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Abstract
Deep embedded clustering has become a dominating approach to unsupervised categori-
zation of objects with deep neural networks. The optimization of the most popular meth-
ods alternates between the training of a deep autoencoder and a k-means clustering of the 
autoencoder’s embedding. The diachronic setting, however, prevents the former to benefit 
from valuable information acquired by the latter. In this paper, we present an alternative 
where the autoencoder and the clustering are learned simultaneously. This is achieved by 
providing novel theoretical insight, where we show that the objective function of a certain 
class of Gaussian mixture models (GMM’s) can naturally be rephrased as the loss function 
of a one-hidden layer autoencoder thus inheriting the built-in clustering capabilities of the 
GMM. That simple neural network, referred to as the clustering module, can be integrated 
into a deep autoencoder resulting in a deep clustering model able to jointly learn a cluster-
ing and an embedding. Experiments confirm the equivalence between the clustering mod-
ule and Gaussian mixture models. Further evaluations affirm the empirical relevance of our 
deep architecture as it outperforms related baselines on several data sets.

Keywords  Clustering · Deep autoencoders · Embedding · k-means · Gaussian mixture 
models
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1  Introduction

Clustering is one of the oldest and most difficult problems in machine learning and a great 
deal of different clustering techniques have been proposed in the literature. Perhaps the 
most prominent clustering approach is the k-means algorithm (Lloyd, 1982). Its simplicity 
renders the algorithm particularly attractive to practitioners beyond the field of data min-
ing and machine learning (Punj & Stewart, 1983; Gasch & Eisen, 2002; Hennig & Liao, 
2013; Frandsen et  al., 2015). A variety of related algorithms and extensions have been 
studied (Dunn, 1973; Krishna & Murty, 1999; Dhillon et al., 2004). The model behind the 
standard k-means algorithm is an isotropic Gaussian mixture model (Kulis & Jordan, 2012; 
Lücke & Forster, 2019) (GMM). As such, it can only produce linear partitions of the input 
space.

A dominating recent line of research aims to alleviate this issue by learning an embed-
ding of the data with a deep autoencoder (DAE) and to have variants of Gaussian mixture 
models operate on the embedded instances (Xie et al., 2016; Yang et al., 2017; Guo et al., 
2017; Fard et al., 2020; Miklautz et al., 2020). This can be referred to as deep embedded 
clustering. An important reason for the emergence of this modern line of research in clus-
tering is that it combines elements (the deep autoencoder and the GMM clustering) that 
are theoretically well understood when considered separately. In practice, since the embed-
ding map is nonlinear, the result is that the otherwise linear clustering translates to a non-
linear solution in input space. This approach resembles the rationale behind kernel meth-
ods  (Guyon et  al., 1993). The difference lies in either computing a kernel matrix before 
learning the clustering versus learning the feature map as the function approximated by 
the encoder. Another advantage of an autoencoder (AE) based approach is provided by the 
decoder of the network that allows to map the centroids back into (an approximated version 
of the) input space. Depending on the kernel function/matrix, this is not always possible 
with traditional approaches.

However, even with advantages of deep embedded clustering as described above, the 
fact that the embedding procedure and the clustering procedure are decoupled means that 
the former cannot benefit from the latter, and vice versa. In the most naive approach, the 
deep autoencoder is first trained, and then the features output by the autoencoder are clus-
tered. In Xie et al. (2016), an improvement is made by alternatively shrinking the clusters 
in the embedded space around centroids for then to update the latter using k-means. The 
shrinking may however lead to an adaptation of the clustering to the embedding instead 
of the desired clustering-induced embedding. In general, these approaches cannot handle 
a random initialization which usually leads to noisy embeddings and, in turn, meaningless 
clusterings.

Despite the obvious need, few deep embedded clustering procedures have been pro-
posed featuring an inherent capability of bringing out clustering structure in a joint and 
simultaneous procedure. This is clearly due to the lack of a theoretical foundation that 
could support such an objective. In this paper, we provide novel theoretical insight that 
enables us to simultaneously optimize both the embedding and the clustering by relying on 
a neural network interpretation of Gaussian mixture models. Our solution derives from the 
fact that during the EM, the objective function of a certain class of GMM can be rephrased 
as the loss function of an autoencoder, as we show as a key result. A network trained with 
that loss is thus guaranteed to learn a linear clustering. Our contributions are threefold. (1) 
We state and prove a theorem connecting Gaussian mixture models and autoencoders. (2) 
We define the clustering module (CM) as a one hidden layer AE with softmax activation 



Machine Learning	

1 3

trained with the loss resulting from the previous point. (3) We integrate the CM into a 
deep autoencoder to form a novel class of deep clustering architectures, denoted AE-CM. 
Building on the theoretical insight, the experiments confirm the empirical equivalence of 
the clustering module with GMM. As for the AE-CM, the model outperforms on several 
datasets baselines extending Gaussian mixture models to nonlinear clustering with deep 
autoencoders.

The remainder of the paper is organized as follows. Section  2 reviews related works 
and baselines and Sect. 3 provides the theory underpinning our contributions. The cluster-
ing module and the AE-CM are introduced in Sect. 4. We report empirical evaluations in 
Sect. 5. Section 6 concludes the paper.

2 � Related work

Recently, several deep learning models have been proposed to group data in an unsuper-
vised manner (Tian et al., 2014; Springenberg 2016; Yang et al., 2016; Kampffmeyer et al., 
2019; Ghasedi Dizaji et al., 2017; Haeusser et al., 2018; McConville et al., 2019; Mukher-
jee et al., 2019; Uğur et al., 2020; Van Gansbeke et al., 2020). Since our main contribution 
unravels the connection between Gaussian mixture models and autoencoders, models based 
on associative (Haeusser et al., 2018; Yang et al., 2019), spectral (Tian et al., 2014; Yang 
et al., 2019; Bianchi et al., 2020) or subspace (Zhang et al., 2019; Miklautz et al., 2020) 
clusterings are outside the scope of this paper. Furthermore, unlike (Yang et  al., 2016; 
Chang et al., 2017; Kampffmeyer et al., 2019; Ghasedi Dizaji et al., 2017; Guo et al., 2017; 
Caron et al., 2018; Ji et al., 2019; Van Gansbeke et al., 2020), our model falls within the 
category of general purpose deep embedded clustering models which builds upon GMM 
(Xie et al., 2016; Guo et al., 2017; Yang et al., 2017; Fard et al., 2020). We mention that 
recent works related to specific topics such as perturbation robustness and non-redundant 
subspace clustering also utilize ideas that are to some degree related to the general concept 
of deep embedded clustering (Yang et al., 2020; Miklautz et al., 2020). Given the high gen-
erality of our method, we detail models that are also built without advanced mechanisms, 
but can still support them.

One of the first approaches in this latter category of dominating modern deep cluster-
ing algorithms is DEC (Xie et al., 2016), which consists of an embedding network coupled 
with an ad-hoc matrix representing the centroids. During training, the network is trained 
to shrink the data around their closest centroids in a way similar to t-SNE (Maaten & Hin-
ton, 2008). However, instead of matching the distributions in the input and feature spaces, 
the target distribution is a mixture of Student-t models inferred from a k-means clustering 
of the embedding itself. The latter is updated every few iterations to keep track of evolu-
tion of the embedding and the centroids are stored in the ad-hoc matrix. In order to avoid 
sub-optimal solutions when starting from random initialization, the embedding network is 
pre-trained. Nevertheless, the difference between the two training phases can cause stabil-
ity issues, such as collapsing centroids. IDEC (Guo et al., 2017) extends DEC and allevi-
ates this issue to some degree by using the reconstruction loss of the DAE also during the 
training phase. Although IDEC is more robust than DEC, both are highly dependent on the 
initial embedding as the clustering phase quickly shrinks the data around the centroids. The 
Deep Clustering Network (DCN) (Yang et al., 2017) further strengthens the deep embed-
ding clustering framework and is based on an architecture comparable to DEC and IDEC 
but includes hard clustering. The optimization scheme consists of three steps: (1) Optimize 



	 Machine Learning

1 3

the DAE to reconstruct and bring the data-points closer to their closest centroids (similar to 
k-means); (2) update assignments to the closest clusters; (3) update the centroids iteratively 
using the assignments. Although alternating optimization helps prevent instabilities dur-
ing the optimization, DCN still requires initialization schemes in order to reach good solu-
tions. Our proposed model instead, while being theoretically-driven, resolves the need for 
alternative optimization schemes the previous methods rely on. Since we learn a variant of 
GMM using a neural network, the optimizations of both the embedding and the clustering 
profit from each other. In practice, our model is thus less reliant on pre-training schemes.

