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A B S T R A C T

The diffusion process in multicomponent alloys has a significant influence on the evolution of the micro-
structure. The Calphad approach is a powerful method for describing the equilibrium state as well as the kinetics
of non-equilibrium systems via the Gibbs energy. In this work, the principles of multicomponent diffusion theory
are considered intensively, and an equation for the fluxes in the case of substitutional-interstitial diffusion is
given for implementation. Additionally, the calculation of mobility matrices and thermodynamic factors is ad-
dressed. As an application case, substitutional diffusion is implemented in OpenCalphad and is used for calcu-
lating the growth rate for spherical precipitates from a supersaturated aluminum matrix. The growth rate has
been integrated into the Kampmann–Wagner numerical model, which describes nucleation, growth, and coar-
sening for spherical precipitates. A AlMgZnCu alloy is considered, which has great significance in the field of
materials processing.

1. Introduction

The diffusion process in multicomponent alloys has a considerable
influence on microstructure evolution and the mechanical properties
resulting from it. In the development of microstructure simulation
methods, the Calphad approach is a key method for describing the
Gibbs energy and its derived quantities. In general, the phases of the
Calphad method are described using solution thermodynamics. The
thermodynamic description of the majority of phases is defined by the
compound-energy formalism introduced by Sundman and Agren [20].
For a succinct overview of this model, refer to Hillert [11].

In terms of non-equilibrium thermodynamics, the driving force for
the diffusion process in a single phase is the minimization of the Gibbs
free energy. Depending on the molar Gibbs energy, the favorable en-
ergetic state might be achieved by mixing or decomposing atoms.
Diffusion in a single phase is typically described by a kinetic equation,
representing the flux between lattice planes, and a continuity equation
for the conservation of mass. The modeling of kinetic equations has
been influenced significantly by the experiment of Kirkendall [13] and
the analysis of this phenomenon by Darken [6], which proved that
substitutional elements diffuse via a vacancy-exchange mechanism. The
important assumptions of Darken’s analysis are as follows: (i) a one-
dimensional diffusion problem; (ii) conservation of mass; (iii) vacancies
are always in thermodynamic equilibrium [3]. However, the assump-
tion of thermodynamic equilibrium should be considered with some

caution, because sources and sinks for vacancies are not always directly
available in the bulk material.

A multicomponent analysis for modeling diffusion has been pro-
posed by Agren [1] using the compound-energy formalism. Andersson
and Agren [2] proposed a phenomenological theory by introducing an
optimization approach based on a Redlicher–Kister ansatz for the mo-
bility. This formalism is used in numerous studies for the assessment of
mobility databases of various alloy systems such as alumi-
num–magnesium–zinc [28], iron–manganese–silicon [30], as well as
high–entropy alloys [10]. Although the model of Andersson and Agren
[2] is often used, it must be noted that the model is not directly ap-
plicable to three-dimensional diffusion problems, as shown by Svoboda
et al. [25] and Boettinger et al. [4]. Svoboda et al. [25] introduced a
diffusion theory based on the thermodynamic extremal principle con-
sidering the explicit treatment of vacancies. This approach can be used
to consider a complex three-dimensional deformation behavior re-
sulting from mechanical coupling. The explicit treatment of vacancies
offers the possibility of taking the derivation from equilibrium directly
into account by considering the generation and annihilation mechan-
isms in the bulk material, as discussed by Fischer et al. [9]. The theory
has been recently reviewed by Fischer and Svoboda [8].

In the last decade, considerable efforts have been made by several
working groups to integrate the Calphad method in models for the
description of solid-state phase transformations. For the phase field
method, Zhang et al. [29] recently proposed a model consistent with
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the compound-energy formalism. Chen et al. [5] used sharp interface
models for the growth and coarsening of spherical precipitates using an
ad hoc generalization of the steady-state approximation of the diffusion
field. Philippe and Voorhees [18] obtained growth rates by using the
steady-state approximation and then used linearization to obtain the
growth equations. Kim and Voorhees [12] has extended this work to
spheroidal particles in multicomponent alloys. All these models need
the full diffusion matrix or at least related quantities for practical ap-
plication. Here the Calphad method serves as a basis for describing the
fluxes of the diffusion process as concentration and temperature de-
pendent via mobilities and the Gibbs energy. In the present work, the
kinematic description of Svoboda et al. [23] is used to motivate the
transformation formalism proposed by Agren [1]. Thereafter, the model
developed by Andersson and Agren [2] is reformulated in terms of
diffusion potentials. The reformulation of diffusion potentials allows for
a transparent calculation of diffusion coefficients in the open thermo-
dynamic software OpenCalphad[22,21].

The derived formulas have been implemented in OpenCalphad to
extend its capabilities to the calculation of mobility matrices, diffusion
potentials, as well as the diffusion matrix. As an application of these
subroutines, they have been incorporated in a Kampmann–Wagner
numerical model describing solid-state precipitation of a quaternary
AlCuMgZn alloy.

2. Multicomponent diffusion

In diffusion theory, there is a distinction between the lattice-fixed
frame of reference and the volume-fixed frame of reference. Svoboda
et al. [25] clarified the definition by using concepts from continuum
mechanics. The lattice-fixed frame of reference corresponds to the ac-
tual configuration, whereas the laboratory-fixed frame of reference
corresponds to the reference configuration. In the following, the treat-
ment of Svoboda et al. [23] is summarized, and additionally, their
notation is slightly adjusted to be consistent with the nomenclature
commonly used in the compound-energy formalism. First, a relation for
the total flux Jk, resulting from the diffusive flux of elements jk relative
to the lattice in the actual configuration and the Kirkendall velocity, is
derived. Then the theory outlined by Svoboda et al. [23] is used to
clarify the underlying assumptions of the transformation formalism
utilized by Andersson and Agren [2].

