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Abstract: Due to the worldwide outbreak of COVID-19, many strategies and models have been put
forward by researchers who intend to control the current situation with the given means. In particular,
compartmental models are being used to model and analyze the COVID-19 dynamics of different
considered populations as Susceptible, Exposed, Infected and Recovered compartments (SEIR). This
study derives control-oriented compartmental models of the pandemic, together with constructive
control laws based on the Lyapunov theory. The paper presents the derivation of new vaccination
and quarantining strategies, found using compartmental models and design methods from the field
of Lyapunov theory. The Lyapunov theory offers the possibility to track desired trajectories, guaran-
teeing the stability of the controlled system. Computer simulations aid to demonstrate the efficacy of
the results. Stabilizing control laws are obtained and analyzed for multiple variants of the model.
The stability, constructivity, and feasibility are proven for each Lyapunov-like function. Obtaining
the proof of practical stability for the controlled system, several interesting system properties such as
herd immunity are shown. On the basis of a generalized SEIR model and an extended variant with
additional Protected and Quarantined compartments, control strategies are conceived by using two
fundamental system inputs, vaccination and quarantine, whose influence on the system is a crucial
part of the model. Simulation results prove that Lyapunov-based approaches yield effective control
of the disease transmission.

Keywords: COVID-19; compartmental models; Lyapunov approach; practical stability

1. Introduction

The COVID-19 pandemic, among other pandemics from the past, has attracted great
attention not only from mathematicians but researchers from numerous fields. This is
due to the fact that the exponential growth in the number of cases of infection has made
the recent situation very worrying. Hence, various measures are taken for the purpose of
limiting the spread of infection. Concerning COVID-19, since the extent and duration of
it has lasted much longer than expected, solving the overwhelming chaos is recognized
as being the most important issue in recent months. The outbreak of the pandemic has
been affecting almost all countries in the world, changing people’s daily lives and causing
heavy casualties. The situation calls for a dynamic model of the pandemic to analyze the
system behavior. When the outbreak is in an active stage, the model should be not only
descriptive, but also suitable for controller design.

1.1. Historical Development of Compartmental Models for Epidemics

In the history of mathematical models in epidemiology, the focus has always been on
deterministic compartmental models, which can be defined as a sub-categorization of the
whole population into different compartments, introducing transfer rates from one category
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to another, and modeling contact between individuals from two compartments using multi-
plication of the two. The works of Daniel Bernoulli (1700–1782), see [1,2], are considered as
the first models and studies in mathematical epidemiology. These two pioneer works have
always aroused a strong resonance in the mathematical scientific community, see, for instance,
in D’Alembert [3] and Duvillard [4]. Nevertheless, the model proposed by Kermack and
McKendrick [5] is the first model which takes the spread of infection into consideration. It
is remarkable that the Kermack and McKendrick model can be considered as a special case
of the Lotka–Volterra model of predator and prey dynamics, which was published by Lotka
in 1925 [6] and by Volterra in 1926 [7]. The Lotka–Volterra equation can be used to model a
pandemic, because infected people can be regarded as predators and susceptible people can
be treated as a prey compartment. Setting the parameter α = 0 in the Lotka–Volterra model,
which states the contact between the prey and predator in the equation characterizing the
dynamics of the prey, simplifies the model to the one of Kermack and McKendrick.

According to Kermack and McKendrick [5], the original mathematical description
of the spread of infectious diseases in a population is the SIR model, which separates
the whole population into three parts: Susceptible (S), Infected (I) and Removed (R)
compartments. However, this model is only suitable for diseases against which people can
obtain permanent immunity after a short period of infection, and only for short durations
of the latent stage. In the much more complicated case of COVID-19, the SEIR model is
assumed to be more appropriate. The additional compartment is the group of Exposed
individuals, who are in their latent state, not showing symptoms yet. Some works which
utilize the SEIR model in this simple form consider individuals from compartment E to be
already infectious, but most do not. To further increase the model fidelity, the SPEIQRD
model has been put forward in [8], where Q represents the Quarantined, P the Protected,
and D the Dead compartment. This model advances the previous one by categorizing
people into more detailed compartments to analyze the complex situation. In many recent
studies, researchers have proposed numerous models with a good deal of variables and
parameters, aiming at making reliable predictions for the evolution of the current epidemic
in spite of the limited knowledge of this specific disease and considerable uncertainty of
the data collection. The common goal is to quickly estimate the impact of COVID-19 on the
future of each compartment, the measures to be taken by the public health system and the
effectiveness of different quarantine and vaccination measures [9].

1.2. Motivation

Compartmental models are a common tool to tackle problem formulations such as the
given one, as they allow to precisely describe the transmission patterns of diseases. Based
on a compartmental model, ref. [10] focuses on risk estimation and prediction while [11]
puts an eye on the effect of time delay and relaxation of isolation. The aim of our study,
on the other hand, is to evaluate the effectiveness of interventions, analyzing and simulating
the situation in a more mathematical way. Judging from the sparsity of corresponding
literature, the application of methods from the mathematical field of control to COVID-19
dynamic models still seems to be in its initial stage. Therefore, in the paper at hand, we
consider both the SEIR model and the SPEIQRD model accompanied with two control
actions: vaccination and quarantine, in order to estimate the spread of the virus and control
the number of infected and dead people by tuning the controller. Another focus is on
analyzing the stability of the closed-loop system by using the Lyapunov theory.