To some degree our approach is similar the very recent method known as DKM (Fard 
et al., 2020). The model shares the same architecture as DEC, namely, a deep autoencoder 
and an ad-hoc matrix representing the centroids. However, here, the model optimizes the 
network and the centroids simultaneously. To achieve that the loss function includes a term 
similar to the loss of fuzzy c-means (Bezdek, 2013), i.e, k-means with soft-assignments. 
The cluster coefficients are computed from the distances to the centroids and normalized 
using a parameterized softmax . In order to convert soft assignments into hard ones, the 
parameter follows an annealing strategy. In our model, the assignment probability function 
is indirectly related to the distance to the closest cluster representative, as used in DKM. 
Our the loss function aims to minimize the distance between the data points and their 
reconstruction as convex combinations of the centroids. This means that the learning of the 
centroid and of the assignment probabilities regularize each other, mitigating the need of 
an annealing strategy.

There are also other recent and promising approaches to clustering that are leveraging 
deep neural networks. However, these operate in a very different manner compared to deep 
embedded clustering, which our novel theoretical insight sheds new light on and which 
enables our new proposed autoencoder optimization for joint clustering and embedding. 
We nevertheless briefly review some of these approaches and also compare to representa-
tives of such methods in our experiments. In particular, a great deal of works have focus 
on the generative aspect of Gaussian mixture models and studied variations based on deep 
generative models such as variational autoencoders (VAE) (Kingma & Welling, 2013) and 
generative adversarial network (GAN) (Goodfellow et al., 2014).

Adversarial approaches for clustering have been proposed with examples being Cat-
GAN (Springenberg, 2016) and adversarial autoencoders (AAE) (Makhzani et al., 2015). 
The former optimizes the mutual information and predicts a categorical distribution of 
classes in the data while maximizing at the same time the robustness against an adversarial 
generative model. Instead, AAE uses two adversarial networks to impose a Gaussian and 
a categorical distribution in the latent space. The recent ClusterGAN  (Mukherjee et  al., 
2019) makes an original use of an autoencoder as the input is not a data point but a sample 
drawn from the product of a multinomial and a Gaussian distributions. The decoded sam-
ple is then fed to the discriminator and the encoder. This method is all robust to random 
network initialization.

Variational approaches that enable clustering include methods like Gaussian Mix-
ture VAE (GMVAE)  (Dilokthanakul et  al., 2016) and Variational Deep Embedding 
(VaDE) (Jiang et al., 2016). Although the former explicitly refers to GMMs, both methods 
are similar. The difference is that the parameters of the Gaussian distributions in embed-
ded space depend only on the cluster index in VaDE whereas GMVAE involves a second 
random variable. Both models require a pre-trained autoencoder. Variational information 
bottleneck with Gaussian mixture model (VIB-GMM) (Uğur et al., 2020) also assumes a 
mixture of Gaussian distributions on the embedding, however the model is trained accord-
ingly to the deep variational information bottleneck (VIB) framework. The latter can be 



Machine Learning	

1 3

seen as a information theory-driven generalization of GAN and VAE (Tishby et al., 2000; 
Alemi et al., 2016). VIB-GMM reveals to be a robust alternative to previous approaches as 
it is able to produce meaningful clusterings from a randomly initialized autoencoder.

3 � Theoretical groundwork

Throughout the paper the set of positive integers is denoted by ℕ∗ . The set of the d-dimen-
sional stochastic vectors is written as 𝕊d = {x ∈ ℝ

d
≥0

∶
∑d

i=1
xi = 1}. When the context 

allows, the ranges of the indices are abbreviated using the upper-bound, e.g., a vector 
x ∈ ℝ

d decomposes as x = ⟨xj⟩1≤j≤d = ⟨xj⟩d . The zero vector of ℝd is written as 0d . The 
notation extends to any number. The identity matrix of ℝd×d is denoted by �d.

3.1 � From GMMs to Autoencoders

We aim to fit an isotropic Gaussian mixture model with K ∈ ℕ
∗ components and a Dir-

ichlet prior on the average cluster responsibilities on a dataset X = {xi}N ⊂ ℝ
d . The 

expected value of the complete-data log-likelihood function of the model, also called the Q
-function (Bishop, 2006) is:

In this expression, zi ∈ ℕ is the cluster assignment of the data point xi , �ik ∶= p(zi = k|xi) 
is the posterior probability of zi = k , also called the responsibility of cluster k on a data-
point xi , �k ∶= p(zi = k) is the prior probability or mixture weight of cluster k and �k ∈ ℝ

d 
is the centroid of cluster k. The average responsibilities of cluster k is 𝛾̃k =

1

N

∑N

i=1
𝛾ik and 

�̃ ∈ �
K . The concentration hyperparameter of the Dirichlet prior is ⟨�k⟩K ∈ ℝ

K⧵{0K} . The 
co-variance matrices do not appear in this expression as they are all constant and equal to 
1

2
�d due to the isotropic assumption. We summarize the parameters into matrices � ∈ ℝ

N×K , 
� ∈ �

K and � ∈ ℝ
K×d . Note that the cluster responsibility vector of xi is stochastic, i.e., 

�i = ⟨�ik⟩K ∈ �
K.

Although, the isotropic co-variances allow for great simplifications, they restrict the 
model to spherical Gaussian distributions. We later alleviate this constraint by introducing 
a deep autoencoder. The Dirichlet prior involves an extra parameter but also smoothens 
the optimization. Note that these two assumptions make the model a relaxation of the one 
underlying k-means (Kulis & Jordan, 2012; Lücke & Forster, 2019).

Theorem 1  The maximization of the Q-function in Eq. (1) with respect to � yields a term 
that can be interpreted as the reconstruction loss of an autoencoder.

Proof  During the EM-algorithm, the maximization with respect to � updates the latter as 
the average cluster responsibility vector:

Using this result, the Q-function can be rephrased as

(1)Q(�,�,�) =

N∑

i=1

K∑

k=1

𝛾ik
(
log𝜙k − ||xi − �k||2

)
+

K∑

k=1

(𝛼k − 1) log �̃k.

𝜙k =
1

N

∑

i=1

𝛾ik = 𝛾̃k.
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The first term corresponds to the entropy of ⟨𝛾̃k⟩K which, given the Dirichlet prior, is con-
stant and can thus be omitted. We expand now �ik‖xi − �k‖2 by adding and subtracting the 
norm of x̄i =

∑K

k=1
𝛾ik�k : For any given i ∈ [1 . . N],

Note that this simplification grounds on the isotropic assumption. It is not obvious how to 
reach a similar result without it. The Q-function becomes:

The variable x̄i is actually a function of x that factorizes into two functions F  and G . The 
former computes �i which, as a posterior probability, is a function of xi . The latter is the 
dot-product with �.

The first term of Eq. (3) can thus be interpreted as the reconstruction term characteristic of 
a loss of an autoencoder, consisting of the encoder and decoder functions, which are F  and 
G , respectively. 	�  ◻

(2)Q(�,�) =

N∑

i=1

K∑

k=1

𝛾ik log �̃k −

N∑

i=1

K∑

k=1

𝛾ik||xi − �k||2 +
K∑

k=1

(𝛼k − 1) log �̃k.

K∑

k=1

𝛾ik||xi − �k||2 =
K∑

k=1

𝛾ik||xi||2 − 2x⊤
i

( K∑

k=1

𝛾ik�k

)
+

K∑

k=1

𝛾ik||�k||2

+ ||x̄i||2 − ||x̄i||2

= ||xi||2 − 2x⊤
i
x̄i + ||x̄i||2

+

K∑

k=1

𝛾ik||�k||2 −
K∑

k=1

K∑

l=1

𝛾ik𝛾il�
T
k
�k

= ||xi−x̄i||2+
K∑

k=1

𝛾ik(1−𝛾ik)||�k||2−
K∑

k=1

K∑

l = 1

l ≠ k

𝛾ik𝛾il�
T
k
�l.

(3)

Q(�,�) = −

N∑

i=1

||xi − x̄i||2

���������������
=∶E1

−

N∑

i=1

K∑

k=1

𝛾ik(1 − 𝛾ik)||�k||2

���������������������������������
=∶E2

+

N∑

i=1

K∑

k=1

K∑

l = 1

l ≠ k

𝛾ik𝛾il�
T
k
�l

�������������������������������
=∶E3

−

K∑

k=1

(1 − 𝛼k) log 𝛾̃k

�������������������
=∶E4

.

(4)
F ∶

ℝ
d

→ 𝕊
K

x ↦ F(x;�) = ⟨p(z = k�x)⟩K = �

G ∶
𝕊
K

→ ℝ
d

� ↦ G(�;�) =
∑K

k=1
𝛾k�k = x̄
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3.2 � Analysis of the terms

The four terms of the expansion of the Q-function as Eq. (3) gives new insights into the 
training of GMMs.

