

Joint optimization of an autoencoder for clustering and embedding
Boubekki, Ahcène; Kampffmeyer, Michael; Brefeld, Ulf; Jenssen, Robert

Published in:
Machine Learning

DOI:
10.1007/s10994-021-06015-5

Publication date:
2021

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Boubekki, A., Kampffmeyer, M., Brefeld, U., & Jenssen, R. (2021). Joint optimization of an autoencoder for
clustering and embedding. Machine Learning, 110(7), 1901-1937. https://doi.org/10.1007/s10994-021-06015-5

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 03. Juli. 2025

https://doi.org/10.1007/s10994-021-06015-5
http://fox.leuphana.de/portal/en/publications/joint-optimization-of-an-autoencoder-for-clustering-and-embedding(5d226295-9949-4a47-993f-95b18dfd860c).html
http://fox.leuphana.de/portal/de/persons/ahcene-boubekki(91b62923-ee51-49ed-b5b5-685a1a49d0d1).html
http://fox.leuphana.de/portal/de/persons/ulf-brefeld(467a2ecd-1ea2-4ac4-a9c7-b778b4c3983a).html
http://fox.leuphana.de/portal/de/publications/joint-optimization-of-an-autoencoder-for-clustering-and-embedding(5d226295-9949-4a47-993f-95b18dfd860c).html
http://fox.leuphana.de/portal/de/publications/joint-optimization-of-an-autoencoder-for-clustering-and-embedding(5d226295-9949-4a47-993f-95b18dfd860c).html
http://fox.leuphana.de/portal/de/journals/machine-learning(476dcec7-9b1e-4d90-b9fe-1fd89aede022)/publications.html
https://doi.org/10.1007/s10994-021-06015-5

Vol.:(0123456789)

Machine Learning
https://doi.org/10.1007/s10994-021-06015-5

1 3

Joint optimization of an autoencoder for clustering
and embedding

Ahcène Boubekki1 · Michael Kampffmeyer1 · Ulf Brefeld2 · Robert Jenssen1

Received: 22 November 2020 / Revised: 5 April 2021 / Accepted: 28 May 2021
© The Author(s) 2021

Abstract
Deep embedded clustering has become a dominating approach to unsupervised categori-
zation of objects with deep neural networks. The optimization of the most popular meth-
ods alternates between the training of a deep autoencoder and a k-means clustering of the
autoencoder’s embedding. The diachronic setting, however, prevents the former to benefit
from valuable information acquired by the latter. In this paper, we present an alternative
where the autoencoder and the clustering are learned simultaneously. This is achieved by
providing novel theoretical insight, where we show that the objective function of a certain
class of Gaussian mixture models (GMM’s) can naturally be rephrased as the loss function
of a one-hidden layer autoencoder thus inheriting the built-in clustering capabilities of the
GMM. That simple neural network, referred to as the clustering module, can be integrated
into a deep autoencoder resulting in a deep clustering model able to jointly learn a cluster-
ing and an embedding. Experiments confirm the equivalence between the clustering mod-
ule and Gaussian mixture models. Further evaluations affirm the empirical relevance of our
deep architecture as it outperforms related baselines on several data sets.

Keywords Clustering · Deep autoencoders · Embedding · k-means · Gaussian mixture
models

Editors: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautmann.

 * Ahcène Boubekki
 ahcene.boubekki@uit.no

 Michael Kampffmeyer
 michael.c.kampffmeyer@uit.no

 Ulf Brefeld
 brefeld@leuphana.de

 Robert Jenssen
 robert.jenssen@uit.no

1 Machine Learning Group, Department of Physics and Technology, UiT The Arctic University
of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway

2 Institute of Information Systems, Leuphana University of Lüneburg, Universitätsallee 1,
21335 Lüneburg, Germany

http://orcid.org/0000-0003-1606-1513
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-021-06015-5&domain=pdf

 Machine Learning

1 3

1 Introduction

Clustering is one of the oldest and most difficult problems in machine learning and a great
deal of different clustering techniques have been proposed in the literature. Perhaps the
most prominent clustering approach is the k-means algorithm (Lloyd, 1982). Its simplicity
renders the algorithm particularly attractive to practitioners beyond the field of data min-
ing and machine learning (Punj & Stewart, 1983; Gasch & Eisen, 2002; Hennig & Liao,
2013; Frandsen et al., 2015). A variety of related algorithms and extensions have been
studied (Dunn, 1973; Krishna & Murty, 1999; Dhillon et al., 2004). The model behind the
standard k-means algorithm is an isotropic Gaussian mixture model (Kulis & Jordan, 2012;
Lücke & Forster, 2019) (GMM). As such, it can only produce linear partitions of the input
space.

A dominating recent line of research aims to alleviate this issue by learning an embed-
ding of the data with a deep autoencoder (DAE) and to have variants of Gaussian mixture
models operate on the embedded instances (Xie et al., 2016; Yang et al., 2017; Guo et al.,
2017; Fard et al., 2020; Miklautz et al., 2020). This can be referred to as deep embedded
clustering. An important reason for the emergence of this modern line of research in clus-
tering is that it combines elements (the deep autoencoder and the GMM clustering) that
are theoretically well understood when considered separately. In practice, since the embed-
ding map is nonlinear, the result is that the otherwise linear clustering translates to a non-
linear solution in input space. This approach resembles the rationale behind kernel meth-
ods (Guyon et al., 1993). The difference lies in either computing a kernel matrix before
learning the clustering versus learning the feature map as the function approximated by
the encoder. Another advantage of an autoencoder (AE) based approach is provided by the
decoder of the network that allows to map the centroids back into (an approximated version
of the) input space. Depending on the kernel function/matrix, this is not always possible
with traditional approaches.

However, even with advantages of deep embedded clustering as described above, the
fact that the embedding procedure and the clustering procedure are decoupled means that
the former cannot benefit from the latter, and vice versa. In the most naive approach, the
deep autoencoder is first trained, and then the features output by the autoencoder are clus-
tered. In Xie et al. (2016), an improvement is made by alternatively shrinking the clusters
in the embedded space around centroids for then to update the latter using k-means. The
shrinking may however lead to an adaptation of the clustering to the embedding instead
of the desired clustering-induced embedding. In general, these approaches cannot handle
a random initialization which usually leads to noisy embeddings and, in turn, meaningless
clusterings.

Despite the obvious need, few deep embedded clustering procedures have been pro-
posed featuring an inherent capability of bringing out clustering structure in a joint and
simultaneous procedure. This is clearly due to the lack of a theoretical foundation that
could support such an objective. In this paper, we provide novel theoretical insight that
enables us to simultaneously optimize both the embedding and the clustering by relying on
a neural network interpretation of Gaussian mixture models. Our solution derives from the
fact that during the EM, the objective function of a certain class of GMM can be rephrased
as the loss function of an autoencoder, as we show as a key result. A network trained with
that loss is thus guaranteed to learn a linear clustering. Our contributions are threefold. (1)
We state and prove a theorem connecting Gaussian mixture models and autoencoders. (2)
We define the clustering module (CM) as a one hidden layer AE with softmax activation

Machine Learning

1 3

trained with the loss resulting from the previous point. (3) We integrate the CM into a
deep autoencoder to form a novel class of deep clustering architectures, denoted AE-CM.
Building on the theoretical insight, the experiments confirm the empirical equivalence of
the clustering module with GMM. As for the AE-CM, the model outperforms on several
datasets baselines extending Gaussian mixture models to nonlinear clustering with deep
autoencoders.

The remainder of the paper is organized as follows. Section 2 reviews related works
and baselines and Sect. 3 provides the theory underpinning our contributions. The cluster-
ing module and the AE-CM are introduced in Sect. 4. We report empirical evaluations in
Sect. 5. Section 6 concludes the paper.

2 Related work

Recently, several deep learning models have been proposed to group data in an unsuper-
vised manner (Tian et al., 2014; Springenberg 2016; Yang et al., 2016; Kampffmeyer et al.,
2019; Ghasedi Dizaji et al., 2017; Haeusser et al., 2018; McConville et al., 2019; Mukher-
jee et al., 2019; Uğur et al., 2020; Van Gansbeke et al., 2020). Since our main contribution
unravels the connection between Gaussian mixture models and autoencoders, models based
on associative (Haeusser et al., 2018; Yang et al., 2019), spectral (Tian et al., 2014; Yang
et al., 2019; Bianchi et al., 2020) or subspace (Zhang et al., 2019; Miklautz et al., 2020)
clusterings are outside the scope of this paper. Furthermore, unlike (Yang et al., 2016;
Chang et al., 2017; Kampffmeyer et al., 2019; Ghasedi Dizaji et al., 2017; Guo et al., 2017;
Caron et al., 2018; Ji et al., 2019; Van Gansbeke et al., 2020), our model falls within the
category of general purpose deep embedded clustering models which builds upon GMM
(Xie et al., 2016; Guo et al., 2017; Yang et al., 2017; Fard et al., 2020). We mention that
recent works related to specific topics such as perturbation robustness and non-redundant
subspace clustering also utilize ideas that are to some degree related to the general concept
of deep embedded clustering (Yang et al., 2020; Miklautz et al., 2020). Given the high gen-
erality of our method, we detail models that are also built without advanced mechanisms,
but can still support them.

One of the first approaches in this latter category of dominating modern deep cluster-
ing algorithms is DEC (Xie et al., 2016), which consists of an embedding network coupled
with an ad-hoc matrix representing the centroids. During training, the network is trained
to shrink the data around their closest centroids in a way similar to t-SNE (Maaten & Hin-
ton, 2008). However, instead of matching the distributions in the input and feature spaces,
the target distribution is a mixture of Student-t models inferred from a k-means clustering
of the embedding itself. The latter is updated every few iterations to keep track of evolu-
tion of the embedding and the centroids are stored in the ad-hoc matrix. In order to avoid
sub-optimal solutions when starting from random initialization, the embedding network is
pre-trained. Nevertheless, the difference between the two training phases can cause stabil-
ity issues, such as collapsing centroids. IDEC (Guo et al., 2017) extends DEC and allevi-
ates this issue to some degree by using the reconstruction loss of the DAE also during the
training phase. Although IDEC is more robust than DEC, both are highly dependent on the
initial embedding as the clustering phase quickly shrinks the data around the centroids. The
Deep Clustering Network (DCN) (Yang et al., 2017) further strengthens the deep embed-
ding clustering framework and is based on an architecture comparable to DEC and IDEC
but includes hard clustering. The optimization scheme consists of three steps: (1) Optimize

 Machine Learning

1 3

the DAE to reconstruct and bring the data-points closer to their closest centroids (similar to
k-means); (2) update assignments to the closest clusters; (3) update the centroids iteratively
using the assignments. Although alternating optimization helps prevent instabilities dur-
ing the optimization, DCN still requires initialization schemes in order to reach good solu-
tions. Our proposed model instead, while being theoretically-driven, resolves the need for
alternative optimization schemes the previous methods rely on. Since we learn a variant of
GMM using a neural network, the optimizations of both the embedding and the clustering
profit from each other. In practice, our model is thus less reliant on pre-training schemes.

To some degree our approach is similar the very recent method known as DKM (Fard
et al., 2020). The model shares the same architecture as DEC, namely, a deep autoencoder
and an ad-hoc matrix representing the centroids. However, here, the model optimizes the
network and the centroids simultaneously. To achieve that the loss function includes a term
similar to the loss of fuzzy c-means (Bezdek, 2013), i.e, k-means with soft-assignments.
The cluster coefficients are computed from the distances to the centroids and normalized
using a parameterized softmax . In order to convert soft assignments into hard ones, the
parameter follows an annealing strategy. In our model, the assignment probability function
is indirectly related to the distance to the closest cluster representative, as used in DKM.
Our the loss function aims to minimize the distance between the data points and their
reconstruction as convex combinations of the centroids. This means that the learning of the
centroid and of the assignment probabilities regularize each other, mitigating the need of
an annealing strategy.

There are also other recent and promising approaches to clustering that are leveraging
deep neural networks. However, these operate in a very different manner compared to deep
embedded clustering, which our novel theoretical insight sheds new light on and which
enables our new proposed autoencoder optimization for joint clustering and embedding.
We nevertheless briefly review some of these approaches and also compare to representa-
tives of such methods in our experiments. In particular, a great deal of works have focus
on the generative aspect of Gaussian mixture models and studied variations based on deep
generative models such as variational autoencoders (VAE) (Kingma & Welling, 2013) and
generative adversarial network (GAN) (Goodfellow et al., 2014).

Adversarial approaches for clustering have been proposed with examples being Cat-
GAN (Springenberg, 2016) and adversarial autoencoders (AAE) (Makhzani et al., 2015).
The former optimizes the mutual information and predicts a categorical distribution of
classes in the data while maximizing at the same time the robustness against an adversarial
generative model. Instead, AAE uses two adversarial networks to impose a Gaussian and
a categorical distribution in the latent space. The recent ClusterGAN (Mukherjee et al.,
2019) makes an original use of an autoencoder as the input is not a data point but a sample
drawn from the product of a multinomial and a Gaussian distributions. The decoded sam-
ple is then fed to the discriminator and the encoder. This method is all robust to random
network initialization.

Variational approaches that enable clustering include methods like Gaussian Mix-
ture VAE (GMVAE) (Dilokthanakul et al., 2016) and Variational Deep Embedding
(VaDE) (Jiang et al., 2016). Although the former explicitly refers to GMMs, both methods
are similar. The difference is that the parameters of the Gaussian distributions in embed-
ded space depend only on the cluster index in VaDE whereas GMVAE involves a second
random variable. Both models require a pre-trained autoencoder. Variational information
bottleneck with Gaussian mixture model (VIB-GMM) (Uğur et al., 2020) also assumes a
mixture of Gaussian distributions on the embedding, however the model is trained accord-
ingly to the deep variational information bottleneck (VIB) framework. The latter can be

Machine Learning

1 3

seen as a information theory-driven generalization of GAN and VAE (Tishby et al., 2000;
Alemi et al., 2016). VIB-GMM reveals to be a robust alternative to previous approaches as
it is able to produce meaningful clusterings from a randomly initialized autoencoder.