2.1. Phase structure and kinematic description

In diffusion theory, there is a general distinction between substitu-
tional and interstitial diffusion. According to Hillert [11], an interstitial
sublattice is characterized by a low-site fraction of atoms and a high-site
fraction of vacancies. The substitutional elements typically form the
crystal lattice, whereas the interstitial elements fill the voids within the
lattice. From this definition, it follows that the diffusion process for
interstitial elements is quite different from the diffusion process of
substitutional elements. For elements on an interstitial lattice, a jump to
an adjacent lattice site should be possible because the next lattice site is
empty. In contrast to the diffusion mechanism of interstitial elements,
elements on a substitutional sublattice diffuse via a vacancy-exchange
mechanism. The jump of an atom to the next lattice site is thus only
possible if a vacancy is available in the neighborhood of the element.
Since the fraction of vacant lattice sites is low, the diffusion process for
substitutional elements is significantly slower than for interstitial ele-
ments.

In this treatment, a phase consisting of a substitutional and an in-
terstitial sublattice is considered. This assumption leads to the following
phase structure: …S S S( , , , )n a0 1 …+ +I I Va( , , , )n n m b1 for a phase comprising
substitutional elements S k n, [0, ]k as well as interstitial elements

+ +I k n n m, [ 1, ]k . Here S0 denotes the vacancies belonging to the
substitutional sublattice. Va describes the vacancies of the interstitial
sublattice. The stoichiometric coefficients belonging to their respective

sublattices are denoted by a and b. In the following, a volume element
containing N moles per formula unit of phase is considered. The
index is not considered in the following discussion because diffusion
considers only a single phase. For reasons of clarity, the site fractions of
the substitutional sublattice are denoted by y k n, [0, ]k

1 and inter-
stitial elements are denoted by + +y k n n m, [ 1, ]k

2 . As usual, the site
fractions are restricted by

= + =
= = +

+
y y y1 and 1.

i

n

i
i n

n m

i Va
0

1

1

2 2

(2.1)

Based on the compound-energy formalism, the number of moles Nk
contained in the volume element is calculated by

=
= + +

N a y k n
N b y k n n m

for [1, ];
for [ 1, ].

k k

k k

1

2

N

N (2.2)

The mole fractions in the volume element are calculated by

=

= + +

+

+

x k n

x k n n m

for [1, ] or

for [ 1, ].

k
a y

a y b y

k
b y

a y b y

[1 ] [1 ]

[1 ] [1 ]

k

Va Va

k

Va Va

1

1 2

2

1 2 (2.3)

The total number of lattice sites is

= +N a b[ ].N (2.4)

The number of moles N contained in the reference volume is a non-
conservative variable because vacancies can be generated or annihi-
lated at vacancy sources or sinks. The generation or annihilation in the
considered volume and the diffusion process leads to volumetric
changes. The volume of the reference element W is described by using
partial molar volumes k, which do not depend on the composition by
assumption

=
=

+

W N .
k

n m

k k
0 (2.5)

The volume related to a single mole of substitutional elements is
introduced by

= = = =
= =

W
N

N N a y a¯ with .
S

S
k

n

k
k

n

k
0 0

1N N
(2.6)

The previous definitions allow expressing the volume W of the re-
ference element via u-fractions, which has been introduced earlier by
Andersson and Agren [2]:

= =
=

+

u u N
N

¯ with .
k

n m

k k k
k

S0 (2.7)

In diffusion theory, it is helpful to use u-fractions under certain
assumptions. The conversion between fractions uk and site fractions yk
is followed by invoking Eqs. (2.2) and (2.6) into the definition of the u-
fraction given in Eq. (2.7):

=

= + +

u y k n

u y k n n m Va

for [0, ];

for {[ 1, ], }.
k k

k
b
a k

1

2
(2.8)

The definition of the partial molar volume for vacancies 0 on the
substitutional sublattice is not trivial. Here the formula developed by
Svoboda et al. [23] is used to ensure a consistent treatment of volume
changes by working with

=
=

u
u

¯
1

.
k

n
k k

0
1 0 (2.9)

The volume of the volume element W is then described by

= +
=

+

W u N¯ .
k

n m

k k0 0
1 (2.10)
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Invoking Eq. (2.9) into Eq. (2.7) reveals for the molar volume ¯ ,
with reference to a single mole of substitutional elements, the following
expression:

= + = + +
=

+

= = = +

+
u u u u

u
u u¯ ¯

1k

n m

k k
k

n
k k

k

n

k k
k n

n m

k k0 0
1

0
1 0 1 1

(2.11)

= + +

= +

= +

+

= +

+

u
u

u u

u
u u

1
1

1
1

.

k

n

k k
n

n m

k k

k

n

k k
n

n m

k k

0

0 1 1

0 1 1 (2.12)

The volume related to a single mole of substitutional elements can
be set in relation to the molar volume. This can be achieved by con-
sidering the definition of the molar volume and using the definition of
the u-fraction and Eq. (2.12)

= = ==
+

=
+

=
+

=
+

=
+

N
N

u
u u

¯
.k

n m
k k

k
n m

k

k
n m

k k

k
n m

k k
n m

k

0

1

0

1 1 (2.13)

It follows from this equation that the molar volume is generally not
a constant and depends on the fractions for the vacancies on each
sublattice. Eqs. (2.1), (2.3),(2.8), and (2.13) can be used to show that
the following relationship holds for the concentration ck

= =c x u
¯ .k

k k
(2.14)

Following the introduction of the essential composition variables, it
is necessary to consider the vacancy-exchange mechanism. If the rate of
jumps of the elements between the lattice planes is not identical, this
introduces a movement of the substitutional lattice sites. The net flux of
elements across a lattice plane must be balanced by vacancies moving
in the opposite direction. This net flux of elements leads to a local
movement of the lattice; it is denoted by velocity v and gets its name
from its discoverer Ernest Kirkendall—the Kirkendall effect.