The Lyapunov theory is one of the most important approaches to analyze and control
nonlinear systems. In the last decades, it was noticed that Lyapunov’s approaches are
suitable also for constructive purposes, for overcoming concrete problems in physics and
in particular in technological systems. Since then, as the growing number of publications
shows, problems concerning stability and controlling dynamics can be constructively
solved using this theory. Today, this theory is also used for practical tasks in the fields of
mechanical and electrical engineering, especially in control engineering. The theory of
Lyapunov’s direct method has been greatly promoted and brought to a certain conclusion.
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In the recent years, constructive results in many areas of control applications [12,13] indicate
the efficacy of this theory in practical applications. Many variations of this theory appeared
in the last years to make its general approach to different applications more elastic. The
classical Lyapunov theory, however, sometimes is not constructive enough for practical
purposes. This turns out to be the case in this contribution. Thus, practical stability [14]
is considered here. Although a desired state of a given system may be mathematically
unstable, the system may be permitted to oscillate around (and sufficiently near) this
trajectory, which can be stipulated as acceptable. As defined in [14], if a Lyapunov-like
function reaches a specific minimum point which is not equal to zero, it can still be implied
that the system is practically stable. Furthermore, Moreau and Aeyels [15] describe the
practical stability as a consequence of the convergence property of solutions, attaining a
globally uniformly asymptotically stable equilibrium point.

In the paper at hand, the concept of practical stability is applied and plays a crucial
role in the proposed solutions. The aim of this study is to achieve a practically stable system
by analyzing the change of the size of Susceptible, Exposed, Infected, Recovered and Dead
compartments based on the protection and contact controls, infection rate, latent period,
recovery rate and mortality.

1.3. Literature Review

As shown in [16], mathematical models are a key tool for guiding public health mea-
sures in order to make decisions regarding potential economic and health interventions and
when deciding how to intervene. To obtain models, a possible approach are evolutionary
epidemic diffusion models [17] using suitable data, or more traditionally, compartmental
models similar to the classic SEIR model, an overview of which can be found in [18]. An
interesting paper is [19], where an SEIR model for COVID-19 dynamics incorporating the
environment and social distancing is considered. This model indicates that disregarding
social distancing and hygiene concepts can cause devastating effects on the human popu-
lation. On the other hand, as shown in [20], lockdowns limited to communities together
with travel restrictions are commonly employed to reduce epidemic spreading, but not
totally effective if the people are not completely sealed off. In this contribution, a stochastic
model on different social networks is considered to determine the level of effectiveness of
lockdowns and to identify which social network compartments should be considered. A
case study of the cruise ship Diamond Princess is presented in [21]. It is used as a sample
population for a dedicated SEIR model that is sub-partitioned not only into symptomatic
and asymptomatic infections, but also into passengers and crew members for the other
compartments. Splitting or sub-partitioning compartments like this is an approach to refine
the modeling depth, for finer reproduction of observed phenomena. The same is done
in [22], where symptomatic and asymptomatic compartments are split again into detected
and undetected compartments, respectively. In [23], the S, E, I, and A (asymptomatic)
compartments are split into active and self-isolating (or social distancing) compartments
for an investigation, showing how effective several different countermeasures are.

Some authors [24,25] propose to keep the model as simple as possible because of
the thin data availability in early periods, with the purpose of focusing on specific local
peculiarities. Simultaneously, some authors [8,26–30] use fractional-order models and/or
controllers instead of classical integer-order calculus to model the dynamics of the compart-
ments, at the cost of increased complexity and required computational resources, because of
the infinite memory problem and other aspects. Nevertheless, to control the system using
a fractional model is a new trend which can be generally justified by the chaotic nature of
the considered phenomena, as already tested for other nonlinear oscillating systems.

As soon as a model is formulated with a sensible modeling depth and identified, given
suitable data, it can be used to mathematically analyze the system and also predict the pro-
gression of the pandemic. The contribution [31] treats the simple SEIR model and derives
analytical solutions for the compartments in case of free spread. In addition, in [32], an esti-
mation of undetected cases based on compartmental models is presented. A system-theoretic
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approach is pursued in [33], where the resulting parameters are analyzed regarding the sensi-
tivity and conditional local asymptotic stability of the equilibria is mathematically proven.
In [34], the global stability is calculated using a Lyapunov function construction while the
local stability is determined using a Jacobian. In [35], an interval predictor in combination
with the SEIR model is proposed to predict the virus propagation in eight different coun-
tries. For this purpose, the system parameters are modeled to be time-varying and are
identified using the available data, reflecting the societal reactions to the pandemic and
the countermeasures. The goal of the paper [36] is to predict the system response using
different values of a protection-related system parameter as control influence.

Regarding the application of methods from the field of control theory, a few papers
have appeared only recently, ref. [37] being one of the first. In this work, a proportional-
integral-derivative (PID) controller is applied for the first time in the context of epidemio-
logical models. In [38], the control strategy is derived from a classical SIR epidemiological
model. In this work, the vaccination rate is the control variable and chaotic behavior can
be avoided by using a constant and suitably large vaccination rate. More recently [38],
a vaccination based sliding mode control (SMC) strategy is designed to guarantee that
the proportion of infected sub-compartments in the total compartment converges to the
desired reference.

In addition, in the field of identification and modeling for the control, different papers
appeared very recently, in particular in the field of network structures, including neural
networks and networks of models. In [39], to help the control of the infection rate by
the early identification of suspected COVID-19 cases, an algorithm which transforms
the original problems into an optimization problem for a dynamic network topology is
proposed. In [40], the authors analyze the limiting behavior of the SEIR model, presenting
necessary and sufficient conditions for estimating the spreading parameters from data with
the intention to have a tool to predict the spread of the infection.

