et al. 2018). Fire triggers ecosystem succession, causing
traceable changes in attributes such as biodiversity at differ-
ent trophic levels (Pausas and Keeley 2009; He et al. 2019),
abundance (Pausas and Ribeiro 2017; Carbone et al. 2019),
fitness (García et al. 2016; Carbone and Aguilar 2017), as
well as soil properties (Certini 2005; Pellegrini et al. 2018).
Understanding these changes imposed by fire is
challenging, as there are several factors involved that
act at different spatial and temporal scales (Bowman
et al. 2009; Archibald et al. 2013; Harris et al. 2016;
Pausas and Dantas 2017).
Feedbacks between climate, vegetation, and fire often

involve complex non-linear and context-dependent rela-
tionships, influencing ecological processes and evolution-
ary aspects of the biota, which in turn influence ecosystem
responses to fire (Pausas and Paula 2012; Archibald et al.
2013, 2018; Miller et al. 2013; Pausas and Ribeiro 2013,
2017). Climate, which defines gradients of temperature

and moisture, is a strong regulator of ecosystem properties
and plant traits, such as biomass, leaf area, and net pri-
mary productivity (Whittaker and Marks 1975; Bond et al.
2005; Pausas and Ribeiro 2013). Fire activity is linked to
the productivity–aridity gradient imposed by climate, in
which conditions at either end of the gradient are less
conducive to fire, either due to excess of moisture (high-
productivity extreme) or lack of fuel (high-aridity extreme)
(Pausas and Bradstock 2007; Krawchuk and Moritz 2011;
Pausas and Ribeiro 2013). Moreover, this relationship may
be modulated by characteristics of the vegetation, making
the flammability threshold of a given ecosystem context
dependent (Cochrane 2003; Archibald et al. 2009; Parisien
and Moritz 2009; Bradstock 2010; Pausas and Paula 2012).
However, few studies have been able to broaden the
spatial scale (e.g., from regional to continental) to allow us
to understand the potential of the climate–vegetation–fire
system dynamics as a modulator of ecosystem response to
fire (Archibald et al. 2013, 2018; Lehmann et al. 2014;
Pausas and Ribeiro 2017).
Fire-prone ecosystems, many of which occupy the

intermediate range of the productivity–aridity gradient,
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feature flammable seasonal forests, grasslands, and
shrublands (Bond et al. 2005), where most of the species
have life-history traits that allow them to cope with fire
(Bond and Keeley 2005; Keeley et al. 2011; Bond and
Van Wilgen 2012; Pausas and Keeley 2014). In these
environments, fire is expected to have a mild impact,
and ecosystem properties are expected to return to the
pre-fire state in the short term. On the contrary, in non-
fire-prone ecosystems where climate maintains a high
level of moisture throughout the year (e.g., tropical for-
est), or limits biomass productivity, generating a patchy
configuration of vegetation (e.g., desert), most species do
not have life-history traits to cope with fires or they are
less efficient at coping than species in fire-prone ecosys-
tems. Consequently, even though climatic conditions in
some of these regions might lead to high productivity,
and hence expected rapid biomass recovery (e.g., humid
tropical regions), fires usually have higher and longer-
lasting negative impacts on their ecosystem properties
(Gerwing 2002; Cochrane 2003; Barlow and Peres 2008;
Mestre et al. 2013; Silveira et al. 2016). Moreover, in
non-fire-prone systems in which climate restricts
productivity, and hence biomass recovery either by low
temperature or precipitation, a slow recovery after fire
might be expected (Casady and Marsh 2010; Nelson
et al. 2014). Therefore, the effect of fire at a broad scale,
measured through biophysical variables such as biodiver-
sity, abundance, fitness (e.g., vegetative, reproductive),
and soil properties (e.g., bulk density, organic matter, nu-
trients), is expected to differ across regions with different
climates (Moretti et al. 2009; Miller et al. 2013; Lehmann
et al. 2014).
Fire is a discrete disturbance in time and space; thus,

as post-fire succession advances, different responses may
occur in the same ecosystem (Chapin III et al. 2011;
Mestre et al. 2013; Cohn et al. 2015). For example, post-
fire recovery of woody ecosystems has resulted in
increased plant diversity soon after fire due to an
increase in grasses and annual plant diversity, followed
by a reduction in biodiversity as woody cover increases
over time (Giorgis et al. 2013; Maestre et al. 2016;
Doherty et al. 2017). Similarly, the release of nutrients,
the availability of light, and the temporary decrease of
competition usually associated with the post-fire envi-
ronments can maximize plant fitness of fast-growing
and small-sized species (e.g., grasses and forbs) shortly
after fire, which then decline as the forest canopy re-
covers (Keeley et al. 2005; Rostagno et al. 2006; Chapin
III et al. 2011; Kunst et al. 2015; Pilon et al.. 2021).
Along the same lines, increased soil nutrient pulses that
occur immediately after fire might drop after some time
due to soil erosion (Certini 2005). Furthermore, abun-
dance of certain animals (i.e., invertebrates or verte-
brates) could increase shortly after fire, as some species

take refuge during fire and then recolonize recently
burned patches covered by grasses and forbs, while
others could be positively associated with patches in
later stages of post-fire succession where woody and
understory plants have recovered (Robinson et al. 2013;
Doherty et al. 2017; Pausas 2019). Therefore, fires might
generate windows of opportunity for growth during
which different species are at an optimum at different
times after fire occurrence (Miller et al. 2013; Farns-
worth et al. 2014; Cohn et al. 2015; Pausas and Ribeiro
2017), making time since fire a relevant variable for
assessing post-fire dynamics (Whelan et al. 2002; Mur-
phy and Russell-Smith 2010; McLauchlan et al. 2020).
Since most studies are limited in time, a comparative
synthetic approach of individual studies conducted at
different times after fire occurrence would allow asses-
sing changes over time.
South America holds one of the highest annual