3 Theoretical groundwork

Throughout the paper the set of positive integers is denoted by ℕ∗ . The set of the d-dimen-
sional stochastic vectors is written as 𝕊d = {x ∈ ℝ

d
≥0

∶
∑d

i=1
xi = 1}. When the context

allows, the ranges of the indices are abbreviated using the upper-bound, e.g., a vector
x ∈ ℝ

d decomposes as x = ⟨xj⟩1≤j≤d = ⟨xj⟩d . The zero vector of ℝd is written as 0d . The
notation extends to any number. The identity matrix of ℝd×d is denoted by �d.

3.1 From GMMs to Autoencoders

We aim to fit an isotropic Gaussian mixture model with K ∈ ℕ
∗ components and a Dir-

ichlet prior on the average cluster responsibilities on a dataset X = {xi}N ⊂ ℝ
d . The

expected value of the complete-data log-likelihood function of the model, also called the Q
-function (Bishop, 2006) is:

In this expression, zi ∈ ℕ is the cluster assignment of the data point xi , �ik ∶= p(zi = k|xi)
is the posterior probability of zi = k , also called the responsibility of cluster k on a data-
point xi , �k ∶= p(zi = k) is the prior probability or mixture weight of cluster k and �k ∈ ℝ

d
is the centroid of cluster k. The average responsibilities of cluster k is �̃�k =

1

N

∑N

i=1
𝛾ik and

�̃ ∈ �
K . The concentration hyperparameter of the Dirichlet prior is ⟨�k⟩K ∈ ℝ

K⧵{0K} . The
co-variance matrices do not appear in this expression as they are all constant and equal to
1

2
�d due to the isotropic assumption. We summarize the parameters into matrices � ∈ ℝ

N×K ,
� ∈ �

K and � ∈ ℝ
K×d . Note that the cluster responsibility vector of xi is stochastic, i.e.,

�i = ⟨�ik⟩K ∈ �
K.

Although, the isotropic co-variances allow for great simplifications, they restrict the
model to spherical Gaussian distributions. We later alleviate this constraint by introducing
a deep autoencoder. The Dirichlet prior involves an extra parameter but also smoothens
the optimization. Note that these two assumptions make the model a relaxation of the one
underlying k-means (Kulis & Jordan, 2012; Lücke & Forster, 2019).

Theorem 1 The maximization of the Q-function in Eq. (1) with respect to � yields a term
that can be interpreted as the reconstruction loss of an autoencoder.

Proof During the EM-algorithm, the maximization with respect to � updates the latter as
the average cluster responsibility vector:

Using this result, the Q-function can be rephrased as

(1)Q(�,�,�) =

N∑

i=1

K∑

k=1

𝛾ik
(
log𝜙k − ||xi − �k||2

)
+

K∑

k=1

(𝛼k − 1) log �̃k.

𝜙k =
1

N

∑

i=1

𝛾ik = �̃�k.

 Machine Learning

1 3

The first term corresponds to the entropy of ⟨�̃�k⟩K which, given the Dirichlet prior, is con-
stant and can thus be omitted. We expand now �ik‖xi − �k‖2 by adding and subtracting the
norm of x̄i =

∑K

k=1
𝛾ik�k : For any given i ∈ [1 . . N],

Note that this simplification grounds on the isotropic assumption. It is not obvious how to
reach a similar result without it. The Q-function becomes:

The variable x̄i is actually a function of x that factorizes into two functions F and G . The
former computes �i which, as a posterior probability, is a function of xi . The latter is the
dot-product with �.

The first term of Eq. (3) can thus be interpreted as the reconstruction term characteristic of
a loss of an autoencoder, consisting of the encoder and decoder functions, which are F and
G , respectively. ◻

(2)Q(�,�) =

N∑

i=1

K∑

k=1

𝛾ik log �̃k −

N∑

i=1

K∑

k=1

𝛾ik||xi − �k||2 +
K∑

k=1

(𝛼k − 1) log �̃k.

K∑

k=1

𝛾ik||xi − �k||2 =
K∑

k=1

𝛾ik||xi||2 − 2x⊤
i

(K∑

k=1

𝛾ik�k

)
+

K∑

k=1

𝛾ik||�k||2

+ ||x̄i||2 − ||x̄i||2

= ||xi||2 − 2x⊤
i
x̄i + ||x̄i||2

+

K∑

k=1

𝛾ik||�k||2 −
K∑

k=1

K∑

l=1

𝛾ik𝛾il�
T
k
�k

= ||xi−x̄i||2+
K∑

k=1

𝛾ik(1−𝛾ik)||�k||2−
K∑

k=1

K∑

l = 1

l ≠ k

𝛾ik𝛾il�
T
k
�l.

(3)

Q(�,�) = −

N∑

i=1

||xi − x̄i||2

���������������
=∶E1

−

N∑

i=1

K∑

k=1

𝛾ik(1 − 𝛾ik)||�k||2

���������������������������������
=∶E2

+

N∑

i=1

K∑

k=1

K∑

l = 1

l ≠ k

𝛾ik𝛾il�
T
k
�l

�������������������������������
=∶E3

−

K∑

k=1

(1 − 𝛼k) log �̃�k

�������������������
=∶E4

.

(4)
F ∶

ℝ
d

→ 𝕊
K

x ↦ F(x;�) = ⟨p(z = k�x)⟩K = �

G ∶
𝕊
K

→ ℝ
d

� ↦ G(�;�) =
∑K

k=1
𝛾k�k = x̄

Machine Learning

1 3

3.2 Analysis of the terms

The four terms of the expansion of the Q-function as Eq. (3) gives new insights into the
training of GMMs.

E1 : Reconstruction The term E1 suggests an autoencoder structure to optimize Q . The
decoder, G , is a linear function. However, without loss of generality, it can be treated in
practice as an affine function, i.e. a single layer network with bias. Regarding the encoder
F , the architecture can be anything as long as it has a stochastic output.

E2 : Sparsity and regularization The second term E2 is related to the Gini impurity
index (Breiman et al., 1984) applied to �i:

where ‖.‖F is the Frobenius norm. The Gini index is standard in decision tree theory to
select branching features and is an equivalent of the entropy. It is nonnegative and null if,
and only if, �i is a one-hot vector. Hence, minimizing this term favors sparse �i resulting in
clearer assignments.

The terms ‖�k‖2 play a role similar to an �2-regularization: they prevent the centroids
from diverging away from the data-points. However, they may also favor the trivial solu-
tion where all the centroids are merged into zero.

E3 : Sparsity and cluster merging To study the behavior of E3 during the optimi-
zation, let us consider a simple example with one observation and two clusters, i.e,
� ≡ �1 = (� , 1 − �) . If the observation is unambiguously assigned to one cluster, �1 is a
one-hot vector and E3 is null. If it is not the case, the difference between E2 and E3 factor-
izes as follows:

The optimization will thus either push �1 toward a more sparse vector, or merge the two
centroids. Appendix 3 presents an analysis of the role of this term.

E4 : Balancing The Dirichlet prior steers the distribution of the cluster assignments. If
none of the �k is null, the prior will push the optimization to use all the clusters, moderat-
ing thus the penchant of E2 for the trivial clustering (Yang et al., 2017; Guo et al., 2017).

Note that if � =

(
1 +

1

K

)
1K , E4 is, up to a constant, equal to the Kullback–Leibler (KL)

divergence between a multinomial distribution with parameter �̃ and the uniform multino-
mial distribution:

4 Clustering and embedding with Autoencoders

Theorem 1 says that an autoencoder could be involved during the EM optimization of an
isotropic GMM. We go one step further and by-pass the EM to directly optimize the Q
-function in Eq. (3)) using an autoencoder.

K�

k=1

�ik(1 − �ik)‖�k‖2 ≤
K�

k=1

�ik(1 − �ik)‖�‖2F = ����(�i)‖�‖2F ,

(5)E2 − E3 = �(1 − �)
�
‖�1‖2 + ‖�2‖2 − �

T
1
�2

�
= �(1 − �)‖�1 − �2‖2.

K∑

k=1

(1 − 𝛼k) log �̃k =

K∑

k=1

(1 − (1 +
1

K
)) log �̃k = DKL

(
1

K
1K

‖‖‖�̃
)
.

 Machine Learning

1 3

4.1 The clustering module

We define the Clustering Module (CM) as the one-hidden layer autoencoder with encoding
and decoding functions F and G such as:

where X ∈ ℝ
N×d ∼ X , code representation/cluster responsibilities � = ⟨�ik⟩N×K ∈ ℝ

N×K
s.t. �i ∈ �

K , and the reconstruction X̄ ∈ ℝ
N×d . The weight and bias parameters of the

encoder are Wenc ∈ ℝ
d×K and Benc ∈ ℝ

K , respectively, and analogously for the decoder
Wdec ∈ ℝ

K×d and Bdec ∈ ℝ
d . The softmax enforces the row-stochasticity of the code, ie., � .

The associated loss function is the negative of Eq. (3):

with Θ =

(
Wenc,Benc,Wdec,Bdec

)
 . The centroids of the underlying GMM correspond to

the images of G of the canonical basis of ℝK.
Initialization
The CM can be initialized using k-means or any initialization scheme thereof such as

k-means++ (Arthur & Vassilvitskii, 2007). In such a case, the column-vectors of Wdec are
set equal to the desired centroids. The pseudo-inverse of this matrix becomes the encoder’s
weights, Wenc , and both bias vectors are set to null.

Averaging epoch
In practice, the CM will be optimized by mini-batch learning with stochastic gradient

descent. In such a procedure, the optimizer updates the positions of the centroids given
the current batch. A small batch-size relative to the size of X may cause dispersion of the
intermediate centroids. Hence, choosing the final centroids based on the last iteration may
be sub-optimal.

We illustrate this phenomenon in Fig. 1. The data consists of N = 2000 points in ℝ2
drawn from a mixture of five bi-variate Gaussians (K = 5) (gray dots). The data is stand-
ardized before processing. A CM is trained in mini-batches of size 20 over 50 epochs using
stochastic gradient descent. The concentration is set to � = 5K . The dispersion of the cen-
troids after each iteration of the last epoch (crosses) is significant. On the other hand, their
average positions (squares) provide a good approximation of the true centers (circles).
Therefore, we include one extra epoch to any implementation of the CM to compute the
average position of the individual centroids over the last iterations.

4.2 Embedding with feature maps

The theory behind GMMs limits the CM to a linear decoder, thus enabling merely a lin-
ear partition of the input space. In addition, the isotropy assumption, specific to the CM,

(6)
F(X) = softmax(XWenc + Benc) = �

G(�) = �Wdec + Bdec = X̄,

(7)

LCM(X;Θ) =

N∑

i=1

||xi − x̄i||2 +
N∑

i=1

K∑

k=1

𝛾ik(1 − 𝛾ik)||�k||2

−

N∑

i=1

K∑

k=1

K∑

l = 1

l ≠ k

𝛾ik𝛾il�
T
k
�l +

K∑

k=1

(1 − 𝛼k) log �̃�k.

Machine Learning

1 3

bars clusters to spread differently. We alleviate both limitations using a similar approach
to that of kernel methods (Guyon et al., 1993): we non-linearly project the input into a
feature space where it will be clustered. However, we do not learn the kernel matrices,
providing an implicit feature map. Instead, we learn explicitly the feature maps using a
deep autoencoder (DAE).

The idea is to optimize the CM and the DAE simultaneously, in order to let the lat-
ter find distortions of the input space along the way that guides the CM toward a better
optimum. Using a deep autoencoder architecture prevents the optimization to produce
degenerate feature maps Guo et al. (2017). It also preserves the generative nature of the
model: points in the input space can be generated from a combination of centroids in the
feature space. We refer to this model as the AE-CM.

The model consists of a clustering module nested into a deep autoencoder The archi-
tecture is illustrated in Fig. 2. The first part of the DAE encodes an input x ∈ ℝ

d into
a vector z ∈ ℝ

p . Note, CM now works on code representation z and not directly on the

Fig. 1 The intermediate centroids
of the last epoch are spread,
whereas their averages almost
match the true centroids

Fig. 2 Schematic representa-
tion of the AE-CM. Combining
a clustering module and a deep
autoencoder allows to jointly
learn a clustering and an embed-
ding

x z

x̄

z̃γ

Clustering Module

Deep Autoencoder

 Machine Learning

1 3

input x . The code z is fed to the CM and to the decoder of the DAE, yielding two out-
puts: z̃ , the CM’s reconstruction of z , and x̄ , the DAE’s reconstruction of x.

4.2.1 Adapting the loss function to a deep architecture

Empirical evaluation showed that current gradient descent optimizers (e.g., Adam, Kingma
& Ba, 2015) often return sub-optimal solutions when the reconstruction of the deep
autoencoder is simply added to the loss of the CM. To help the optimization to find better
optima, we add the assumption that the centroids are orthonormal:

Although the previous formula involves only � which is learned by the nested clustering
module, it affects the surrounding DAE. Indeed, the constraint encourages it to produce an
embedding where the centroids can simultaneously be orthonormal and minimize CM’s
loss. As a consequence, E2 simplifies and E3 becomes null:

Note that the constraint Eq. (8) is satisfied for the “ideal” clustering, in which case clusters
will be mapped to the corners of a simplex in the embedding space, as discussed recently
in Kampffmeyer et al. (2019). In this perspective, our inclusion of this constraint helps
guide the clustering towards the ideal clustering, and at the same time simplifies the loss
function.

