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Editorial on the Research Topic

Machine Learning and Data Mining in Materials Science

The development of new materials, incorporation of new functionalities, and even the
description of well-studied materials strongly depends on the capability of individuals to
deduce complex structure-property relationships. A significant challenge in this field remains
the “curse of dimensionality”. Even for the characterization of moderately complex materials,
often a considerable number of parameters is required to characterize their composition and
microstructure (or also processing conditions) uniquely. Modeling of materials is thus facing
the challenge of high-dimensional parameter spaces, where numerous parameter combinations
have to be sampled and studied thoroughly. Relying thereby on experiments is typically
prohibitively expensive, given the often high-dimensional parameter space of interest. Thus, the
combination of experimental and computational approaches is receiving increasing attention.
The complex interdependencies in the resulting data sets can be studied using machine-learning
approaches. Artificial neural networks and data-driven approaches can significantly help to
identify, approximate, and visualize structure-property relationships of interest. This way, they can
accelerate our understanding and effective utilization of complex hierarchical materials.

This Research Topic is a compilation of contributions on current ideas and novel concepts for
the advancement of machine learning, data mining, and data driven-approaches in the context of
the design of materials and materials processing. This includes general methods as well as their
application to decoding the complex relationships along the chain composition—processing—
structure—mechanical properties.

The review article by Bock et al. provides an overview on the state of art about machine learning
and statistical learning approaches in the field of continuum materials mechanics. Furthermore,
works on experiment- and simulation-based data mining in combination with machine leaning
tools are presented. The reviewed papers are categorized as descriptive, predictive, or prescriptive
depending on whether they aim at identification, prediction, or even optimization of essential
characteristics. The potential of utilizing machine learning in materials science to empower
significant acceleration of knowledge generation is highlighted. The other review article within
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this collection by Talapatra et al. discusses the need and
challenges of optimal experimental setups as a key factor for
accelerating the discovery of materials. The authors review the
most important challenges and opportunities connected with the
concept of optimal experiment design and present successful
examples that have led to materials discovery via this concept.

Advances of machine learning and data mining methods are
addressed in particular in three articles of this special issue.
Fritzen et al. developed a multi-fidelity surrogate model allowing
for an adaptive on-the-fly switching between different surrogate
models for a concurrent two-scale simulation. The first surrogate
model is based on reduced order modeling, where the second one
represents an artificial neural network (ANN). The methodology
provides a suitable basis for the generalization of the applied
machine learning techniques for different applications. Aydin
et al. show how the bottleneck of computational data generation
can be widened by an effective combination of simulations with
different accuracy and computational cost. A cheap low-fidelity
computational model is used to start the training of the ANN
and then gradually switches to higher-fidelity training data as the
training of the ANN progresses. This multi-fidelity strategy can
reduce the total computational cost by a half up to one order of
magnitude. González et al. emphasize how to enhance suitable
physical models by available experimental data. Rather than
substituting physical models by data, the authors are using the
data to correct and enhance the physical law/model of interest,
ensuring thermodynamic consistency. Rather than creating a
purely data-driven model, the proposed technique represents an
appealing alternative for machine learning of models from data.

Characteristics of the lower scales often significantly influence
or dominate the macroscopic behavior of materials, making an
appropriate characterization of the lower scales indispensable.
Unfortunately, common (crystal) structure identification
techniques can often not be applied to describe the structure
of individual atoms in grain boundaries (GBs) sufficiently. To
address this problem, Snow et al. used a form of Common
Neighbor Analysis for the identification and characterization
of arbitrary atomic structures found around GBs. The resulting
structure descriptors are used as input to machine learning
algorithms, here PCAwith linear regression, for the development
of atomic structure-property models for GBs. In the same spirit,
Homer et al. developed a new structural representation, called the
scattering transform, for characterization of GBs. This approach
uses wavelet-based convolutional neural networks to characterize
grain boundaries. The learning results are compared to a SOAP
(smooth overlap of atomic positions) based representation,
which reveals some benefits on the scattering transform,
e.g., learning well on larger datasets and providing physically
interpretable information. At the microscale, Steinberger et al.
used a machine learning based approach for classification
of coarse-grained dislocation microstructures. As potential
machine learning features, the dislocation microstructure
is described via different dislocation density field variables.
It is shown that the accuracy of machine learning models
varies with different sets of microstructure features and spatial
discretization. This can also be used as an indicator for testing
the ability of a coarse-grained model to capture the underlying
mechanisms accurately. At the macroscale, Furat et al. present