E1 : Reconstruction The term E1 suggests an autoencoder structure to optimize Q . The 
decoder, G , is a linear function. However, without loss of generality, it can be treated in 
practice as an affine function, i.e. a single layer network with bias. Regarding the encoder 
F  , the architecture can be anything as long as it has a stochastic output.

E2 : Sparsity and regularization The second term E2 is related to the Gini impurity 
index (Breiman et al., 1984) applied to �i:

where ‖.‖F is the Frobenius norm. The Gini index is standard in decision tree theory to 
select branching features and is an equivalent of the entropy. It is nonnegative and null if, 
and only if, �i is a one-hot vector. Hence, minimizing this term favors sparse �i resulting in 
clearer assignments.

The terms ‖�k‖2 play a role similar to an �2-regularization: they prevent the centroids 
from diverging away from the data-points. However, they may also favor the trivial solu-
tion where all the centroids are merged into zero.

E3 : Sparsity and cluster merging To study the behavior of E3 during the optimi-
zation, let us consider a simple example with one observation and two clusters, i.e, 
� ≡ �1 = (� , 1 − �) . If the observation is unambiguously assigned to one cluster, �1 is a 
one-hot vector and E3 is null. If it is not the case, the difference between E2 and E3 factor-
izes as follows:

The optimization will thus either push �1 toward a more sparse vector, or merge the two 
centroids. Appendix 3 presents an analysis of the role of this term.

E4 : Balancing The Dirichlet prior steers the distribution of the cluster assignments. If 
none of the �k is null, the prior will push the optimization to use all the clusters, moderat-
ing thus the penchant of E2 for the trivial clustering (Yang et al., 2017; Guo et al., 2017).

Note that if � =

(
1 +

1

K

)
1K , E4 is, up to a constant, equal to the Kullback–Leibler (KL) 

divergence between a multinomial distribution with parameter �̃ and the uniform multino-
mial distribution:

4 � Clustering and embedding with Autoencoders

Theorem 1 says that an autoencoder could be involved during the EM optimization of an 
isotropic GMM. We go one step further and by-pass the EM to directly optimize the Q
-function in Eq. (3)) using an autoencoder.

K�

k=1

�ik(1 − �ik)‖�k‖2 ≤
K�

k=1

�ik(1 − �ik)‖�‖2F = ����(�i)‖�‖2F ,

(5)E2 − E3 = �(1 − �)
�
‖�1‖2 + ‖�2‖2 − �

T
1
�2

�
= �(1 − �)‖�1 − �2‖2.

K∑

k=1

(1 − 𝛼k) log �̃k =

K∑

k=1

(1 − (1 +
1

K
)) log �̃k = DKL

(
1

K
1K

‖‖‖�̃
)
.
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4.1 � The clustering module

We define the Clustering Module (CM) as the one-hidden layer autoencoder with encoding 
and decoding functions F  and G such as:

where X ∈ ℝ
N×d ∼ X  , code representation/cluster responsibilities � = ⟨�ik⟩N×K ∈ ℝ

N×K 
s.t. �i ∈ �

K , and the reconstruction X̄ ∈ ℝ
N×d . The weight and bias parameters of the 

encoder are Wenc ∈ ℝ
d×K and Benc ∈ ℝ

K , respectively, and analogously for the decoder 
Wdec ∈ ℝ

K×d and Bdec ∈ ℝ
d . The softmax enforces the row-stochasticity of the code, ie., � . 

The associated loss function is the negative of Eq. (3):

with Θ =

(
Wenc,Benc,Wdec,Bdec

)
 . The centroids of the underlying GMM correspond to 

the images of G of the canonical basis of ℝK.
Initialization
The CM can be initialized using k-means or any initialization scheme thereof such as 

k-means++ (Arthur & Vassilvitskii, 2007). In such a case, the column-vectors of Wdec are 
set equal to the desired centroids. The pseudo-inverse of this matrix becomes the encoder’s 
weights, Wenc , and both bias vectors are set to null.

Averaging epoch
In practice, the CM will be optimized by mini-batch learning with stochastic gradient 

descent. In such a procedure, the optimizer updates the positions of the centroids given 
the current batch. A small batch-size relative to the size of X  may cause dispersion of the 
intermediate centroids. Hence, choosing the final centroids based on the last iteration may 
be sub-optimal.

We illustrate this phenomenon in Fig.  1. The data consists of N = 2000 points in ℝ2 
drawn from a mixture of five bi-variate Gaussians ( K = 5 ) (gray dots). The data is stand-
ardized before processing. A CM is trained in mini-batches of size 20 over 50 epochs using 
stochastic gradient descent. The concentration is set to � = 5K . The dispersion of the cen-
troids after each iteration of the last epoch (crosses) is significant. On the other hand, their 
average positions (squares) provide a good approximation of the true centers (circles). 
Therefore, we include one extra epoch to any implementation of the CM to compute the 
average position of the individual centroids over the last iterations.

4.2 � Embedding with feature maps

The theory behind GMMs limits the CM to a linear decoder, thus enabling merely a lin-
ear partition of the input space. In addition, the isotropy assumption, specific to the CM, 

(6)
F(X) = softmax(XWenc + Benc) = �

G(�) = �Wdec + Bdec = X̄,

(7)

LCM(X;Θ) =

N∑

i=1

||xi − x̄i||2 +
N∑

i=1

K∑

k=1

𝛾ik(1 − 𝛾ik)||�k||2

−

N∑

i=1

K∑

k=1

K∑

l = 1

l ≠ k

𝛾ik𝛾il�
T
k
�l +

K∑

k=1

(1 − 𝛼k) log 𝛾̃k.
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bars clusters to spread differently. We alleviate both limitations using a similar approach 
to that of kernel methods (Guyon et al., 1993): we non-linearly project the input into a 
feature space where it will be clustered. However, we do not learn the kernel matrices, 
providing an implicit feature map. Instead, we learn explicitly the feature maps using a 
deep autoencoder (DAE).

The idea is to optimize the CM and the DAE simultaneously, in order to let the lat-
ter find distortions of the input space along the way that guides the CM toward a better 
optimum. Using a deep autoencoder architecture prevents the optimization to produce 
degenerate feature maps Guo et al. (2017). It also preserves the generative nature of the 
model: points in the input space can be generated from a combination of centroids in the 
feature space. We refer to this model as the AE-CM.

The model consists of a clustering module nested into a deep autoencoder The archi-
tecture is illustrated in Fig. 2. The first part of the DAE encodes an input x ∈ ℝ

d into 
a vector z ∈ ℝ

p . Note, CM now works on code representation z and not directly on the 

Fig. 1   The intermediate centroids 
of the last epoch are spread, 
whereas their averages almost 
match the true centroids

Fig. 2   Schematic representa-
tion of the AE-CM. Combining 
a clustering module and a deep 
autoencoder allows to jointly 
learn a clustering and an embed-
ding

x z

x̄

z̃γ

Clustering Module

Deep Autoencoder
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input x . The code z is fed to the CM and to the decoder of the DAE, yielding two out-
puts: z̃ , the CM’s reconstruction of z , and x̄ , the DAE’s reconstruction of x.

4.2.1 � Adapting the loss function to a deep architecture

Empirical evaluation showed that current gradient descent optimizers (e.g., Adam, Kingma 
& Ba, 2015) often return sub-optimal solutions when the reconstruction of the deep 
autoencoder is simply added to the loss of the CM. To help the optimization to find better 
optima, we add the assumption that the centroids are orthonormal:

Although the previous formula involves only � which is learned by the nested clustering 
module, it affects the surrounding DAE. Indeed, the constraint encourages it to produce an 
embedding where the centroids can simultaneously be orthonormal and minimize CM’s 
loss. As a consequence, E2 simplifies and E3 becomes null:

Note that the constraint Eq. (8) is satisfied for the “ideal” clustering, in which case clusters 
will be mapped to the corners of a simplex in the embedding space, as discussed recently 
in Kampffmeyer et  al. (2019). In this perspective, our inclusion of this constraint helps 
guide the clustering towards the ideal clustering, and at the same time simplifies the loss 
function.

We employ Lagrange multipliers to integrate the orthonormality constraint. That way 
the final loss can be stated as follows:

where 𝜆 > 0 is the Lagrange multiplier and 𝛽 > 0 weights the DAE’s reconstruction loss. 
We choose the �1-norm to enforce orthonormality, however other norms can be used.

(8)∀k, l, �T
k
�l = �kl =

{
1 if k = l,

0 otherwise.