We employ Lagrange multipliers to integrate the orthonormality constraint. That way
the final loss can be stated as follows:

where 𝜆 > 0 is the Lagrange multiplier and 𝛽 > 0 weights the DAE’s reconstruction loss.
We choose the �1-norm to enforce orthonormality, however other norms can be used.

(8)∀k, l, �T
k
�l = �kl =

{
1 if k = l,

0 otherwise.

(9)

E2 =

N∑

i=1

K∑

k=1

�ik(1 − �ik)||�k||2 =
N∑

i=1

K∑

k=1

�ik(1 − �ik)

E3 =

N∑

i=1

K∑

k=1

K∑

l = 1

l ≠ k

�ik�il�
T
k
�l = 0

(10)

LAE-CM(X;Θ) =𝛽

N∑

i=1

||xi − x̄i||2(Reconstruction DAE)

+

N∑

i=1

||zi − z̃i||2(Reconstruction CM)

+

N∑

i=1

K∑

k=1

𝛾ik(1 − 𝛾ik)(Sparsity)

+

K∑

k=1

(1 − 𝛼k) log(�̃k)(Dirichlet Prior)

+ 𝜆||�T
� − �K||1, (Orthonormality)

Machine Learning

1 3

Note that if the dimension of the embedding p is larger than the number of centroids K,
the embedding can always be transformed to satisfy the orthonormality of the centroids.
On the other hand, if K > p , the assumption becomes restrictive also in term of possible
clusterings. Nevertheless, its importance can be reduced with a small � . This assumption
also helps to avoid the centroids to collapse as their norm is required to be 1. An analysis of
the Lagrange multiplier is provided in Appendix 1.

The loss function of the AE-CM thus depends on four hyper-parameters: the weight
𝛽 > 0 , the concentration � ∈ �

K , the Lagrange multiplier 𝜆 > 0 , and the size of the batches
B ∈ ℕ

∗.

4.2.2 Implementation details

Since the AE-CM builds upon the CM, any implementation also contains an averaging
epoch. In case of pre-training, both sub-networks need to be initialized. We favor a straight-
forward end-to-end training of the DAE (without drop-out or noise) over a few epochs. The
clustering module is then initialized using k-means++ on the embedded dataset. Finally,
the CM is optimized alone using LCM for a few epochs.

5 Experiments

In this section, we evaluate the clustering module and the AE-CM on several data sets
covering different types of data. To highlight the generality of our method, we rely only
fully connected architecture, ie. we do not use convolution layers even for image data sets.
That said, we focus on general purpose baselines. The experiments were conducted on
an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz with 32Gb of RAM supported with a
NVIDIA(R) Tesla V100 SXM2 32GB GPU.

5.1 Experimental Setting

5.1.1 Datasets

We leverage eight common benchmark data sets in the deep clustering literature plus one
synthetic data set:

• MNIST LeCun et al. (1989) contains 70, 000 handwritten images of the digits 0 to 9.
The images are grayscale with the digits centered in the 28 × 28 images. The pixel val-
ues are normalized before processing.

• fMNIST Xiao et al. (2017) contains 70, 000 images of fashion products organized in
10 classes. The images are grayscale with the product centered in the 28 × 28 images.
The pixel values are normalized before processing.

• USPS1 contains 9298 images of digits 0 to 9. The images are grayscale with size
28 × 28 pixels. The pixel values are normalized before processing.

1 https:// github. com/ Xifen gGuo/ IDEC/ files/ 16133 86/ usps. zip.

https://github.com/XifengGuo/IDEC/files/1613386/usps.zip

 Machine Learning

1 3

• CIFAR10 Krizhevsky et al. (2009) contains 60, 000 color images of 10 classes of sub-
jects (dogs, cats, airplanes...). Images are of size 32 × 32 . The pixel values are normal-
ized before processing.

• Reuters10k2, here abbreviated R10K, consists of 800, 000 news articles. The dataset
is pre-processed as in Guo et al. (2017) to return a subset of 10, 000 random samples
embedded into a 2, 000-dimensional space (tf-idf transformation) and distributed over
4 (highly) imbalanced categories.

• 20News3 contains 18, 846 messages from newsgroups on 20 topics. Features consists
of the tf-idf transformation of the 2000 most frequent words.

• 10 × 73k Zheng et al. (2017) consists of 73, 233 RNA-transcript belonging to 8 differ-
ent cell types Jang et al. (2017). The features consists of the log of the gene expression
variance of the 720 genes with the largest variance. The dataset is relatively sparse with
40% of entries null.

• Pendigit Alimoglu and Alpaydin (1996) consists of 10, 992 sequences of coordinates
on a tablet captured as writers write digits, thus 10 classes. The dataset is normalized
before processing.

• 5 Gaussians consists of N = 2000 points in ℝ2 drawn from a mixture of five bi-variate
Gaussians (K = 5). The dataset is depicted in Fig. 1.

5.1.2 Evaluation metrics

The clustering performance of each model is evaluated using three frequently-used met-
rics: the Adjusted Rand Index (ARI) (Hubert & Arabie, 1985), the Normalized Mutual
Information (NMI) (Estévez et al., 2009), and the clustering accuracy (ACC) (Kuhn, 1955).
These metrics range between 0 and 1 where the latter indicates perfect clustering. For leg-
ibility, values are always multiplied by 100. For each table, scores not statistically different
(t-test p < 0.05) from the best score of the column are marked in boldface. The ∗ indicates
the model with the best run. A failure (−) corresponds to an ARI close to 0.

5.1.3 Baselines

We include two baselines for the CM: k-means (KM), a GMM with full co-variance and an
isotropic GMM (iGMM) with uniform mixture weights. The latter differs from the model
the clustering module derives but the Dirichlet prior on the responsibilities yields non trac-
table updates and a Dirichlet prior on the mixture weights harms the performance.

We compare the AE-CM to four baselines reviewed in Sect. 2: DEC (Xie et al., 2016),
its extension IDEC (Guo et al., 2017), DCN (Yang et al., 2017) and DKM (Fard et al.,
2020). We include as the naive approach (AE+KM) consisting of a trained DAE followed
by k-means on the embedding. We also add ClusterGAN (Mukherjee et al., 2019) and VIB-
GMM (Uğur et al., 2020) as alternatives based on variational autoencoders (Kingma &
Welling, 2013) and generative adversarial networks (Goodfellow et al., 2014), respectively.

Random and pre-trained initialization are indicated with r and p , respectively. If omitted,
the initialization is random. Every experiment is repeated 20 times.

3 http:// people. csail. mit. edu/ jrenn ie/ 20New sgrou ps.

2 https:// github. com/ Xifen gGuo/ IDEC/ tree/ master/ data/ reute rs.

http://people.csail.mit.edu/jrennie/20Newsgroups
https://github.com/XifengGuo/IDEC/tree/master/data/reuters

Machine Learning

1 3

5.1.4 Implementation

Both CM and AE-CM are implemented using TensorFlow 2.1 (Abadi et al., 2016)4. We
also re-implemented DEC, IDEC and DCN. All deep models but ClusterGAN and VIB-
GMM use the same fully connected autoencoder d-500-500-2000-p-2000-500-500-d and
leaky relu activations, where d and p are the input and feature space dimensions, respec-
tively. For ClusterGAN and VIB-GMM, we used the architecture provided in the original
code. As well, the DAE reconstruction loss is the mean square error, regardless of the data-
set and of the model, except for VIB-GMM on images which requires a cross-entropy loss
(it under performs, otherwise). CM and its baselines are trained for up to 150 epochs, deep
models for 1000 epochs. The hyper-parameters (batch-size, p, concentration, etc.) are listed
in Tables 12 and 13.

5.2 CM: evaluation

Recall that the loss of the clustering module is a lower bound of the objective function of
its underlying isotropic GMM which approximates k-means. Moreover, the optimization of

Table 1 The clustering performance (×100) of different models on the selected datasets

Model MNIST fMNIST USPS CIFAR10

ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC

KMr 37.8 ��.�
∗

54.5∗ 36.6 51.6 53.2 52.6 ��.� 63.0 4.2 8.1 20.8
KMp 36.9 ��.� 54.0 35.2 51.0 50.8 50.2 60.8 61.1 4.2 8.1 20.7
GMMr 23.2 37.8 40.3 34.3 49.3 51.8 35.1 52.5 48.2 �.� 9.1 ��.�

∗

GMMp 24.8 37.5 42.3 34.3 49.3 52.4 33.0 52.0 45.1 �.�
∗

�.� ��.�

iGMMr 31.3 42.7 48.5 35.7 50.7 51.4 44.2 55.3 56.2 4.1 7.9 21.1
iGMMp 31.1 42.7 47.5 35.4 50.8 51.6 44.4 56.1 55.6 4.1 7.8 21.1
CMr

��.�
∗

��.� ��.� ��.� ��.� ��.� ��.� ��.� ��.�
∗ 4.8 8.9 ��.�

CMp ��.� ��.� ��.� ��.�
∗

��.�
∗

��.�
∗

��.�
∗

��.�
∗ 63.7 4.9 �.�

∗
��.�

Model R10K 20News 10x73k Pendigit

ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC

KMr ��.� 38.1 ��.� 14.8 32.3 31.0 36.5 55.4 55.0 ��.�
∗ 67.8 ��.�

KMp 29.5 36.0 58.3 14.8 33.5 32.0 36.7 55.5 55.3 ��.� 68.9 ��.�

GMMr 13.5 18.4 46.8 13.2 34.6 31.6 32.2 50.4 52.4 51.3 68.4∗ 65.7∗

GMMp 11.8 14.8 47.5 10.7 31.2 27.2 32.0 50.8 51.5 54.3 ��.� ��.�

iGMMr ��.� ��.� ��.� ��.� ��.�
∗

��.�
∗ 34.2 53.7 53.9 ��.� ��.� ��.�

iGMMp 27.3 32.3 60.4 13.4 36.8 31.4 33.1 53.1 52.1 ��.� ��.� ��.�

CMr ��.� ��.� ��.� 9.7 21.2 18.3 ��.� ��.� ��.� ��.� 67.0 ��.�

CMp 32.6∗ 39.2∗ 60.2∗ 16.3∗ 28.8 30.8 ��.�
∗

��.�
∗

��.�
∗

��.� 66.9 ��.�

4 Code available at: https:// github. com/ Ahcene- B/ clust ering- Module.

https://github.com/Ahcene-B/clustering-Module

 Machine Learning

1 3

the CM is based on gradient descent instead of EM. We compare these three models as a
sanity check, and show that, despite the differences, they report similar clustering perfor-
mance. We also present an ablation study of the loss and a model selection scheme for the
CM. An analysis of the hyper-parameters and of the Dirichlet prior are reported in Appen-
dix 1 and 2, respectively.

5.2.1 CM: clustering performance

In this experiment, we compare clustering performances and initialization schemes. Ran-
dom and k-means++ initializations are indicated with the superscripts r and p , respectively.
Each experiment is repeated 20 times. We report averages in Table 1. For each dataset,
scores not statistically significant different from the highest (p < .05) score are marked
in boldface. The ∗ indicate the model with the highest best score among its 20 runs. An
extended table including standard deviations and best run can be found in Table 11 of
Appendix 4. Average runtime for MNIST are reported on Table 2.

As expected, the clustering module performs similarly to iGMM and k-means on every
dataset with respect to almost every metrics and for any initialization scheme. Often the
k-means++ initialization does not improve the results. In the case of the clustering module
the difference is never significant except on the 20News dataset.

5.2.2 CM: runtimes

We compare here the runtimes of the different method on MNIST. For a fair compari-
son, we do not use any early-topping criterion and all the methods are run for exactly 150
epochs. We report on Table 2 average over 10 runs.

It appears clearly that EM-based models are much faster. Interestingly GMM is slower
than iGMM, although they share the same implementation. This difference is certainly due
to the extra computations needed to update the covariance matrices.

5.2.3 CM: ablation study of the loss

The loss function of the CM arises as a whole from the Q function of the underlying
GMM. Nevertheless, for additional insight, we perform here an ablation study of its terms.
We train a CM with different combinations of the terms of its original loss (Eq. (7)). To

Table 2 Average runtime of each
model to cluster MNIST in 150
epochs

Model KMr GMMr iGMMr CMr

Runtime 1.7s 2m4s 56s 2m44s

Table 3 Clustering performance
(ARI) of the CM on the 5
Gaussians dataset trained with
various combination of the terms
of its original loss (first line)

E
0

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E
1

✓ ✓ ✓ ✓ ✓

E
2

✓ ✓ ✓ ✓ ✓

E
3

✓ ✓ ✓ ✓ ✓

ARI ��.� 38.2 45.0 66.8 71.4 50.5 46.2 67.6 59.0

Machine Learning

1 3

highlight the influence of each term, we focus on the 5 Gaussians dataset (depicted in
Fig. 1). Table 3 reports the clustering performance in terms of ARI.

The gap in terms of ARI between the CM trained with the complete loss (first line) and
any other combination of its terms confirms the coherence of the loss. The model trained
without the reconstruction term E0 reports the worse score. The ablation of the single terms
indicate that the reconstruction term E0 is the most important followed by the sparsity term
E1 . Although the removal of only E3 has the least impact, it is the only term that combined
with E0 reports better performance than a loss function made of solely the reconstruction
term E0.

Figure 3 illustrates the behavior of each term of the loss of the CM (LCM) during the
training. Given the variations of each curves, it seems that during the first 25 epochs the
optimization focuses on minimizing the reconstruction term even if it implies an increase
of the other ones. However, the complete loss curve does not flatten out until E3 reaches
its minimum. From there, a second phase begins where the total loss and the clustering
metrics slowly grow in opposite directions. Interestingly, as the metrics increase and the
clustering improves, E3 also increases, which is contrary to the expected behavior. On the
other hand, E2 which is of the same magnitude as E3 and is also influenced by the sparsity
of the assignments, continuously decreases without reaching a minimum. Overall, these
curves suggest that both E2 and E3 could be used to either stop early the training or select-
ing the best run.