average numbers of fires worldwide (Andela et al. 2017).
Most fires on this continent have an anthropogenic
origin (Bowman et al. 2009), and occur in the tropics
(mainly confined to northeast Brazil; Dwyer et al. 2000)
during late winter and spring (Di Bella et al. 2006).
Given the great climatic variability within this continent
(i.e., from arid to humid, and from cold to warm), we
expect to find important different fire responses across
ecosystems and organisms. Although fires are highly
relevant for the dynamics of South American ecosys-
tems, knowledge of their ecological impact on ecosystem
attributes and processes is scarce with respect to other
fire-prone areas of the world (Prichard et al. 2017; Geary
et al. 2019). Here we present the first systematic review
of fire responses of ecosystem and organism attributes
across South America. Our study aims to provide
general patterns of fire effects at the continental scale
and improve our understanding of the main factors
controlling post-disturbance dynamics at this scale (i.e.,
climate and time since fire). To that end, we performed
a systematic review and hierarchical meta-analysis of the
existing literature of fire studies in South America to ad-
dress three major questions: (1) What fire effects have
been studied across South America? (2) What are the
overall responses of biodiversity, abundance, fitness, and
soil properties to fires? (3) How does climate and time
since fire modulate those responses? Finally, we give
some recommendations for future research that may
help improve our understanding of fire effects in South
America and the world.

Methods
Literature search and compilation of dataset
We searched for peer-reviewed publications of fire
effects in South America in Scopus scientific literature
database. Relevant search terms were combined into one
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search string, which we used to select the titles, abstracts,
and keywords of all articles in relevant areas, namely
agricultural and biological sciences, environmental
sciences, and earth and planetary sciences. We used
the following search string:

This search delivered 4535 studies (10 December 2019),
of which we assessed their titles and abstracts, retaining
435 for a further detailed full-text check, from which we
kept 160 studies. These studies were analyzed in full and
all relevant data was extracted for the subsequent meta-
analysis. We included articles in English, Spanish, and
Portuguese. We only included articles that provided nu-
merical parameters of the response variables of interest to
compute the effect sizes, the common metric to conduct a
meta-analysis, in paired burned (i.e., treatment) and un-
burned (i.e., control) plots, the latter with at least 20 years
since the last fire; and that reported the time since the last
fire. We did not include studies that used experimental
heat treatments, or studies with confounding factors such
as slash and burn practices or with obvious differences in
conditions (e.g., topographic position, grazing pressure)
between plots (Additional file 1: Figure 1.1).

Response variables considered in the analyses
We analyzed the impact of fire on four response variables:
biodiversity, abundance, fitness, and soil properties.
Biodiversity and abundance were analyzed according to
two levels of disaggregation. The first level included
plants, fungi, invertebrates, and vertebrates; while the sec-
ond level included growth forms for plants (forbs, grasses,
shrubs, and trees), taxonomic order for invertebrates (e.g.,

Araneae, Coleoptera, Collembola, Formicidae, Orthop-
tera), and taxonomic class for vertebrates (birds, mam-
mals, reptiles, amphibians). Biodiversity was mostly
measured as richness (number of species) and only a few
studies used other diversity indices. Abundance was mainly
reported as cover percentage, biomass (for plant species),
or individual number (for trees and animals). Fitness was
considered as any trait of the individuals directly or indir-
ectly related to their performance (Violle et al. 2007). As al-
most all of the studies assessing fire effects on fitness were
conducted on plants (98%), we analyzed their vegetative
(e.g., specific leaf area, growth rate) and reproductive (e.g.,
number of flowers per branch, fruit-set) fitness (Violle et al.
2007). Finally, we analyzed each soil property independently
(bulk density, litter, organic matter, available nitrogen, total
nitrogen, phosphorous, micronutrients, pH, and salinity).
For simplicity, all the variables subjected to analysis of fire
responses will hereafter be referred to as response variables.
To analyze how climate modulates the effect of fire on

response variables, we classified each study site based on
the relation between precipitation and temperature
proposed by Whittaker (1975) for the ordination of
world ecosystems. To do that, we first obtained the
mean annual precipitation and the mean annual
temperature of each study site from Worldclim (www.
worldclim.org; Hijmans et al. 2005). The location of each
study site was geo-referenced in decimal degrees and
data were extracted using the extract function from
the raster packages in R version 3.4.0 (R Core Team
2019) from bioclimatic data at a scale of 2.5 arcmin. If
an article had several study sites (with pairs of burned
and unburned plots) separated by more than 15 km, we
extracted different bioclimatic data for each pair of sites
and, thus, we obtained data for 175 study sites from the
160 selected articles. Secondly, based on the formula
proposed by Bond et al. (2005), which follows the pre-
cipitation–temperature plane of Whittaker (1975) to de-
fine uncertain ecosystems, we classified each study site
into one of the following four climate types: semiarid,
dry, cold-humid, and warm-humid climates. Values of
MAP (mean annual precipitation) and MAT (mean an-
nual temperature) were used in combination with unitless
constant values to define climate types (Table 1).
Humid climate was further divided into two types—

humid-cold and humid-warm—depending on whether

Table 1 Formulas used to classify each study site, from studies that were published between 1990 and 2019 that were used in the
review of fire effects across South American ecosystems to determine the role of climate and time since fire, into different climate
types. MAP = Mean Annual Precipitation; MAT = Mean Annual Temperature