(9)

E2 =

N∑

i=1

K∑

k=1

�ik(1 − �ik)||�k||2 =
N∑

i=1

K∑

k=1

�ik(1 − �ik)

E3 =

N∑

i=1

K∑

k=1

K∑

l = 1

l ≠ k

�ik�il�
T
k
�l = 0

(10)

LAE-CM(X;Θ) =𝛽

N∑

i=1

||xi − x̄i||2(Reconstruction DAE)

+

N∑

i=1

||zi − z̃i||2(Reconstruction CM)

+

N∑

i=1

K∑

k=1

𝛾ik(1 − 𝛾ik)(Sparsity)

+

K∑

k=1

(1 − 𝛼k) log(�̃k)(Dirichlet Prior)

+ 𝜆||�T
� − �K||1, (Orthonormality)
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Note that if the dimension of the embedding p is larger than the number of centroids K, 
the embedding can always be transformed to satisfy the orthonormality of the centroids. 
On the other hand, if K > p , the assumption becomes restrictive also in term of possible 
clusterings. Nevertheless, its importance can be reduced with a small � . This assumption 
also helps to avoid the centroids to collapse as their norm is required to be 1. An analysis of 
the Lagrange multiplier is provided in Appendix 1.

The loss function of the AE-CM thus depends on four hyper-parameters: the weight 
𝛽 > 0 , the concentration � ∈ �

K , the Lagrange multiplier 𝜆 > 0 , and the size of the batches 
B ∈ ℕ

∗.

4.2.2 � Implementation details

Since the AE-CM builds upon the CM, any implementation also contains an averaging 
epoch. In case of pre-training, both sub-networks need to be initialized. We favor a straight-
forward end-to-end training of the DAE (without drop-out or noise) over a few epochs. The 
clustering module is then initialized using k-means++ on the embedded dataset. Finally, 
the CM is optimized alone using LCM for a few epochs.

5 � Experiments

In this section, we evaluate the clustering module and the AE-CM on several data sets 
covering different types of data. To highlight the generality of our method, we rely only 
fully connected architecture, ie. we do not use convolution layers even for image data sets. 
That said, we focus on general purpose baselines. The experiments were conducted on 
an Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz with 32Gb of RAM supported with a 
NVIDIA(R) Tesla V100 SXM2 32GB GPU.

5.1 � Experimental Setting

5.1.1 � Datasets

We leverage eight common benchmark data sets in the deep clustering literature plus one 
synthetic data set:

•	 MNIST LeCun et al. (1989) contains 70, 000 handwritten images of the digits 0 to 9. 
The images are grayscale with the digits centered in the 28 × 28 images. The pixel val-
ues are normalized before processing.

•	 fMNIST Xiao et al. (2017) contains 70, 000 images of fashion products organized in 
10 classes. The images are grayscale with the product centered in the 28 × 28 images. 
The pixel values are normalized before processing.

•	 USPS1 contains 9298 images of digits 0 to 9. The images are grayscale with size 
28 × 28 pixels. The pixel values are normalized before processing.

1  https://​github.​com/​Xifen​gGuo/​IDEC/​files/​16133​86/​usps.​zip.

https://github.com/XifengGuo/IDEC/files/1613386/usps.zip
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•	 CIFAR10 Krizhevsky et al. (2009) contains 60, 000 color images of 10 classes of sub-
jects (dogs, cats, airplanes...). Images are of size 32 × 32 . The pixel values are normal-
ized before processing.

•	 Reuters10k2, here abbreviated R10K, consists of 800, 000 news articles. The dataset 
is pre-processed as in Guo et al. (2017) to return a subset of 10, 000 random samples 
embedded into a 2, 000-dimensional space (tf-idf transformation) and distributed over 
4 (highly) imbalanced categories.

•	 20News3 contains 18, 846 messages from newsgroups on 20 topics. Features consists 
of the tf-idf transformation of the 2000 most frequent words.

•	 10 × 73k Zheng et al. (2017) consists of 73, 233 RNA-transcript belonging to 8 differ-
ent cell types Jang et al. (2017). The features consists of the log of the gene expression 
variance of the 720 genes with the largest variance. The dataset is relatively sparse with 
40% of entries null.

•	 Pendigit Alimoglu and Alpaydin (1996) consists of 10, 992 sequences of coordinates 
on a tablet captured as writers write digits, thus 10 classes. The dataset is normalized 
before processing.

•	 5 Gaussians consists of N = 2000 points in ℝ2 drawn from a mixture of five bi-variate 
Gaussians ( K = 5 ). The dataset is depicted in Fig. 1.

5.1.2 � Evaluation metrics

The clustering performance of each model is evaluated using three frequently-used met-
rics: the Adjusted Rand Index (ARI)  (Hubert & Arabie, 1985), the Normalized Mutual 
Information (NMI) (Estévez et al., 2009), and the clustering accuracy (ACC) (Kuhn, 1955). 
These metrics range between 0 and 1 where the latter indicates perfect clustering. For leg-
ibility, values are always multiplied by 100. For each table, scores not statistically different 
(t-test p < 0.05 ) from the best score of the column are marked in boldface. The ∗ indicates 
the model with the best run. A failure (−) corresponds to an ARI close to 0.

5.1.3 � Baselines

We include two baselines for the CM: k-means (KM), a GMM with full co-variance and an 
isotropic GMM (iGMM) with uniform mixture weights. The latter differs from the model 
the clustering module derives but the Dirichlet prior on the responsibilities yields non trac-
table updates and a Dirichlet prior on the mixture weights harms the performance.

We compare the AE-CM to four baselines reviewed in Sect. 2: DEC (Xie et al., 2016), 
its extension IDEC  (Guo et  al., 2017), DCN  (Yang et  al., 2017) and DKM  (Fard et  al., 
2020). We include as the naive approach (AE+KM) consisting of a trained DAE followed 
by k-means on the embedding. We also add ClusterGAN (Mukherjee et al., 2019) and VIB-
GMM  (Uğur et  al., 2020) as alternatives based on variational autoencoders  (Kingma & 
Welling, 2013) and generative adversarial networks (Goodfellow et al., 2014), respectively.

Random and pre-trained initialization are indicated with r and p , respectively. If omitted, 
the initialization is random. Every experiment is repeated 20 times.

3  http://​people.​csail.​mit.​edu/​jrenn​ie/​20New​sgrou​ps.

2  https://​github.​com/​Xifen​gGuo/​IDEC/​tree/​master/​data/​reute​rs.

http://people.csail.mit.edu/jrennie/20Newsgroups
https://github.com/XifengGuo/IDEC/tree/master/data/reuters
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5.1.4 � Implementation

Both CM and AE-CM are implemented using TensorFlow 2.1  (Abadi et al., 2016)4. We 
also re-implemented DEC, IDEC and DCN. All deep models but ClusterGAN and VIB-
GMM use the same fully connected autoencoder d-500-500-2000-p-2000-500-500-d and 
leaky relu activations, where d and p are the input and feature space dimensions, respec-
tively. For ClusterGAN and VIB-GMM, we used the architecture provided in the original 
code. As well, the DAE reconstruction loss is the mean square error, regardless of the data-
set and of the model, except for VIB-GMM on images which requires a cross-entropy loss 
(it under performs, otherwise). CM and its baselines are trained for up to 150 epochs, deep 
models for 1000 epochs. The hyper-parameters (batch-size, p, concentration, etc.) are listed 
in Tables 12 and 13.

5.2 � CM: evaluation

Recall that the loss of the clustering module is a lower bound of the objective function of 
its underlying isotropic GMM which approximates k-means. Moreover, the optimization of 

Table 1   The clustering performance ( ×100 ) of different models on the selected datasets

Model MNIST fMNIST USPS CIFAR10

ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​

KMr 37.8 ��.�
∗

54.5∗ 36.6 51.6 53.2 52.6 ��.� 63.0 4.2 8.1 20.8
KMp 36.9 ��.� 54.0 35.2 51.0 50.8 50.2 60.8 61.1 4.2 8.1 20.7
GMMr 23.2 37.8 40.3 34.3 49.3 51.8 35.1 52.5 48.2 �.� 9.1 ��.�

∗

GMMp 24.8 37.5 42.3 34.3 49.3 52.4 33.0 52.0 45.1 �.�
∗

�.� ��.�

iGMMr 31.3 42.7 48.5 35.7 50.7 51.4 44.2 55.3 56.2 4.1 7.9 21.1
iGMMp 31.1 42.7 47.5 35.4 50.8 51.6 44.4 56.1 55.6 4.1 7.8 21.1
CMr

��.�
∗

��.� ��.� ��.� ��.� ��.� ��.� ��.� ��.�
∗ 4.8 8.9 ��.�

CMp ��.� ��.� ��.� ��.�
∗

��.�
∗

��.�
∗

��.�
∗

��.�
∗ 63.7 4.9 �.�

∗
��.�

Model R10K 20News 10x73k Pendigit

ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​

KMr ��.� 38.1 ��.� 14.8 32.3 31.0 36.5 55.4 55.0 ��.�
∗ 67.8 ��.�

KMp 29.5 36.0 58.3 14.8 33.5 32.0 36.7 55.5 55.3 ��.� 68.9 ��.�

GMMr 13.5 18.4 46.8 13.2 34.6 31.6 32.2 50.4 52.4 51.3 68.4∗ 65.7∗

GMMp 11.8 14.8 47.5 10.7 31.2 27.2 32.0 50.8 51.5 54.3 ��.� ��.�

iGMMr ��.� ��.� ��.� ��.� ��.�
∗

��.�
∗ 34.2 53.7 53.9 ��.� ��.� ��.�

iGMMp 27.3 32.3 60.4 13.4 36.8 31.4 33.1 53.1 52.1 ��.� ��.� ��.�

CMr ��.� ��.� ��.� 9.7 21.2 18.3 ��.� ��.� ��.� ��.� 67.0 ��.�

CMp 32.6∗ 39.2∗ 60.2∗ 16.3∗ 28.8 30.8 ��.�
∗

��.�
∗

��.�
∗

��.� 66.9 ��.�

4  Code available at: https://​github.​com/​Ahcene-​B/​clust​ering-​Module.

https://github.com/Ahcene-B/clustering-Module
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the CM is based on gradient descent instead of EM. We compare these three models as a 
sanity check, and show that, despite the differences, they report similar clustering perfor-
mance. We also present an ablation study of the loss and a model selection scheme for the 
CM. An analysis of the hyper-parameters and of the Dirichlet prior are reported in Appen-
dix 1 and 2, respectively.