5.2.4 CM: model selection

In an unsupervised scenario, true labels are not available. It is thus necessary to have an
internal measure to avoid selecting a sub-optimal solution.

There are two natural choices: select either the clustering associated with the lowest loss
or the less ambiguous clustering. In the first case, the sparsity of the clusters responsibili-
ties �i might be eclipsed by other aspects optimized by the LCM , such as the reconstruc-
tion term. On the other hand, by selecting only given the sparsity, we may end up always

Fig. 3 Evolution of the total loss, each of its term and of the clustering metrics during the training of the
CM on the 5 Gaussians dataset

 Machine Learning

1 3

choosing the most degenerate clustering. Leaning on the analysis of Fig. 3, we propose to
use Lsp = E2 + E3 which sums both terms of the loss governing the sparsity of the �i s but
also involves the norm of the �ks.

In Table 4, we report the ARI of the runs with the lowest Lsp for each dataset. For com-
parison, we also report the average and the largest ARI. Scores selected according to Lsp
that were higher than the average are marked in boldface.

A model selection based on Lsp finds the best runs only for R10K. Nevertheless, it
selects runs with ARI greater than the average in more than half of the cases. In the other
cases, the difference to the average score remains below 1 point of ARI expect for CMp on
20News. The average absolute difference with the best score is 1.60 and 3.10 for CMr and
CMp , respectively. Without 20News, on which CMp performs the worst, that average dif-
ference drops to 2.25 for CMp . These are satisfying results that substantiates our heuristic
that Lsp = E2 + E3 can be used as an internal metric for the CM.

5.3 AE‑CM: evaluation

In this section, we compare the clustering performance of our novel deep clustering model
AE-CM against a set of baselines. We study the robustness of the model with respect to
the number of clusters and a model selection scheme. We also evaluate the quality of the
embeddings through the k-means clusterings thereof. Finally, we review the generative
capabilities of our model.

5.3.1 AE‑CM: clustering performance

We compare now clustering performances and initialization schemes for representative
deep clustering models. We reports average ARI, NMI and ACC over 20 runs in Table 5.
An extended table including standard deviations and best run can be found in Table 15 of
Appendix 3.

In their original papers, the DEC, IDEC and DCN are pre-trained (p). We report
here slightly lower scores that we ascribe to our implementation and slightly differ-
ent architectures. Nonetheless, the take-home message here is the consistency of their
poor results when randomly initialized. This reflects an inability to produce cluster from

Table 4 Adjusted Rand index of the run with lowest Lsp , the average run and the best run

Score larger than the average are marked in boldface

Criterion MNIST fMNIST USPS CIFAR10

Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best

CMr ��.� 39.7 43.5 ��.� 42.3 44.6 ��.� 54.3 58.6 �.� 4.79 5.07
CMp ��.� 39.1 43.5 ��.� 41.4 44.7 ��.� 53.4 59.2 �.�� 4.94 5.22

Criterion R10K 20News 10×73k Pendigit

Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best

CMr ��.� 38.5 56.0 �.�� 9.74 10.9 54.3 54.8 57.4 57.0 57.3 60.5
CMp ��.� 32.6 62.9 13.1 16.3 22.0 54.9 55.4 62.4 56.4 57.3 60.1

Machine Learning

1 3

scratch, regardless of implementation. Note that, in that case, even k-means outper-
forms all of them on all the datasets (see Table 1). On the other hand, DKM does return
competitive score for both initialization scheme. Such results yield the question of how
much clustering that is actually performed by DEC, IDEC and DCN and how much that
is due to the pre-training phase.

In practice, DKM has proven sensitive to the choice of its � hyper-parameter and to
the duration of the optimization. For example, we could not find a value able to cluster
Pendigit. We conjecture that expanding the clustering term of DKM’s loss, as we did
between Eqs. (1) and (3), would improve the robustness of the model.

On six of the datasets, at least one of the variants of AE-CM reports the highest aver-
age or highest best run. Especially, AE-CMr produces competitive clusterings on all
datasets except CIFAR10 despite its random initialization. This setback is expected as

Table 5 The clustering scores (×100) of representative deep clustering models on the selected datasets

Model MNIST fMNIST USPS CIFAR10

ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC

AE+KM 65.6 71.5 78.6 39.0 55.6 53.0 57.1 64.6 67.5 3.2 6.5 18.9
DCNr 10.1 25.6 25.4 17.0 33.5 29.0 17.9 36.5 37.9 3.2 5.9 18.0
DCNp 75.6 ��.� 83.1 38.6 57.1 53.1 63.9 73.1 72.5 0.1 0.6 10.7
DECr 11.1 19.0 28.9 22.9 38.1 39.2 36.3 46.9 46.8 3.1 5.7 18.6
DECp 73.8 79.0 83.1 41.9 58.6 54.8 ��.� ��.� ��.� 3.1 5.6 18.2
IDECr 27.5 39.0 42.5 35.2 50.8 48.1 41.8 53.2 54.0 2.2 3.6 14.0
IDECp 74.9 80.1 83.4 42.8 59.8 55.4 ��.� ��.� ��.� 4.2 7.4 20.2
DKMr 72.5 77.3 81.2 41.8 56.4 54.6 58.3 67.0 68.6 �.�

∗
�.�

∗ 21.3
DKMp 74.0 78.3 82.7 36.2 52.0 47.0 60.4 71.8 68.9 �.� ��.� 19.7
ClusterGANr 63.6 71.8 76.8 ��.� ��.� ��.� 57.4 67.9 70.0 3.2 7.6 20.4
VIB-GMMr

73.3∗ 78.3∗ 81.5∗ 43.7∗ 58.4∗ ��.�
∗ 59.9 67.7 68.4 �.� ��.� ��.�

∗

AE-CMr ��.� 80.9 ��.� 43.7 55.6 ��.� 55.1 63.4 65.8 4.1 7.5 20.4
AE-CMp ��.� ��.� ��.� 43.1 56.3 ��.� ��.�

∗
76.7∗ ��.�

∗ 4.1 7.6 20.2

Model R10K 20News 10x73k Pendigit

ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC

AE+KM 61.0∗ 56.8 74.5∗ 11.3 27.4 24.8 54.3 72.5 64.4 55.2 68.2 70.2
DCNr 18.0 19.3 49.5 0.0 0.2 5.6 5.3 17.2 23.9 0.1 0.8 10.8
DCNp ��.� ��.� ��.� 11.7 33.5 25.3 9.6 13.8 25.2 56.8 72.0 70.8
DECr 12.2 13.2 43.8 3.2 7.8 10.0 31.4 43.5 46.3 36.8 52.3 49.3
DECp 56.8 56.0 72.8 5.5 11.3 11.8 53.5 67.1 62.1 59.6 72.8 72.2
IDECr 8.6 9.5 44.1 0.0 0.1 5.5 33.7 46.5 44.4 43.3 61.2 53.9
IDECp 59.7 56.3 73.9 5.9 12.6 12.0 60.1 75.9 66.5 57.9 71.6 71.0
DKMr 51.3 49.5 72.3 4.7 14.1 10.9 65.5 71.3 77.0 52.4 65.6 66.9
DKMp 57.7 55.5 ��.� 20.9 39.2 34.3 38.1 55.4 51.6 15.4 27.4 25.1
ClusterGANr 33.7 35.5 61.4 18.6 34.1 34.1 39.5 52.1 55.5 ��.� 74.2 ��.�

VIB-GMMr 27.8 28.7 56.6 0.0 0.0 0.0 51.5 60.7 60.0 ��.� ��.� ��.�

AE-CMr 42.9 45.6 67.7 ��.�
∗

��.�
∗

��.�
∗ 73.1 79.0 80.4 ��.�

∗
��.�

∗
��.�

∗

AE-CMp 64.1 60.0∗ ��.� 16.8 29.0 32.5 ��.�
∗

��.�
∗

��.�
∗

��.� ��.� ��.�

 Machine Learning

1 3

clustering models are known to fail to cluster color images from the raw pixels (Jiang
et al., 2016; Hu et al., 2017).

Also our AE-CM with random initialization always surpasses AE+KM except on R10K
and CIFAR10, and even outperforms all the competitors by at least 20 ARI points on
20News. On the down side, AE-CMr is associated with large standard deviations which
implies a less predictable optimization (see Table 15 of Appendix 3). Therefore, we inves-
tigate an internal measure to select the best run.

5.3.2 AE‑CM: runtimes

We compare here the runtimes of the different method on MNIST. For a fair comparison,
all the methods use the same batch size of 256 instances. We report on Table 6 average
over 10 runs. We do not used any early-stopping criterion.

Note that our implementation of DEC, IDEC and DCN are based on that of AE-CM.
Hence these are the most comparable. The advantage goes to the model joint optimization,
AE-CM, which is more that 5 min faster. ClusterGAN is the slowest method. It also has the
most complex architecture.

5.3.3 AE‑CM: robustness to the number of clusters

In the previous experiments, we provided the true number of clusters to all algorithms
for all datasets. In this experiment, we investigate the behavior of the AE-CM when it is
set with a different number of clusters on four datasets: MNIST, USPS, R10K and Pen-
digit. Figure 4 shows the evolution of the ARI (left) and the homogeneity (Rosenberg &

Table 6 Average runtime of each model to cluster MNIST in 150 epochs

Model DECr IDECr DCNr DKMr ClusterGANr VIB-GMMr AE-CMr

Runtime 25m13s 27m51s 39m18s 38m29s 3h17m30s 29m26 19m28

Fig. 4 Adjusted Rand index and homogeneity score versus number of clusters. The correct number of clus-
ters being K = 10

Machine Learning

1 3

Hirschberg, 2007) score (right). The latter measures the purity in terms of true labels of
each cluster. The number of cluster varies from 5 to 20. The correct value for all datasets
is 10.

The ARI curves (left plot) reach their maximum at 10 and then decrease. This
behavior is expected since this metric (as well as NMI and ACC) penalizes the number
of clusters. On the other hand, the homogeneity curves (right plot) increase with K
and stabilize for K larger than 10. The convergence of these curves indicates that the
clustering performance of the AE-CM do not degrade if K is set larger than the ground
truth. Such a results suggests that, when K is larger than the ground truth, the AE-CM
finds solutions that are partitions of those found with smaller K. Such a phenomenon is
illustrated in Appendix 3.

5.3.4 AE‑CM: model selection

Similarly to the CM, we discuss here a model selection heuristic for the AE-CM. The
rationale behind the use of a DAE is to have an encoding facilitating the objective of
the clustering module. Hence, we propose to use the heuristic of the CM (Sect. 5.2.4).
In Table 7, we report the ARI of the runs with the lowest Lsp for each dataset. For
comparison, we also report the average and best ARI. Selected scores greater than the
average are marked in boldface.

Again, scores associated to the lowest Lsp are better than the average more than half
of the time. The criterion detects the best runs of AE-CMr on MNIST and CIFAR10

Table 7 Adjusted Rand index of the run with lowest Lsp , the average run and the best run

Scores larger than the average are marked in boldface

Criterion MNIST fMNIST USPS CIFAR10

Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best

AE-CMr ��.� 77.9 88.6 ��.� 43.7 48.9 ��.� 55.1 60.6 �.�� 4.15 5.29
AE-CMp ��.� 79.4 80.3 37.3 43.1 48.4 61.0 69.7 80.3 2.97 4.13 5.56

Criterion R10K 20News 10x73k Pendigit

Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best

AE-CMr 36.7 42.9 62.7 ��.� 31.5 38.7 72.8 73.1 85.6 ��.� 64.0 69.5
AE-CMp ��.� 64.1 66.7 14.6 16.8 21.2 79.9 82.3 86.9 ��.� 65.5 70.5

Table 8 Average clustering performance of k-means on different embeddings.

KM AE+KM DCN+KM DEC+KM IDEC+KM DKM+KM AE-CM+KM

ARI 37.8 65.6 64.5 11.1 27.5 ��.� ��.�

NMI 49.9 71.5 71.1 19.0 38.9 ��.� ��.�

ACC 54.5 78.6 76.2 28.9 42.5 ��.� ��.�

 Machine Learning

1 3

and of AE-CMp on MNIST. The average absolute difference to the highest score is 6.5
and 6.6 ARI points for AE-CMr and AE-CMp , respectively. In summary, although Lsp
as a criterion does not necessarily select the best run, it filters out the worst runs.

5.3.5 AE‑CM: embeddings for k‑means

All baselines, including our model, are non-linear extensions of k-means and aim to
improve the AE+KM. We audit the methods by running k-means on the embeddings
produced by the 20 runs with random initialization on the MNIST dataset computed for
Table 5 and report the average ARI, NMI and ACC in Table 8.

First, KM reports the worse results. This means that applying k-means on a feature
space learned by an autoencoder does improve the quality of the clustering. Next, the
results clearly show the superiority of methods utilizing a joint optimization, i.e., DKMr

+KM and our AE-CMr+KM. Interestingly, the scores of DCNr+KM are here bet-
ter than those of DCNr . This discrepancy is certainly due the moving average used to
update the centroids.

We continue the analysis of the embeddings with UMAP McInnes et al. (1802) pro-
jections. Figure 5 depicts the projections of different embeddings of the same 2000

Fig. 5 UMAP representation of a subset of MNIST and embeddings thereof learned by AE, IDEC and
AE-CM. The squares indicate the centroids

Machine Learning

1 3

data-points. Figure 5a represents the UMAP projection from the input space. For (5b),
we used the best run of the AE+KM. For consistency, we used that embedding for the
AE-CMp . Hence, Fig. 5c does not show the best run the AE-CMp . Finally (5d) is based on
the best run of the AE-CMr.