In the following, it is shown how an expression for the Kirkendall
velocity v can be derived. According to standard continuum mechanics
[7], the rate of change in an arbitrary volume element is related to the
divergence of the velocity v of that volume element by

=v W
W

div( ) . (2.15)

The right-hand side of Eq. (2.15) is further analyzed using the
product rule

= + = +W
W

N N
N

N
N

¯ ¯
¯

¯
¯ .S S

S

S

S (2.16)

Here it is necessary to derive a relationship for the rate of ¯ . This is
achieved by analyzing flux balances for each individual element. To this
end, a flux balance at the boundary V of the volume element is con-
sidered:

= =
= … +

N j m ds j dv
k n m

· div( ) for
1, , .

k V k V k

(2.17)

Here the divergence theorem has been applied. According to
Svoboda et al. [25,23], local averaging and using Eq. (2.6) lead to

= = … +N
N

j k n m¯ div( ) for 1, , .k

S
k (2.18)

Owing to the Kirkendall effect, substitutional atoms diffuse by a
vacancy-exchange mechanism, and the flux of elements is balanced by
the flux of vacancies:

=
=

j j .
k

n

k
1

0
(2.19)

The balance equation for the vacancies follows from Eq. (2.18) by a
summation of overall substitutional elements and usage of Eq. (2.19)

= +N
N

j N
N

¯ div( ) .
S

S

S

0
0 (2.20)

Recalling the assumption that the partial molar volumes of the in-
dividual components are constant, and using the quotient rule for de-
termining the rate of ¯ from Eq. (2.12), we get:

= + +
= = +

+u u u u
u

u¯ [1 ]
[1 ]

.
k

n

k
k k

k n

n m

k k
1

0 0

0
2

1 (2.21)

As shown by Svoboda et al. [23], the resulting u-fraction rates uk in
Eq. (2.21) are obtained by a differentiation of Eq. (2.8) in combination
with Eq. (2.18)

= = = +u N
N

N N
N

j u N
N

k n m¯ div( ) for [1, ].k
k

S

k S

S
k k

S

S
2 (2.22)

The rate of the u-fraction for the vacancies is obtained by

= = +u N
N

N N
N

j N
N

u¯ div( ) (1 ).
S

S

S

S

S
0

0 0
2 0 0

(2.23)

If the creation or annihilation of vacancies is assumed to be in-
finitely fast, then the concentration of vacancies is identical to the
equilibrium concentration, and u0 equals zero. Svoboda et al. [23] de-
duced from Eq. (2.23) the following relation if creation or annihilation
of vacancies is infinitely fast:

=N
N u

j
¯

[1 ]
div( ).S

S
eq
0

0 (2.24)

Svoboda et al. [23] derived the following equation for the right-
hand side of Eq. (2.15) by combining Eqs. (2.22) and (2.23) with Eq.
(2.21). The obtained expression for ¯ is set into Eq. (2.16) and results
after the collection of terms in

= +
= = +

+W
W

N
N

j
u

j
¯
¯

( ¯ )div( )
1

div( ) .S

S k

n
k k

k n

n m

k k
0

1

0

0 1 (2.25)

Instead of using u-fractions, it is common to describe the evolution
equations in terms of concentrations. As shown by Fischer and Svoboda
[8], Eq. (2.22) can be reformulated in terms of concentrations by re-
placing =u c ¯k k in accordance with Eq. (2.14). After using the product
rule, rearranging, and dividing by ¯ , the following formula results from
Eqs. (2.22):

=c j N
N

cdiv( )
¯
¯ .k k

S

S
k

(2.26)

Using Eqs. (2.15) in combination with (2.16) leads to

=c j v cdiv( ) div( ) .k k k (2.27)

The rate of change in a concentration ck is a material derivative

= +Dc
Dt

c
t

v c· .k k
k (2.28)

Combining Eqs. (2.27) and (2.28) yields

= = +c
t

v c c v j j c v· div( ) div( ) div( ).k
k k k k k (2.29)

Hence, the total flux is a combination of the intrinsic fluxes and an
additional flux resulting from the Kirkendall effect:

= +J j c v .k k k (2.30)

An often-applied approximation is to assume that the u-fraction for
substitutional vacancies u0 can be neglected and the generation of va-
cancies is infinitely fast. This assumption is of great importance in
practice because the equilibrium u-fraction, or equivalently the site
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fraction of vacancies on the substitutional sublattice, is seldom de-
scribed explicitly because of its small magnitude. Invoking Eqs. (2.19)
and (2.24) into Eq. (2.25), and using the approximation that the equi-
librium u-fraction of vacancies is negligible: u 0eq

0 , lead to

=
=

+

v jdiv( ) div( ).
k

n m

k k
1 (2.31)

If the variation of concentrations is considered only in one dimen-
sion, the integration of Eq. (2.31) is simplified significantly to

=
=

+

v j
k

n m

k k
1 (2.32)

as pointed out by Svoboda et al. [23]. By combining Eqs. (2.14), (2.30),
and (2.32), the total flux is determined:

= + =
=

+

J j v c j x j .k k k k
k

i

n m

i i
1 (2.33)

The total flux given in Eq. (2.33) corresponds to the form used by
Agren [1]

= =
=

+

J L j L x, .k
i

n m

ik i ik ik k
i

1 (2.34)

In the following, it is assumed that the fraction of vacancies is
negligible and in local equilibrium.