Climate types Formulas

Humid MAP > 7.143 MAT + 286 and MAP > –1.469 MAT2 + 81.665 MAT + 475

Semiarid MAP > 7.143 MAT + 286 and MAP < –1.469 MAT2 + 81.665 MAT + 475

Dry MAP < 7.143 MAT + 286 and MAP < –1.469 MAT2 + 81.665 MAT + 475
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the mean annual temperature of the study sites was
lower or higher than 15 °C, respectively (Additional file 2).
Regarding fire proneness, there is no standardized and un-
equivocal way to classify the analyzed studies as fire-prone
or non-fire-prone; instead, we relied on the above climate-
type classifications and discuss fire proneness when it was
relevant.
The time since the last fire event at which the post-fire

response was measured was classified as either early (be-
tween 1 to 36 months) or late (more than 37 months). Re-
grettably, there were not enough studies reporting the fire
frequency (19% of the studies) or the intensity or severity
(2.5% of the studies) of the fire, so we were unable to in-
clude and analyze these two aspects of the fire regime.

Meta-analysis
We used Hedges’ d as an estimate of the unbiased
standardized mean difference (i.e., the effect size) between
the response variables in burned and unburned condi-
tions, which has the advantage of being unbiased by small
sample size (Gurevitch et al. 2001). To calculate Hedges’
d, we extracted the mean, standard deviation, and sample
size values of the response variables in burned and
unburned conditions from each study. These data were
extracted directly from the text, tables, or from graphs
using Data Thief III software (Tummers 2006; http://
www.datathief.org/). When some data was missing or not
available, we requested it from the corresponding authors.
A positive d value indicates that the response variable
increases in the burned plot, whereas a negative d value
implies the opposite, a decrease of the response variable in
burned conditions. Hedges’ d calculations were performed
using the escalc function from metafor package in
the software R.
We performed hierarchical mixed effects meta-analyses

using the rma.mv function from metafor package in R.
These mixed models were used with fixed and random
effects to account for differences across studies, assuming
that they do not share a common mean effect but that
there is random variation among studies, in addition to
within-study sampling variation (Borenstein et al. 2009).
In a meta-analytical framework, when more than one
effect size is obtained from the same publication, it implies
pseudoreplication, violating the assumption that effect
sizes are independent (Gurevitch and Hedges 1999; Tuck
et al. 2014). To control for this potential source of non-
independence among effect sizes, we included the identity
of each study as a random factor to incorporate their
hierarchical dependence when multiple observations
(i.e., effect sizes) were obtained from the same study
(Borenstein et al. 2010; Nakagawa and Santos 2012;
see models in Additional file 3: Tables 3.1 and 3.2).
Separate meta-analyses for each response variable (i.e.,

biodiversity, abundance, plant fitness, and soil properties)

were performed using different categorical moderator
variables to analyze descriptive patterns (e.g., taxa groups,
plant life form, etc.) or to assess whether they affect the
magnitude of fire impacts (post-fire time, climate type).
We also tested combinations between these moderators
when the sample size allowed.
For each response variable, we tested the heterogeneity

of effect sizes using Q statistics, which are weighted
sums of squares tested against a chi-square distribution
(Hedges and Olkin 2014). Specifically, we examined the
P-values of Q-between (Qb) statistics that describe the
variation in effect sizes that can be attributed to differ-
ences among categories of each moderator variable.
Effect sizes were considered significantly different from
zero if their 95% bias-corrected bootstrap confidence in-
tervals (CI) did not include zero (Borenstein et al. 2009).
A common problem of any systematic review is the
potential inclusion of studies that only show significant
results, as they may have a greater possibility of being
published than those showing non-significant results
(i.e., publication bias). To detect the existence of
publication bias in our dataset and to estimate how
such bias, if it existed, may affect the overall results,
we used statistical (rank correlation tests and “trim
and fill” procedures), and numerical (Rosengberg’s
fail-safe number) methods (Jennions et al. 2013).

Results
What fire effects have been studied in South America?
A total of 160 articles with 1465 fire responses (effect
sizes) were included in our review (Additional file 1).
Published articles in South America increased exponen-
tially over the years (Fig. 1). Most of the studies in the
articles were performed in Brazil (74 studies) and
Argentina (64), followed by Chile (10). The remaining
South American countries each had four articles or less
(Fig. 1). Among all the considered response variables,
fire effects on abundance had the highest number of
records (544 effect sizes), followed by plant fitness, soil
properties, and biodiversity (434, 354, and 133 effect
sizes, respectively). Among taxonomic groups, plants
had the highest number of records, focusing on plant
abundance and fitness, while the responses reported for
the abundance of invertebrates and vertebrates were
much less frequent (Fig. 2A). Among plant growth
forms, trees were responsible for most of the abundance
responses, while shrubs had the majority of the fitness
responses (Fig. 2B). Formicidae was the most studied
order within invertebrates, while birds were responsible
for most of the studies on vertebrates (Additional file 3:
Table 3.2). Most of the studies were performed in semi-
arid and humid warm climates (Fig. 2C). However, in
humid-warm climate, studies often focused on abundance
responses, while in semiarid climate, fitness responses
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were more common (Fig. 2C). Early post-fire re-
sponses (<36 months) were evaluated in most of the
studies, while less than half of the responses focused on
late post-fire responses (>36 months; Fig. 2D). Studies in-
cluding soil properties mostly focused on organic matter
followed by total nitrogen, phosphorus, and pH, while few
registered effects of other soil characteristics (Fig. 2E).
Furthermore, most of these variables were studied in
semiarid areas (Fig. 2E) and in early post fire (Fig. 2F).