The projection of MNIST from the input space (5a) has two pairs of classes entan-
gled: (3, 5) and (4, 9). The end-to-end training of the DAE (5b) successfully isolates
each class except for cluster 4 (dark pink) and cluster 9 (light blue) which stay grouped
together, although separable. The AE-CMp (5c) further contracts the cluster around
the centroids found by the AE+KM, but fails to separate 4 and 9. Remark that even
the best run of the AE-CMp does not to correctly split the data points. The centroids
for 4 and 9 in Fig. 5b and c are in comparable positions: they align along the gap
separating the true clusters. This suggests that the optimization of the AE-CMp did
not move them much. This remark applies to the pre-trained baselines, as well. Lastly,
the AE-CMr successfully produces homogeneous groups (5f). Remark that the original
entanglements of the pairs (3, 5) and (4, 9) are suggested by the trails between the cor-
responding clusters.

The previous observations summarize into two insights on the behavior of the
AE-CM. If the AE-CM starts with an embedding associated to a low reconstruction
loss for the DAE, the optimization contracts the clusters which yields higher ARI

Fig. 6 Centroids mapped back to image space for AE+KM, IDECp , DKMr , and AE-CMr . The first row
displays the average image of each class

Fig. 7 Linear interpolations between different centroids (plots with border) produced with the AE-CM

 Machine Learning

1 3

scores. However, it is unable to move the centroids to reach another local optimum.
Although the AE-CMr separates (4, 9), it also produces clusters more spread than
those of the AE-CMp . The improved performances of the latter over AE+KM indicates
that the AE-CMr would benefit from tighter groups.

5.3.6 AE‑CM: sample generation and interpolation

Thanks to the reversible feature maps obtained by the DAE, both the AE-CM and its base-
lines (except DEC) are generative models. Figure 6 shows the decoding of the centroids of
the best run of AE+KM (ARI=67.7), IDECp (ARI=77.2), DKMr (ARI=83.6) and AE-CMr
(ARI=88.6). AE+KM’s and IDECp ’s centroids for the 4 and 9 both look like 9’s. With an
ARI and an ACC larger than 80 and 90, respectively, DKMr and AE-CMr both clustered the
data correctly and found correct centroids for each class. Both models produce clear images
for each class, which align reasonably well with the washed-out average image of the respec-
tive classes (first row).

Being a generative model, the AE-CM can also be used to interpolate between classes.
Figure 7 shows a path made of nine interpolations between the ten centroids of the AE-CMr .
We observe smooth transitions between all the pairs, which indicate that the model learned a
smooth manifold from noise (random initialization).

6 Conclusion

We presented a novel clustering algorithm that is jointly optimized with the embedding of
an autoencoder to allow for nonlinear and interpretable clusterings. We first as a key result
showed that the objective function of an isotropic GMM can be turned into a loss function
for autoencoders. The clustering module (CM), defined as the smallest resulting network, was
shown to perform similarly to its underlying GMM in extensive empirical evaluations.

Importantly, we showed how the clustering module can be straightforwardly incorporated
into deep autoencoders to allow for nonlinear clusterings. The resulting clustering network,
the AE-CM, empirically outperformed existing centroid-based deep clustering architectures
and performed on par with representative contemporary state-of-the-art deep clustering strat-
egies. Nevertheless, the AE-CM, and to a lesser extent of the clustering module itself, pre-
sented a greater volatility when trained from a randmly initialized network. We expect that we
could improve on that point by involving an annealing strategy on the parameter, similarly to
what is done in DKM and VIB-GMM.

A future line of work consist of extending the panel of deep architectures into which the
clustering module can be nested. In order to improve performance on image data sets, espe-
cially, it is necessary to involve convolution. However, standard image-specific architectures
are not structured as autoencoder. This raises the question of the robustness of our model with
respect to the symmetry of the DAE, especially for applications where the computation of
class representative is not a must.

From a theoretical point of view, we believe that the derivations that led to the neural inter-
pretation of Gaussian mixture models could benefit other mixture models such as the von
Mises-Fisher mixture models (Hasnat et al., 2017) or hidden Markov models (HMM). The
case of Gaussian-HMM seems especially promising as it allows to bridge with Recurrent net-
works (Salaün et al., 2019).

Machine Learning

1 3

Table 9 The clustering performance (×100) of different models on the selected datasets

Model Breast Ecoli Glass

ARI NMI ACC ARI NMI ACC ARI NMI ACC

iGMMr 40.0 51.4 48.3 50.6 64.2 64 21.8 41.7 44.9

DECr 77.8 66.7 86.7 48.8 49.5 63.6 22.8 31.9 47.5
IDECr 50.7 44.6 68.6 35.2 41.4 55.2 17.9 30.4 42.3
DCNr 72.7 57.2 79.7 45.7 49.9 63.4 20.2 32.9 43.1
DKMr 83.1 73.2 95.6 51.2 61.5 64.3 23.2 37.9 49.3
CMr 35.9 48.4 47.5 66.7 65.6 76.0 27.1 43.2 49.1
AE-CMr 72.9 58.0 72.8 72.4 68.1 76.7 37.8 47.3 59.8

Model Iris Wine Yeast

ARI NMI ACC ARI NMI ACC ARI NMI ACC

iGMMr 62.0 65.9 83.3 76.9 81.3 83.7 15.7 28.8 38.8

DECr 37.5 44.3 61.6 23.8 28.7 55.9 9.1 16.9 31.6
IDECr 26.6 33.4 60.0 24.8 28.3 57.8 7.6 15.9 31.1
DCNr 45.3 53.2 67.7 41.3 46.7 65.7 6.8 15.4 37.4
DKMr 58.4 65.9 77.2 72.4 70.6 90.2 17.5 29.6 42.4
CMr 59.1 63.4 81.5 82.0 82.2 89.6 15.5 28.5 38.0
AE-CMr 78.9 85.0 94.4 86.0 85.4 93.0 17.7 27.1 46.6

Fig. 8 Clustering of six toy datasets by iGMM, CM and AE-CM

 Machine Learning

1 3

Appendix 1: additional experiments

UCI datasets

In this section, we report clustering performance of iGMM, DEC, IDEC, DCN and DKM as
well as our models CM and AE-CM on a selection of UCI datasets. We consider here only
random initialization. Deep clustering models share the same architecture: d − 2 × k − d ,
where d is the dimension of the input and k the number of clusters. The k-means cluster-
ings of DEC and IDEC are updated every 5 epochs and � = 0.1 . The � hyperparameter of
DCN and DKM are set to 1 and 0.001, respectively. For CM and AE-CM the three hyper-
parameters (�, �, �) were leaned using Bayesian optimization. We report average ARI, NMI
and ACC over 10 runs (Table 9).

Scikit‑learn benchmark

Figure 8 reports clusterings of the scikit-learn toy datasets5. We compare here, iGMM, CM
and AE-CM. The CM is optimized using SGD while the AE-CM relies on Adam. Train-
ing are stopped if the difference between the clusterings of two successive iterations are
difference by less that 0.1% . The models are run 10 times for up to 100 epochs with a fixed
batch size of 20 instances. The average run time is shown in the lower right corner of each
plot (Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz). The parameters for each dataset are
given in Table 10.

The standard way to split the two circles and the two moons datasets is to use a polyno-
mial kernel of degree 2 and at least 3 respectively.

To highlight the relationship between embedding and feature maps, we choose for these
datasets specific architectures of the deep autoencoder of AE-CM. For the two moons data-
set, we want the AE-CM to learn an embedding function approximating a polynomial of
degree at least. Therefore, we use 3 layers with 20 units followed by a layers with a single
unit. The decoder is the mirror of the encoder. For the two circles dataset, the encoder con-
sists of a quadratic layer, i.e.

(x1, x2) ↦ (1, x1, x2, x
2
1
, x1x2, x

2
2
, x2x1),

Table 10 Hyper-parameters used
for clustering the toy datasets

Dataset � � � Encoder Archi.

Moons 11 100 0.001 2-20-20-20-1
Circles 11 0.001 0.001 2-quad-3
Varied 11 100 0.001 2-3
Aniso. 11 1 0.001 2-3
Blobs 11 1 0.001 2-3
No structure 0.1 1 0.001 2-3

5 https:// scikit- learn. org/ stable/ auto_ examp les/ clust er/ plot_ clust er_ compa rison. html.

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

Machine Learning

1 3

followed by a dense layer with a dimension 3 output. That way, the function associated to
the encoder is a feature for a polynomial kernel of degree 2. The training just has to find the
proper weights of the quadratic function. As for the decoder, it consists of a single layer.
The AE-CM successfully clustered the two circles and two moons dataset, suggesting that
it indeed learned embedding functions associated to polynomial kernels of degree 2 and at
least 3, respectively.

Finally, the last dataset consisting of a square filled with a single class, we chose an �
lower than 1 for both CM and AE-CM. Such a setting, informs the model that the three
classes will be very imbalanced. both models reacted differently. Indeed, only AE-CM was
able to perfectly assign all the points to a single cluster.

Appendix 2: supplementary materials related to the clustering module

CM: hyper‑parameters

The clustering module depends on two hyper-parameters: the size of the mini-batches and
the concentration of the Dirichlet prior. To visualize their influence on the clustering per-
formance, we trained a CM on Pendigit with various sizes of batch and concentrations.

Fig. 9 Clustering performance (ARI) for different combinations of batch-size, concentration and initializa-
tion scheme. Black dots indicate average ARI greater than the ones reported in Table 1

Fig. 10 Clustering performance (ARI) for different combinations of batch-size, concentration and prior dis-
tribution. Black dots indicate average ARI greater than the ones reported in Table 1

 Machine Learning

1 3

Figure 9 shows the variation of the final ARI score for both a random (left) and a
k-means++ initialization (right). Both axes’ scales are logarithmic: exponential base for
the x-axis and base 10 for the y-axis. Each combination is run once. The ARI of each dot
is the average of the nine neighboring combinations. Black dots indicate an average ARI
greater than the ones reported in Table 1.

There is a lower bound on � under which the optimization of a randomly initialized
model underperforms or fails. The k-means++ initialization removes this border and
spreads out the well-performing area. The distribution in both settings means that the
hyper-parameters can be tuned by fitting a bi-variate Gaussian distribution.

CM: asymmetric prior

So far we considered only symmetric Dirichlet priors (� = �1K , � ∈ ℝ
+) regardless of

the imbalance between the labels. Here, we repeat the previous experiment using the true
labels distribution as the prior, i.e. � = �f where f⟨fk⟩K ∈ �

K is the frequency of each
label. In terms of implementation, E4 is computed by sorting both � and �i . We evaluate
results on the 10 × 73 k and Pendigit datasets, which have unbalance and balanced classes,
respectively. We consider here only random initializations. Again, black dots indicate an
average ARI greater than the ones reported in Table 1.

Figure 10b contains more black dots and a larger red area compared to 10a. The changes
are greater than between Figs. 10c and 9b. This discrepancy between the datasets illustrates
that unbalanced ones benefit more from a custom prior. However, a higher concentration is
needed to enforce the distribution: the lower bound on � is higher in Fig. 10b and c than in
10a and 9a, respectively. Using the true class distribution, especially if the data is unbal-
anced, does ease the hyper-parameter selection. Nevertheless, such an information is not
always known a priori.

CM: merging clusters with E
3

We claimed in Sect. 3.2 that E3 favors the merging of clusters. To illustrate this phenom-
enon, we train CMr on the 5 Gaussians dataset with twice the number of true clusters (i.e.,
K = 10). We compare three variants of CM’s loss function: without E3 , with E3 and with E3
multiplied by 1.5. The final centroids and clustering are depicted in Fig. 11. For legibility,
overlapping centroids are slightly shifted using a Gaussian noise.

Fig. 11 Final positions of the centroids depending on the importance of E
3
 in the loss of the clustering

module

Machine Learning

1 3

Ta
bl

e
11

Th

e
cl

us
te

rin
g

re
su

lts
 o

f t
he

 m
et

ho
ds

 o
n

th
e

ex
pe

rim
en

ta
l d

at
as

et
s.

M
od

el
M

N
IS

T
fM

N
IS

T
U

SP
S

C
IF

A
R

10

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

K
M

r
av

g
std

m

ax
37

.8
 ±
2
.7

43

.4
�
�
.�

 ±
1
.9

54

.1
54

.5
 ±
4
.3

62

.4
36

.6
 ±
1
.7

38

.5
51

.6
 ±
1
.2

53

.1
53

.2
 ±
3
.4

59

.4
52

.6
 ±
2
.3

56

.2
�
�
.�

 ±
1
.4

63

.9
63

.0
 ±
3
.2

68

.3
4.

2
±
0
.1

4.

3
8.

1
±
0
.2

8.

3
20

.8
 ±
0
.4

21

.7
K

M
p

av
g

std

m
ax

36
.9

 ±
1
.7

40

.8
�
�
.�

 ±
1
.3

52

.1
54

.0
 ±
3
.0

58

.8
35

.2
 ±
1
.6

38

.5
51

.0
 ±
1
.0

53

.3
50

.8
 ±
3
.4

57

.9
50

.2
 ±
4
.9

54

.5
60

.8
 ±
2
.5

63

.7
61

.1
 ±
5
.2

67

.2
4.

2
±
0
.1

4.

4
8.

1
±
0
.2

8.

5
20

.7
 ±
0
.3

21

.5
G

M
M

r
av

g
std

m

ax
12

.0
 ±
1
.6

15

.8
20

.9
 ±
2
.1

25

.4
29

.9
 ±
1
.7

34

.2
26

.8
 ±
2
.9

31

.2
44

.2
 ±
2
.3

48

.4
39

.5
 ±
2
.9

45

.1
9.

5
±
4
.0

19

.0
17

.6
 ±
3
.9

26

.7
27

.8
 ±
3
.1

34

.5
0.

7
±
0
.0

0.

8
0.

9
±
0
.0

1.