After setting up the network of model, the selection of controllers, along with reliable
data, is also a critical process, aiming at suiting national conditions. In [41], an SEIR model
of city-level transmission of an infectious agent characterizes spread using different con-
ditions: from no control to partial, from full lockdown to social distancing. Estimates of
the relevant parameters of the SEIR model are obtained and the robustness of predictions
under uncertainty of those estimates are shown. Possible control actions representing
social, political, and medical interventions are proposed in [42]. Optimal control of COVID-
19 in Ireland is treated in [43], where the cost to the economy is minimized, subject to
state constraints regarding the health service capacity. The control input is realized as a
piecewise-constant, time-varying infection rate, representing non-pharmaceutical inter-
ventions. In a similar contribution [44], an optimal control based on a compartmental
model to steer the progression of COVID-19 is proposed. In [45], a mathematical model for
COVID-19 based on an increased number of compartments is developed and stability of
its equilibria is analyzed depending on the model parameters. Optimal control analysis
involving a min-max optimization problem reveals that the combination of public health
education, personal protective measure, and treating COVID-19 patients realizes the best
control solution, obtaining the requested mitigation of transmission of the infection. Two
controllers have been designed in [46]: media campaigns and treatment. By analyzing the
diffusion mechanism of COVID-19, a new compartmental model and a nonlinear adaptive
control problem are established. The adaptive laws are then used to update the parameters
of the designed controller to achieve the goals.

1.4. Structure of the Paper

The paper is structured in the following way. Section 2.1 shows the classical SEIR model
and a controller based on this. Due to problematic model behavior, an extended version
is presented in Section 2.3, together with two controllers based on different Lyapunov-like
function candidates. Then, Section 4 illustrates the experimental results obtained from
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computer simulations and Section 5 gives some concluding remarks, outlook and possible
future work.

2. Methodology

Two models are described in the following subsections, representing different mod-
eling depths and level of detail. Moreover, the derivation of the corresponding control
methodology is presented. Obtaining the proof of practical stability for the closed-loop
system, several interesting system properties such as herd immunity are shown.

2.1. Generalized SEIR Model

The generalized SEIR model takes Kermack and McKendrick’s SIR model as a basis and
modifies it in several aspects. It is assumed that the sum of the four categories S, E, I, R is
equal to the total population (M) at time t = 0 (system parameters relate to the time t in days):

S(0) + E(0) + I(0) + R(0) = M. (1)

Then, the dynamics are

dS(t)
dt

= −αI(t)
S(t)
M

+ µv(t) (2)

dE(t)
dt

= αI(t)
S(t)
M
− βE(t)− µq(t)

dI(t)
dt

= βE(t)− (γ + λ)I(t)

dR(t)
dt

= (γ + λ)I(t),

where the states and parameters can be interpreted as:

• S(t): The number of susceptible individuals who could be potentially subjected to
the infection;

• E(t): The number of exposed hosts in the latent state, modeled to be not yet infectious
for this model variant;

• I(t): The number of infected individuals after the latent period with symptoms;
• R(t): The number of removed individuals, either recovered or dead;
• α: The infection rate, at which susceptible individuals get infected each day. α quan-

tifies how many people are transitioned from S(t) to E(t) due to contact with I(t).
Since this parameter should not depend on the population size, ratio S(t)/M is used
in the model, so α has the same physical dimension as the other transition rates.

• β: Inverse of the average duration of the latent state, which turns the exposed into
the infected;

• γ: The recovery rate, at which infected individuals recover (1/γ is the average recov-
ery time);

• λ: The death rate, at which infected individuals die (1/λ being the average death time);
• µv: Vaccination control, showing the number of susceptible individuals vaccinated

per day (represented using negative signal values);
• µq: Quarantine control, showing the number of susceptible individuals quarantined

per day (represented using positive signal values).

Without doubt, the current situation of the pandemic is expected to stop and sustain
an acceptable number of susceptible individuals. In this sense, it is useful to regard an
acceptable number of Susceptibles as a minimum immunity level, Sd. To this goal, it is
necessary to determine, coordinate and stabilize the error between the desired setpoints
as the balance points of the whole population and the actual values represented by the
current levels of Susceptible, Exposed and Infected individuals. This is explored through
application of the direct method of Lyapunov. With zero being the intended value of E(t)
and I(t), Sd is the desired value of S(t).
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2.2. Analysis and Control of the Generalized SEIR Model

A possible problem formulation can be stated in the following way:

Problem 1. Given the underactuated system defined in Equation (2), find two control laws uv(t)
and uq(t) which reduce both states I(t) and E(t) to zero and allow S(t) to reach an acceptable
number Sd.

The so-formulated problem can be solved using the results offered by the following
Theorem.

Theorem 1. Let us consider the underactuated system defined in Equation (2) and let Sd be the target
for compartment S(t) which guarantees the acceptable immunity in a given population M, then, there
exist two control laws µq(t) and µv(t) which guarantee the asymptotical stability to zero of the Infected
and Exposed compartments and a finite time convergence of the Susceptibles, respectively.

Proof. In order to reduce the error, let us define the following Lyapunov function candidate:

V1(S, E, I) =
1
2
(S(t)− Sd)

2 +
1
2

E(t)2 +
1
2

I(t)2. (3)

It is enough for asymptotical stability to obtain

V̇1(S, E, I) < 0, (4)

if this is true then the desired equilibrium can be reached. By differentiating the function,
we obtain V̇1:

V̇1(S, E, I) = (S(t)− Sd)Ṡ(t) + E(t)Ė(t) + I(t) İ(t)

= (S(t)− Sd)
(
− α

M
I(t)S(t) + µv(t)

)
+ E(t)

( α

M
I(t)S(t)− βE(t)− µq(t)

)
+ I(t)(βE(t)− (γ + λ)I(t)). (5)

In order to obtain V̇1(S, E, I) = 0, the following two equivalent control laws can
be obtained

µeqv(t) =
α

M
I(t)S(t), (6)

µeqq(t) =
α

M
I(t)S(t)− βE(t). (7)

Inspired by the sliding mode control (SMC) approach, we add a corrective part to the
two control laws, in which ηv,q > 0, with the goal to stabilize the error dynamics:

µv(t) = µeqv(t)− ηvsgn(S(t)− Sd), (8)

µq(t) = µeqq(t) + ηqsgn(E(t)). (9)