Fire responses and effects of climate and time since fire
We did not find significant effects of fire on overall bio-
diversity (Fig. 3; Additional file 3: Table 3.2). Similarly,
no significant fire effects were observed for any of the
four different broad taxonomic groups analyzed (plants,
fungi, invertebrates, and vertebrates; Fig. 3; Additional
file 3: Table 3.2). Moreover, biodiversity was not affected
by fire across the two climates that allowed for analysis
(humid-warm and semiarid), nor was it affected at differ-
ent post-fire times, or when only plants were considered
(Fig. 3; Additional file 3: Table 3.2).
Fire had significantly different effects on the abun-

dance of plants, invertebrates, and vertebrates (Fig. 4).
Furthermore, fire effect on overall abundance was
negative for three of the four climates analyzed, with
the highest negative effect occurring in dry climates,
although no significant differences between climates
were found (Fig. 4). Additionally, fire had a similar
negative effect on overall abundance both at early and
late post-fire times (Fig. 4).

For plant abundance, fire had an overall significantly
negative effect (Fig. 4), which showed the same trend at
both post-fire times (Fig. 5A). The negative trend per-
sisted when the different growth forms were analyzed
separately (Fig. 4; Additional file 3: Table 3.2). Specific-
ally, this response was significant in trees and shrubs,
while the abundance of forbs and grasses had similar
negative but non-significant fire effects (Fig. 4). This
response pattern for different plant growth forms was
equal at both post-fire times (Fig. 5B). The fire response
among different taxa of invertebrates showed an overall
slight, non-significant, negative trend, although Orthop-
tera was the only order that tended to increase in abun-
dance in response to fire (Fig. 4). Regarding vertebrates,
overall abundance decreased in burned conditions,
mostly driven by the negative effect on birds, while
mammals, reptiles, and amphibians were not signifi-
cantly affected by fire (Fig. 4, Additional file 3: Table
3.2). Vertebrate abundance decreased, on average, in
early post-fire scenarios but showed no effect in late post
fire, indicating some level of recovery along post-fire
succession, although the differences between times were
not statistically significant (Fig. 5A). Except for inverte-
brates, abundance responses of shrubs, trees, and verte-
brates showed similar trends across the analyzed climate
types (Fig. 5C).
We found significantly different fire effects on plant

fitness among different plant growth forms, and between
early and late post-fire times (Fig. 6A; Additional file 3:
Table 3.2). Fire produced an increase on vegetative and
reproductive shrub fitness, which was particularly

Fig. 1 (A) Geographical distribution of study sites reporting fire effects across South America. Different colors indicate the climate types
established for the collected data: Humid-warm (green), Humid-cold (blue), Semiarid (yellow), and Dry (orange). (B) Cumulative number of studies
by country and year of publication selected for the present study (n = 160). The studies used in the review of fire effects across South American
ecosystems to determine the role of climate and time since fire were published between 1990 and 2019
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evident early post fire (Fig. 6B, C). Grasses showed a
significant negative response to fire in vegetative fitness
only during early post-fire, while fire effect had a positive
trend on reproductive performance (Fig. 6B, C). Forbs
and trees showed an overall non-significant fire effect on
their fitness (Fig. 6A, B, C). However, a trend toward
positive fire effects of the vegetative fitness of trees early
post fire was observed (Fig. 6C).
Regarding soil properties, in burned we found plots

reductions in litter, OM, total nitrogen and available
nitrogen, and increases in bulk density and pH (Fig. 7A;
Additional file 3: Table 3.2). Additionally, we found en-
richment of phosphorus early post fire, which differed
significantly from late post fire (Fig. 7B). The reduction
in organic matter and total nitrogen in burned plots was
mainly driven by their response early post fire and in
semiarid climates, while for available nitrogen, it was
more notable late post fire (Fig. 7B). Increasing values in

pH mainly occurred early post fire and in semiarid
climates (Fig. 7B; Additional file 3: Table 3.2).

Publication bias
We found no evidence of publication bias for the meta-
analyses of fire effects on abundance and biodiversity, as
observed by the lack of correlation between sample size
and effect sizes. Furthermore, we found no changes in
overall effect sizes in the “trim and fill” procedures
(Additional file 4: Table 4.1). In contrast, for the meta-
analyses of fire effects on plant fitness and soil proper-
ties, we found low but significant correlations between
effect sizes and sample sizes, indicating the potential
presence of publication bias (Additional file 4: Table
4.1). However, the “trim and fill” methods only slightly
changed the overall results for each of these meta-
analyses. Moreover, all of the calculated weighted fail-
safe numbers were always larger than the threshold

Fig. 2 Number of fire responses (i.e., effect sizes) for the studied response and moderator variables across South American ecosystems. Panels A
through D show the number of fire responses for biodiversity, abundance, and fitness across: (A) taxa groups (plants, fungi, invertebrates [Invert.],
and vertebrates [Verteb.]); (B) plant growth forms (forbs, grasses, shrubs, and trees); (C) climate types (humid-warm, humid-cold, dry, semiarid);
and (D) post-fire time (early and late). Panels E and F show the number of fire responses across different soil properties: bulk density, litter,
organic matter (OM), total nitrogen (Total N), nitrogen available (N avail.), phosphorous (P), micro nutrients, pH, and salinity for: (E) climate types
and (F) post-fire time. The studies used in the review of fire effects across South American ecosystems to determine the role of climate and time
since fire were published between 1990 and 2019
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number of 5n+10 (where n is the number of studies in-
cluded in the meta-analysis), implying that the results
found in our review were robust regardless of the pres-
ence of publication bias (Additional file 4: Table 4.1).