0
12

.1
 ±
0
.1

12

.2
G

M
M

p
av

g
std

m

ax
22

.7
 ±
1
.7

25

.2
35

.6
 ±
1
.2

37

.7
42

.6
 ±
1
.9

45

.3
34

.6
 ±
2
.2

38

.3
52

.6
 ±
1
.5

54

.9
47

.2
 ±
2
.5

49

.8
35

.1
 ±
4
.4

39

.8
50

.9
 ±
2
.7

53

.7
52

.0
 ±
3
.7

56

.6
3.

4
±
1
.0

4.

5
6.

9
±
1
.0

8.

1
20

.2
 ±
0
.8

21

.1
iG

M
M

r
av

g
std

m

ax
31

.3
 ±
1
.2

32

.4
42

.7
 ±
0
.9

43

.5
48

.5
 ±
1
.6

50

.3
35

.7
 ±
1
.5

37

.6
50

.7
 ±
0
.8

51

.9
51

.4
 ±
2
.7

55

.0
44

.2
 ±
2
.6

47

.5
55

.3
 ±
2
.2

58

.0
56

.2
 ±
2
.8

59

.7
4.

1
±
0
.1

4.

2
7.

9
±
0
.2

8.

1
21

.1
 ±
0
.3

21

.6
iG

M
M

p
av

g
std

m

ax
31

.1
 ±
1
.3

32

.4
42

.7
 ±
0
.7

43

.5
47

.5
 ±
2
.6

50

.3
35

.4
 ±
1
.8

37

.7
50

.8
 ±
1
.1

52

.1
51

.6
 ±
2
.7

54

.5
44

.4
 ±
1
.8

47

.6
56

.1
 ±
1
.3

58

.1
55

.6
 ±
2
.5

59

.7
4.

1
±
0
.1

4.

2
7.

8
±
0
.2

8.

1
21

.1
 ±
0
.3

21

.5
C

M
r

av
g

std

m
ax

�
�
.�

 ±
1
.9

43

.5
�
�
.�

 ±
1
.5

53

.0
�
�
.�

 ±
2
.1

60

.8
�
�
.�

 ±
3
.4

44

.6
�
�
.�

 ±
2
.3

55

.7
�
�
.�

 ±
4
.1

64

.4
�
�
.�

 ±
2
.1

58

.6
�
�
.�

 ±
1
.0

65

.1
�
�
.�

 ±
2
.5

75

.0
4.

8
±
0
.2

5.

1
8.

9
±
0
.3

9.

4
�
�
.�

 ±
0
.5

23

.2
C

M
p

av
g

std

m
ax

�
�
.�

 ±
1
.4

43

.5
�
�
.�

 ±
1
.1

52

.9
�
�
.�

 ±
1
.3

59

.8
�
�
.�

 ±
4
.1

44

.7
�
�
.�

 ±
2
.8

55

.8
�
�
.�

 ±
5
.1

64

.5
�
�
.�

 ±
4
.1

59

.2
�
�
.�

 ±
2
.3

66

.9
63

.7
 ±
4
.3

69

.6
�
.�

 ±
0
.1

5.

2
�
.�

 ±
0
.2

9.

7
�
�
.�

 ±
0
.5

23

.2

M
od

el
R

10
K

20
N

ew
s

10
x7

3k
Pe

nd
ig

it

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

K
M

r
av

g
std

m

ax
�
�
.�

 ±
1
4
.3

61

.5
38

.1
 ±
1
0
.2

56

.4
�
�
.�

 ±
1
1
.9

80

.3
14

.8
 ±
1
.3

17

.4
32

.3
 ±
1
.9

36

.1
31

.0
 ±
1
.9

34

.5
36

.5
 ±
0
.8

37

.3
55

.4
 ±
0
.7

56

.1
55

.0
 ±
1
.8

56

.3
�
�
.�

 ±
3
.7

62

.3
67

.8
 ±
1
.9

70

.6
�
�
.�

 ±
4
.8

76

.8
K

M
p

av
g

std

m
ax

29
.5

 ±
1
5
.1

61

.5
36

.0
 ±
9
.2

56

.5
58

.3
 ±
1
0
.3

80

.3
14

.8
 ±
1
.5

17

.6
33

.5
 ±
2
.4

37

.9
32

.0
 ±
2
.5

36

.4
36

.7
 ±
0
.3

37

.3
55

.5
 ±
0
.4

56

.0
55

.3
 ±
1
.2

56

.3
�
�
.�

 ±
3
.1

62

.2
68

.9
 ±
1
.2

70

.6
�
�
.�

 ±
3
.5

76

.7
G

M
M

r
av

g
std

m

ax
0.

1
±
0
.1

0.

3
0.

1
±
0
.1

0.

3
26

.4
 ±
0
.5

27

.1
0.

1
±
0
.0

0.

2
0.

7
±
0
.1

0.

8
7.

0
±
0
.1

7.

3
26

.3
 ±
6
.7

34

.2
49

.0
 ±
8
.4

60

.5
42

.5
 ±
6
.3

51

.4
54

.4
 ±
4
.5

63

.2
68

.1
 ±
3
.4

74

.9
66

.6
 ±
6
.6

79

.0

 Machine Learning

1 3

Ta
bl

e
11

 (
co

nt
in

ue
d)

M
od

el
R

10
K

20
N

ew
s

10
x7

3k
Pe

nd
ig

it

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

G
M

M
p

av
g

std

m
ax

29
.7

 ±
1
5
.0

61

.5
36

.2
 ±
9
.2

56

.5
58

.4
 ±
1
0
.2

80

.3
14

.8
 ±
1
.5

17

.6
33

.5
 ±
2
.4

37

.9
32

.0
 ±
2
.5

36

.4
38

.4
 ±
2
.3

40

.3
61

.7
 ±
1
.5

62

.7
55

.6
 ±
3
.3

58

.1
55

.4
 ±
3
.1

60

.4
�
�
.�

 ±
1
.7

73

.8
�
�
.�

 ±
3
.0

78

.6
iG

M
M

r
av

g
std

m

ax
�
�
.�

 ±
5
.2

52

.4
�
�
.�

 ±
3
.2

51

.0
�
�
.�

 ±
3
.8

73

.8
�
�
.�

 ±
1
.1

20

.5
�
�
.�

 ±
1
.8

45

.8
�
�
.�

 ±
1
.7

41

.2
34

.2
 ±
0
.5

34

.8
53

.7
 ±
0
.9

55

.5
53

.9
 ±
1
.3

54

.8
�
�
.�

 ±
3
.8

62

.0
69

.0
 ±
1
.6

70

.9
�
�
.�

 ±
4
.5

77

.3
iG

M
M

p
av

g
std

m

ax
27

.3
 ±
1
7
.6

45

.5
32

.3
 ±
1
7
.5

49

.2
60

.4
 ±
1
3
.6

75

.6
13

.4
 ±
1
.9

16

.8
36

.8
 ±
2
.7

41

.8
31

.4
 ±
2
.7

38

.2
33

.1
 ±
4
.0

35

.2
53

.1
 ±
4
.2

57

.9
52

.1
 ±
3
.8

54

.7
�
�
.�

 ±
4
.3

61

.7
�
�
.�

 ±
2
.1

70

.8
�
�
.�

 ±
4
.8

77

.4
C

M
r

av
g

std

m
ax

�
�
.�

 ±
1
0
.6

56

.0
�
�
.�

 ±
7
.1

55

.2
�
�
.�

 ±
8
.1

76

.4
9.

7
±
0
.7

10

.9
21

.2
 ±
0
.7

22

.6
18

.3
 ±
0
.8

20

.0
�
�
.�

 ±
1
.2

57

.4
�
�
.�

 ±
0
.6

65

.2
�
�
.�

 ±
2
.0

74

.3
�
�
.�

 ±
1
.7

60

.5
67

.0
 ±
1
.2

69

.1
�
�
.�

 ±
2
.5

76

.4
C

M
p

av
g

std

m
ax

32
.6

 ±
1
2
.7

62

.9
39

.2
 ±
8
.1

57

.8
60

.2
 ±
1
0
.0

80

.9
16

.3
 ±
2
.4

22

.0
28

.8
 ±
2
.4

34

.1
30

.8
 ±
2
.5

36

.1
�
�
.�

 ±
3
.0

62

.4
�
�
.�

 ±
2
.0

67

.8
�
�
.�

 ±
3
.8

78

.8
�
�
.�

 ±
2
.0

60

.1
66

.9
 ±
1
.3

68

.6
�
�
.�

 ±
2
.3

75

.0

Machine Learning

1 3

A vanilla CM (Fig. 11b) correctly positions five pairs of centroids on top of the true cluster
centroids. Without E3 (Fig. 11a), the model fails to merge the clusters properly. While five
centroids are close to each of the true cluster, the five remaining are gathered around 0. Con-
versely, if E3 is weighted stronger (Fig. 11c), the model becomes so prone to merge clusters
that it partitions the left cloud using only two groups of centroids.

CM: clustering performance

Table 11 contains the full clustering results for CM, including standard deviation and the best
run.

CM: empirical setting

For the experiments reported in Sect. 5.2, the clustering module is trained over 150 epochs
using the Adam optimizer (learning rate=0.001). The concentration � and batch-size B used
for each dataset are reported in Table 12. The hyper-parameters were optimized using Bayes-
ian optimization over 2000 iterations.

Table 12 Hyper-parameters used for the experiments in Sect. 5.2

MNIST fMNIST USPS CIFAR10 R10K 20News 10×73k Pendigit

� 177 80 40 164 10 11 1000 13
B 111 35 150 350 400 85 500 80

Fig. 12 Clustering performance (ARI) of AE-CM on MNIST for different values of � and � and initializa-
tion scheme

 Machine Learning

1 3

Appendix 3: supplementary materials for AE‑CM

AE‑CM: hyper‑parameters

Besides the architecture of the DAE, AE-CM has two hyper-parameters more than CM: �
weighting the reconstruction of the DAE and the Lagrange coefficient � enforcing the ortho-
normality of the centroids. To visualize their influence on the clustering performance, a
AE-CM is trained on MNIST with various values of � and � . Each combination is repeated
five times. Note that when � = 0 the setting is equivalent to training only the encoder of the
DAE (akin to DEC). Also, if � = 0 the orthogonality constraint is omitted. Figure 12 rep-
resents the average ARI scores for each combination and both initialization schemes as a
heat-map.

With a random initialization (Fig. 12a), if both � and � are not large enough, the clustering
fails, excepted when � = 1 . In that case, the model performs well for every value of � , even
for � = 0 , i.e., without the orthonormality constraint. Conversely, the AE-CMr always fails
if trained without the reconstruction of the DAE, (� = 0) . As the order of magnitude of both
parameters increases, the performances worsen.

The distribution of AE-CMp (Fig. 12b) presents similarities with the previous one. Over-
all the average performances are better for each combination. When � is very small, the ARI
exceeds 0.5. The performance also decrease as � and � become larger. Most noticeable, the
band around � = 1 is still there, but it is thicker. This is in line with the similar analysis on CM
(Sect. 1): Pre-trained models are less sensitive to hyperparameters.

Table 13 Hyper-parameters used to train AE-CM for the experiments in Sect. 5.3

MNIST fMNIST USPS CIFAR10 R10K 20News 10×73k Pendigit

� 230 13 20 64 2 10 7 13
� 5 47 0.5 1 1 232 15 0.5
� 1 1 1 1 1 1 1 1
B 500 175 256 256 256 300 7 100
p 10 10 10 10 100 100 10 10

Table 14 Hyper-parameters used to train the baselines for the experiments in Sect. 5.3

MNIST fMNIST USPS CIFAR10 R10K 20News 10×73k Pendigit

u 140 140 30 140 20 20 20 20
� 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
�r 0.1 0.01 0.01 0.01 0.01 10−4 10−4 10−4

�p 1.0 0.01 0.1 0.1 1.0 0.01 10−4 10−4

B 256 256 256 256 256 256 256 256

Machine Learning

1 3

Ta
bl

e
15

C

lu
ste

rin
g

pe
rfo

rm
an

ce
 o

f A
E-

C
M

 a
nd

 it
s b

as
el

in
es

.

M
od

el
M

N
IS

T
fM

N
IS

T
U

SP
S

C
IF

A
R

10

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
R

I
N

M
I

A
C

C

A
E+

K
M

av
g

std

m
ax

65
.6

 ±
1
.0

67

.7
71

.5
 ±
0
.7

73

.0
78

.6
 ±
0
.6

79

.6
39

.0
 ±
0
.9

41

.0
55

.6
 ±
0
.5

56

.7
53

.0
 ±
2
.3

56

.9
57

.1
 ±
1
.0

59

.4
64

.6
 ±
0
.9

66

.6
67

.5
 ±
1
.0

69

.5
3.

2
±
0
.3

3.

7
6.

5
±
0
.5

7.

2
18

.9
 ±
0
.5

20

.2

D
C

N
r

av
g

std

m
ax

10
.1

 ±
1
1
.0

30

.4
25

.6
 ±
1
7
.4

51

.6
25

.4
 ±
9
.3

45

.1
17

.0
 ±
1
1
.7

40

.7
33

.5
 ±
1
6
.9

57

.5
29

.0
 ±
1
1
.3

52

.4
17

.9
 ±
1
1
.5

44

.1
36

.5
 ±
1
1
.1

56

.0
37

.9
 ±
7
.5

52

.2
3.

2
±
2
.2

5.

8
5.

9
±
3
.5

10

.3
18

.0
 ±
4
.6

22

.9
D

C
N

p
av

g
std

m

ax
75

.6
 ±
1
.4

77

.6
�
�
.�

 ±
1
.2

85

.0
83

.1
 ±
0
.9

84

.5
38

.6
 ±
2
.0

41

.7
57

.1
 ±
0
.8

58

.6
53

.1
 ±
1
.8

56

.4
63

.9
 ±
1
.2

67

.4
73

.1
 ±
1
.0

75

.5
72

.5
 ±
0
.7

74

.5
0.

