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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Autoencoders are used to compress data and learn how to reliably reconstruct it. Through comparing the reconstruction error with 
a set threshold, they are able to detect anomalies in unseen datasets where the data does not quite match the reconstructed input 
samples. In this work, we attempt to investigate the use of convolutional autoencoders in the field of visual quality inspection, 
where images of formed sheet metals from a real production line are inspected for the occurrence of cracks and wrinkle formation. 
This approach tackles the problem of needing enough defective samples to attain reliable detection accuracies.  
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1. Introduction  

After being formed into the desired shape, sheet metals in 
the automotive industry undergo a manual quality control check 
at the end of the production line by highly trained personnel. 
These personnel look for production defects, such as wrinkles 
and cracks and sort them out, preventing defective products 
from undergoing further finishing and assembly. Though 
manual inspection has been employed for a long time in the 
industry, manufacturers have recently turned to machine vision 
solutions to automate the quality control phase, thereby 
reducing costs and increasing the speed and efficiency of the 
process. Audi AG, for example, have begun testing the 
integration of deep learning into smart cameras installed inside 
the press shops for series production. They spent several 
months training artificial neural networks with several million 
labeled images. The biggest challenge, as reported [1], was the 
creation of such a large database of images with the proper 
labels. Furthermore, the system has to be reconfigured for every 

different component to be produced, such as doors, engine 
hoods, fenders etc. The former sheds light on a general 
challenge in regards to training deep neural networks for 
automatic surface inspection: well-optimized manufacturing 
processes produce mostly non-defective samples (majority 
class), and the amount of defective samples (minority class) is 
not large enough for the algorithms to perform up to industrial 
requirements. The ratio of non-defective to defective products 
is often highly imbalanced, ranging from 9:1 up to 1000000:1 
[2]. In this paper, we propose the use of a different type of deep 
neural networks, namely convolutional autoencoders (CAE), in 
order to address the challenge of needing sufficiently large 
amounts of training data, specifically from the minority class. 
In contrast to the classical convolutional neural network (CNN) 
based approaches, CAE is a self-supervised method which only 
requires unlabeled training samples from the majority class. 
Thus, the problem statement shifts from classification to 
anomaly detection. We trained and tested a CAE network on a 
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set of images obtained from a real production line and 
compared its performance with a state of the art CNN.  

1.1. State of the art 

After being proposed by LeCun et al. [3], CNNs along with 
their variants have been proven to be the most effective 
methods in image classification and object detection. The 
variants consist of networks with slightly different structures 
having the goal of extracting more complex non-linear features 
and improving the generalization ability of the model. CNNs 
generally scale very well with more data. In the field of surface 
quality inspection, these algorithms proved to be highly 
accurate in detecting and classifying defects obtained from 
public databases [4, 5]. Moreover, when coming across small 
datasets acquired from a real production plant, the performance 
of the classical CNN is not up to par. In that case, researchers 
have used transfer learning approaches [6, 7] to optimize 
performance, i.e. learning features and pre-trained networks 
from different domains and using them for their own models.  
However, the application of transfer learning in steel surface 
inspection is not as good as in other fields, as is explained by 
Di et al. in [8]. Image context and features of steel surfaces are 
different from most pre-trained models, which violates the 
application conditions of transfer learning. 

 Besides transfer learning, several other methods have been 
proposed to deal with class imbalances, such as data 
augmentation [9], where additional synthetic samples of the 
minority class are created through scaling the original image, 
application of different filters, etc. Undersampling of the 
majority class through reducing the amount of input samples 
can be also viable, but would potentially leave out important 
features of the data. A detailed list of these methods which 
include readjusting the training data distribution or modifying 
the learning procedure itself can be found in [10, 11]. These 
methods, however, have some drawbacks, as they can generate 
unstable results.   

1.2. Autoencoders 

Autoencoders (AE) are a type of neural network that are 
trained to efficiently compress and encode their input and learn 
how to reliably reconstruct it based on the reduced encoded 
representation.  

 
 
 
 
 
 

The standard AE can be viewed as a network with three parts 
[12], namely: 

 An encoder network that maps 𝑥𝑥 to ℎ.  
 The output of the encoder, which is a low-dimensional latent 

representation of 𝑥𝑥 . It prevents the AE from learning a 
trivial identity function.  

 A decoder network that maps ℎ to 𝑟𝑟. 

The encoder is trained to minimize the reconstruction loss 𝐿𝐿 =
(𝑥𝑥, 𝑟𝑟) which can be any error metric such as the Euclidean 
distance or the mean squared error (MSE). For any new input 
𝑦𝑦, the reconstruction loss 𝐿𝐿 = (𝑦𝑦, 𝑔𝑔(𝑓𝑓(𝑦𝑦))) is compared to the 
original threshold 𝑇𝑇 obtained after training. If it exceeds it, it is 
sorted as an anomaly. In this work,  𝑇𝑇 is given as the sum of the 
mean and the standard deviation of the reconstruction losses 
calculated after the training phase. This threshold is set based 
on our prior observations and experiments on several products, 
and as such does not undergo any optimization in this work. 