Discussion
This is the first systematic quantitative review assessing
fire effects on multiple taxonomic groups across differ-
ent climate types and post-fire times in South America,
one of the world’s most burned continents. Our results
show non-significant effects of fire on biodiversity, a
sharp negative effect on abundance of woody plant and
vertebrate species, and an increase in plant fitness of
shrubs. In addition, we observed clear negative fire
effects in the most important soil properties as was
previously found at a global scale. Our meta-analysis
showed a tendency of stronger negative effect in semi-
arid climate than in tropical warm climate, indicating
that higher temperatures and water availability in the
latter climate allow a faster ecosystem recovery after fire.
Additionally, more significant fire effects were observed

early post fire than late post fire, indicating stronger
effects immediately after fire and their dilution over time.

Effect of fire on the response variables
Biodiversity. Biodiversity was not significantly affected by
fire across any taxa group, climate type, or time since fire,
indicating an overall high resilience at the analyzed spatial
and temporal scales. This is in line with previous studies
focused on specific semiarid regions, including two well-
studied large fire-prone ecosystems in South America (i.e.,
Cerrado and the Gran Chaco), which had shown post-fire
recovery of biodiversity for different taxa groups, such as
plants, birds, and insects (e.g., Kunst et al. 2003, 2015;
Kowaljow et al. 2019; Durigan et al. 2020; Pilon et al.
2021). However, these responses may certainly involve
context-dependent changes in species composition (Duri-
gan et al. 2020; McLauchlan et al. 2020), which could not
be captured in our quantitative synthesis.
Interestingly, we found a tendency toward higher

invertebrate biodiversity in burned plots compared to
controls. This pattern has been reported in different
areas around the world (e.g., (Knoechelmann and Morais

Fig. 3 Weighted-mean effect sizes and 95% bias-corrected confidence intervals of fire on from studies published between 1990 and 2019 that
were used in the review of fire effects across South American ecosystems to determine the role of climate and time since fire. The effect sizes of
overall biodiversity, taxa groups, climate, post-fire time, and the response of plants in early (plants-early) and late (plants-late) post fire are shown.
Parameters with confidence intervals that do not overlap the vertical dotted line (Hedge’s d = 0) are considered to have a significant positive or
negative effect. Sample sizes for each category are shown in parentheses. The size of each black dot is proportional to its weight or contribution
to the overall mean calculation
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2008; Uehara-Prado et al. 2010; Carbone et al. 2019;
Lazarina et al. 2019), and could be explained by the high
mobility of many invertebrates (e.g., arthropods), which
can take advantage of the usually high availability of
plant biomass in early post-fire succession (Miranda
et al. 2002; Hoffmann and Andersen 2003). Contrary to
invertebrates, diversity of fungi (i.e., mycorrhizas) tended
to decrease (Fig. 3), probably as a response to the glo-
bally general negative effect of fire on soil microbial
communities (Pressler et al. 2019) and soil quality (Cer-
tini 2005; Pellegrini et al. 2018). However, fungi and ver-
tebrates are groups that deserve further study, given the

spatial and temporal scarcity of fire effects studies on
these organisms. Currently, fungi research is highly re-
stricted geographically (all studies from Argentina;
Longo et al. 2011, 2014), while vertebrates showed the
lowest number of studies, even though this group is fun-
damental for controlling cascading effects across trophic
levels (Bruno and Cardinale 2008; Cavallero et al. 2013;
Kurten 2013; Bauer and Hoye 2014; Dirzo et al. 2014;
Pérez-Méndez et al. 2016).
Abundance. As expected, fire negatively affected plant

abundance, mainly driven by the impact on woody species
(i.e., shrubs and trees). The negative impact on these

Fig. 4 Weighted-mean effect sizes and 95% bias-corrected confidence intervals of fire on abundance, from studies published between 1990 and
2019 that were used in the review of fire effects across South American ecosystems to determine the role of climate and time since fire. The
effect sizes of overall taxa groups, within plant growth forms, invertebrates, vertebrates, climate types, and post-fire time are shown. Parameters
with confidence intervals that do not overlap the vertical dotted line (Hedge’s d = 0) are considered to have a significant positive or negative
effect. Sample sizes for each category are shown in parentheses. The size of each black dot is proportional to its weight or contribution to the
overall mean calculation. Asterisks (*) denote significant difference (Q-between [Qb] statistics) among categories (*** = P < 0.0001)
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Fig. 5 Weighted-mean effect sizes and 95% bias-corrected confidence intervals of fire on abundance from studies published between 1990 and 2019
that were used in the review of fire effects across South American ecosystems to determine the role of climate and time since fire. The effect sizes of
early (-early) and late (-late) post-fire time for abundance of (A) plants, invertebrates, and vertebrates; and (B) grasses, shrubs, and trees. (C) The effect
sizes of shrubs, trees, invertebrates, and vertebrates across different climate types (-dry, -semiarid, -humid-warm). Parameters with confidence intervals
that do not overlap the vertical dotted line (Hedge’s d = 0) are considered to have a significant positive or negative effect. Sample sizes for each
category are shown in parentheses. The size of each black dot is proportional to its weight or contribution to the overall mean calculation. None of
the effect sizes of the groups within each moderator variable are significantly different (see Additional file 3: Table 3.2 for heterogeneity tests)
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growth forms early and late post fire (Fig. 5B) is expected
considering that the relative recovery of pre-fire abun-
dance (including cover and biomass) is slower than in
herbaceous species. The strongest negative effect observed
for shrubs could be mainly due to the fact that most of
the studies were carried out in dry-climate ecosystems,
where the combination of water stress and fire signifi-
cantly limits shrub recovery (Casillo et al. 2012; Pratt et al.
2014; Jacobsen et al. 2016).
After fire, a combination of different processes may

