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A B S T R A C T   

Automated decision making and predictive analytics through artificial intelligence, in combination with rapid 
progress in technologies such as sensor technology and robotics are likely to change the way individuals, 
communities, governments and private actors perceive and respond to climate and ecological change. Methods 
based on various forms of artificial intelligence are already today being applied in a number of research fields 
related to climate change and environmental monitoring. Investments into applications of these technologies in 
agriculture, forestry and the extraction of marine resources also seem to be increasing rapidly. Despite a growing 
interest in, and deployment of AI-technologies in domains critical for sustainability, few have explored possible 
systemic risks in depth. This article offers a global overview of the progress of such technologies in sectors with 
high impact potential for sustainability like farming, forestry and the extraction of marine resources. We also 
identify possible systemic risks in these domains including a) algorithmic bias and allocative harms; b) unequal 
access and benefits; c) cascading failures and external disruptions, and d) trade-offs between efficiency and 
resilience. We explore these emerging risks, identify critical questions, and discuss the limitations of current 
governance mechanisms in addressing AI sustainability risks in these sectors.   
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1. Introduction 

Technological change is a fundamental component of scientific and 
economic breakthroughs [1], and has the potential to dramatically in-
fluence global efforts toward sustainability [2,3]. As the pressure of 
human activities increasingly shapes the biosphere and the climate 
system, so does the hope that artificial intelligence (AI)1 and associated 
technologies such as robotics and the Internet of Things (IoT), will be 
able to increase societies’ capacities to detect, adapt and respond to 
climate and environmental change [4–6]. Numerous reports highlight 
how applications of AI and automation may help address climate change 
and biodiversity loss, contribute to more effective monitoring and uses 
of natural resources, and further progress towards the achievement of 
the Sustainable Development Goals (SDGs) (e.g. Refs. [4,7,8]. 

While increased applications of AI and associated technologies could 
lead to more effective uses of land- and seascapes, augmented envi-
ronmental monitoring capacities, and improved transparency in supply 
chains, it could also create new systemic sustainability risks as AI 
technologies diffuse into new social, economic, and ecological contexts. 
Some recent syntheses have discussed these risks briefly (e.g. Refs. [7,9, 
10], yet their potential allocative harms [11] and unexpected social and 
ecological effects [12] are poorly elaborated, and more often than not, 
overlooked. Prominent agenda-setting reports about the social impacts 
of AI, for example, either ignore sustainability dimensions altogether (e. 
g. Ref. [13], or underemphasize their possible social, economic and 
ecological risks (e.g. Refs. [6,14–16]. 

In this article, we offer an overview and elaborate possible systemic 
risksfor sustainability2 created by the diffusion of AI and associated 
technologies. Systemic risks – i.e. risks that evolve from networked in-
teractions in complex systems [17,18] – are of particular interest since 
the application of AI-technologies in combination with globalization 
processes, are likely to create novel connections between humans, ma-
chines and the living planet including ecosystems and the climate sys-
tem. Such poorly understood human-nature-machine interactions 
increase the possibilities for disruptions that propagate through conta-
gion in key sectors of society, such as food, energy and commodity 
production systems dependent on resilient ecosystems and associated 
ecosystem services [19]. 

Here, we do not focus on known direct impacts such as the energy 
consumption or the carbon footprint of deep learning and data-mining 
[20], nor on opportunities for AI in helping address climate change 
[21,22]. Our focus is instead on complementing this literature by 
exploring networked risks that result from an increased connectivity 
between humans, machines and social-ecological systems. 

Our empirical analysis and discussion focus exclusively on early 
applications of AI and associated technologies in domains critical for 
what some have denoted biosphere-based sustainability [23]. That is, 
we focus on critical ecosystems such as agriculture and forestry along 
with the technical infrastructure underpinning resource management 
and extraction. These living systems are often overlooked in current 
analyses of the connection between AI and sustainability, despite their 
fundamental importance for the climate system and human develop-
ment [24]. Here, we combine literature from seldom connected strands 

of research, with analysis of new data and ask:  

a) Where in the world, and into which sectors directly relevant for 
biosphere-based sustainability, is AI and associated technologies 
diffusing?  

b) Which systemic risks from a sustainability perspective could emerge 
as the result of this diffusion?  

c) To what extent do current notions and principles related to 
“responsible AI” acknowledge systemic risks related to 
sustainability?  

d) Which possible governance mechanisms could be developed to help 
mitigate these risks? 

Our ambition is not to conduct a systematic literature review, but to 
bring together previously disconnected research fields (i.e. studies of the 
wider social and economic implications of AI, research on systemic risk, 
and the sustainability sciences) to help guide future research, and inform 
current policy debates about the governance of AI and its potential to 
help accelerate climate action. We conclude by posing broadly formu-
lated research questions as a way lay the foundation for multi- and 
transdisciplinary work across these diverse, and until now poorly con-
nected strands of research. 