5.2.1 � CM: clustering performance

In this experiment, we compare clustering performances and initialization schemes. Ran-
dom and k-means++ initializations are indicated with the superscripts r and p , respectively. 
Each experiment is repeated 20 times. We report averages in Table  1. For each dataset, 
scores not statistically significant different from the highest ( p < .05 ) score are marked 
in boldface. The ∗ indicate the model with the highest best score among its 20 runs. An 
extended table including standard deviations and best run can be found in Table  11 of 
Appendix 4. Average runtime for MNIST are reported on Table 2.

As expected, the clustering module performs similarly to iGMM and k-means on every 
dataset with respect to almost every metrics and for any initialization scheme. Often the 
k-means++ initialization does not improve the results. In the case of the clustering module 
the difference is never significant except on the 20News dataset.

5.2.2 � CM: runtimes

We compare here the runtimes of the different method on MNIST. For a fair compari-
son, we do not use any early-topping criterion and all the methods are run for exactly 150 
epochs. We report on Table 2 average over 10 runs.

It appears clearly that EM-based models are much faster. Interestingly GMM is slower 
than iGMM, although they share the same implementation. This difference is certainly due 
to the extra computations needed to update the covariance matrices.

5.2.3 � CM: ablation study of the loss

The loss function of the CM arises as a whole from the Q function of the underlying 
GMM. Nevertheless, for additional insight, we perform here an ablation study of its terms. 
We train a CM with different combinations of the terms of its original loss (Eq. (7)). To 

Table 2   Average runtime of each 
model to cluster MNIST in 150 
epochs

Model KMr GMMr iGMMr CMr

Runtime 1.7s 2m4s 56s 2m44s

Table 3   Clustering performance 
(ARI) of the CM on the 5 
Gaussians dataset trained with 
various combination of the terms 
of its original loss (first line)

E
0

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

E
1

✓ ✓ ✓ ✓ ✓

E
2

✓ ✓ ✓ ✓ ✓

E
3

✓ ✓ ✓ ✓ ✓

ARI ��.� 38.2 45.0 66.8 71.4 50.5 46.2 67.6 59.0
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highlight the influence of each term, we focus on the 5 Gaussians dataset (depicted in 
Fig. 1). Table 3 reports the clustering performance in terms of ARI.

The gap in terms of ARI between the CM trained with the complete loss (first line) and 
any other combination of its terms confirms the coherence of the loss. The model trained 
without the reconstruction term E0 reports the worse score. The ablation of the single terms 
indicate that the reconstruction term E0 is the most important followed by the sparsity term 
E1 . Although the removal of only E3 has the least impact, it is the only term that combined 
with E0 reports better performance than a loss function made of solely the reconstruction 
term E0.

Figure 3 illustrates the behavior of each term of the loss of the CM ( LCM ) during the 
training. Given the variations of each curves, it seems that during the first 25 epochs the 
optimization focuses on minimizing the reconstruction term even if it implies an increase 
of the other ones. However, the complete loss curve does not flatten out until E3 reaches 
its minimum. From there, a second phase begins where the total loss and the clustering 
metrics slowly grow in opposite directions. Interestingly, as the metrics increase and the 
clustering improves, E3 also increases, which is contrary to the expected behavior. On the 
other hand, E2 which is of the same magnitude as E3 and is also influenced by the sparsity 
of the assignments, continuously decreases without reaching a minimum. Overall, these 
curves suggest that both E2 and E3 could be used to either stop early the training or select-
ing the best run.

5.2.4 � CM: model selection

In an unsupervised scenario, true labels are not available. It is thus necessary to have an 
internal measure to avoid selecting a sub-optimal solution.

There are two natural choices: select either the clustering associated with the lowest loss 
or the less ambiguous clustering. In the first case, the sparsity of the clusters responsibili-
ties �i might be eclipsed by other aspects optimized by the LCM , such as the reconstruc-
tion term. On the other hand, by selecting only given the sparsity, we may end up always 

Fig. 3   Evolution of the total loss, each of its term and of the clustering metrics during the training of the 
CM on the 5 Gaussians dataset
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choosing the most degenerate clustering. Leaning on the analysis of Fig. 3, we propose to 
use Lsp = E2 + E3 which sums both terms of the loss governing the sparsity of the �i s but 
also involves the norm of the �ks.

In Table 4, we report the ARI of the runs with the lowest Lsp for each dataset. For com-
parison, we also report the average and the largest ARI. Scores selected according to Lsp 
that were higher than the average are marked in boldface.

A model selection based on Lsp finds the best runs only for R10K. Nevertheless, it 
selects runs with ARI greater than the average in more than half of the cases. In the other 
cases, the difference to the average score remains below 1 point of ARI expect for CMp on 
20News. The average absolute difference with the best score is 1.60 and 3.10 for CMr and 
CMp , respectively. Without 20News, on which CMp performs the worst, that average dif-
ference drops to 2.25 for CMp . These are satisfying results that substantiates our heuristic 
that Lsp = E2 + E3 can be used as an internal metric for the CM.

5.3 � AE‑CM: evaluation

In this section, we compare the clustering performance of our novel deep clustering model 
AE-CM against a set of baselines. We study the robustness of the model with respect to 
the number of clusters and a model selection scheme. We also evaluate the quality of the 
embeddings through the k-means clusterings thereof. Finally, we review the generative 
capabilities of our model.

5.3.1 � AE‑CM: clustering performance

We compare now clustering performances and initialization schemes for representative 
deep clustering models. We reports average ARI, NMI and ACC over 20 runs in Table 5. 
An extended table including standard deviations and best run can be found in Table 15 of 
Appendix 3.

In their original papers, the DEC, IDEC and DCN are pre-trained ( p ). We report 
here slightly lower scores that we ascribe to our implementation and slightly differ-
ent architectures. Nonetheless, the take-home message here is the consistency of their 
poor results when randomly initialized. This reflects an inability to produce cluster from 

Table 4   Adjusted Rand index of the run with lowest Lsp , the average run and the best run

Score larger than the average are marked in boldface

Criterion MNIST fMNIST USPS CIFAR10

Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best

CMr ��.� 39.7 43.5 ��.� 42.3 44.6 ��.� 54.3 58.6 �.� 4.79 5.07
CMp ��.� 39.1 43.5 ��.� 41.4 44.7 ��.� 53.4 59.2 �.�� 4.94 5.22

Criterion R10K 20News 10×73k Pendigit

Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best

CMr ��.� 38.5 56.0 �.�� 9.74 10.9 54.3 54.8 57.4 57.0 57.3 60.5
CMp ��.� 32.6 62.9 13.1 16.3 22.0 54.9 55.4 62.4 56.4 57.3 60.1
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scratch, regardless of implementation. Note that, in that case, even k-means outper-
forms all of them on all the datasets (see Table 1). On the other hand, DKM does return 
competitive score for both initialization scheme. Such results yield the question of how 
much clustering that is actually performed by DEC, IDEC and DCN and how much that 
is due to the pre-training phase.

In practice, DKM has proven sensitive to the choice of its � hyper-parameter and to 
the duration of the optimization. For example, we could not find a value able to cluster 
Pendigit. We conjecture that expanding the clustering term of DKM’s loss, as we did 
between Eqs. (1) and (3), would improve the robustness of the model.