Let us consider the following part of the model:

dS(t)
dt

= −αI(t)
S(t)
M

+ µv(t) (10)

dE(t)
dt

=
α

M
I(t)S(t)− βE(t)− µq(t) (11)
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with the control laws as defined, in which S(0)− Sd > 0, the following dynamics are obtained:

dS(t)
dt

= −ηvsgn(S(t)− Sd), (12)

dE(t)
dt

= −ηqsgn(E(t)). (13)

There exist finite times t?S,E depending on ηv,q such that S(t?S) = Sd and S(t?E) = 0:

t?S =
S(0)− Sd

ηv
, (14)

t?E =
E(0)

ηq
. (15)

If ηv > 0 and ηq > 0, inserting the control laws into V̇1(S, E, I) yields

V̇1(S, E, I) = −ηv|S(t)− Sd| − ηq|E(t)|+ I(t)(βE(t)− (γ + λ)I(t)). (16)

Considering system model parameters γ > 0 and λ > 0 and the fact that S(t) and
E(t) converge in finite time, this simplifies to

− I(t)2(γ + λ) < 0, (17)

which is always true for I(t) 6= 0. Concluding the proof, V̇1(S, E, I) < 0 or, when all errors
have converged and the goal V1(S, E, I) = 0 is achieved, it remains at V̇1(S, E, I) = 0.

However, there is still considerable ambiguity with regard to this relatively simple model.
The model neglects the contacts between exposed individuals, who do not show symptoms
but are also able to spread the virus, and susceptible individuals. It also considers in the
model equations a constant population size M, which is not true for this incarnation of the
SEIR model, due to inputs µv,q that influence only single dynamics, respectively, and not in a
balanced/conservative way that preserves the total population size. Moreover, owing to the
complex disease, recovered people can become susceptible again, which is not covered by this
simplistic model. Other aspects such as temporary isolation and a Quarantined (Q) or Protected
compartment (P) are also not explicitly considered in the simple SEIR model, which leads to
a total population size M that is not constant. Thus, a more detailed and specific model is
proposed so as to get closer to the reality which can solve the open issues left until now.

2.3. Advanced SPEIQRD Model

Considering the drawbacks of the approach proposed in the previous section, let us
introduce the following modified model:

dS(t)
dt

= −α(I(t) + E(t))
S(t)
M
− ζ(t)S(t) + φR(t)

dP(t)
dt

= ζ(t)S(t)

dE(t)
dt

= α(I(t) + E(t))
S(t)
M
− βE(t)

dI(t)
dt

= βE(t)− δ(t)I(t)− (γ1 + λ1)I(t)

dQ(t)
dt

= δ(t)I(t)− (γ2 + λ2)Q(t)

dR(t)
dt

= γ1 I(t) + γ2Q(t)− φR(t)

dD(t)
dt

= λ1 I(t) + λ2Q(t). (18)
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Based on the generalized SEIR model, some new variables and parameters are added
or modified, as well as building up more realistic relationships between the two controllers
and each category.

Remark 1. In contrast to the SEIR model, the total population size

M = S(t) + P(t) + E(t) + I(t) + R(t) + Q(t) + D(t) (19)

remains constant, which is due to the fact that the inputs structurally act no longer “dissipatively”,
but mirrored or anti-symmetric: both inputs ζ(t), δ(t) appear in two places in the model, with op-
posite signs. This is obvious when considering Equation (19): differentiating this equation, we
obtain that the sum of the dynamics is equal to zero, which indicates conservation of the population.
Another point of view is that the inputs of the simple SEIR model (which is affine in the inputs) are
external, while those of the modified model (being multiplicative in the inputs) are internal.

The parameters and states are:

• E(t): The number of exposed hosts in the latent state, modeled to already be infectious
for this model variant;

• P(t): The number of protected individuals who have been vaccinated;
• Q(t): The number of quarantined individuals who get quarantined when they are

infectious;
• R(t): The number of recovered individuals;
• D(t): The number of dead individuals;
• ζ(t): The protection rate, at which susceptible individuals get vaccinated;
• φ: The recurrence rate, at which recovered people become susceptible again. Since the

probability is tiny, we assume this parameter to be zero;
• δ(t): The quarantine rate, at which infected people get quarantined;
• γ2: The recovery rate, at which quarantined individuals recover;
• γ1: At this recovery rate, those infected individuals recover before quarantine. We

assume the parameter to be zero since the probability is much smaller than γ2;
• λ2: The death rate, at which quarantined individuals die;
• λ1: At this death rate, those infected individuals die before quarantine. We assume

the parameter also to be zero since the probability is much smaller than λ2.

2.4. Analysis and Control of the Advanced SPEIQRD Model

The improved model proposed in Equation (18) is no longer linear in the inputs,
complicating the task to control, but it is possible to consider a similar problem formulation
as before:

Problem 2. Given the underactuated system defined in Equation (18), find two control laws ζ(t)
and δ(t) that asymptotically reduce states I(t), E(t) to zero and S(t) to a desired Sd.

Theorem 2. Let us consider the underactuated system defined in Equation (18), together with
a Lyapunov-like function candidate V2 that is the same as Lyapunov function V1 candidate, as in
Theorem 1:

V2(S, E, I) =
1
2
(S(t)− Sd)

2 +
1
2

E(t)2 +
1
2

I(t)2, (20)
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then, there exist two control laws ζ(t) and δ(t) which guarantee the asymptotical convergence of
the Infected and Exposed compartments to zero, and the Susceptibles to a suitable immunity level,
if the following sufficient conditions are met:

ηq >
E(t)α(I(t) + E(t)) S(t)

M + βE(t)I(t)
I(t)2 , (21)

ηv >
αE(t)2

M|S(t)− Sd|
, (22)

Sd <
βM

α
. (23)

Remark 2. Classical Lyapunov functions contain all the system states (or to be more precise in a
control context, the corresponding state variables’ errors)—V2 does not, rendering it a Lyapunov-like
function candidate. Stability analyses using Lyapunov-like functions are called practical stability
analyses and usually require a more in-depth investigation than the classic Lyapunov theory. On
the other hand, choosing a classical Lyapunov function not only is an implicit constraint regarding
the constructivity of the control law, but can also complicate the stability analysis in case of large
number of states. Willingly neglecting some states in the Lyapunov function, diverging from
conventional Lyapunov theory, will introduce the need to do a posteriori analyses regarding these
state variables, but can significantly simplify the derivation of the results.