2.2. Evolution equations

The multicomponent diffusion theory considered here is based on
Onsager’s force flux relation [16]. The driving forces for diffusion are
identified with the negative gradients of the chemical potentials µ

z
k

of component k, multiplied by phenomenological coefficients Lki and
resulting in the following formula for intrinsic fluxes:

=
=

+

j L
µ
z

.k
i

n m

ki
i

1 (2.35)

The coefficients Lki must be symmetric to fulfill Onsager’s re-
ciprocity relation. However, the chemical potentials used in Eq. (2.35)
are not independent as they are related via the Gibbs–Duhem relation:

=
=

+

x
µ
z

0.
i

n m

i
i

1 (2.36)

Agren [1] recommended a procedure for obtaining independent
driving forces for diffusion:

= =
=

+

=

+

j L
µ
z

µ
z

L x L, with .k
i

n m

ki
i r

ki
j

n m

ij i
j

kj
1 1

(2.37)

For an arbitrary substitutional element r belonging to the substation
sublattice, a combination of Eq. (2.34) and Eq.(2.37) yields

=

=

=

+

=

+

=

+

J L
µ
z

µ
z

L x x L

with

.

k
i

n m

ki
i i

r

r

ki
r

n m

j

n m

ir i
r

jk k
j

jr

1

1 1 (2.38)

In the following, based on Andersson and Agren [2], it is assumed
that all elements of the substitutional sublattice have the constant
partial molar volume S, i.e. =i S for all elements i n[1, ] when i
denotes the partial molar volume corresponding to mole fraction xi of
element i. Elements of the interstitial sublattice do not contribute to the
molar volume, hence = + +i n n m0, [ 1, ]i . By using this as-
sumption, the evaluation of Eq. (2.38) is simplified significantly.
Moreover, based on Eq. (2.14), it follows that

=

= + +

x u j n

x j n n m

for [1, ] or

0 for [ 1, ].

k k

k

j

j
(2.39)

Considering that element r is contained in the substitutional sub-
lattice, Eq. (2.38) is expanded for the flux to

= =
=

+

= = +

+
J L

z
µ µ L

z
µ µ L

µ
z

[ ] .k
i

n m

ki i
i

r
r

i

n

ki i r
i n

n m

ki
i

1 1 1

(2.40)

The fluxes of element k are now split according to substitutional and
interstitial elements. Andersson and Agren [2] used the following an-
satz for the flux in the lattice-fixed frame of reference:

=

= + +

j c M k n

j c y M k n n m

if [1, ] or

if [ 1, ]

k k k
µ
z

k k Va k
µ
z

2

k

k
(2.41)

using the mobility coefficients Mk. Based on this modeling approach,
the following cases are valid:

=
= + + =

L c M n L
c y M k n n m L

if k [1, ] or
if [ 1, ] else 0.

kk k k kk

k Va k kj (2.42)

An expansion of Eq. (2.38) facilitates the simplification of the
coefficients

= + +

+

= = = = +

+

= +

+

= = +

+

= +

+

L x x L [ ]

[ ] [ ]

ki
r

n

j

n

ir i
r

m
jk k

j

m
jr

r

n

j n

n m

r n

n m

j

n

r n

n m

j n

n m
1 1 1 1

1 1 1 1 (2.43)

= + +
= = = +

+

= +

+

u u u u L L[ ] .
j

n

r

n

jk ir jk i ir k k i jr
r n

n m

j n

n m

ir jk jr
1 1 1 1

(2.44)

The second as well as the third summation is zero due to the defi-
nition of Ljr based on Eq. (2.42). Therefore, the summation can be
simplified for the possible element combinations:

• if k n[1, ] and i n[1, ] and =k i

= +
=

L u L u L[1 2 ] ,kk k kk k
j

n

jj
2

1 (2.45)

• if k n[1, ] and i n[1, ] and k i

=
=

L u L u L u u L ,ki k ii i kk i k
j

n

jj
1 (2.46)

• if k n[1, ] and + +i n n m[ 1, ]

= +
=

L u L u u L ,ki i kk i k
j

n

jj
1 (2.47)

• if + +k n n m[ 1, ] and i n[1, ]

= +
=

L u L u u L ,ki k ii i k
j

n

jj
1 (2.48)

• if + +k n n m[ 1, ] and + +i n n m[ 1, ] and k i

=
=

L u u L ,ki i k
j

n

jj
1 (2.49)
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• if + +k n n m[ 1, ] and + +i n n m[ 1, ] and =k i

= +
=

L u u L L .ki i k
j

n

jj ii
1 (2.50)

Since it is usually not practical to directly evaluate the gradients of
chemical potentials, it is necessary to further manipulate Eq. (2.40). For
phases with sublattices, it is not always possible to directly calculate the
chemical potential for each component, but the partial Gibbs energies
of the end-members can always be determined. End-members denote
the limiting case where only one species is present in every sublattice.
As outlined in detail by Sundman et al. [22], the chemical potentials are
related to the partial Gibbs energy of the end-member. The possible
end-members form compounds with defined stoichiometry, and all
possible end-members can be determined by the permutation of the
species occurring on different sublattices. The partial Gibbs energy of
the end-member is generally determined for an end-member tuple I by

= +G G G
y

y G
y

.I M
s

M

i I
s

T P y s j
j
s M

j
s

T P y, , , ,j i k j (2.51)

Due to the considered phase structure, it is possible to evaluate the
chemical potentials of the substitutional and interstitial sublattices with
the same kind of formalism based on Eq. (2.51). The assumption that
vacancies are in a thermal equilibrium makes the following manipula-
tions possible for an end-member tuple k Va{ : }

= + = =G aµ bµ aµ µ µ
a

G G1 [ ].k Va k Va k k r k Va r Va:
1 1

: : (2.52)