2. The growing importance of artificial intelligence for 
sustainability 

AI-based technologies are gaining increased interest applied in a 
number of research fields related to the environmental, sustainability 
and climate sciences. Examples include AI applications in climate and 
Earth system modeling [25,26]; AI-augmented environmental moni-
toring [27]; autonomous underwater marine conservation interventions 
and data collection [28,29]; AI-supported tracking of illegal wildlife 
trade [30]; and “smart” urban planning for sustainable development 
[31–33]. 

The Royal Society in addition, has identified “digital twins” 
augmented through AI-analysis as key components of potentially plan-
etary digital “control loops” for effective climate mitigation action, and 
more robust farming practices [22]. The ability of “digital twins” – that 
is, advanced digital replications of complex and evolving systems using 
“big” real-time data - has gained increased attention in the sustainability 
domain. Such tools allow its users to simulate, explore, optimize and 
help identify risks in various sectors related to sustainability ambitions, 
including in infrastructure development, and resource consuming sys-
tems of various forms (e.g. energy and water) in e.g. cities [34–36]. 

The potential for AI and associated technologies also seems to be 
driving a growing interest from the private sector. According to esti-
mates, nearly 12 million IoT sensors will be installed and in use on farms 
around the world by the year 2023 [37]. Agricultural technology 
(agtech) investment reached a new record of $1.5 billion in 2017, and 
venture capital investment in the space has grown 80% annually since 
2012 [38]. The precision forestry market could grow from USD 3.9 
billion in 2019, to reach USD 6.1 billion by 2024 [39]. With goals to 
improve urban livability and sustainability, planners could increasingly 
rely on AI for traffic management, smart policing, lighting control, facial 
recognition, and smart waste disposal systems [32,33]. The smart city 
market is expected to reach USD 460 billion by 2027 [40], smart city AI 
software alone is projected to total USD 5 billion annually by 2025 [41], 
and the market for robotics and autonomous systems in cities is expected 
to grow from 6.2 billion USD in 2018, to 17.7 billion USD in 2026 [33]. 

Applications of AI and other associated technologies for sustain-
ability could be viewed as examples of technological “niche-in-
novations” capable of rapid upscaling and diffusion if followed by 
increased investments, enabling legal conditions, and growing public 
and consumer interest [42]. The COVID-19 pandemic seems to have 
triggered a growing interest from the private sector and governments to 
accelerate digitization and automation in supply chains and other parts 

1 Here we use the term “artificial intelligence/AI” to refer to technologies that 
employ machine learning (ML) including “deep learning” (DL) methods (see 
Ref. [13]. We write “AI and associated technologies” in cases where AI is an 
integrated part of a technology, such as a “smart tractor” or Unmanned Aerial 
Vehicles that employ computer vision. Hence our main interest in this paper is 
in the social and ecological impacts of AI and associated technologies, rather 
than the underlying ML or DL technique per se.  

2 By risk, we refer to the possibility of harm, commonly quantified as the 
product of the probability and severity of the harm [130]. By ‘sustainability’ we 
refer specifically to the importance of the biosphere and a stable Earth system 
for ongoing human development and prosperity [23,131]. 
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of the economy [43,44]. The diffusion of AI-technologies unfolds not 
only through increased direct investments however, but also by the 
much less visible infusion of e.g. deep learning systems into existing 
technologies [45]. 

These converging trends suggest that the development and deploy-
ment of AI and associated technologies are likely to not only have social 
and economic consequences, but will very likely impact climate, 
biodiversity, and ecosystems around the world [46]; Wynsberghe, 
2021). Their diffusion hence merits increased attention from a sustain-
ability perspective. 

Fig. 1 shows the geographical distribution of AI and associated 
technologies (here including applications of IoT, robotics and analysis 
supported by artificial intelligence) with a focus on companies and in-
vestments in sectors linked to the management of the living planet, i.e. 
land- and seascapes. The data has been extracted from the international 
technology company and investor database Crunchbase, with a specific 
focus on companies operating in the selected sectors (see Supplementary 
Information for methodological details). 

As the data shows, the agricultural sector seems to be the most 

prominent sector for the development and deployment of AI and asso-
ciated technologies through digital farming/precision agriculture. This 
is not surprising considering the very strong push internationally to-
wards increased production and reduced uses of scarce resources such as 
water through the application of new technologies and “digitalization” 
[47–49]. 

The differences in access to funding between different regions in the 
world is notable, and follows the same pattern as other studies of the 
“digital divide” [50–52]. The prominent position of China in terms of 
investments (Fig. 1B) also seems to follow AI-investment patterns in 
general [53]; see also [54] for digital agriculture). 