Proof. The goal is to find two control laws ζ(t) and δ(t) such that

V̇2(S, E, I) < 0, (24)

i.e., guaranteeing convergence of the three errors to zero, and additionally showing that
non-considered states also converge. By differentiating the function, we obtain V̇2(S, E, I) as

V̇2 = (S(t)− Sd)Ṡ(t) + E(t)Ė(t) + I(t) İ(t)

= (S(t)− Sd)

(
−α(I(t) + E(t))

S(t)
M
− ζ(t)S(t)

)
+ E(t)

(
α(I(t) + E(t))

S(t)
M
− βE(t)

)
+ I(t)(βE(t)− δ(t)I(t)). (25)

In order to reach V̇2(S, E, I) < 0, consider the following two non-singular, approximate
equivalent control laws

ζ(t) = − α

M
(I(t) + E(t)) + ηvsgn(S(t)− Sd), (26)

δ(t) =
βE(t)

I(t) + 1
+ ηq, (27)

in which ηv,q > 0. In δ(t), the denominator is chosen as I(t) + 1 in order to approximately
cancel out the factor I(t) while avoiding singularities. In addition, this control law does
not include a switching function as it is not required to get V̇2 < 0. Considering the inputs
ζ(t) and δ(t) within the dynamics of S(t), for example, yields

Ṡ(t) = −ηvsgn(S(t)− Sd)S(t), (28)
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which is an exponentially decreasing state evolution, converging to Sd. However, to demon-
strate stability, it is sensible to insert the inputs ζ(t) and δ(t) into V̇2, to obtain the condition

V̇2 = −ηv|S(t)− Sd|S(t)

+ E(t)
(

α(I(t) + E(t))
S(t)
M
− βE(t)

)
+ βE(t)I(t)

(
1− I(t)

I(t) + 1

)
− ηq I(t)2 < 0. (29)

In order to simplify the investigation, it is possible to consider a more conservative
expression based on V̇2, where some terms ≤ 0 are discarded:

V̇2a = E(t)α(I(t) + E(t))
S(t)
M

+ βE(t)I(t)− ηq I(t)2. (30)

Using this, a condition for ηq can be found that, together with another condition for
ηv and one for the target size of the Susceptibles compartment Sd, guarantees V̇2 < 0:

ηq >
E(t)α(I(t) + E(t)) S(t)

M + βE(t)I(t)
I(t)2 , (31)

while I(t) > 0. As soon as I(t) = 0 is reached, the choice of ηq is irrelevant. When
considering I(t) = 0, the original condition becomes

V̇2 = −ηv|S(t)− Sd|S(t) + E(t)2
(

α
S(t)
M
− β

)
< 0, (32)

or, thanks to S(t) ≥ 0 and using another more conservative expression again (neglecting
negative part involving β),

V̇2b = −ηv|S(t)− Sd|+ E(t)2 α

M
< 0 (33)

and, finally,

ηv >
αE(t)2

M|S(t)− Sd|
, (34)

as long as S(t) has not reached Sd yet. (When Sd is reached, the choice of ηv is irrelevant.)
Considering again Equation (32), assuming S(t) = Sd, the condition simplifies to

V̇2 = E(t)2
(

α
Sd
M
− β

)
< 0, (35)

so
Sd <

βM
α

. (36)

Remark 3. Note that condition (36) can be seen as a level of herd immunity, since it relates to the
case where the control laws have no more influence on the system (due to their multiplicative nature
in combination with variables that are already zero in the model equations). Similar conditions
regarding herd immunity, derived from compartmental models, are given in [47] and, numerically,
in [48].

Remark 4. While the given conditions for ηq, ηv and Sd together are sufficient to guarantee V̇2 < 0
and thus asymptotical convergence of the considered errors to zero in all circumstances compatible
with the conditions, they are not necessary and rather conservative. In fact, condition (31) alone is
able to achieve the overall convergence if E and S converge faster than I does. Condition (34), on the



Mathematics 2021, 9, 2076 11 of 25

other hand, is sufficient in case S is the slowest compartment to converge. The third condition (36)
about Sd is sufficient if both I and S converge faster than E. If E is the slowest compartment to
converge, that is, in case I = 0 and S = Sd, Equation (36) states the condition for convergence of
the remaining compartment E. Depending on which state converges the slowest, in a mathematical
sense it is enough to employ only one of the three sufficient conditions, but using all three (if possible)
obviously speeds up convergence to our real-life goal.

In addition, the Lyapunov-like function V2 already is not an orthodox choice for the
system described by Equation (18) as it does not include all states, as is the case in classic
Lyapunov theory, but only the states whose deviation from a reference could be seen as
problematic in the given application (so S, E, and I). In fact, considering the compartment
S in the Lyapunov-like function is not required in order to reach the actual real-life goal
of eradicating the disease or establishing enough immunity. If one of these is achieved, it
does not matter which portion of the population is still susceptible. Using the advanced
model (18), other compartments are available that hold a much more direct connection to
the abstract real-life goals. Thus, a more constructive Lyapunov-like approach can be found
by considering the compartments P, R, E, and I. The goal is to maximize the sum of P
(Protected) and R (Recovered), bringing them as close to the total population size M as
possible, which means with as few D (Deaths) as possible, while at the same time forcing E
and I to zero. In this sense, the following Theorem states a more suitable approach.