limit woody species recovery. First, woody species in
non-fire-prone ecosystems may experience high mortal-
ity rates (Barlow et al. 2003). Second, the reduction in
aboveground biomass produced by fires exposes individ-
uals to direct influence of browsing and trampling by
livestock (Coop et al. 2010; Blackhall et al. 2015, 2017;
Marcora et al. 2018; O’Connor et al. 2020; Zeballos et al.
2020). Third, recruitment of woody species seedlings
into fire-promoted grasslands or herbaceous patches
may be more restricted due to an increase in competi-
tion for light, water, or nutrients (Scholes and Archer
1997; Casillo et al. 2012). Finally, soil erosion driven by
fire increases run-off and seed loss events, and reduces
nutrient availability, therefore constraining biomass pro-
duction (Silva et al. 2013; Balch et al. 2015). The lesser
negative effect observed in forbs and grasses may be at-
tributed to their relative higher growth rate and shorter
lifespan as compared to woody species, which result in a
faster recovery in burned habitats. This vegetative
response might be linked to the responses observed in
some of the mobile organisms (Fig. 4). For example, the
early recovery of herbaceous vegetation could promote
rapid re-colonization by invertebrates such as insect
herbivores and pollinators. Additionally, our results
indicated different trends of abundance recovery across
taxa groups of invertebrates and vertebrates. Similarly, a
previous review showed different patterns of “optimum”
abundance as time since fire increased (Doherty et al.
2017). The fast recovery of invertebrate abundance early
post fire was mainly driven by insect studies (Carbone
et al. 2019), particularly on Orthoptera (Silveira et al.
2010; Kral et al. 2017). In turn, the overall negative effect
of fire on the abundance of vertebrates was mainly
driven by bird studies, which mostly showed a negative
response to fire (Fig. 5). Although this pattern has been
observed in other ecosystems (Fontaine and Kennedy
2012; Doherty et al. 2017; Carbone et al. 2019), the re-
sponse of birds to fire can be heterogeneous, varying
considerably between taxonomic and functional groups
(Fontaine and Kennedy 2012); therefore, generalizations
may be difficult to establish. The pattern observed here
could be due to the fact that the systematically selected
studies focused on rather intense fires, or on bird species
that are more susceptible to fire. Our findings of some

Fig. 6 Weighted-mean effect sizes and 95% bias-corrected confidence
intervals of fire on plant fitness from studies published between 1990
and 2019 that were used in the review of fire effects across South
American ecosystems to determine the role of climate and time since
fire. (A) Effect sizes within growth forms and early and late post-fire
time. (B) Effect sizes of vegetative and reproductive fitness within
growth forms. (C) Effect sizes of vegetative (-veget) and reproductive
(-reprod) fitness within growth forms and early (-early) and late (-late)
post-fire time. Parameters with confidence intervals that do not
overlap the vertical dotted line (Hedge’s d = 0) are considered to have
a significant positive or negative effect. Sample sizes for each category
are shown in parentheses. The size of each black dot is proportional to
its weight or contribution to the overall mean calculation. Asterisks (*)
denotes a significant difference (Q-between [Qb] statistics) among
categories (*** = P < 0.0001; * = P < 0.05)
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level of recovery of vertebrate abundance late post fire
compared to early post fire (Fig. 5) could have been
driven by the re-establishment of some bird populations

over time (Fontaine and Kennedy 2012; Doherty et al.
2017). Additionally, the recovery of populations of
specialist birds may take longer, particularly in forest

Fig. 7 Weighted-mean effect sizes and 95% bias-corrected confidence intervals of fire on soil properties from studies published between 1990
and 2019 that were used in the review of fire effects across South American ecosystems to determine the role of climate and time since fire. (A)
Effect sizes of bulk density, litter, organic matter (OM), total nitrogen (Total N), available nitrogen (N), phosphorous (P), micronutrients, pH, and
salinity are shown. (B) Effect sizes of early (-early) and late (-late) post-fire time of organic matter, total nitrogen, available nitrogen, phosphorous,
and within climate type (-humid-warm, -humid-cold, -semiarid) of organic matter and total nitrogen. Parameters with confidence intervals that do
not overlap the vertical dotted line (Hedge’s d = 0) are considered to have a significant positive or negative effect. Sample sizes for each category
are shown in parentheses. The size of each black dot is proportional to its weight or contribution to the overall mean calculation. Asterisk (*)
denotes a significant difference (Q-between [Qb] statistics) among categories (* = P < 0.05)
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ecosystems (e.g., Barlow and Peres 2004; Fontaine and
Kennedy 2012; Mestre et al. 2013; Albanesi et al. 2014),
although there are exceptions (e.g., Fontaine and
Kennedy 2012; Lee 2018; Morales et al. 2020), such as
the group of birds known as cavity excavators (i.e.,
woodpeckers [Picidae]), that take advantage of both the
softness of the wood of recently burned trees (i.e., snags)
for making their cavities (Schepps et al. 1999; Winkler
and Christie 2002; Bond et al. 2012; Lorenz et al. 2015)
and the higher amount of food (insect and other inverte-
brates) found in that substrate right after the fire
(Murphy and Lehnhausen 1998; Nappi et al. 2003).
Plant fitness. Despite the negative effect of fire on tree