Using Eq. (2.51) and Eq. (2.52) results in

=µ µ
a

G
y

G
y

k n r n1 for [1, ], [1, ].k r
M

k

M

r
1 1

(2.53)

For interstitial elements, similar manipulations give

= =

+ +

µ G G

s n k n n m

[ ]

for [1, ], [ 1, ].

k b s k s Va b
G
y

G
y

1
: :

1 M

k

M

Va
2 2

(2.54)

The application of the chain rule to Eq. (2.53) leads to

=
=z

µ µ
a

G
y y

G
y y

y
z

[ ] 1 .k r
j

n
M

j k

M

j r

j

1

2

1 1

2

1 1

1

(2.55)

Eq. (2.40) is transformed into a suitable form for computational
tasks by using Eqs. (2.53)–(2.55):

=

=

= = +

+

= =

= +

+

= +

+

J L µ µ L

L

L

[ ]

.

k
i

n

ki z i r
i n

n m

ki
µ
z

a
i

n

ki
j

n
G

y y
G

y y

y
z

b
i n

n m

ki
j n

n m
G

y y
G

y y

y
z

1

1 1

1

1

1 1

1

1 1

i

M

j i

M

j r

j

M

j i

M

j Va

j

2

2
1 1

2
1 1

1

2
2 2

2
2 2

2

(2.56)

In the next section, the flux is rewritten with regard to diffusion
constants for substitutional elements. Manipulations on the interstitial
sublattice can be performed accordingly.

2.3. Diffusion of a substitutional sublattice

If only substitutional elements form the phase, the second term of
Eq. (2.56) vanishes. Since it is common to eliminate the dependent site
fraction yr

1 by accounting for the restriction given in Eq. (2.1), the
following relation is obtained by

=

= +

= =
J

a
L

y
z

G
y y

G
y y

G
y y

G
y y

1 with

,

k
i

n

ki
j r

n

ij
j

ij
M

j i

M

r i

M

j r

M

r r

1 1\

1

2

1 1

2

1 1

2

1 1

2

1 1
(2.57)

where =j r1\ means summation of all substitutional elements except r.
The derivation of Eq. (2.57) is shown in detail in the Appendix. The
quantity ij corresponds to the Hessian of the molar free energy and is
also a key quantity for the recent sharp interface phase transformation
models, cf. Philippe and Voorhees [18] and Kim and Voorhees [12].
Diffusion coefficients for a substitutional alloy can be calculated by a
comparison with the relation for the fluxes given in Eq. (2.57):

=J
a

D
c
z

k r1 , ,k
j r

kj
r j

(2.58)

= =
= = =

J
a

L
z

µ µ
a

L
c
z

1 [ ] ,k
i

n

ki i r
i r

n

i r

n

ki ij
j

1

1 1

1\ 1\ (2.59)

=
=

D
a

L .kj
r

i r

n

ki ij
1\ (2.60)

Interestingly, Lki and ij are symmetric; however, this does not
imply that the diffusion matrix is symmetric. The first term is often
denoted as mobility matrix Lki and the second term is considered a
thermodynamic factor ij, e.g. [18,12]. The coefficients of the mobility
matrix, see also Eqs. (2.45)–(2.50), are calculated for the case =k i by

= +L x L x L[1 2 ] .kk k kk k
j

jj
2

(2.61)

If k i the coefficients are calculated by

=L x L x L x x L .ki k ii i kk i k
j

jj
(2.62)

The Lkk factor is defined by

= =L c M x M ,kk k k
k

k (2.63)

This shows that the diffusion does not depend on for substitu-
tional phases and reassembles the equations given by Agren [1]. The
description of the mobility coefficients is done according to Yao et al.
[28], using a frequency factor and activation energy i

= = +
>

M
R T R T

x Q x x Q x x1 exp with [ ] .i
gas

i

gas
i

p
p i

p

p q p
p q

k

k
i
p q

p q k,

(2.64)

Here, the exponent k determines the order of the Redlicher–Kister
polynomial. Rgas and T denote the gas constant and the temperature,
respectively. Qi

pare the coefficients of the Redlicher–Kister polynomial.
To sum up the previous discussion, to calculate the diffusion matrix, a
thermodynamic database is necessary to determine the thermodynamic
factor. Additionally, a diffusion database is necessary to obtain the
mobility matrix. In this work, a routine for the calculation of inter-
diffusion matrices has been implemented in OpenCalphad. The open
thermodynamic and diffusion databases from Matcalc for aluminum are
used to obtain the interdiffusion coefficients at 725 K for a ternary
aluminum–magnesium–zinc alloys. The numerical results are compared
with experimental results from Takahashi et al. [26] and plotted on a
Gibbs triangle in Fig. 1. The used diffusion database is based on the
assessment of Yao et al. [28]. As discussed by Yao et al. [28], the si-
mulated cross-diffusion coefficients are negative and significantly
smaller than the diagonal diffusion coefficients. Figs. 1 (b) and (c) show
negative cross-diffusion coefficients with more significant derivations
from the experiments. However, Yao et al. [28] noticed similar features
for the cross-diffusion coefficients and argued that the measurement of
cross-diffusion coefficients is a delicate topic.
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3. Solid-state precipitation

3.1. Sharp interface model

Sharp interface models are an important tool in material science for
describing solid-state phase transformations. Typically, sharp interface
models determine the growth rates for spherical or prolate ellipsoidal
precipitates in a matrix phase via semi-analytic approaches. Often a flux
balance is established between the matrix phase and the precipitate
phase. The equations from the previous section are used for de-
termining the diffusive fluxes in the matrix phase. The velocity of the
precipitate matrix interface v, which describes the growth or dissolution

rate of a precipitate in a matrix, is an important quantity in the
Kampmann–Wagner numerical model, which describes phase trans-
formations via a discrete particle-density distribution function.