Theorem 3. Let us consider the underactuated system defined in Equation (18), together with the
following new Lyapunov-like function candidate:

V3(P, R, E, I) =
1
2
(M− P(t)− R(t))2 +

1
2

E(t)2 +
1
2

I(t)2, (37)

then, there exist two control laws ζ(t) and δ(t) which guarantee the asymptotical convergence of
the Infected and Exposed compartments to zero.

Proof. The derivative V̇3(P, R, E, I) is as follows:

V̇3(P, R, E, I) = (M− P(t)− R(t))
(
−Ṗ(t)− Ṙ(t)

)
+ E(t)Ė(t) + I(t) İ(t). (38)

Inserting the state dynamics leads to

V̇3 = (M− P(t)− R(t))(−ζ(t)S(t)− γ2Q(t))

+ E(t)
(

α(I(t) + E(t))
S(t)
M
− βE(t)

)
+ I(t)(βE(t)− δ(t)I(t)). (39)

Compensating parts of each dynamics, the control laws again consist of equivalent
control parts together with robustifying corrective parts similar to SMC, in which ηv,q > 0:

ζ(t) = − γ2Q(t)
S(t) + 1

+ ηvsgn(M− P(t)− R(t)), (40)

δ(t) =
βE(t)

I(t) + 1
+ ηq. (41)
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By inserting the control laws into V̇3, we can obtain a condition for reaching
V̇3(P, R, E, I) < 0:

V̇3 = (M− P(t)− R(t))

[
γ2Q(t)

(
S(t)

S(t) + 1
− 1
)

− ηvS(t)sgn(M− P(t)− R(t))

]

+ E(t)
(

α(I(t) + E(t))
S(t)
M
− βE(t)

)
+ I(t)

(
βE(t)

(
1− I(t)

I(t) + 1

)
− ηq I(t)

)
< 0. (42)

For increased readability, a new symbol ∆MPR can be introduced:

∆MPR = (M− P(t)− R(t))γ2Q(t)
(

S(t)
S(t) + 1

− 1
)

. (43)

Since S(t)
S(t)+1 < 1 and M − P(t)− R(t) > 0, ∆MPR is always negative and does not

have to be considered in the following. Including it in the calculation could potentially
yield a less conservative condition, but considering that S(t)

S(t)+1 ≈ 1 for the most part of the
reaching phase, ∆MPR is relatively small and can be neglected without much increase in
conservativeness. Thanks to this, similar to the previous approach, it is possible to find a
more conservative condition by neglecting some terms ≤ 0:

V̇3a = α(I(t) + E(t))E(t)
S(t)
M

+ βE(t)I(t)− ηq I(t)2 < 0. (44)

From this, a sufficient condition for ηq can be derived as

ηq >
βE(t)I(t) + α(I(t) + E(t))E(t) S(t)

M
I(t)2 , (45)

while I(t) > 0. As soon as I(t) = 0 is reached, the choice of ηq is irrelevant and ηv must be
additionally considered, using another simplified condition stemming from V̇3:

V̇3b = −ηvS(t)sgn|M− P(t)− R(t)|+ αE(t)2 S(t)
M

< 0. (46)

The resulting condition for ηv then is

ηv >
αE(t)2 S(t)

M
S(t) | M− P(t)− R(t) | , (47)

as long as S(t) 6= 0. When both S(t) = 0 and I(t) = 0 are reached thanks to adherence to
conditions (45,47), the original condition simplifies to

V̇3 = −γ2Q(t)(M− P(t)− R(t))− βE(t)2 < 0, (48)

which is always true.
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Remark 5. Conditions (45,47) are time-dependent expressions that can be evaluated for any state
of the system. However, for constructive control design, worst case considerations can be done,
introducing even more conservativeness

ηq > max

(
βE(t)I(t) + α(I(t) + E(t))E(t) S(t)

M
I(t)2

)
, (49)

which obviously means I = 1, S = 1, E = M− 1, yielding an even more conservative condition

ηq > βE +
α

M
(1 + E)E. (50)

A similar worst-case investigation can be done for ηv.

Remark 6. Regarding the stability in practice, in the experiments section, it is shown that sig-
nificantly lower values of ηv,q than dictated from the conditions mentioned above achieve con-
vergence, due to the fact that the conditions are rather conservative and not necessary. Nev-
ertheless, the control laws based on V3 result to be the least conservative of those investigated.
Like V2, function V3 is not a Lyapunov function in the classic sense since it can never achieve
zero, due to the term (M− P(t)− R(t))2. M consists of the sum of all modeled compartments,
M = S(t) + P(t) + E(t) + I(t) + Q(t) + R(t) + D(t), so evaluating this yields a residual
(S(t) + E(t) + I(t) + Q(t) + D(t))2. While S, E, I (and, in consequence, Q) converge to zero,
the D compartment cannot be decreased and remains in V3.

3. Model Validation

In order to validate the quantitative prediction capabilities of the model given in
Equation (18), limited though they may be, we consider the model parameters given in [49],
which utilizes an SEIR model that is comparable to ours, within a well-identified sample
scenario. The following shared characteristics of compartmental models are particularly
important for COVID modeling: exposed patients are assumed to be infectious, there is
the effect of temporary immunity, and quarantining action is modeled as well. In order to
compare, we took the data from Tables 4 and 5 at page 1671 in [49] and adapted them to fit
our situation, using the following changes, where the indexours indicates the parameters’
symbols as used in our compartmental structure, and the right sides of the equations
correspond to the symbols used in [49]:

Sours(0) = 9.5× 104, (51)

αours = β1 + β2 + χ, (52)

β1,ours = θ1 + θ2, (53)

γ1,ours = 3(γ1 + γ2), (54)

γ2,ours = φ (set to 0.1), (55)

δours(t) = ϕ (set to 0.4) (56)