3. Artificial intelligence, systemic risks and sustainability 

As we discussed in the previous section, there seems to be a growing 
interest, and increased investment in the development and deployment 
of AI and associated technologies in sectors critical for sustainability. 
The technologies’ effectiveness and broader social, economic, and 
ecological impacts however, unfold within a wider social, technological 

Fig. 1. Global distribution of AI technologies and investments in farming, forestry and the marine/aquaculture sectors. Fig. 1A. Geographical and sectoral distribution of 
companies that develop applications of IoT, sensors, robotics and AI-supported analytics for aquaculture, forestry and agriculture. Total number of companies N =
1114. Fig. 1B. Geographical distribution of investments in companies listed in 1A. See Supplementary Information for details about methods and data. 
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and environmental context [55] making their distributional conse-
quences and sustainability risks difficult to predict with specificity [56]. 

In the following sections, we identify and explore four areas where 
the use of AI and associated technologies in the pursuit of sustainability 
goals could give rise to systemic risks. These risks could, if not managed 
proactively, unravel the progress and even decrease elements of sus-
tainability. These are related to a) algorithmic bias and allocative harms; 
b) unequal access and benefits; c) cascading failures and external dis-
ruptions; and d) trade-offs between efficiency and resilience. We also 
identify a number of important research questions to help advance our 
understanding of sustainability risks created by AI and associated 
technologies. 

While not an exhaustive list of the potential systemic risks from AI 
technologies in this space, we view these as important starting points 
that should be addressed by academia and policy-makers alike. 

3.1. Algorithmic bias and allocative harms 

The risks and impacts of possible algorithmic biases and their allocative 
harms (as defined by Ref. [11] has gained considerable attention in the 
last years. As has been shown in other domains such as policing and the 
health sector (e.g. Refs. [57,58], inconsistencies and biases in training 
data, security breaches leading to corrupted data capture and 
decision-making systems, and flawed AI-models can have detrimental 
impacts as AI-systems are applied. 

Growing volumes of environmental, social and ecological data are a 
fundamental prerequisite for the application of artificial intelligence in, 
for example, conservation and digital farming (e.g. Refs. [10,50]. 
Environmental and ecological data have well known limitations how-
ever, both in their temporal coverage, and geographical spread [59–61]. 
While the rapid growth of data from mobiles and satellites offer vast 
opportunities to map and respond to social vulnerabilities such as 
poverty and malnutrition, it has become increasingly clear that solutions 
supported by “big data” and AI-analysis can be strongly skewed since the 
“most disadvantaged people tend to be the least represented in new 
sources of digital data” [62]. 

Algorithmic biases of this sort can have a number of sources [63], 
and may very well emerge in the sustainability domain in the following 
ways: 

Training data bias could emerge if AI-systems are designed with 
poor, limited, or biased data sets. For example, AI systems developed for 
precision agriculture in data poor contexts could - if not validated 
properly with local knowledge and expert opinion - result in incorrect 
management recommendations to small-scale farmers who would 
struggle to maintain high, stable yields [64]. 

Transfer context bias could emerge when AI-systems are designed 
for one ecological, climate, or social-ecological context, and then 
incorrectly transferred to another. While the training data and the 
resulting model may be developed and suitable for the initial social- 
ecological situation (say, a large industrial farm in a data rich 
context), using it in a different setting (e.g. a small farm) could lead to 
flawed and damaging results. Such bias may emerge, for example, as 
individuals and companies use off-the-shelf AI-software for their pur-
poses [65]. The use of simpler forest monitoring and carbon sequestra-
tion models has already led to controversies partly due to their tentative 
transfer context bias [66]. 

The fact that ecosystems both on land and in the ocean are changing 
rapidly as the result of climate and ecological change [67] also pose 
serious challenges as AI-models, and lead to a type of concept drift [68]. 
AI-systems built on historical ecological conditions hence are likely to 
fail as the ecosystems on land- and seascapes shift surprisingly and at 
times irreversibly. This latter phenomenon is well-known in ecology as 
“regimes shifts” which may emerge without prior warning with large 
repercussions on ecosystems and those who depend on them [69,70]. 

Even if both the training data, and the context in which the algorithm 
is used is appropriate, their application can still lead to interpretation 

bias. In this type of bias, an AI-system might be working as intended by 
its designer, but the user does not fully understand its utility, or tries to 
infer different meaning that the system might not support. Developers of 
AI-support systems for digital agriculture, as an example, are still unable 
to convert complex geospatial information into appropriate crop man-
agement actions, resulting in misinterpretation and misuse of data. For 
example, many farmers utilize precision technology incorrectly to apply 
more (instead of less) nitrogen (N) fertilizer in the hope of increasing 
yields [49]. 