various applications for segmentation of tomographic imaging
data by combining machine learning methods and conventional
image processing techniques. They demonstrate the applicability
of their approach using the example of grain-wise segmentation
of time-resolved CT data obtained in between Ostwald ripening
steps of an AlCu specimen. Richert et al. investigated algorithms
used for the measurement of complex 3D microstructures with
respect to over- and underestimation of the thickness of curved
features, which can lead to a significant error in the prediction
of mechanical properties. Here, artificial neural networks are
applied for reconstruction of the true geometry from the image
processing data within voxel resolution.

In terms of materials modeling along the process-property-
structure-performance chain, Würger et al. successfully used a
combination of experiments, machine learning, data mining,
density functional theory, and molecular dynamic calculations
to determine property-structure relationships in magnesium
alloys with respect to corrosion. Corrosion inhibition properties
of still untested molecules are estimated and a relationship
between corrosion inhibition efficiency and corresponding
molecular structure of magnesium corrosion inhibitors is
established. Castillo and Kalidindi present a two-step Bayesian
framework for the estimation of the intrinsic single crystal
elastic stiffness parameters from the measurements of spherical
indentation stress-strain responses in multiple individual grains
of a polycrystalline sample, whose crystal lattice orientations
have been measured using electron back-scattered diffraction
technique. It is shown that the introduction of a Bayesian
framework can greatly reduce the number of simulations
necessary to establish this function. The novel framework is
presented and demonstrated for a cubic polycrystalline Fe-3%Si
sample and a hexagonal polycrystalline pure titanium sample.
In the approach by Reimann et al., the macroscopic material
behavior is described via a trained machine learning algorithm
based on micromechanical simulations, i.e., uniaxial loading of
representative volume elements of the microstructure of interest.
In this regard, the trained algorithm can be interpreted as a
macroscopic constitutive relation. The approach is illustrated for
damage modeling as well as microstructure design that lead to
targeted mechanical properties.

Menon et al. present a general hierarchical machine learning
(HML) model for predicting the stress-at-break, strain-at-break,
and Tan δ for thermoplastic and thermoset polyurethanes.
The algorithm was trained on a library of 18 polymers. HML
reduces data requirements through robust embedding of domain
knowledge and surrogate data in a middle layer that bridges
input variables (composition) and output responses (mechanical
properties). The HML predictions are shown to be more
accurate than those from a random forest model directly relating
composition and properties, suggesting that embedding domain
knowledge provides significant advantages in predicting the
properties of complex material systems based on small datasets.
Huber addresses a number of fundamental questions regarding
the topological description of materials characterized by a
highly porous three-dimensional structure. Via data mining, the
interdependencies of topological parameters and relationships
between topological parameters with mechanical properties are
discovered. The determination of the average coordination
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number turned out to be a difficult problem, which is solved
by artificial neural networks by reconstructing the information
on low-coordinated junctions that are not detectable from a
common structure analysis.

The reviews and original articles compiled in this Research
Topic give a taste of the potential of coupling approaches
from materials science, modeling, and simulation with data
mining and machine learning. This offers exciting perspectives
for solving challenging problems, such as decoding and
computational modeling of complex structure-process-property
relationships, replacement of computationally demanding
submodels in multiscale simulations, or classification and
interpretation of imaging data.
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