λ1,2,ours = 0, (57)

ζours(t) = 0, (58)

φours = α. (59)

The data correspond to the period from January 2020 to July 2020 in the Hubei
province. In Figure 1, a simulation of the compartments of system (18) using the parameters
given above is shown, to be compared with Figure 13 at page 1679 [49]. Discrepancies
between the two models stem from a slightly different compartmental structure and
require adjustment of some of the rates, as given above, in order to obtain some degree
of comparability, even in the presence of nonlinearities. In the simulation, we can see
a good match between all compartments, apart from differences in the evolution of the
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Infected compartment. The model proposed in [49] considers two separate compartments
for the Infected and differentiates between Quarantined (Q) and Hospitalized (H) patients,
while the contribution at hand uses only one compartment for the Infected and treats the
Hospitalized like the Quarantined. Therefore, by comparing the sum of I1,2 of [49] with
I, we can see a good matching of the predictive capabilities of our proposed model along
with that in [49].

Figure 1. An overview of all compartments for the model comparison with [49].

4. Simulation Results

The simulation results for the SPEIQRD model with both approaches V2,3 can be seen
in Figures 2–12. They are obtained using Matlab/Simulink computer simulations, using
the system model parameters as detailed in Table 1. The parameter values were taken
from the literature [50] and complemented using guesses and plausibility considerations.
In this sense, the simulation study has limited validity in terms of quantitative pandemic
predictions, but it still allows to analyze the system stability as well as trends using different
control strategies.

In Figure 2, all signals are displayed. In order to investigate how these two methods
affect the advanced SPEIQRD model, we use Simulink to compare different results we
obtained by using V2 and V3, showing different interpretations of each compartment
and controller.

After comparing the numbers of Susceptibles, Exposed, Infected and Quarantined in
Figures 3 and 4, it is interesting to note that the number of the Susceptibles will reach our
intended value (which is inherently zero in case of V3) much faster by using V3 than V2,
which is what was expected.

Although the sizes of Recovered and Dead compartments do not show much variation
between Figures 5 and 6, what we can note is that using a controller based on V3 enables
the size of the Protected compartment to be always larger than that of the Dead one, as is
shown in Figure 6.

As aforementioned, we set two control inputs in the models: vaccination and quaran-
tine. The simulation results, anti-intuitively, demonstrate that vaccinating has an immediate
but slow effect on S(t), whereas quarantining does not have an immediate effect but works
much faster in decreasing S(t).
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Figure 2. An overview of all compartments: Susceptible, Protected, Exposed, Infected, Quarantined,
Recovered, and Dead (controller based on V2).

Figure 3. The trend chart of compartments: Susceptible, Exposed, Infected, and Quarantined
(controller based on V2).
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Figure 4. The trend chart of compartments: Susceptible, Exposed, Infected, and Quarantined
(controller based on V3).

Figure 5. The trend chart of compartments: Protected, Recovered and Dead (controller based on V2).
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Figure 6. The trend chart of compartments: Protected, Recovered and Dead (controller based on V3).

Table 1. Parameters.

Parameter or Variable Value

M 60,359,546
S(0) 55,223,559
P(0) 2,215,504
E(0) 100,000
I(0) 355,983
Q(0) 118,661
R(0) 2,274,400
D(0) 71,439
α/M 1.657× 10−8

α 1
β 0.5

γ1 0
γ2 0.05
λ1 0
λ2 5× 10−3

φ 0
ηv 10
ηq 1

The vaccination control action based on V2 can be seen in Figure 7, where a realistic
limitation of 125,000 is imposed to the number of vaccinations per day, represented by
the expression ζ(t)S(t). Due to the large initial control answer, control input ζ(t) hits a
saturation that is depending on the current S(t) population right away, which is depicted
in Figure 8. This control input limitation is implemented as:

ζsat(t) =
sat(ζ(t)S(t))

S(t) + 1
, (60)

where the +1 in the denominator again helps avoid possible singularities and sat is defined
as:

sat(x) =

{
125, 000 if x ≥ 125, 000
0 if x < 0.

(61)
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As it is shown by the blue signal in Figure 7, representing the unsaturated signal,
a curious phenomenon can be observed in this figure: a negative control input after a
certain time. Due to the prescribed error dynamics of the compartment S(t), which is
asymptotically decreasing as per Equation (28), a negative control becomes necessary
because otherwise S(t) decreases faster than prescribed. Negative signals in this context
represent reducing the Protected and increasing the Susceptibles, which is not possible nor
effective. In fact, de-immunization clashes with the real-life goals.

Figure 7. A comparison between expectation and reality of vaccination control action ζ (controller
based on V2).

Figure 8. A comparison between expectation and reality of vaccination control action ζ (controller
based on V2—zoomed in for details).

Since negative control inputs have no meaning in reality, the lower saturation limit in
Equation (61) is chosen as 0. In this sense, V2 does not represent a reasonable Lyapunov-like
function in order to achieve the actual goal of wiping out the virus, because it practically
imposes an upper limit on the convergence speed of S(t). Besides, the trend chart of
the absolute number of vaccinations per day as provided in Figure 9 also seems to be



Mathematics 2021, 9, 2076 19 of 25

not feasible. The modified Lyapunov function V3 does not have this problem, as can be
seen in Figure 10. This is due to the fact that S(t) is no longer explicitly considered in
the Lyapunov-like function. Naturally, the initial control action is larger than possible,
because of the saturation function (60) that is also used for this control variant. However,
the control always stays positive.

Figure 9. The trend chart of the absolute number of vaccinations per day, ζS(t) (controller based on V2).

Figure 10. A comparison between expectation and reality of vaccination control action ζ (controller
based on V3).