abundance, we found no effect of fire on tree fitness,
and a slight positive trend on vegetative fitness early post
fire (Fig. 6A, B). Many tree species in the analyzed eco-
systems are highly resilient to individual fires, mainly
through resprouting (Hoffmann and Solbrig 2003; Sou-
chie et al. 2017; Jaureguiberry et al. 2020); therefore, if
burned plots do not burn again, trees might grow and
recover their biomass (Doherty et al. 2017; Miller et al.
2019; Coop et al. 2020). This response does not neces-
sarily imply a direct adaptation to fire, as the fire-adaptive
traits on which it relies could also have arisen in response
to other factors that have had a long history in some of
the studied regions, such as herbivory and seasonal
drought (Keeley et al. 2011), which indirectly provide the
vegetation with a high resilience to fire. On the other
hand, the negative tendency of the reproductive fitness ob-
served early post fire is expected, since trees may take a
long time to recover their reproductive size (Chapin III
et al. 2011). In contrast to trees, shrubs did show an in-
crease in vegetative and reproductive fitness early post fire,
which differs significantly from that of late post fire
(Fig. 6C). The early vegetative response reflects the high
resprouting capacity of many shrub species across the
studied regions, especially in fire-prone regions (Gurvich
et al. 2005; Bravo et al. 2014; Torres et al. 2014; Durigan
et al. 2020; Jaureguiberry et al. 2020). Regarding the repro-
ductive response, the pattern reported here agrees with
previous evidence suggesting that shrubs might reach
minimum reproductive sizes soon after fire, then slow
down their growth rate and reproduction as succession
progresses (Hoffmann and Moreira 2002; Hoffmann and
Solbrig 2003; Galíndez et al. 2009). In the case of herb-
aceous plants, surprisingly we did not find a general effect
in fitness, but a positive trend in reproductive fitness was
observed, mainly early post fire for grasses (Fig. 6B, C).
The lack of a consistent general response pattern in forbs
could be explained by the high heterogeneity of functional
groups included within this growth form (e.g., annual, per-
ennial, climber, fern) that can have different responses to
fire (Keeley et al. 1981; Bates et al. 2014; Heydari et al.
2016; Arcamone and Jaureguiberry 2018; Vidaller et al.

2019). In the case of grasses, the tendency of increasing re-
productive fitness early post fire (Fig. 6C) could be related
to the positive fire–colonization feedback generally de-
scribed for this growth form (Bond et al. 2003; Bond and
Keeley 2005; Pausas and Keeley 2009; Pilon et al. 2018).
Previous studies had observed an increase in reproductive
fitness of grasses after fire (Baruch and Bilbao 1999; Ara-
újo et al. 2013; Pilon et al. 2018; Vidaller et al. 2019). On
the contrary, vegetative fitness showed a negative impact
early post fire. However, we cannot determine if the ob-
served pattern (i.e., positive reproductive fitness versus
negative vegetative fitness) was due to intrinsic differences
between types of fitness or to differences in the type of cli-
mate, since all studies on reproductive fitness were lo-
cated in humid-warm climate, while vegetative fitness
was mostly studied in semiarid and arid climates.
Soil properties. The responses of soil properties to fire in

South American ecosystems support the trend suggested
in previous global reviews (Certini 2005; Pellegrini et al.
2018). Fire significantly reduces the amount of two im-
portant soil properties: OM and nitrogen content (Pelle-
grini et al. 2018). On the one hand, OM is directly
associated with carbon concentration in the soil, one of
the most stable carbon reservoirs worldwide, thus large-
scale losses of OM due to fire could have important impli-
cations for global climate change (Lal 2004). On the other
hand, nitrogen is often the most limiting soil nutrient for
plant growth and its loss directly affects ecosystems by re-
ducing net primary productivity (Vitousek and Howarth
1991; Pellegrini et al. 2018). In addition, our results of a
higher negative effect of fire on OM in semiarid cli-
mates compared to humid-warm climate is supported
by Pellegrini et al. (2018), who found that across sa-
vannas and grasslands, biannual fire simulation induces
high carbon losses under drier climates. However, it
has been recently proposed that a single fire event may
be related to either an increase, a decrease, or no
change in soil carbon and nitrogen; while frequent fires
over time produce a consistent decrease of both ele-
ments across ecosystems (Pellegrini et al. 2020a, b).
This hypothesis poses a constraint to our analyses,
since most of the articles did not report fire history for
their study sites. Consequently, the heterogeneous ef-
fects of single fires on soil carbon and nitrogen may be
confused with those of frequent fires, therefore limiting
the identification of clearer patterns.
Fire produces an increase in bulk density as a result

of soil disaggregation due to the decrease or loss of
OM and to the infiltration of ashes into soil micro-
pores (Boyer and Miller 1994; Mataix-Solera et al.
2011). Soil pH also increased in burned plots as a
result of organic acid denaturation due to soil heating
and the accumulation of potassium and sodium
hydroxides and magnesium and calcium carbonates
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(Knicker 2007). The increase in pH is also driven by
the reduction in OM (Certini 2005). Additionally,
immediate phosphorus enrichment after a fire event is
the result of organic pool conversion of phosphorus
into orthophosphate, which declines at later post-fire
times, as it is also suggested by Certini (2005).
Climate–fire–vegetation feedbacks. Our review sug-