1
±
0
.4

1.

3
0.

6
±
1
.2

4.

0
10

.7
 ±
1
.5

14

.5

D
EC

r
av

g
std

m

ax
11

.1
 ±
2
.6

16

.7
19

.0
 ±
3
.2

24

.1
28

.9
 ±
3
.6

36

.6
22

.9
 ±
3
.9

29

.7
38

.1
 ±
4
.1

47

.0
39

.2
 ±
4
.2

47

.0
36

.3
 ±
4
.6

43

.0
46

.9
 ±
4
.5

55

.0
46

.8
 ±
4
.0

53

.7
3.

1
±
0
.9

4.

7
5.

7
±
1
.5

8.

6
18

.6
 ±
1
.4

21

.7
D

EC
p

av
g

std

m
ax

73
.8

 ±
0
.7

75

.2
79

.0
 ±
0
.4

79

.5
83

.1
 ±
0
.5

84

.1
41

.9
 ±
2
.0

45

.9
58

.6
 ±
1
.9

60

.6
54

.8
 ±
2
.2

58

.4
�
�
.�

 ±
0
.8

71

.3
�
�
.�

 ±
0
.6

79

.2
�
�
.�

 ±
0
.6

77

.3
3.

1
±
1
.4

4.

5
5.

6
±
2
.4

7.

8
18

.2
 ±
3
.6

21

.8

ID
EC

r
av

g
std

m

ax
27

.5
 ±
5
.0

38

.3
39

.0
 ±
5
.2

50

.1
42

.5
 ±
4
.8

50

.2
35

.2
 ±
5
.1

48

.4
50

.8
 ±
5
.6

62

.5
48

.1
 ±
5
.9

62

.5
41

.8
 ±
8
.0

53

.3
53

.2
 ±
7
.0

64

.4
54

.0
 ±
5
.8

64

.9
2.

2
±
2
.3

5.

3
3.

6
±
3
.6

9.

3
14

.0
 ±
3
.9

20

.4
ID

EC
p

av
g

std

m
ax

74
.9

 ±
1
.0

77

.2
80

.1
 ±
0
.6

81

.3
83

.4
 ±
0
.6

84

.9
42

.8
 ±
1
.8

47

.0
59

.8
 ±
0
.7

61

.3
55

.4
 ±
2
.2

59

.2
�
�
.�

 ±
0
.8

71

.5
�
�
.�

 ±
0
.7

79

.3
�
�
.�

 ±
0
.6

77

.0
4.

2
±
0
.4

4.

9
7.

4
±
0
.7

8.

5
20

.2
 ±
1
.1

22

.0

D
K

M
r

av
g

std

m
ax

72
.5

 ±
5
.0

83

.6
77

.3
 ±
3
.1

83

.5
81

.2
 ±
5
.0

92

.3
41

.8
 ±
2
.2

46

.0
56

.4
 ±
0
.9

58

.6
54

.6
 ±
3
.3

59

.4
58

.3
 ±
4
.1

65

.4
67

.0
 ±
2
.4

70

.9
68

.6
 ±
4
.5

77

.1
�
.�

 ±
0
.7

7.

1
�
.�

 ±
1
.2

12

.6
21

.3
 ±
2
.1

24

.3
D

K
M

p
av

g
std

m

ax
74

.0
 ±
2
.8

76

.9
78

.3
 ±
1
.7

80

.2
82

.7
 ±
3
.0

85

.3
36

.2
 ±
3
.0

40

.5
52

.0
 ±
2
.3

56

.3
47

.0
 ±
3
.7

51

.5
60

.4
 ±
3
.3

67

.6
71

.8
 ±
1
.9

76

.0
68

.9
 ±
3
.7

74

.9
�
.�

 ±
0
.4

6.

2
�
�
.�

 ±
0
.6

10

.8
19

.7
 ±
1
.2

20

.8
C

lu
ste

r
G

A
N

r
av

g
std

m

ax
63

.6
 ±
8
.0

80

.3
71

.8
 ±
5
.1

81

.6
76

.8
 ±
6
.5

90

.1
�
�
.�

 ±
1
.6

48

.9
�
�
.�

 ±
1
.3

62

.7
�
�
.�

 ±
1
.3

61

.7
57

.4
 ±
2
.2

61

.4
67

.9
 ±
1
.6

71

.2
70

.0
 ±
2
.3

73

.9
3.

2
±
0
.5

4.

4
7.

6
±
0
.9

10

.0
20

.4
 ±
0
.8

21

.7
V

IB
-

G
M

M
r

av
g

std

m
ax

73
.3

 ±
7
.9

89

.9
78

.3
 ±
5
.1

89

.0
81

.5
 ±
6
.9

95

.2
43

.7
 ±
3
.3

49

.9
58

.4
 ±
2
.3

62

.7
�
�
.�

 ±
4
.1

67

.3
59

.9
 ±
3
.5

67

.5
67

.7
 ±
2
.9

73

.2
68

.4
 ±
4
.3

79

.3
�
.�

 ±
0
.2

6.

5
�
�
.�

 ±
0
.2

10

.3
�
�
.�

 ±
0
.5

24

.8

A
E-

C
M

r
av

g
std

m

ax
�
�
.�

 ±
4
.0

88

.6
80

.9
 ±
2
.4

87

.2
�
�
.�

 ±
3
.2

94

.6
43

.7
 ±
2
.9

48

.9
55

.6
 ±
1
.8

58

.5
�
�
.�

 ±
3
.5

65

.6
55

.1
 ±
4
.5

60

.6
63

.4
 ±
3
.6

67

.4
65

.8
 ±
4
.7

72

.2
4.

1
±
0
.8

5.

3
7.

5
±
1
.3

9.

3
20

.4
 ±
1
.5

22

.5
A

E-
C

M
p

av
g

std

m
ax

�
�
.�

 ±
0
.4

80

.3
�
�
.�

 ±
0
.4

83

.2
�
�
.�

 ±
0
.4

87

.3
43

.1
 ±
2
.6

48

.4
56

.3
 ±
1
.7

58

.5
�
�
.�

 ±
2
.8

64

.9
�
�
.�

 ±
4
.1

80

.3
76

.7
 ±
2
.3

80

.5
�
�
.�

 ±
3
.8

87

.5
4.

1
±
0
.6

5.

6
7.

6
±
1
.1

9.

7
20

.2
 ±
0
.8

21

.4

 Machine Learning

1 3

Ta
bl

e
15

 (
co

nt
in

ue
d)

M
od

el
R

10
K

20
N

ew
s

10
x7

3k
Pe

nd
ig

it

A
E+

K
M

av
g

std

m
ax

61
.0

 ±
3
.5

67

.3
56

.8
 ±
3
.1

62

.2
74

.5
 ±
3
.3

83

.3
11

.3
 ±
1
.6

13

.8
27

.4
 ±
2
.5

31

.0
24

.8
 ±
2
.5

28

.6
54

.3
 ±
6
.6

64

.5
72

.5
 ±
3
.0

78

.3
64

.4
 ±
4
.8

72

.4
55

.2
 ±
3
.6

62

.9
68

.2
 ±
1
.7

71

.5
70

.2
 ±
4
.3

78

.5

D
C

N
r

av
g

std

m
ax

18
.0

 ±
1
0
.3

40

.1
19

.3
 ±
8
.8

35

.1
49

.5
 ±
7
.8

63

.9
0.

0
±
0
.1

0.

3
0.

2
±
0
.3

0.

9
5.

6
±
0
.5

6.

8
5.

3
±
6
.9

26

.6
17

.2

±
1
6
.7

52

.3

23
.9

 ±
7
.2

38

.9
0.

1
±
0
.4

2.

0
0.

8
±
2
.6

11

.3
10

.8
 ±
1
.2

15

.5

D
C

N
p

av
g

std

m
ax

�
�
.�

 ±
1
.9

67

.1
�
�
.�

 ±
1
.0

62

.3
�
�
.�

 ±
1
.1

80

.2
11

.7
 ±
2
.0

16

.1
33

.5
 ±
2
.8

37

.4
25

.3
 ±
2
.8

30

.4
9.

6
±
2
2
.0

65

.8
13

.8

±
2
7
.3

80

.4

25
.2

±
1
8
.6

72

.4

56
.8

 ±
4
.4

66

.1
72

.0
 ±
1
.7

75

.9
70

.8
 ±
4
.7

79

.2

D
EC

r
av

g
std

m

ax
12

.2
 ±
6
.6

26

.1
13

.2
 ±
6
.3

27

.0
43

.8
 ±
6
.1

56

.2
3.

2
±
0
.9

4.

3
7.

8
±
2
.2

10

.6
10

.0
 ±
1
.1

10

.7
31

.4
 ±
8
.6

53

.1
43

.5
 ±
9
.6

66

.3
46

.3
 ±
8
.1

68

.4
36

.8
 ±
6
.7

49

.6
52

.3
 ±
6
.9

65

.7
49

.3
 ±
6
.1

61

.7
D

EC
p

av
g

std

m
ax

56
.8

 ±
1
.9

60

.7
56

.0
 ±
2
.0

59

.6
72

.8
 ±
2
.0

77

.6
5.

5
±
0
.6

6.

5
11

.3
 ±
1
.3

13

.7
11

.8
 ±
0
.3

12

.2
53

.5

±
1
8
.6

73

.3

67
.1

±
2
2
.8

83

.4

62
.1

±
1
5
.9

78

.5

59
.6

 ±
3
.5

65

.8
72

.8
 ±
1
.6

75

.7
72

.2
 ±
4
.0

79

.3

ID
EC

r
av

g
std

m

ax
8.

6
±
5
.6

21

.7
9.

5
±
4
.9

21

.8
44

.1
 ±
5
.6

55

.3
0.

0
±
0
.0

0.

1
0.

1
±
0
.3

1.

1
5.

5
±
0
.4

6.

7
33

.7

±
1
1
.6

67

.5

46
.5

±
1
2
.9

82

.8

44
.4

 ±
8
.5

69

.6
43

.3
 ±
6
.9

57

.3
61

.2
 ±
5
.7

70

.7
53

.9
 ±
7
.5

69

.3

ID
EC

p
av

g
std

m

ax
59

.7
 ±
1
.3

62

.5
56

.3
 ±
0
.9

57

.8
73

.9
 ±
1
.6

78

.8
5.

9
±
0
.4

6.

6
12

.6
 ±
1
.2

15

.0
12

.0
 ±
0
.2

12

.4
60

.1
 ±
4
.9

73

.4
75

.9
 ±
4
.0

83

.5
66

.5
 ±
3
.9

78

.8
57

.9
 ±
3
.8

65

.7
71

.6
 ±
1
.8

75

.1
71

.0
 ±
4
.3

79

.0
D

K
M

r
av

g
std

m

ax
51

.3
 ±
4
.9

63

.3
49

.5
 ±
4
.4

58

.9
72

.3
 ±
3
.3

81

.0
4.

7
±
0
.9

5.

6
14

.1
 ±
2
.5

17

.8
10

.9
 ±
1
.1

13

.0
65

.5
 ±
5
.1

77

.0
71

.3
 ±
3
.7

78

.5
77

.0
 ±
5
.0

88

.1
52

.4
 ±
3
.1

60

.3
65

.6
 ±
1
.6

68

.8
66

.9
 ±
3
.3

73

.6
D

K
M

p
av

g
std

m

ax
57

.7
 ±
1
.1

59

.5
55

.5
 ±
1
.3

58

.1
�
�
.�

 ±
1
.8

78

.5
20

.9
 ±
6
.5

30

.7
39

.2
 ±
5
.3

46

.7
34

.3
 ±
6
.9

44

.0
38

.1

±
1
4
.6

57

.2

55
.4

±
1
1
.4

69

.2

51
.6

±
1
0
.2

63

.6

15
.4

±
1
1
.1

33

.1

27
.4

±
1
8
.0

50

.2

25
.1

 ±
1
0
.7

46

.1

C
lu

ste
r

G
A

N
r

av
g

std

m
ax

33
.7

±
1
1
.6

47

.8

35
.5

±
1
1
.7

50

.3

61
.4

 ±
8
.6

71

.5
18

.6
 ±
2
.2

22

.0
34

.1
 ±
2
.6

38

.8
34

.1
 ±
2
.3

39

.7
39

.5
 ±
2
.0

43

.5
52

.1
 ±
2
.1

55

.9
55

.5
 ±
2
.6

61

.6
�
�
.�

 ±
1
.7

66

.8
74

.2
 ±
1
.3

76

.5
�
�
.�

 ±
2
.1

78

.0

V
IB

-
G

M
M

r
av

g
std

m

ax
27

.8
 ±
7
.1

43

.9
28

.7
 ±
6
.3

42

.5
56

.6
 ±
4
.9

64

.9
0.

0
±
0
.0

0.

0
0.

0
±
0
.0

0.

0
0.

0
±
0
.0

0.