The quarantine control input using V2 and V3 is shown in Figures 11 and 12, respec-
tively. This input δ is subjected to saturation with realistic limits, as well as ζ. The upper limit
is chosen as 1/2, which corresponds to a quarantining reaction time of 2 days, while the lower
limit is set to zero (no quarantining). It can be observed that more quarantining is required for
V2 than for V3. The main reason for this result is the faulty vaccination program.
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Figure 11. A comparison between expectation and reality of quarantine control action δ (controller
based on V2).

Figure 12. A comparison between expectation and reality of quarantine control action δ (controller
based on V3).

In order to evaluate which controller is more effective to control the current situation,
regarding the minimization of Infected and Dead compartments, we come up with four
different scenarios A, B, C, D to compare. Since the vaccination campaign and quarantine
campaign should be viable, we set the upper limits for the protection rate ζ and the
quarantine rate δ as mentioned before. In order to assess the performance, several indicators
or metrics can be considered:

• Maximum sizes of compartments D, E, and I;

• Integral of E and I for the duration of the simulation, so
∫ Tsim

0 E(τ)dτ and
∫ Tsim

0 I(τ)dτ,
in order to assess how quickly the compartments converge.

In the “Baseline” scenario (scenario A) shown in Figure 13, the upper limit of quar-
antine campaign is 1/2 and upper limit of vaccination campaign is 125,000. In the “Half
quarantine campaign” scenario (scenario B) shown in Figure 14, we simply reduce the
upper limit of δ to 1/4 and keep the upper limit for vaccination as before. This change
could represent a number of abstract influences, such as a less strict lockdown action,
a larger average reaction time, or as slower COVID-19 testing. This change gives a 2.7%
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rise in the maximum number D and a 70% rise in the maximum number of I, along with
a 105% rise in integral of I. Interestingly, after comparing the E and I compartments, we
discover that max E is larger than max I if the limit of quarantine equals 1/2, while max I
is larger than max E if the limit of quarantine is 1/4. As expected, the results demonstrate
that reducing the quarantine action always leads to a drastic increase of integral of I and a
slight growth of integral of E. On the basis of the change in quarantine campaign, we try to
figure out what should be the upper limit of vaccinations if we want to match either max
D or max I in the “Baseline” scenario. As follows, Figure 15 shows scenario C, which is the
“Half quarantine campaign” with a modified vaccination limit that matches max D from
the “Baseline” scenario while Figure 16 shows the fourth one, scenario D, which again is
the “Half quarantine campaign” using a modified vaccination limit in order to match max
I of the “Baseline” scenario.

Figure 13. Scenario A: the upper limit of quarantine campaign is 1/2 and upper limit of vaccination
campaign is 125,000.

Figure 14. Scenario B: reduce the upper limit of quarantine campaign to 1/4 and keep the upper
limit of vaccination campaign as 125,000.
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Figure 15. Scenario C: a modified vaccination limit that matches max D of the scenario A.

Figure 16. Scenario D: a modified vaccination limit that matches max I of the scenario A.

The required upper limit of the vaccination action reaches 257,000 for scenario C,
which signifies that we need almost double the vaccination rate as before in order to
compensate the effect of reducing quarantining in terms of max D. However, max I and
integral of I are still very large. Therefore, only implementing vaccination as a controlling
measure is not suitable, as it does not help in case of unknown possible long-term effects.
With respect to scenario D, the upper limit of vaccination campaign attains 2,430,000, so
that we need 20 times as much vaccination to achieve similar amounts of max I and integral
of I as in scenario A, but this will also cause a 40% lower max D value and integral of E
value.

The evidence from these four scenarios points towards the idea that the control law of
vaccination is effective for reducing the final size of D, but not very effective for reducing I.
However, the control law of quarantine is effective for both of them.

As a result, our proposed COVID-19 dynamic model is not only inductive but also
tends to be deductive, fulfilling the goals of describing the pandemic and serving as a basis
for control design. Our approach could also be applied to solve similar epidemic problems
with different initial states and conditions, being adaptive to many different scenarios. In
case of COVID-19, the vaccination and quarantining capacities are the bottlenecks, but with
the development of the infrastructure over time, more experience and better facilities
enable the saturation limits to be set much higher than we assume in this paper. By setting
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different values of limits, parameters, initial conditions, the simulation of the model will
generate dramatically different outcomes.

5. Conclusions and Outlook

In this paper, two compartmental models along with three controllers, including
stability analyses, are proposed. Involving methods from the field of control theory,
we present a constructive solution regarding to COVID-19 based on vaccination and
quarantine, using three different controllers. The controllers guarantee the practical stability
with the help of the Lyapunov theory, which is shown in an experiment using computer
simulations. We put emphasis on the aspect of practical stability by using so-called
“Lyapunov-like functions”, as they are often more tractable than a rigorously defined
Lyapunov function. The most important limitation of the first solution lies in the lack of
compartments of the model and lack of feasibility in implementation, due to the limitations
of the simplistic SEIR model. The second possible solution, obtained using an advanced
SPEIQRD model but with the same Lyapunov-like function, shows a behavior that does
not correspond to possible real-world control actions. Thus, another, more constructive
solution obtained using the same extended model but with a new dedicated Lyapunov-
like function is introduced as a feasible solution. This paper emphasizes the derivation
and improvement of control-oriented compartmental models of the COVID-19 pandemic
intended for constructive Lyapunov control. The work proves the effectiveness of the
controllers. Our experiments confirm that the measures of vaccination and quarantine
being implemented today are beneficial to the control of the epidemic spreading, but it is
also critical to note that the two countermeasures have different degrees of effectiveness
in terms of the real-life goals. The speed of convergence and the power to react will be
affected mostly by the actual vaccination and quarantine capacities which are modeled
using the saturation limits of the corresponding control inputs. Future studies, which take
the chaotic system behavior into account, could be undertaken. Since it is hard to predict
the ever-changing future, the strategy should be further refined by focusing more on the
characteristics and equilibrium points of the nonlinear system.
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