On six of the datasets, at least one of the variants of AE-CM reports the highest aver-
age or highest best run. Especially, AE-CMr  produces competitive clusterings on all 
datasets except CIFAR10 despite its random initialization. This setback is expected as 

Table 5   The clustering scores ( ×100 ) of representative deep clustering models on the selected datasets

Model MNIST fMNIST USPS CIFAR10

ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​

AE+KM 65.6 71.5 78.6 39.0 55.6 53.0 57.1 64.6 67.5 3.2 6.5 18.9
DCNr 10.1 25.6 25.4 17.0 33.5 29.0 17.9 36.5 37.9 3.2 5.9 18.0
DCNp 75.6 ��.� 83.1 38.6 57.1 53.1 63.9 73.1 72.5 0.1 0.6 10.7
DECr 11.1 19.0 28.9 22.9 38.1 39.2 36.3 46.9 46.8 3.1 5.7 18.6
DECp 73.8 79.0 83.1 41.9 58.6 54.8 ��.� ��.� ��.� 3.1 5.6 18.2
IDECr 27.5 39.0 42.5 35.2 50.8 48.1 41.8 53.2 54.0 2.2 3.6 14.0
IDECp 74.9 80.1 83.4 42.8 59.8 55.4 ��.� ��.� ��.� 4.2 7.4 20.2
DKMr 72.5 77.3 81.2 41.8 56.4 54.6 58.3 67.0 68.6 �.�

∗
�.�

∗ 21.3
DKMp 74.0 78.3 82.7 36.2 52.0 47.0 60.4 71.8 68.9 �.� ��.� 19.7
ClusterGANr 63.6 71.8 76.8 ��.� ��.� ��.� 57.4 67.9 70.0 3.2 7.6 20.4
VIB-GMMr

73.3∗ 78.3∗ 81.5∗ 43.7∗ 58.4∗ ��.�
∗ 59.9 67.7 68.4 �.� ��.� ��.�

∗

AE-CMr ��.� 80.9 ��.� 43.7 55.6 ��.� 55.1 63.4 65.8 4.1 7.5 20.4
AE-CMp ��.� ��.� ��.� 43.1 56.3 ��.� ��.�

∗
76.7∗ ��.�

∗ 4.1 7.6 20.2

Model R10K 20News 10x73k Pendigit

ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​

AE+KM 61.0∗ 56.8 74.5∗ 11.3 27.4 24.8 54.3 72.5 64.4 55.2 68.2 70.2
DCNr 18.0 19.3 49.5 0.0 0.2 5.6 5.3 17.2 23.9 0.1 0.8 10.8
DCNp ��.� ��.� ��.� 11.7 33.5 25.3 9.6 13.8 25.2 56.8 72.0 70.8
DECr 12.2 13.2 43.8 3.2 7.8 10.0 31.4 43.5 46.3 36.8 52.3 49.3
DECp 56.8 56.0 72.8 5.5 11.3 11.8 53.5 67.1 62.1 59.6 72.8 72.2
IDECr 8.6 9.5 44.1 0.0 0.1 5.5 33.7 46.5 44.4 43.3 61.2 53.9
IDECp 59.7 56.3 73.9 5.9 12.6 12.0 60.1 75.9 66.5 57.9 71.6 71.0
DKMr 51.3 49.5 72.3 4.7 14.1 10.9 65.5 71.3 77.0 52.4 65.6 66.9
DKMp 57.7 55.5 ��.� 20.9 39.2 34.3 38.1 55.4 51.6 15.4 27.4 25.1
ClusterGANr 33.7 35.5 61.4 18.6 34.1 34.1 39.5 52.1 55.5 ��.� 74.2 ��.�

VIB-GMMr 27.8 28.7 56.6 0.0 0.0 0.0 51.5 60.7 60.0 ��.� ��.� ��.�

AE-CMr 42.9 45.6 67.7 ��.�
∗

��.�
∗

��.�
∗ 73.1 79.0 80.4 ��.�

∗
��.�

∗
��.�

∗

AE-CMp 64.1 60.0∗ ��.� 16.8 29.0 32.5 ��.�
∗

��.�
∗

��.�
∗

��.� ��.� ��.�
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clustering models are known to fail to cluster color images from the raw pixels (Jiang 
et al., 2016; Hu et al., 2017).

Also our AE-CM with random initialization always surpasses AE+KM except on R10K 
and CIFAR10, and even outperforms all the competitors by at least 20 ARI points on 
20News. On the down side, AE-CMr is associated with large standard deviations which 
implies a less predictable optimization (see Table 15 of Appendix 3). Therefore, we inves-
tigate an internal measure to select the best run.

5.3.2 � AE‑CM: runtimes

We compare here the runtimes of the different method on MNIST. For a fair comparison, 
all the methods use the same batch size of 256 instances. We report on Table 6 average 
over 10 runs. We do not used any early-stopping criterion.

Note that our implementation of DEC, IDEC and DCN are based on that of AE-CM. 
Hence these are the most comparable. The advantage goes to the model joint optimization, 
AE-CM, which is more that 5 min faster. ClusterGAN is the slowest method. It also has the 
most complex architecture.

5.3.3 � AE‑CM: robustness to the number of clusters

In the previous experiments, we provided the true number of clusters to all algorithms 
for all datasets. In this experiment, we investigate the behavior of the AE-CM when it is 
set with a different number of clusters on four datasets: MNIST, USPS, R10K and Pen-
digit. Figure 4 shows the evolution of the ARI (left) and the homogeneity (Rosenberg & 

Table 6   Average runtime of each model to cluster MNIST in 150 epochs

Model DECr IDECr DCNr DKMr ClusterGANr VIB-GMMr AE-CMr

Runtime 25m13s 27m51s 39m18s 38m29s 3h17m30s 29m26 19m28

Fig. 4   Adjusted Rand index and homogeneity score versus number of clusters. The correct number of clus-
ters being K = 10
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Hirschberg, 2007) score (right). The latter measures the purity in terms of true labels of 
each cluster. The number of cluster varies from 5 to 20. The correct value for all datasets 
is 10.

The ARI curves (left plot) reach their maximum at 10 and then decrease. This 
behavior is expected since this metric (as well as NMI and ACC) penalizes the number 
of clusters. On the other hand, the homogeneity curves (right plot) increase with K 
and stabilize for K larger than 10. The convergence of these curves indicates that the 
clustering performance of the AE-CM do not degrade if K is set larger than the ground 
truth. Such a results suggests that, when K is larger than the ground truth, the AE-CM 
finds solutions that are partitions of those found with smaller K. Such a phenomenon is 
illustrated in Appendix 3.

5.3.4 � AE‑CM: model selection

Similarly to the CM, we discuss here a model selection heuristic for the AE-CM. The 
rationale behind the use of a DAE is to have an encoding facilitating the objective of 
the clustering module. Hence, we propose to use the heuristic of the CM (Sect. 5.2.4). 
In Table  7, we report the ARI of the runs with the lowest Lsp for each dataset. For 
comparison, we also report the average and best ARI. Selected scores greater than the 
average are marked in boldface.

Again, scores associated to the lowest Lsp are better than the average more than half 
of the time. The criterion detects the best runs of AE-CMr  on MNIST and CIFAR10 

Table 7   Adjusted Rand index of the run with lowest Lsp , the average run and the best run

Scores larger than the average are marked in boldface

Criterion MNIST fMNIST USPS CIFAR10

Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best

AE-CMr ��.� 77.9 88.6 ��.� 43.7 48.9 ��.� 55.1 60.6 �.�� 4.15 5.29
AE-CMp ��.� 79.4 80.3 37.3 43.1 48.4 61.0 69.7 80.3 2.97 4.13 5.56

Criterion R10K 20News 10x73k Pendigit

Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best Lsp Avg. Best

AE-CMr 36.7 42.9 62.7 ��.� 31.5 38.7 72.8 73.1 85.6 ��.� 64.0 69.5
AE-CMp ��.� 64.1 66.7 14.6 16.8 21.2 79.9 82.3 86.9 ��.� 65.5 70.5

Table 8   Average clustering performance of k-means on different embeddings.

KM AE+KM DCN+KM DEC+KM IDEC+KM DKM+KM AE-CM+KM

ARI 37.8 65.6 64.5 11.1 27.5 ��.� ��.�

NMI 49.9 71.5 71.1 19.0 38.9 ��.� ��.�

ACC​ 54.5 78.6 76.2 28.9 42.5 ��.� ��.�
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and of AE-CMp on MNIST. The average absolute difference to the highest score is 6.5 
and 6.6 ARI points for AE-CMr  and AE-CMp , respectively. In summary, although Lsp 
as a criterion does not necessarily select the best run, it filters out the worst runs.

5.3.5 � AE‑CM: embeddings for k‑means

All baselines, including our model, are non-linear extensions of k-means and aim to 
improve the AE+KM. We audit the methods by running k-means on the embeddings 
produced by the 20 runs with random initialization on the MNIST dataset computed for 
Table 5 and report the average ARI, NMI and ACC in Table 8.