In the following, the invariant field method as discussed by Philippe
and Voorhees [18] is used. In contrast to Philippe and Voorhees [18], in
this contribution the introduced linearization is avoided, and the dis-
cussion thus ends in a nonlinear system of equations. It should be noted
that this approach is closely related to the method proposed by Chen
et al. [5].

For reasons of completeness, a short derivation of the necessary
nonlinear equation system for obtaining the growth rate is discussed. In
the following, a stoichiometric spherical precipitate of phase with
radius R is considered in an infinite matrix phase , as shown in Fig. 2.
The concentrations of the precipitate and the matrix are denoted by ci
and ci , respectively. The far-field concentration of the matrix is de-
noted by ci

, . If the partial molar volumes for every element are as-
sumed to be similar, the flux balance at the precipitate–matrix interface
for each independent concentration cj must hold separately. The first
component is chosen arbitrarily as the dependent component. Philippe
and Voorhees [18] set up the following flux balance at the precipitate
matrix interface for a spherical precipitate by considering cross diffu-
sion.

= = …
=

=x x v D x
r

j n[ ] , 2, , .j j
k

n

jk
k

r R
2

1

(3.65)

In contrast to Philippe and Voorhees [18], the flux balance ac-
cording to Eq. (3.65) is written in terms of mole fractions xj. This is
because this quantity is more convenient to use in a Calphad frame-
work. The next step is the calculation of the concentration profile in the
matrix phase using the solution of the diffusion equation in spherical
coordinates. By applying the invariant field approximation, the

Fig. 1. Interdiffusion coefficients of the ternary aluminum–magnesium–zinc system at 725 K. The marked points are experimental determined diffusion constants
from Takahashi et al. [26]. The experimental values are given in 10 m /s14 2 .: (a) DMg Mg

Al
, . (b) DMg Zn

Al
, (c) DZn Mg

Al
, (d) DZn Zn

Al
, .

Fig. 2. Growth of a spherical precipitate in a supersaturated matrix [14].
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transient term of the diffusion equation is neglected. The application of
an eigenvalue–eigenvector decomposition as outlined by Vermolen
et al. [27] leads to the solution provided by Philippe and Voorhees [18]
for the mole fraction xj in phase :

= + = …x x x x R
r

j n[ ] 2, , .j j j j
, ,

(3.66)

The flux balance for the invariant field approximation results from
the combination of Eq. (3.65) and Eq. (3.66).

= = …
=

x x v
D x x

R
j n[ ]

[ ]
, 2, , .j j

k

n
jk k k

2

1 ,

(3.67)

Since a stoichiometric precipitate is assumed, there are n-1 equa-
tions for unknown n provided by Eq. (2.19). To close the system of
equations, an additional relation is necessary. This relation is obtained
by applying the local equilibrium assumption at the precipitate matrix
interface:

= + = …µ µ
R

i n, 2 , 1, , .i i
i

(3.68)

If particular stoichiometric precipitates are considered, then the
chemical potentials cannot be evaluated as the variation of the con-
centration is forbidden by definition. In this case, the relation between
the molar Gibbs energy Gm and the chemical potentials has to be used
for closing the non-linear system of equations:

= =G x µ x µ
R

2 .m
i

n

i i
i

n

i i
i

(3.69)

The definition of partial molar quantities facilitates the simplifica-
tion of Eq. (3.69). By using the molar volume for the -phase and the
interfacial energy , the following equation is derived for stoichio-
metric precipitates:

+ =G
R

x µ2 .m
i

n

i i (3.70)

The combination of Eqs. (3.67) and (3.70) is the Calphad-consistent
generalization of the commonly used solubility product formalism often
used in solid-state phase transformations, as outlined by Perez et al.
[17], among others. To use Eq. (3.67), the diffusion matrix has been
calculated as discussed in the previous section. The dependency of the
diffusion matrix has been accounted for by using the far-field con-
centration of the matrix phase.

3.2. Kampmann–Wagner model

The Kampmann–Wagner model describes the nucleation, growth,
and coarsening of a dispersion of spheres in a unit volume by a particle-
density distribution function f. The particle-density distribution func-
tion f obeys a continuity equation in the size space as shown by Ratke
and Voorhees [19]:

+ =f
t R

fv j( ) . (3.71)

In this case, v is the growth or dissolution rate of a spherical particle,
as determined in the previous subsection, and j is the density dis-
tribution of nucleated particles. The number of particles in the unit
volume nV , mean radius R , and the volume fraction fp are derived from
the particle-density distribution function by the evaluation of the zero,
first, and third moment, respectively:

= = =n fdR r
RfdR

n
f R fdR, ¯

,
, 4

3
.V

V
p0

0
0

3
(3.72)

The mole fractions in the far field of the matrix xi
, are calculated

from the mean mole fractions of the alloy xi
0 and the volume fraction fp

by

=x
x f x

f1
.i

i p i

p

,
0

(3.73)

The source term is calculated by employing a multicomponent ex-
tension of classic nucleation theory according to Svoboda et al. [24]:

=I N Z
d

exp 16
3 [ ]

,
chem

3 2

2 (3.74)

using the Zeldovic factor Z and the atomic attachment rate . The
potential number of nucleation sites N is approximated by the Avogadro
constant divided by the molar volume. The quantity d /chem in Eq.
(3.74) describes the volumetric energy that is released when an in-
finitesimal volume of -phase is transformed into the -phase. The
Zeldovic factor Z and the atomic attachment rate are calculated as
follows:

= =
=

Z a
k T

d R
a

x x
x D64

[ ]
[ ]

and 4 [ ]L

B

chem c

L i

n
i i

i i
Tracer

6

2

4

4 3

2

4
1

2 1

(3.75)

using the mean interatomic distance aL, the Boltzmann constant kB, and
the tracer diffusion coefficient Di