gests that climatic conditions associated with higher
rates of biomass accumulation might determine a faster
ecosystem recovery in burned sites across South Amer-
ica. We found a faster recovery in invertebrate abun-
dance and lower losses of soil organic matter under
climates with higher water availability and temperatures
than in semiarid climates. Beyond climatic conditions, in
historically fire-prone ecosystems, where fire has pre-
sumably been an important evolutionary factor (Bond
and Keeley 2005), a greater recovery of the biota is ex-
pected compared to non-fire-prone ecosystems. However,
our classification of climate types may not necessarily re-
flect the fire history of the corresponding regions, there-
fore making a clear interpretation of the reported patterns
difficult. Although semiarid climate sites could be clearly
considered as fire-prone systems (Bond 2005), warm-
humid climate sites may also include fire-prone ecosys-
tems, because some of them have seasonal rainfall pat-
terns, which is a key characteristic in determining the fire
proneness of an ecosystem (Nogueira et al. 2017; Romano
and Ursino 2020). In fact, following the classification of
Olson et al. (2001), 40% of the studies from warm-humid
areas corresponded to tropical and subtropical grassland,
savanna, and shrublands biome (arguably fire prone),
while the other 60% corresponded to tropical and sub-
tropical moist broadleaf forest biome (arguably non-fire
prone). Most of the former were located in the Cerrado
region, where Hoffmann and Moreira (2002) found a fas-
ter post-fire recovery of woody species compared to
neighboring tropical forest areas. Thus, they concluded
that the combination of fire-prone vegetation, presumably
with a long fire history, and warm-humid climate might
favor a fast ecosystem recovery after fire. Therefore, the
observed results of greater recovery in warm-humid eco-
systems types is likely due to a combination of both cli-
mate and fire history. Likewise, most of the studies from
cold-humid areas have a mediterranean-type climate (e.g.,
northwest Patagonia in Argentina; Keeley et al. 2012),
where rainy winters and hot and dry summers make these
regions fire prone. Such regions have been historically
subjected to periodic fires (both natural and anthropo-
genic), and therefore many plant species are capable of re-
covering after a fire event (Veblen et al. 2003, 2008;
Defossé et al. 2015). Interestingly, we found a significant
post-fire decrease in nitrogen content and soil OM under
semiarid climate, but not under cold-humid climate.
This response pattern may be due to the inherent

differences in ecosystem properties between climate
types (e.g., decomposition and growth rates, succes-
sional patterns, and fire regimen, among others;
McLauchlan et al. 2020). Fire regime might play an
important role as more frequent surface fire in semi-
arid ecosystems could lead to a lower recovery of soil
properties compared to cold-humid ecosystems, where
crown fires predominate and fire frequency is lower than
in semiarid ecosystems, therefore buffering fire effects on
soil properties.
The lack of a standardized classification of fire-

prone and non-fire-prone regions, as well as the lim-
ited available information on the frequency, intensity,
and severity of fires in the research studies included
in this review, are certainly limitations that call for
precaution in the interpretation and extrapolation of
the results reported here. Overcoming such limita-
tions remains a challenge in fire ecology (Harris et al.
2016; Kelly et al. 2018). We believe that our study
represents a step forward in the synthesis of fire-
related patterns at a large scale. Our meta-analysis, as
well as the discussed patterns, provides relevant infor-
mation toward understanding the feedback between
climate, vegetation, and fire on the South American
continent. An ultimately desirable goal in the medium
or long term would be the development of a global
network of fire field experimental surveys across sys-
tems with different vegetation types and fire histories.

Future perspectives
Across recently published global fire reviews, there is
clearly a low representation of studies from South
America (Prichard et al. 2017; Geary et al. 2019).
Given the relevance of this continent in the global
dynamics of fire, it is highly necessary that more
studies on different aspects of fire ecology be carried
out throughout fire-prone regions of the continent
(e.g., seasonal forests, and humid and semiarid savannas).
Furthermore, our review allowed us to identify specific re-
search gaps, which can be added to the agenda of research
priorities for future studies in fire ecology (McLauchlan
et al. 2020).
Most of the analyzed studies failed to include fire

characteristics such as frequency, intensity, and severity,
which prevented us from obtaining a reliable pattern of
their role as modulators of ecosystem and organism
responses to fire. This is an unmet challenge in fire
research as these fire characteristics may certainly influ-
ence the trends reported in this review (Keeley 2009;
Fontaine and Kennedy 2012; Balch et al. 2015; Silveira
et al. 2016; Carbone et al. 2019).
Considering that woody ecosystems might take more

than 40 years to recover after fire (Cavallero et al. 2015;
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Doherty et al. 2017), studies on fire responses that span
a short recovery period fail to elucidate what might hap-
pen in the meantime between fire occurrence and recov-
ery. Consequently, our review poses an urgent call to
increase the studies assessing changes in fire effects over
longer post-fire times than those usually considered.
Further studies focusing on biodiversity are needed to

increase sensibility to detect changes across taxa groups,
climate types, and post-fire times.
Additionally, there is a gap of studies on vertebrate

responses to fire, and some of the few available ones have
methodological limitations, which prevented us from in-
cluding them in our analysis (e.g., lack of replicates in
mammals studies; Griffiths and Brook 2014).
Studies dealing with fire and exotic or invasive species

were quite scarce. While invasion ecology has shown in-
creasing attention in the last decades (e.g., Gurevitch et al.
2011; Pyšek et al. 2020), it does not seem to be reflected in
fire studies in South America (but see Chaneton et al.
2004; Hoffmann et al. 2004; Mazía et al. 2010; Raffaele
et al. 2016, Herrero et al. 2016; Marcora et al. 2018). We
believe that this should be a priority topic for future re-
search, particularly considering the tight link between
plant invasions and changes in fire regimes (Brooks et al.
2004; Mandle et al. 2011; Harris et al. 2016).
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vations) and results of publication bias and hierarchical models testing
for each response variable in our meta-analysis of fire effects across South
American ecosystems to determine the role of climate and time since
fire. Studies used were published between 1990 and 2019. Publication
bias was tested using fail-safe number (i.e., Rosenberg method), Kendall’s
rank correlation test (z), and “trim and fill” models.
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