First, KM reports the worse results. This means that applying k-means on a feature 
space learned by an autoencoder does improve the quality of the clustering. Next, the 
results clearly show the superiority of methods utilizing a joint optimization, i.e., DKMr

+KM and our AE-CMr+KM. Interestingly, the scores of DCNr+KM are here bet-
ter than those of DCNr  . This discrepancy is certainly due the moving average used to 
update the centroids.

We continue the analysis of the embeddings with UMAP  McInnes et  al. (1802) pro-
jections. Figure  5 depicts the projections of different embeddings of the same 2000 

Fig. 5   UMAP representation of a subset of MNIST and embeddings thereof learned by AE, IDEC and 
AE-CM. The squares indicate the centroids
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data-points. Figure  5a represents the UMAP projection from the input space. For (5b), 
we used the best run of the AE+KM. For consistency, we used that embedding for the 
AE-CMp . Hence, Fig. 5c does not show the best run the AE-CMp . Finally (5d) is based on 
the best run of the AE-CMr.

The projection of MNIST from the input space (5a) has two pairs of classes entan-
gled: (3, 5) and (4, 9). The end-to-end training of the DAE (5b) successfully isolates 
each class except for cluster 4 (dark pink) and cluster 9 (light blue) which stay grouped 
together, although separable. The AE-CMp (5c) further contracts the cluster around 
the centroids found by the AE+KM, but fails to separate 4 and 9. Remark that even 
the best run of the AE-CMp does not to correctly split the data points. The centroids 
for 4 and 9 in Fig.  5b and c are in comparable positions: they align along the gap 
separating the true clusters. This suggests that the optimization of the AE-CMp did 
not move them much. This remark applies to the pre-trained baselines, as well. Lastly, 
the AE-CMr  successfully produces homogeneous groups (5f). Remark that the original 
entanglements of the pairs (3, 5) and (4, 9) are suggested by the trails between the cor-
responding clusters.

The previous observations summarize into two insights on the behavior of the 
AE-CM. If the AE-CM starts with an embedding associated to a low reconstruction 
loss for the DAE, the optimization contracts the clusters which yields higher ARI 

Fig. 6   Centroids mapped back to image space for AE+KM, IDECp , DKMr  , and AE-CMr  . The first row 
displays the average image of each class

Fig. 7   Linear interpolations between different centroids (plots with border) produced with the AE-CM
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scores. However, it is unable to move the centroids to reach another local optimum. 
Although the AE-CMr  separates (4,  9), it also produces clusters more spread than 
those of the AE-CMp . The improved performances of the latter over AE+KM indicates 
that the AE-CMr  would benefit from tighter groups.

5.3.6 � AE‑CM: sample generation and interpolation

Thanks to the reversible feature maps obtained by the DAE, both the AE-CM and its base-
lines (except DEC) are generative models. Figure 6 shows the decoding of the centroids of 
the best run of AE+KM (ARI=67.7), IDECp (ARI=77.2), DKMr (ARI=83.6) and AE-CMr 
(ARI=88.6). AE+KM’s and IDECp ’s centroids for the 4 and 9 both look like 9’s. With an 
ARI and an ACC larger than 80 and 90, respectively, DKMr and AE-CMr both clustered the 
data correctly and found correct centroids for each class. Both models produce clear images 
for each class, which align reasonably well with the washed-out average image of the respec-
tive classes (first row).

Being a generative model, the AE-CM can also be used to interpolate between classes. 
Figure 7 shows a path made of nine interpolations between the ten centroids of the AE-CMr . 
We observe smooth transitions between all the pairs, which indicate that the model learned a 
smooth manifold from noise (random initialization).

6 � Conclusion

We presented a novel clustering algorithm that is jointly optimized with the embedding of 
an autoencoder to allow for nonlinear and interpretable clusterings. We first as a key result 
showed that the objective function of an isotropic GMM can be turned into a loss function 
for autoencoders. The clustering module (CM), defined as the smallest resulting network, was 
shown to perform similarly to its underlying GMM in extensive empirical evaluations.

Importantly, we showed how the clustering module can be straightforwardly incorporated 
into deep autoencoders to allow for nonlinear clusterings. The resulting clustering network, 
the AE-CM, empirically outperformed existing centroid-based deep clustering architectures 
and performed on par with representative contemporary state-of-the-art deep clustering strat-
egies. Nevertheless, the AE-CM, and to a lesser extent of the clustering module itself, pre-
sented a greater volatility when trained from a randmly initialized network. We expect that we 
could improve on that point by involving an annealing strategy on the parameter, similarly to 
what is done in DKM and VIB-GMM.

A future line of work consist of extending the panel of deep architectures into which the 
clustering module can be nested. In order to improve performance on image data sets, espe-
cially, it is necessary to involve convolution. However, standard image-specific architectures 
are not structured as autoencoder. This raises the question of the robustness of our model with 
respect to the symmetry of the DAE, especially for applications where the computation of 
class representative is not a must.

From a theoretical point of view, we believe that the derivations that led to the neural inter-
pretation of Gaussian mixture models could benefit other mixture models such as the von 
Mises-Fisher mixture models  (Hasnat et al., 2017) or hidden Markov models (HMM). The 
case of Gaussian-HMM seems especially promising as it allows to bridge with Recurrent net-
works (Salaün et al., 2019).
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Table 9   The clustering performance ( ×100 ) of different models on the selected datasets

Model Breast Ecoli Glass

ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​

iGMMr 40.0 51.4 48.3 50.6 64.2 64 21.8 41.7 44.9

DECr 77.8 66.7 86.7 48.8 49.5 63.6 22.8 31.9 47.5
IDECr 50.7 44.6 68.6 35.2 41.4 55.2 17.9 30.4 42.3
DCNr 72.7 57.2 79.7 45.7 49.9 63.4 20.2 32.9 43.1
DKMr 83.1 73.2 95.6 51.2 61.5 64.3 23.2 37.9 49.3
CMr 35.9 48.4 47.5 66.7 65.6 76.0 27.1 43.2 49.1
AE-CMr 72.9 58.0 72.8 72.4 68.1 76.7 37.8 47.3 59.8

Model Iris Wine Yeast

ARI NMI ACC​ ARI NMI ACC​ ARI NMI ACC​

iGMMr 62.0 65.9 83.3 76.9 81.3 83.7 15.7 28.8 38.8

DECr 37.5 44.3 61.6 23.8 28.7 55.9 9.1 16.9 31.6
IDECr 26.6 33.4 60.0 24.8 28.3 57.8 7.6 15.9 31.1
DCNr 45.3 53.2 67.7 41.3 46.7 65.7 6.8 15.4 37.4
DKMr 58.4 65.9 77.2 72.4 70.6 90.2 17.5 29.6 42.4
CMr 59.1 63.4 81.5 82.0 82.2 89.6 15.5 28.5 38.0
AE-CMr 78.9 85.0 94.4 86.0 85.4 93.0 17.7 27.1 46.6

Fig. 8   Clustering of six toy datasets by iGMM, CM and AE-CM
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Appendix 1: additional experiments

UCI datasets

In this section, we report clustering performance of iGMM, DEC, IDEC, DCN and DKM as 
well as our models CM and AE-CM on a selection of UCI datasets. We consider here only 
random initialization. Deep clustering models share the same architecture: d − 2 × k − d , 
where d is the dimension of the input and k the number of clusters. The k-means cluster-
ings of DEC and IDEC are updated every 5 epochs and � = 0.1 . The � hyperparameter of 
DCN and DKM are set to 1 and 0.001, respectively. For CM and AE-CM the three hyper-
parameters (�, �, �) were leaned using Bayesian optimization. We report average ARI, NMI 
and ACC over 10 runs (Table 9).

Scikit‑learn benchmark

Figure 8 reports clusterings of the scikit-learn toy datasets5. We compare here, iGMM, CM 
and AE-CM. The CM is optimized using SGD while the AE-CM relies on Adam. Train-
ing are stopped if the difference between the clusterings of two successive iterations are 
difference by less that 0.1% . The models are run 10 times for up to 100 epochs with a fixed 
batch size of 20 instances. The average run time is shown in the lower right corner of each 
plot (Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz). The parameters for each dataset are 
given in Table 10.

The standard way to split the two circles and the two moons datasets is to use a polyno-
mial kernel of degree 2 and at least 3 respectively.

To highlight the relationship between embedding and feature maps, we choose for these 
datasets specific architectures of the deep autoencoder of AE-CM. For the two moons data-
set, we want the AE-CM to learn an embedding function approximating a polynomial of 
degree at least. Therefore, we use 3 layers with 20 units followed by a layers with a single 
unit. The decoder is the mirror of the encoder. For the two circles dataset, the encoder con-
sists of a quadratic layer, i.e.