A contributing element to these bias types is a lack of appropriate 
data. Data gaps can partly be tackled using satellites, drones, mobile 
devices, sensors and social media, and can be combined with various AI- 
techniques to help overcome challenging scarce or incomplete data [31, 
71]. Increased data collection about systems and individuals result in 
their own challenges however. Urban sustainability scholars have 
already raised a number of issues related to AI and tentative threats to 
privacy, research ethical challenges, and the risk of building decisions 
on spurious correlations [72]. For example, location-tracking systems 
via smartphones and vehicles make it possible to not only extract data 
that is helpful for urban planning purposes, but can also allow for the 
triangulation of a person’s identity and other personal information, even 
with sparse data. This highlights the need to match data collection for 
sustainability goals with robust and transparent data management pol-
icies [31], and responsible innovation approaches [32]. 

Whether from inappropriate training data, unsuitable contexts, or 
user interpretation errors, algorithmic biases are common, and need to 
be thoughtfully considered in the sustainability domain. In the fields of 
agriculture, environment, and sustainability, such biases can result in 
for example, risks to critical elements of food security and ecosystem 
resilience. 

Key future questions: 

• To what extent are insights and risk management solutions about algo-
rithmic biases from other domains applicable to sectors such as digital 
farming, digital forestry, urban planning and marine extraction and 
management?  

• How is the predictive potential and efficacy of AI-models affected by the 
fact that ecosystems such as land- and seascapes are changing rapidly due 
to e.g. climate change?  

• Which social, economic and ecological impacts may result from these 
biases, and how should these be prevented? 

3.2. Unequal access, benefits, and impacts 

Resource constraints, and unequal access to information and 
communication technologies [51,52] create additional risks as 
AI-technologies start to diffuse into new sectors. The growing interest in 
digital, data-driven or precision farming is a good example of this. 

At present, smallholder farmers account for a considerable propor-
tion of global food production [73], and especially in less wealthy 
countries, many people depend on small-scale family-farms to meet their 
nutritional needs [74]. While applications of AI in combination with 
increased automation for farming have been suggested to contribute to 
increased yields and resource efficiency [47], the equitable distribution 
of such benefits cannot be taken for granted. Even non-AI technologies 
for intensifying agriculture are often deemed unaffordable by members 
of poor local communities [75]. In addition, there is a clear “digital 
divide” in data-driven farming with small-scale farmers facing serious 
obstacles to access big data and mobile technologies, which is likely to 
distribute the benefits of these technologies in unequal ways [76]. 

Similar concerns and uncertainties about the tentative loss of 
employment opportunities resulting from increased automation [77] are 
present in these sectors as well of course [78]. While it might seem 
premature to raise this as a possible risk, early studies indicate that the 
economic benefits of AI applications in farming appear to be greatest for 
larger farms that can spread their fixed costs over many acres, and that 
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can reduce labor costs through automation [49]. As a result, critics have 
argued that the growing interest in “digital agriculture” by influential 
international actors such as the World Bank and the UN Food and 
Agriculture Organization (FAO) overemphasize the need to increase 
aggregate food production for a growing population, while ignoring 
underlying well-known socio-political issues driving food insecurity 
such as poverty and social inequalities [49,79], and the detrimental 
impacts on technological development resulting from corporate con-
centration in the food sector [80]. 

Equal access to AI-technologies does not guarantee equal or fair 
outcomes however. Even if farmers are able to optimize their specific 
operations cost-effectively, widespread use of AI in farming may still 
result in concentration of capital and deepened inequality. As many 
traditional input and equipment providers are increasingly positioning 
themselves as data companies, this accumulated information might be 
put to use to extract rents, lock farmers into unfavorable contracts, or 
price discriminate across services [48,81]. There are also concerns about 
the impacts of automation replacing jobs in these sectors, especially as it 
could prove detrimental for vulnerable social groups such as migrant 
workers [38]. Small-scale fisheries and coastal communities (estimated 
to employ some 37 million people [82], and small-scale enterprises in 
the forestry sector (providing employment for an additional estimated 
41 million people [82], may face similar challenges related to allocative 
harms, and unequal distribution of benefits as applications of 
AI-technologies make their progress into their domains [28,83]. 

Key future questions:  

• What are the possible distributional impacts that result from the increased 
adoption of AI-technologies and automation in farming, forestry and 
other sectors related to the extraction of natural capital?  

• Which legal, economic and/or governance mechanisms can help prevent 
such distributional risks, and support the deployment of AI that is of 
benefit to vulnerable groups in these sectors? 