Tracer . The tracer diffusion coefficient is
calculated by =D R T Mi

Tracer
gas i, where the mobility coefficients Mi are

determined by Eq. (2.64). Classic nucleation theory predicts the crea-
tion of a particle around the critical radius Rc with a certain size
spectrum. According to Ratke and Voorhees [19], the nucleation rate I
is connected to the source term of the particle-density distribution j by

=I j dr.
Rc (3.76)

The critical radius Rc is determined by solving the equation system
resulting from Eqs. (3.67) and (3.69) with =v 0. The source term j of
the hyperbolic partial differential Eq. (3.71) is described in this work by
a normed Gaussian distribution function that is unequal to zero in the
interval +R R R[ , ]c c

N . The limitation of j is achieved by using the
Heaviside function H (•) via

= +

( )j R t I H R R H R R R R R( , ) 2 [ ( ) ( [ ])]

erf
exp ,

e

c c
N

R
c

e

2

N

e

(3.77)

where e is a constant and RN is the length of the interval, where the
source term in Eq. (3.71) is not zero. The condition expressed in Eq.
(3.76) is fulfilled via normalization, resulting in the given prefactor of
Eq. (3.77). The solution of the hyperbolic partial differential Eq. (3.71)
is achieved with a multi-class approach. The particle-density distribu-
tion function is discretized by a high-resolution finite volume method
with a minmod flux-limiter, as discussed by LeVeque [15]. The im-
plemented numerical scheme is followed by dividing the radius space in
finite volumes of size +R R[ , ]i i1/2 1/2 , as illustrated in Fig. 3. For the sake
of simplicity, it is assumed that the discretization is realized by a uni-
form grid. In Fig. 3, vi 1/2 denotes the velocity at the boundary of cell i
with Ri 1/2. The integration of Eq. (3.71) over the domain

×+ +R R t t[ , ] [ , ]i i n n1/2 1/2 1 yields

+

=

+ + + +

+ +

f
t

dRdt
R

fv dR dt

j dR dt

[ ]

.

t

t

R

R

t

t

R

R

t

t

R

R
n

n

i

i

n

n

i

i

n

n

i

i

1

1/2

1/2 1

1/2

1/2

1

1/2

1/2

(3.78)

Using the fundamental theorem of calculus results in

+

=

+ + +
+ +

+ +

f
t

r t f
t

r t dr f r t v r t

f r t v r t dr dt j dr dt

( , ) ( , ) [ ( , ) ( , )

( , ) ( , )] .

r

r
n n t

t
i i

i i t

t

r

r

1 1/2 1/2

1/2 1/2

i

i

n

n

n

n

i

i

1/2

1/2 1

1

1/2

1/2

(3.79)

The average value of the particle-density distribution function Ni
n,

the average value of the particle-density distribution of nucleated
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particles Si
n in the interval = +R R Ri i i1/2 1/2, and the flux +Fi

n
1/2 are

defined by

=

=

=+ + +

+

+

+

N
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f R t dR

S
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j R t dR

F
t

f R t v R t dt

1 ( , ) ,
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i R

R
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i
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i R

R
n

i
n

t

t
i i1/2 1/2 1/2

i

i

i

i

n

n

1/2

1/2

1/2

1/2

1

(3.80)

Based on this definition, Eq. (3.79) is rearranged to

= + ++
+N N t

R
F F S t[ ] .i

n
i
n

i
i
n

i
n

i
n1

1/2 1/2 (3.81)

Here the source term is approximated by an explicit Euler scheme.
The fluxes at the boundaries of the finite volumes are calculated for a
uniform grid using the following definition:

= <
v
v

1 0
1 0.i

i

i
1/2

1/2

1/2 (3.82)

Then the flux Fi 1/2 at the boundary i 1/2 of the finite volume can
be calculated as

= + +

+ ( )
F v N N

v N N

[(1 ) (1 ) ]

| | 1 ( )[ ].

i i i i
n

i i
n

i
v t

r i
n

i
n

i
n

1/2
1
2 1/2 1/2 1 1/2

1
2 1/2 1/2 1

i 1/2
(3.83)

Here a flux-limiter i
n

1/2 is used to avoid oscillations:

=
<+

v

v

0

0
i
n

N N
N N i

N N
N N i

1/2

1/2

1/2

i
n

i
n

i
n

i
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i
n

i
n

i
n

i
n

1 2

1

1

1 (3.84)

in combination with a superbee flux-limiter function

= max min min( ) (0, (1, 2 ), (2, )). The resulting scheme for solving
the particle-density distribution function is second-order accurate in R
in smooth parts of the solution and is reduced to first-order accurate at
discontinuities. For the used time step, the Courant–Friedrichs–Lewy
condition must be fulfilled. From Eqs. (3.81)–(3.84), it follows that,
instead of solving the average particle-density distribution function

+Ni
n 1, it can be solved equivalently for the particles =+ +N N Ri

n
i
n

i
1 1 ,

which are contained in Ri. For implementation purposes, it is con-
venient to use this property and has been used by Perez et al. [17]. The
high-resolution finite volume scheme must be used with some care
because the flux-limiter needs information from the upwind direction.
According to Fig. 3, the particle-distribution function is separated in
radius-space into two size classes. The first size class contains all cells
whose boundaries are smaller than the critical radius Rc. This size class
handles precipitates that dissolve. The second size class starts with the
first cell, whose left boundary is smaller than or equal to the critical
radius and contains all size classes that represent growing precipitates.
With reference to Fig. 3, it must be assured that the fluxes +Fk 1/2 and
Fl 1/2 vanish because otherwise particles would be created artificially.
This is achieved by adding ghost cells with a zero value as shown in
Fig. 3.