(x1, x2) ↦ (1, x1, x2, x
2
1
, x1x2, x

2
2
, x2x1),

Table 10   Hyper-parameters used 
for clustering the toy datasets

Dataset � � � Encoder Archi.

Moons 11 100 0.001 2-20-20-20-1
Circles 11 0.001 0.001 2-quad-3
Varied 11 100 0.001 2-3
Aniso. 11 1 0.001 2-3
Blobs 11 1 0.001 2-3
No structure 0.1 1 0.001 2-3

5  https://​scikit-​learn.​org/​stable/​auto_​examp​les/​clust​er/​plot_​clust​er_​compa​rison.​html.

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
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followed by a dense layer with a dimension 3 output. That way, the function associated to 
the encoder is a feature for a polynomial kernel of degree 2. The training just has to find the 
proper weights of the quadratic function. As for the decoder, it consists of a single layer. 
The AE-CM successfully clustered the two circles and two moons dataset, suggesting that 
it indeed learned embedding functions associated to polynomial kernels of degree 2 and at 
least 3, respectively.

Finally, the last dataset consisting of a square filled with a single class, we chose an � 
lower than 1 for both CM and AE-CM. Such a setting, informs the model that the three 
classes will be very imbalanced. both models reacted differently. Indeed, only AE-CM was 
able to perfectly assign all the points to a single cluster.

Appendix 2: supplementary materials related to the clustering module

CM: hyper‑parameters

The clustering module depends on two hyper-parameters: the size of the mini-batches and 
the concentration of the Dirichlet prior. To visualize their influence on the clustering per-
formance, we trained a CM on Pendigit with various sizes of batch and concentrations. 

Fig. 9   Clustering performance (ARI) for different combinations of batch-size, concentration and initializa-
tion scheme. Black dots indicate average ARI greater than the ones reported in Table 1

Fig. 10   Clustering performance (ARI) for different combinations of batch-size, concentration and prior dis-
tribution. Black dots indicate average ARI greater than the ones reported in Table 1
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Figure  9 shows the variation of the final ARI score for both a random (left) and a 
k-means++ initialization (right). Both axes’ scales are logarithmic: exponential base for 
the x-axis and base 10 for the y-axis. Each combination is run once. The ARI of each dot 
is the average of the nine neighboring combinations. Black dots indicate an average ARI 
greater than the ones reported in Table 1.

There is a lower bound on � under which the optimization of a randomly initialized 
model underperforms or fails. The k-means++ initialization removes this border and 
spreads out the well-performing area. The distribution in both settings means that the 
hyper-parameters can be tuned by fitting a bi-variate Gaussian distribution.

CM: asymmetric prior

So far we considered only symmetric Dirichlet priors ( � = �1K , � ∈ ℝ
+ ) regardless of 

the imbalance between the labels. Here, we repeat the previous experiment using the true 
labels distribution as the prior, i.e. � = �f  where f⟨fk⟩K ∈ �

K is the frequency of each 
label. In terms of implementation, E4 is computed by sorting both � and �i . We evaluate 
results on the 10 × 73 k and Pendigit datasets, which have unbalance and balanced classes, 
respectively. We consider here only random initializations. Again, black dots indicate an 
average ARI greater than the ones reported in Table 1.

Figure 10b contains more black dots and a larger red area compared to 10a. The changes 
are greater than between Figs. 10c and 9b. This discrepancy between the datasets illustrates 
that unbalanced ones benefit more from a custom prior. However, a higher concentration is 
needed to enforce the distribution: the lower bound on � is higher in Fig. 10b and c than in 
10a and 9a, respectively. Using the true class distribution, especially if the data is unbal-
anced, does ease the hyper-parameter selection. Nevertheless, such an information is not 
always known a priori.

CM: merging clusters with E
3

We claimed in Sect. 3.2 that E3 favors the merging of clusters. To illustrate this phenom-
enon, we train CMr on the 5 Gaussians dataset with twice the number of true clusters (i.e., 
K = 10 ). We compare three variants of CM’s loss function: without E3 , with E3 and with E3 
multiplied by 1.5. The final centroids and clustering are depicted in Fig. 11. For legibility, 
overlapping centroids are slightly shifted using a Gaussian noise.

Fig. 11   Final positions of the centroids depending on the importance of E
3
 in the loss of the clustering 

module
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A vanilla CM (Fig. 11b) correctly positions five pairs of centroids on top of the true cluster 
centroids. Without E3 (Fig. 11a), the model fails to merge the clusters properly. While five 
centroids are close to each of the true cluster, the five remaining are gathered around 0. Con-
versely, if E3 is weighted stronger (Fig. 11c), the model becomes so prone to merge clusters 
that it partitions the left cloud using only two groups of centroids.

CM: clustering performance

Table 11 contains the full clustering results for CM, including standard deviation and the best 
run.

CM: empirical setting

For the experiments reported in Sect. 5.2, the clustering module is trained over 150 epochs 
using the Adam optimizer (learning rate=0.001). The concentration � and batch-size B used 
for each dataset are reported in Table 12. The hyper-parameters were optimized using Bayes-
ian optimization over 2000 iterations.

Table 12   Hyper-parameters used for the experiments in Sect. 5.2

MNIST fMNIST USPS CIFAR10 R10K 20News 10×73k Pendigit

� 177 80 40 164 10 11 1000 13
B 111 35 150 350 400 85 500 80

Fig. 12   Clustering performance (ARI) of AE-CM on MNIST for different values of � and � and initializa-
tion scheme
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Appendix 3: supplementary materials for AE‑CM

AE‑CM: hyper‑parameters

Besides the architecture of the DAE, AE-CM has two hyper-parameters more than CM: � 
weighting the reconstruction of the DAE and the Lagrange coefficient � enforcing the ortho-
normality of the centroids. To visualize their influence on the clustering performance, a 
AE-CM is trained on MNIST with various values of � and � . Each combination is repeated 
five times. Note that when � = 0 the setting is equivalent to training only the encoder of the 
DAE (akin to DEC). Also, if � = 0 the orthogonality constraint is omitted. Figure  12 rep-
resents the average ARI scores for each combination and both initialization schemes as a 
heat-map.

With a random initialization (Fig. 12a), if both � and � are not large enough, the clustering 
fails, excepted when � = 1 . In that case, the model performs well for every value of � , even 
for � = 0 , i.e., without the orthonormality constraint. Conversely, the AE-CMr always fails 
if trained without the reconstruction of the DAE, ( � = 0 ) . As the order of magnitude of both 
parameters increases, the performances worsen.

The distribution of AE-CMp (Fig. 12b) presents similarities with the previous one. Over-
all the average performances are better for each combination. When � is very small, the ARI 
exceeds 0.5. The performance also decrease as � and � become larger. Most noticeable, the 
band around � = 1 is still there, but it is thicker. This is in line with the similar analysis on CM 
(Sect. 1): Pre-trained models are less sensitive to hyperparameters.

Table 13   Hyper-parameters used to train AE-CM for the experiments in Sect. 5.3

MNIST fMNIST USPS CIFAR10 R10K 20News 10×73k Pendigit

� 230 13 20 64 2 10 7 13
� 5 47 0.5 1 1 232 15 0.5
� 1 1 1 1 1 1 1 1
B 500 175 256 256 256 300 7 100
p 10 10 10 10 100 100 10 10

Table 14   Hyper-parameters used to train the baselines for the experiments in Sect. 5.3

MNIST fMNIST USPS CIFAR10 R10K 20News 10×73k Pendigit

u 140 140 30 140 20 20 20 20
� 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
�r 0.1 0.01 0.01 0.01 0.01 10−4 10−4 10−4

�p 1.0 0.01 0.1 0.1 1.0 0.01 10−4 10−4

B 256 256 256 256 256 256 256 256
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AE‑CM: empirical setting

For the experiments reported in Sect.  5.3, AE-CM is trained over 150 epochs using the 
Adam optimizer (learning rate=0.001). Each layer of the DAE is activated with a leaky
-ReLU with a slope of 0.2, except for the last one of the encoder and of the decoder. 
AE-CM depends on four hyper-parameters: the weight 𝛽 > 0 , the concentration � ∈ �

K , 
the Lagrange multiplier 𝜆 > 0 and the size of the batches B ∈ ℕ

∗ . The four hyper-param-
eters plus the dimension of the feature space, p; were optimized using Bayesian optimiza-
tion over 2000 iterations. The selected values are reported in Table 13.

The same architecture is used for the baselines, except for DKM where the activation 
are all ReLU . DEC, IDEC and DCN update their clustering every u iterations, IDEC and 
DCN rely on a hyper-parameter � and DKM on a � . Regarding DKM, the annealing pro-
cess of the softmax parameter is updated every 5 epochs. We report in Tables 13 and 14 the 
values used for each dataset. 

AE‑CM: clustering performance

Table 15 contains the full clustering results for AE-CM, including standard deviation and 
the best run.
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