4. Shocks, cascading failures and attacks 

AI and associated technologies create numerous new complex in-
teractions not only between humans and machines, and machines and 
machines [84], but also increasingly with machines and ecosystems, and 
with the Earth system as a whole [2,55]. The addition of AI and asso-
ciated technologies into the worlds of agriculture and resource man-
agement could be seen as adding more nodes and connections to these 
already complex social-ecological and socio-technical systems. 

The growing interactions between humans, machines, and ecology 
could be viewed through the lens of complex adaptive systems [85]. 
Such systems may through the use of AI and associated technologies, 
contribute to the emergence of “distributed AI” (DAI) - decentralized 
systems with the ability to bring together information and agents across 
levels and domains, at the same time as they (partly) autonomously 
react, adapt and learn pro-actively to changing circumstances [86]. 
Applications of DAI for industrial purposes are well-known (e.g. 
Ref. [87], including in technical infrastructure such as energy systems 
[88,89]. These processes of decentralized adaptive problem-solving 
have also been observed for astonishingly complex yet resilient indige-
nous farming systems in Bali [90], and could as proposed by some, be 
augmented and automatized through the extensive use of AI and asso-
ciated technologies to support artificially intelligent curation of wild 
places and nature (e.g. Ref. [91]. DAI could also, at best, help interpret 
and respond to the complex systems properties and the continuous 
changes that characterize farming, forestry and marine systems under 
rapid change due to human activities and climate change. 

However, increasingly nested and complex systems are also suscep-
tible to unexpected shocks, and cascades that develop endogenously, 
also known as “normal accidents” [92]. This implies that internal fail-
ures can emerge unexpectedly and ripple and amplify across network 
links (e.g. a regional food supply chain) and create failures in the system 

as a whole (this issue is explored in more detail in the next section), 
especially if the components of the system are optimized and managed 
properly (say, a regional network of IoT-connected farms). 

Malicious external attacks can expose such endogenous vulnerabil-
ities as well, and even the most advanced AI-systems based on deep 
neural networks are vulnerable to sabotage [93]. Connectivity and flows 
of information are prerequisites for the operation of AI-technologies in 
digital farming, forestry, and aquaculture, but also represent potentially 
serious weak points in the system’s security. For example, digital 
farming systems and applications of AI for “smart cities” rely on data 
transfer, sensor access to wireless and other communication networks, 
remote transmission and system actuation, typically in real time [94]. 
Each of these can be disrupted intentionally and thus affect the opera-
tion of e.g. semi-automated farming systems with both detrimental so-
cial and ecological impacts [95,96], some of which may involve serious 
data-breaches [97]. Box 1 elaborates this issue in more detail. 

These endogenous and exogenous risks created by novel human- 
machine-ecological interactions have gained limited attention so far, 
despite a growing interest and investments in these technologies. 

Key future questions:  

• What cybersecurity risks could emerge in digital farming, forestry and 
other extractive sectors as AI-enhanced technologies gain prominence in 
these sectors?  

• What are the most important features of resilient infrastructures that 
would minimize the risks of cyberattacks and “normal accidents”, while 
also securing the integrity of production ecosystems such as 
agroecosystems? 

5. AI, efficiency and resilience 

Technological advances play a key role as societies strive for 
increased control and productivity of ecosystems in both land- and 
seascapes as a means to secure human development [103]. The use of AI 
and associated technologies in farming and other forms of extraction of 
natural resources such as sea food and biomass may very well lead to 
increased efficiency and productivity, as often noted by prominent in-
ternational organizations and think-tanks such as the World Bank [47]; 
Microsoft and Price Water House Cooper [16]; and the World Economic 
Forum [15]. Such efficiency gains could happen through data-driven 
temporal and site-specific farm management, reduced waste, and the 
use of autonomous seeding or weed control, just to mention a few [104]. 

While increased efficiency in resource use is not dangerous in and of 
itself, and may well be desirable for engineered systems like energy and 
traffic systems, there are several potential downsides for living systems 
such as agricultural landscapes, forests, and marine ecosystems. The key 
issue is that optimizing system performance to maximize efficient gen-
eration of a small set of goods (say, a particular crop), often undermines 
overall system functioning and resilience over the long term [105]. As 
these systems become increasingly optimized and efficient, they also 
become more brittle and vulnerable to undesirable so-called “regime 
shifts”, which are characterized by abrupt, unwanted, and sometimes 
irreversible changes in a given ecosystem [70]. 

Thus, for example, industrial agricultural landscapes around the 
world now generate high yields of a few crop species, but have led to 
declines in many other ecosystem services also valued by societies, 
including biodiversity, scenic beauty, and climate or flood regulation 
[106]. Biodiversity in particular provides many functions directly rele-
vant for the sustainable production of food, fuel and fiber, such as the 
decomposition of organic matter, pest control or pollination. Even when 
key species are maintained, declines in the diversity of crop and wild 
species reduce the resilience of ecosystems making them increasingly 
vulnerable to shocks such as a drought, or a newly introduced pest [19]. 