0
51

.5

±
2
7
.2

81

.1

60
.7

±
3
0
.7

83

.8

60
.0

±
2
3
.3

87

.0

�
�
.�

 ±
4
.3

72

.3
�
�
.�

 ±
2
.8

80

.1
�
�
.�

 ±
3
.5

82

.7

Machine Learning

1 3

Ta
bl

e
15

 (
co

nt
in

ue
d)

M
od

el
R

10
K

20
N

ew
s

10
x7

3k
Pe

nd
ig

it

A
E-

C
M

r
av

g
std

m

ax
42

.9

±
1
1
.9

62

.7

45
.6

 ±
6
.9

57

.6
67

.7
 ±
7
.3

79

.6
�
�
.�

 ±
4
.6

38

.7
�
�
.�

 ±
3
.3

50

.8
�
�
.�

 ±
4
.1

50

.5
73

.1
 ±
5
.9

85

.6
79

.0
 ±
3
.7

86

.2
80

.4
 ±
5
.4

92

.1
�
�
.�

 ±
4
.1

75

.3
�
�
.�

 ±
2
.8

82

.1
�
�
.�

 ±
4
.1

84

.3

A
E-

C
M

p
av

g
std

m

ax
64

.1
 ±
2
.0

66

.7
60

.0
 ±
1
.3

62

.5
�
�
.�

 ±
1
.8

82

.3
16

.8
 ±
2
.5

21

.2
29

.0
 ±
2
.7

33

.5
32

.5
 ±
2
.9

37

.8
�
�
.�

 ±
5
.7

86

.9
�
�
.�

 ±
3
.4

86

.8
�
�
.�

 ±
5
.0

92

.9
�
�
.�

±
1
4
.4

69

.8

�
�
.�

 ±
1
6
.4

78

.2
�
�
.�

 ±
1
4
.8

81

.4

 Machine Learning

1 3

AE‑CM: empirical setting

For the experiments reported in Sect. 5.3, AE-CM is trained over 150 epochs using the
Adam optimizer (learning rate=0.001). Each layer of the DAE is activated with a leaky
-ReLU with a slope of 0.2, except for the last one of the encoder and of the decoder.
AE-CM depends on four hyper-parameters: the weight 𝛽 > 0 , the concentration � ∈ �

K ,
the Lagrange multiplier 𝜆 > 0 and the size of the batches B ∈ ℕ

∗ . The four hyper-param-
eters plus the dimension of the feature space, p; were optimized using Bayesian optimiza-
tion over 2000 iterations. The selected values are reported in Table 13.

The same architecture is used for the baselines, except for DKM where the activation
are all ReLU . DEC, IDEC and DCN update their clustering every u iterations, IDEC and
DCN rely on a hyper-parameter � and DKM on a � . Regarding DKM, the annealing pro-
cess of the softmax parameter is updated every 5 epochs. We report in Tables 13 and 14 the
values used for each dataset.

AE‑CM: clustering performance

Table 15 contains the full clustering results for AE-CM, including standard deviation and
the best run.

Funding Open access funding provided by UiT The Arctic University of Norway (incl University Hospital
of North Norway).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). Tensorflow: A system
for large-scale machine learning. In 12th USENIX symposium on operating systems design and imple-
mentation (OSDI 16) (pp. 265–283).

Alemi, A. A., Fischer, I., Dillon, J. V., & Murphy, K. (2016). Deep variational information bottleneck. http://
arxiv. org/ abs/ 1612. 00410

Alimoglu, F., & Alpaydin, E. (1996). Methods of combining multiple classifiers based on different repre-
sentations for Pen-based Handwritten Digit Recognition. In Proceedings of the Fifth Turkish Artificial
Intelligence and Artificial Neural Networks Symposium.

Arthur, D., & Vassilvitskii, S. (2007). K-means++: The advantages of careful seeding. In Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 1027–1035).

Bezdek, J. C. (2013). Pattern recognition with fuzzy objective function algorithms. Berlin: Springer.
Bianchi, F. M., Grattarola, D., & Alippi, C. (2020). Spectral clustering with graph neural networks for graph

pooling. In Proceedings of the 37th of the International Conference on Machine Learning (ICML) (pp.
874–883).

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1612.00410
http://arxiv.org/abs/1612.00410

Machine Learning

1 3

Bishop, C. M. (2006). Pattern recognition and machine learning (Information science and statistics).
Berlin, Heidelberg: Springer-Verlag.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Monte-
rey, CA: Wadsworth and Brooks.

Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning
of visual features. In Proceedings of the European Conference on Computer Vision (ECCV) (pp.
132–149).

Chang, J., Wang, L., Meng, G., Xiang, S., & Pan, C. (2017). Deep adaptive image clustering. In Pro-
ceedings of the IEEE international conference on computer vision (ICCV) (pp. 5879–5887).

Dhillon, I. S., Guan, Y., & Kulis, B. (2004). Kernel k-means: Spectral clustering and normalized cuts.
In Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining - KDD ’04.

Dilokthanakul, N., Mediano, P. A. M., Garnelo, M., Lee, M. C. H., Salimbeni, H., Arulkumaran, K., &
Shanahan, M. (2016). Deep unsupervised clustering with Gaussian mixture variational autoencod-
ers. http:// arxiv. org/ abs/ 1611. 02648

Dunn, J. C. (1973). A fuzzy relative of the ISODATA process and its use in detecting compact well-
separated clusters. Journal of Cybernetics, 3(3), 32–57.

Estévez, P. A., Tesmer, M., Perez, C. A., & Zurada, J. M. (2009). Normalized mutual information feature
selection. IEEE Trans. Neural Netw., 20(2), 189–201.

Fard, M. M., Thonet, T., & Gaussier, E. (2020). Deep k-means: Jointly clustering with k-means and
learning representations. Pattern Recogn. Lett., 138, 185–192.

Frandsen, P. B., Calcott, B., Mayer, C., & Lanfear, R. (2015). Automatic selection of partitioning
schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evolut.
Biol., 15(1), 1–17.

Gasch, A. P., & Eisen, M. B. (2002). Exploring the conditional coregulation of yeast gene expression
through fuzzy k-means clustering. Genome Biol., 3(11), 1–22.

Dizaji, K. G., Herandi, A., Deng, C., Cai, W., & Huang, H. (2017). Deep clustering via joint convolu-
tional autoencoder embedding and relative entropy minimization. In Proceedings of the IEEE inter-
national conference on computer vision (ICCV) (pp. 5736–5745).

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., &
Bengio, Y. (2014). Generative Adversarial Networks. http:// arxiv. org/ abs/ 1406. 2661

Guo, X., Gao, L., Liu, X., & Yin, J. (2017). Improved Deep Embedded Clustering with local structure
preservation. In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI) (pp. 1753–1759).

Guo, X., Liu, X., Zhu, E., & Yin, J. (2017). Deep Clustering with Convolutional Autoencoders. In Neu-
ral Information Processing (pp. 373–382).

Guyon, I., Boser, B., & Vapnik, V. (1993). Automatic capacity tuning of very large VC-dimension clas-
sifiers. In Advances in Neural Information Processing Systems (NIPS) (pp. 147–155).

Haeusser, P., Plapp, J., Golkov, V., Aljalbout, E., & Cremers, D. (2018). Associative deep clustering:
Training a classification network with no labels. In German Conference on Pattern Recognition
(pp. 18–32).

Hasnat, M. A., Bohné, J., Milgram, J., Gentric, S., & Chen, L. (2017). von Mises-Fisher mixture model-
based deep learning: Application to face verification. http:// arxiv. org/ abs/ 1706. 04264

Hennig, C., & Liao, T. F. (2013). How to find an appropriate clustering for mixed-type variables
with application to socio-economic stratification. J. Royal Stat. Soc.: Ser. C (Appl. Stat.), 62(3),
309–369.

Hu, W., Miyato, T., Tokui, S., Matsumoto, E., & Sugiyama, M. (2017). Learning discrete representations
via information maximizing self-augmented training. In Proceedings of the 34th International Con-
ference on Machine Learning (ICML) (pp. 1558–1567).

Hubert, L., & Arabie, P. (1985). Comparing partitions. J. Classif., 2(1), 193–218.
Jang, E., Gu, S., & Poole, B. (2016). Categorical reparameterization with Gumbel-Softmax. http:// arxiv.

org/ abs/ 1611. 01144
Ji, X., Henriques, J. F., & Vedaldi, A. (2019). Invariant information clustering for unsupervised image

classification and segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV) (pp. 9865–9874).

Jiang, Z., Zheng, Y., Tan, H., Tang, B., & Zhou, H. (2017). Variational deep embedding: an unsuper-
vised and generative approach to clustering. In Proceedings of the 26th International Joint Confer-
ence on Artificial Intelligence (IJCAI) (pp. 1965–1972).

Kampffmeyer, M., Løkse, S., Bianchi, F. M., Livi, L., Salberg, A. B., & Jenssen, R. (2019). Deep diver-
gence-based approach to clustering. Neural Netw., 113, 91–101.

http://arxiv.org/abs/1611.02648
http://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1706.04264
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/1611.01144

 Machine Learning

1 3

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. http:// arxiv. org/ abs/ 1412.
6980

Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. http:// arxiv. org/ abs/ 1312. 6114
Krishna, K., & Murty, M. N. (1999). Genetic k-means algorithm. IEEE Trans. Syst. Man Cybern. Part B,

29(3), 433–439.
Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical Report

TR-2009, University of Toronto, Toronto.
Kuhn, H. W. (1955). The hungarian method for the assignment problem. Naval Res. Logist. Quarterly,

2(1–2), 83–97.
Kulis, B., Jordan, M.I. (2012). Revisiting k-means: New algorithms via bayesian nonparametrics. In Pro-

ceedings of the 29th International Conference on Machine Learning (ICML) (pp. 1131–1138).
LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989).

Backpropagation applied to handwritten zip code recognition. Neural Comput., 1(4), 541–551.
Lloyd, S. (1982). Least squares quantization in pcm. IEEE Trans. Inform. Theory, 28(2), 129–137.
Lücke, J., & Forster, D. (2019). k-means as a variational em approximation of gaussian mixture models.

Pattern Recogn. Lett., 125, 349–356.
Maaten, L., & Hinton, G. (2008). Visualizing data using t-sne. J. Mach. Learn. Res., 9, 2579–2605.
Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., & Frey, B. (2015). Adversarial autoencoders. http://

arxiv. org/ abs/ 1511. 05644
McConville, R., Santos-Rodriguez, R., Piechocki, R. J., & Craddock, I. (2021). N2D: (not too) deep

clustering via clustering the local manifold of an autoencoded embedding. In 2020 25th Interna-
tional Conference on Pattern Recognition (ICPR) (pp. 5145–5152).

McInnes, L., Healy, J., & Melville, J. (2018). UMAP: Uniform manifold approximation and projection
for dimension reduction. http:// arxiv. org/ abs/ 1802. 03426

Miklautz, L., Mautz, D., Altinigneli, M. C., Böhm, C., & Plant, C. (2020). Deep embedded non-redun-
dant clustering. Proc. AAAI Conf. Artif. Intell., 34, 5174–5181.

Mukherjee, S., Asnani, H., Lin, E., & Kannan, S. (2019). Clustergan: Latent space clustering in genera-
tive adversarial networks. Proc. AAAI Conf. Artif. Intell., 33, 4610–4617.

Punj, G., & Stewart, D. W. (1983). Cluster analysis in marketing research: Review and suggestions for
application. J. Marketing Res., 20(2), 134–148.

Rosenberg, A., & Hirschberg, J. (2007). V-measure: A conditional entropy-based external cluster evalu-
ation measure. In Proceedings of the 2007 joint conference on empirical methods in natural lan-
guage processing and computational natural language learning (EMNLP-CoNLL) (pp. 410–420).

Salaün, A., Petetin, Y., & Desbouvries, F. (2019). Comparing the modeling powers of RNN and HMM.
In 2019 18th IEEE International Conference On Machine Learning and Applications (ICMLA) (pp.
1496–1499).

Springenberg, J. T. (2015). Unsupervised and semi-supervised learning with categorical generative
adversarial networks. http:// arxiv. org/ abs/ 1511. 06390

Tian, F., Gao, B., Cui, Q., Chen, E., & Liu, T. Y. (2014). Learning deep representations for graph clus-
tering. In Proceedings of the AAAI Conference on Artificial Intelligence (pp. 1293–1299).

Tishby, N., Pereira, F. C., & Bialek, W. (2000). The information bottleneck method. http:// arxiv. org/ abs/
physi cs/ 00040 57

Uğur, Y., Arvanitakis, G., & Zaidi, A. (2020). Variational information bottleneck for unsupervised clus-
tering: Deep gaussian mixture embedding. Entropy, 22(2), 213.

Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L. (2020). Scan: Learn-
ing to classify images without labels. In Proceedings of the European Conference on Computer
Vision (ECCV) (pp. 268–285).

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: A novel image dataset for benchmarking
machine learning algorithms. http:// arxiv. org/ abs/ 1708. 07747

Xie, J., Girshick, R., Farhadi, A. (2016). Unsupervised deep embedding for clustering analysis. In Pro-
ceedings of the 33rd International Conference on Machine Learning (ICML) (pp. 478–487).

Yang, B., Fu, X., Sidiropoulos, N. D., & Hong, M. (2017). Towards K-means-friendly spaces: simultane-
ous deep learning and clustering. In Proceedings of the 34th International Conference on Machine
Learning (ICML) (pp. 3861–3870).

Yang, J., Parikh, D., Batra, D. (2016). Joint unsupervised learning of deep representations and image
clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (pp. 5147–5156).

Yang, L., Cheung, N.M., Li, J., Fang, J. (2019). Deep clustering by gaussian mixture variational autoen-
coders with graph embedding. In Proceedings of the IEEE international conference on computer
vision (ICCV) (pp. 6440–6449).

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1511.05644
http://arxiv.org/abs/1802.03426
http://arxiv.org/abs/1511.06390
http://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/physics/0004057
http://arxiv.org/abs/1708.07747

Machine Learning

1 3

Yang, X., Deng, C., Wei, K., Yan, J., & Liu, W. (2020). Adversarial Learning for Robust Deep Cluster-
ing. In Advances in Neural Information Processing Systems (NeurIPS) (pp. 9098–9108).

Zhang, T., Ji, P., Harandi, M., Huang, W., Li, H. (2019). Neural collaborative subspace clustering. In Pro-
ceedings of the 36th International Conference on Machine Learning (ICML) (pp. 7384–7393).

Zheng, G. X., Terry, J. M., Belgrader, P., Ryvkin, P., Bent, Z. W., Wilson, R., et al. (2017). Massively paral-
lel digital transcriptional profiling of single cells. Nature communications, 8(1), 1–12.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