The described Kampmann–Wagner numerical model is used to de-
scribe nucleation, growth, and coarsening of an alloy system consisting
of = = =X X X0.54%, 3.6%, 3.33%Cu Mg ZN

0 0 0 . In the calculations, a tem-
perature of 443.15 K and an interfacial energy of 0.105 J/m2 have
been assumed. The velocity v, which corresponds to growth or dis-
solution in the radius space, is plotted for different radii and volume
fractions fp in Fig. 4(a). Naturally, different volume fractions result in
different matrix concentrations. The matrix concentrations enter into
Eq. (3.67), thereby directly influencing the velocity v. In Fig. 4(a), the
stoichiometric -phase of the open Matcalc aluminum database is
considered. It is obvious that growth depends significantly on the vo-
lume fraction fp. The growth velocity corresponding to low volume
fractions is significantly higher than the velocity for higher volume
fractions. Hence, if the volume fraction deviates significantly from the
equilibrium during the nucleation and growth stages, the velocity is
considerably higher as in the region of coarsening. Additionally, it is
obvious that dissolution is a faster process than growth.

The evolution of the volume fraction is more intensively in-
vestigated in Fig. 4(b). Here a normed volume fraction f̄p is used, re-
ferring to the equilibrium volume fraction. The equilibrium volume
fraction for the -phase is 5.29% and the fraction reached finally in the
simulation, as shown in Fig. 4(b) after >t 106 seconds, is 5.19%.
Fig. 5(a) shows the evolution of the number of particles and the mean
radius. It indicates that the nucleation and growth-time regime reaches
approximately 104 seconds. After this regime, the precipitation process
reaches the transient region, where the volume fraction and mean

Fig. 3. Schematic discretization of the radius space into finite volumes for
solving Eq. (3.71). The radius space is divided in every time step into two size
classes—one for dissolving precipitates ( <v 0) and the other for growing pre-
cipitates v 0.

(a) (b)

Fig. 4. (a) Growth velocity for the phase for different precipitate volume fractions fp at 443.15 K and a composition of = = =X X X0.54%, 3.6%, 3.33%Cu Mg ZN
0 0 0 . (a)

Velocity for different radii. (b) Evolution of normed volume fraction f̄p of phase predicted by the Kampmann–Wagner numerical model.

J. Herrnring, et al. Computational Materials Science 175 (2020) 109236

8



radius remain almost constant. The coarsening starts approximately at
5·104 seconds, where the mean radius and the volume fraction begin to
increase again, whereas the number of particles decreases. In order to
complete the discussion, the particle-density distribution function is
shown in Fig. 5(b) for different times.

Another interesting question is which changes occur in the inter-
diffusion matrix during the simulation. In Table 1, the interdiffusion
matrix is considered for the case of total dissolution of precipitates and
a volume fraction close to equilibrium. It is interesting to note that the
diffusion constants on the diagonal change significantly. The coefficient
DMg Mg

Al
, decreases significantly, whereas the other main coefficients in-

crease. However, in the transient region and during coarsening the
volume fraction changes only slightly; therefore, the diffusion matrix is
almost constant.

4. Conclusion

A consistent method for the calculation of fluxes, mobilities, and
thermodynamic factors has been discussed and the underlying as-
sumptions outlined based on the diffusion model introduced by
Andersson and Agren [2]. The model has been reformulated in terms of
diffusion potentials and implemented into OpenCalphad. Using an in-
depth discussion of the model structure, the authors hope to clarify the
foundations of that method. These quantities are of great significance in
many practical applications, and the integration in codes for diffusion
processes is a natural next step. In this work, the method for de-
termining diffusion coefficients is coupled with a sharp interface model.

The growth rates calculated from the sharp interface model are used as
an input into a multicomponent Kampmann–Wagner numerical model.
As shown by the work, OpenCalphad can serve as a rich source of im-
portant input for recent microstructure simulation models.

5. Data availability

The thermodynamic and diffusion databases required to reproduce
these findings can be downloaded from https://matcalc.at/. The soft-
ware used to reproduce these findings will be made available to
download from https://www.opencalphad.com/.
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Appendix A

This appendix discusses the derivation of the diffusion potential introduced by Agren [1]. The first term of Eq. (2.56) is

+
= =a

L G
y y

G
y y

y
z

G
y y

G
y y

y
z

1 .
i

n

ki
j r

n
M

j i

M

j r

j M

r i

M

r r

r

1 1\

2

1 1

2

1 1

1 2

1 1

2

1 1

1

(A.1)

From the restriction given in Eq. (2.1), it follows

(a) (b)

Fig. 5. Results from Kampmann–Wagner numerical model: (a) evolution of the number of particles N and the mean radius r̄ ; (b) particle density distribution function
(PDDF) at different times.

Table 1
(a) Interdiffusion coefficients for a matrix composition associated with a vanishing volume fraction =D Al fp, 0.0%, (b)
Interdiffusion matrix for a volume fraction corresponding to a matrix composition resulting from a volume fraction of
5.09% =D Al fp, 5.09%. Interdiffusion coefficients are given in m /s2 .

1.5852·10 1.3820·10 6.5068·10
1.2064·10 2.9207·10 6.2429·10

1.5233·10 3.7930·10 1.4344·10

20 21 21
21 19 20

20 20 19
,

3.8665·10 5.8529·10 1.4374·10
4.7528·10 1.6957·10 2.8521·10

1.8943·10 6.1266·10 2.0721·10

20 22 21
22 19 20

21 21 19

(a) (b)
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Then Eq. (A.1) can be reformulated into
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Collecting terms leads to the expression given in Eq. (2.57)
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