Applications of AI and increased automation – including AI-systems 
that prioritize efficiency over redundancy and diversity - could accel-
erate such loss of resilience. Since the economic benefits of automation 
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and associated applications of AI and automation seem to be the greatest 
for larger farms [50], investments in these technologies could create 
strong incentives for both larger and more simplified agricultural 
landscapes [49], despite evidence that smaller farms tend to be most 
productive and biodiverse over longer time periods [107]. The latter 
have proven to be key for the food security of communities in the most 
fragile regions of the world [108]. 

In addition, local farming strategies, as well as social and ecological 
knowledge are often developed over generations. These contain 
numerous social, cultural and even spiritual practices, some of which 
have proven key to support the resilience of communities and the eco-
systems they manage in the face of changing social and environmental 
circumstances [109,110]. Such tacit sources of knowledge and are not 
easily captured by data-driven approaches [111]. 

Simplification of ecosystems such as agricultural and forest land-
scapes has been suggested to affect social relationships among people, 
with the possible loss of local knowledge, which could lead to acceler-
ated loss of ecosystems [112,113]. These processes could undermine the 
foreseen benefits created by the use of AI-technologies. The economic 
and technological logic of AI and their associated technologies could 
hence be in conflict with the logic of resilient ecosystems. Assessing 
whether AI-applications lead to additional simplification empirically 
however, will be challenging as changes in land-use and forest cover are 
driven by a number of factors, many of which are not related directly to 
technology [114]. 

Key future questions:  

• Does the increased adoption of AI and associated technologies lead to 
additional simplification, which may lead to a loss of resilience, of living 
systems such as agricultural landscapes and forest ecosystems?  

• How are local strategies and ecological knowledge likely to be affected by 
an increased deployment of AI-technologies such as predictive analytics 
and automation?  

• How can AI and associated technologies be developed and deployed in 
ways that prioritize resilience over efficiency and simplification? 

6. “Responsible AI”, sustainability and governance 

As we have discussed in previous sections, the development and 
deployment of AI and increased automation entail both opportunities for 
sustainability, but also numerous poorly explored systemic risks as 
humans, machines and ecosystems interact in new ways. Some of these 
risks could potentially be ameliorated through the application of prin-
ciples defining “ethical AI”, “responsible AI” or “AI for Good” that have 
emerged in the last years [115,116], especially those that address fair-
ness, non-discrimination, accountability, transparency, privacy and 

security. Principles-based guidelines have thus become the dominant 
approach to governing AI systems. 

However, such principles have at least historically consistently 
overlooked climate, sustainability and environmental dimensions. Owe 
and Baum [117] for example, argue that AI ethics in general, have failed 
to give serious moral consideration to “nonhumans”, i.e. nonhuman 
animals and the environment. Fig. 2 summarizes our analysis of 186 
publicly available documents exploring principles for the benevolent use 
of AI (see Supplementary Information for details about methodology). 
The data builds on strategic searches of keywords in the documents to 
assess the frequency of mentions of key dimensions of “responsible AI”, 
and sustainability respectively. We realize that this is a rough and 
imperfect metric, but can still be used as an indication of the strong 
emphasis on social rather than environmental sustainability dimensions 
of current discussions on “responsible” or “ethical AI”. 

Many of the principles related to algorithmic bias and transparency 
are nevertheless applicable for some of the sustainability risks identified 
in previous sections. If effectively implemented, these principles could 
help mitigate the risks of algorithmic biases such as transfer context bias, 
by incentivizing companies and governments to make sure AI-systems in 
e.g. forestry are explainable and adaptive to changing climate condi-
tions. Some of these principles have come to even include environmental 
and sustainability dimensions, such as the High-Level Expert Group on 
AI (HLEG) and their recommendation that “AI systems should be sus-
tainable and benefit all human beings, including future generations” 
[44]. 

The fact that climate and environmental risks and costs tend to 
systematically be externalized and challenging to quantify [118], may 
very well undermine the economic and legal incentives of AI-developers 
and users to implement such principles in practice if they are associated 
with costs. Critics of the current principles-based approach to AI 
governance have emphasized a number of limits to operationalizing 
fairness, the practical limits of providing algorithmic explainability or 
transparency, and the lack of professional accountability mechanisms 
needed to ensure their consistent implementation [119–121]. We sug-
gest that issues of environmental sustainability pose distinctive chal-
lenges in what Weernart denotes “high-stake settings” (Weernart, 2021) 
for both people and nature, thus warranting dedicated attention and 
further refinement of existing AI principles-based governance frame-
works, as well as more precise guidelines for how to implement and 
continuously monitor their performance. 

These mechanisms could, at least in principle, evolve through sectors- 
specific guidelines, product and process standards, or through new or 
amended legal-regulatory frameworks. 

Sector-specific guidelines, for example, are emerging in areas such as 
medical technology and digital manufacturing, but there have been 

Box 1 
Cyberattacks in farming, food systems and ecosystem management 

Using sensors and other technologies to create increasingly accurate models of farms and ecosystems can produce valuable information for 
management and monitoring. “Virtual farms,” based on data from sensors, can be analyzed with AI algorithms for meaningful insights from 
management strategies to yield predictions [98]. These analyses require considerable amounts of computational power, which is rarely housed 
on the farm itself. Instead, valuable information is often transmitted, stored, and interpreted offsite using cloud storage and data analytics, and 
can be susceptible to data breaches at multiple stages [95,99]. These risks have been raised the last years (e.g. Ref. [100], and became highly 
visible in June 2021 when ransomware cyberattacks forced the shutdown of numerous meat plants in the U.S. [101]. 

The data and algorithms used in digital agriculture are also vulnerable to more traditional security risks. As recently as November of 2019, for 
example, an ex-employee of Monsanto with plans to sell information to a foreign government was indicted for economic espionage after being 
caught at the airport with copies of a software technology known as the “Nutrient Optimizer” [102]. This predictive algorithm is a critical 
component of an online platform, which collects, stores, and visualizes farming data from the field to increase productivity. While these pro-
ductivity increases are important to seek out, it is critical to remember that using complex, remote, and potentially insecure technological 
networks can make valuable agricultural information available to nefarious actors around the globe. In the wrong hands, this information could 
have significant economic consequences, and the systemic risks of cybersecurity need to be managed effectively.  
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relatively few guidelines for areas related to sustainability. International 
organizations and the EU have expressed a commitment to responsible 
and trustworthy AI in the context of sustainable development through, 
for example, the proposed Artificial Intelligence Act [122]. These com-
mitments however, are related to principles of non-discrimination, di-
versity, and inclusivity, rather than on responding to the specific 
dynamics between AI-based technologies and environmental sustain-
ability. For example, climate change and sustainability are only 
mentioned in passing in the Act, with “environmental sustainability” 
being suggested as one possible and voluntary “additional requirement” 
by those developing AI systems (see p. 36, paragraph 81 in the Artificial 
Intelligence Act). 

Standards-making organizations have also looked at ways to trans-
late ethical principles into product and process standards that ensure the 
responsible development, deployment, and monitoring of AI systems. 
Recent examples include: ISO/IEC TR 24028:2020 ‘Trustworthiness in 
Artificial Intelligence’; the IEEE ‘Ethics Certification Program for 
Autonomous and Intelligent Systems’; ISO/IEC 24028 ‘Bias in AI systems 
and AI aided decision-making’; or BS 8611:2016 ‘Robots and robotic 
devices: Guide to the ethical design and application of robots and robotic 
systems.’ Again, these initiatives focus mostly on organizational gover-
nance mechanisms and procedural guidance for managing known social 
AI risks – such as lack of transparency and accountability – rather than 
broader systemic considerations linked to the impact of these technol-
ogies on sustainability. 

In addition, these organizational procedures and considerations need 
to be further incorporated in emerging sectoral standards for smart 
farming, agricultural electronics or greenhouse gas management stan-
dards, such as ISO/TC207 - Environmental Standards or ISO/TC23 - 
Tractors and machinery for agriculture and forestry. Thus, systemic risk 
considerations pertaining to the complex dynamics between AI tech-
nologies, ecological and environmental safety, supply chain resilience 
and their wider distributional consequences for sustainability are rarely 
featured in current standards packages. 

As AI and associated technologies continue to develop, proposals for 
their regulation have increased in recent years as well. These include 

either amendments to existing legal-regulatory frameworks in data 
protection, safety and/or cybersecurity, new regulations to protect 
consumers against algorithmic bias and provide transparency and 
accountability, or increased oversight powers for existing or new regu-
latory agencies [123], including independent audits of AI-systems 
[119]. Until now however, these regulatory proposals focus largely on 
individual risks (e.g. product safety regulations protecting the con-
sumer), as opposed to systemic risks [124] that characterize the complex 
human-machine-ecological systems described here. In addition, ‘safety’ 
is consistently viewed from the perspective of individuals rather than 
from a wider environmental sustainability perspective (e.g. Ref. [119]. 
This creates a problematic governance gap that should be addressed. 

The lack of adoption, enforcement, and commitment to govern sys-
temic sustainability risks created by AI becomes particularly problem-
atic in the climate and environmental domain where strong regulatory 
and enforcement capacities cannot be taken for granted. Even though a 
few industrialized countries see some reductions in e.g. climate emis-
sions [125], neither the capacities of international institutions nor of 
national governments have been able to address the continued erosion 
of ecosystems, biodiversity and other critical natural capital [126]. 
Existing legal frameworks and governance mechanisms in the environ-
mental and sustainability domain hence cannot be assumed to 
compensate for the lack of robust and responsible governance of AI 
systems and technologies. 

Key future questions:  

1. How can existing principles of “responsible AI” and similar, be leveraged 
to also advance sustainability ambitions? 

2. What governance mechanisms could support synergies between environ-
mental and technological regulation in ways that minimizes systemic 
sustainability risks?  

3. How can such mechanisms be developed in ways that are adaptive to both 
technological and environmental change, including climate disruptions 
and surprises, at the same time? 

Fig. 2. Summary of analysis of ethical principles of AI, 
or responsible AI from the public and private sector, 
including international organizations. Comment: Visu-
alized numbers show frequency of mentions of key 
words found in published “responsible AI” principles. 
Selected keywords are related to core ethical princi-
ples (gray columns), compared to key words related 
to sustainability (green columns). Number of docu-
ments analyzed N = 186, see Supplementary Infor-
mation for details about methods. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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7. Conclusion 

Artificial intelligence, digitization and automation seem to be gain-
ing traction in sectors of fundamental importance for sustainability. The 
driving forces behind the diffusion of these technologies are the result of 
both technological advancements, and societal and environmental 
pressures. On the technological side, leaps forward in predictive analysis 
through various forms of AI-methods, IoT-systems, satellite technolo-
gies, increasing computational capacity, and new developments in ro-
botics industries, have paved the way for new approaches to efficiency, 
productivity, and decision making under uncertainty. Secondly, de-
mands from society to better manage scarce natural resources and un-
derstand the scope and impacts of rapid climate and environmental 
change have also spurred research and development in this promising 
field. As we have discussed here, however, this progress could (and 
should) be matched with a growing recognition of not only opportu-
nities, but also possible systemic risks for sustainability. 

Our analysis shows that the most rapid development of AI and 
associated technologies in the sustainability domain, seem to be 
unfolding in farming, with substantial investments in these technologies 
in China and the United States in particular. As we discuss, such diffu-
sion could lead to new types of systemic risks resulting from various 
forms of algorithmic biases, distributional effects, and tentative net-
worked vulnerabilities. These risks can partly be addressed through a 
growing number of principles and standards that govern the deployment 
of AI, but need to be complemented with governance mechanisms that 
are able to integrate sustainability dimensions explicitly. 

Many of the risks discussed here are tentative, and difficult to 
quantify with precision. System risks that evolve out of complexity and 
poorly understood system interactions between humans, machine, and 
ecology are particularly challenging. In addition, the fact that both the 
development and use of these technologies are nascent makes it difficult 
to assess to what extent the risks identified are intrinsic to AI and 
associated technologies themselves, or the result of “pacing problems” 
[127] created by novel uses of AI-technologies in new social and envi-
ronmental contexts. 

Our limited predictive abilities as these AI-risks diffuse into the 
sustainability domain requires what Shannon Valor calls “technomoral 
humility” [128], but also to strike a balance between stringent and 
adaptive modes of governance. We suggest that governing AI risks for 
sustainability due to the limited predictability created by systemic risks 
that emerge through human-nature-machine interactions are likely to 
require hybrid and highly adaptive approaches [129]. These need to be 
developed with the capacity to respond to changes in the climate system, 
ecological systems, and advances in AI-technologies at the same time. 
Such governance approaches should in similar ways, as for other chal-
lenges characterized by complexity, bring together governmental and 
private actors, as well as self-regulatory and mandatory regulatory in-
terventions to secure polycentric and flexible responses. Investors, 
governments and the private sector should take these issues seriously as 
AI-augmented technologies are increasingly being promoted as a key 
solution to a turbulent climate future. 

Future discussions about how to best govern these technologies from 
a sustainability perspective need to acknowledge the complex features 
of ecosystems, their fundamental importance for human development, 
and the pressures they face under accelerating climate change. One key 
issue is the possible negative distributional implications of increased 
applications of AI-technologies on social groups that depend directly on 
the resources and services provided by these ecosystems on land- and 
seascapes. Hopefully this article can contribute to future discussions 
about how to better understand and govern AI risks for sustainability. 
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[112] M. Riechers, Á. Balázsi, L. Betz, T.S. Jiren, J. Fischer, The erosion of relational 
values resulting from landscape simplification, Landsc. Ecol. 35 (2020) 
2601–2612, https://doi.org/10.1007/s10980-020-01012-w. 
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