AEs first gained traction through the work of Hinton and 
Salakhutdinov [13] for dimensionality reduction purposes. In 
their paper, they trained a deep AE with gradually smaller 
hidden layers, ending in a bottleneck of 30 units. Their model 
yielded less reconstruction error than the classical principal 
component analysis dimensionality reduction algorithm into 30 
dimensions, and the learned representation was qualitatively 
easier to interpret. AEs constitute a special form of supervised 
learning techniques, namely self-supervised learning, where 
the targets are generated from the input data. Other than 
dimensionality reduction, they are used for various applications 
nowadays including image denoising, image coloring, data 
compression, speech and text recognition and generation. 
Recent works [14, 15] have shown that the use of AEs for the 
feature extraction phase of CNNs can improve performance, 
which has been also successfully tested for certain real-world 
scenarios for metal surfaces [16, 17]. The main difference 
between the classical CNNs and CAEs is that the former are 
trained to learn convolutional filters and combine features with 
the aim of classifying the inputs into the targeted classes, while 
the latter are trained only to learn filters that would extract 
features able to reconstruct the input. The standard AE, 
however, is not suitable for processing images as it ignores the 
2D image structure. Hence, we used a CAE instead. In a CAE, 
the dense layers of a standard AE are replaced with 
convolutional- and subsequently pooling layers.  

2. Approach 

2.1. Dataset 

The dataset used in this work was acquired from a camera 
installed inside a pressline after a certain stage of pressing, and 
not at the end of the production line. It consists of 13,000 
images, 2,600 of which are defective (25 %). We deliberately 
chose the product that is exhibiting a high number of defects in 
order to examine how the algorithms behaves with a varying 
minority class training data size. 

2.2. Pre-processing 

The images are originally of one channel with the size of 
2592 × 1944 pixels. Before using them for training, a relevant 
region of interest (ROI) is defined by an expert, indicating 
where the defects are most likely to appear. The images 
undergo further scaling to 256 × 256 pixels, and two filters are 
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Fig. 1. The general structure of an AE. 
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applied on them to better detect edges. Fig. 2 shows an example 
of the defects seen, along with the surface appearance before 
and after applying the filters.  
 

2.3. Network Architecture 

The specific parameters for the encoder and the decoder 
networks are shown in Tables 1 and 2, respectively. The input 
images are of size 256 × 256 pixels and undergo further 
processing by three convolutional layers in the encoder as well 
as in the decoder, with the rectified linear unit (ReLU) as the 
non-linear activation function. The max-pooling and up-
sampling layers shown in orange and green in Fig. 3 work 
opposite to each other; the former reduces the dimensions of 
the feature maps, forcing the encoder to learn more sparse 
features while the latter expands the dimensions of the feature 
maps back to the original input size.  

Table 1. Encoder network parameters. 

Layer type Filters Size/stride Output shape 

Input   (256,256,1) 

Convolutional 64 3×3/1 (256,256,64) 

Max-pooling  2×2/2 (128,128,64) 

Convolutional 32 3×3/1 (128,128,32) 

Max-pooling  1×1/1 (128,128,32) 

Convolutional 16 3×3/1 (128,128,16) 

Max-pooling  2×2/2 (64,64,16) 

Table 2. Decoder network parameters. 

Layer type Filters Size/stride Output shape 

Convolutional 16 3×3/1 (64,64,16) 

Up-sampling  2×2/2 (128,128,16) 

Convolutional 16 3×3/1 (128,128,16) 

Up-sampling  1×1/1 (128,128,16) 

Convolutional 31 1×1/1 (128,128,32) 

Up-sampling  2×2/2 (256,256,32) 

Convolutional 1 3×3/1 (256,256,1) 

 
As for the CNN model used, our architecture is similar to the 
state of the art CNN proposed by Chollet in [18] to build 
powerful image classifiers using only a few thousand training 
examples. It consists of three convolutional and max-pooling 
pairs as the feature extractors and two dense layers as the 
classifiers. The model also includes batch normalization and 

two dropout layers to help against overfitting. The hyper-
parameters, such as the activation functions, number of filters, 
learning rate and number of hidden layers were tuned using the 
‘Talos’ library [19], which combines all possible parameters in 
a grid and chooses the best combinations to minimize the loss 
or maximize evaluation accuracy. 

3. Results 

3.1. Training and testing 

We trained both models using various subsets of the full 
data. For the CNN model, we used 10,000 non-defective 
samples and varied the number of defective samples used for 
training as follows: 200, 400, 600, 800, 1000, 1500, 2000, and 
2500. The combined samples were then split into 80% for 
training and 20 % for testing. As for the CAE model, we only 
used non-defective samples for training in the order of 500, 
1000, 1500, 2000, 4000, 6000, 8000, 10000. The samples were 
split into 90 % for training and 10 % for testing. The test set 
also included additional 2,500 defective images to test how 
well the algorithm can detect these defects. To counteract the 
stochastic nature of the algorithms, both models were trained 
and evaluated 10 times for 30 epochs each. The results for each 
subset are then the average of the 10 trials. The models were 
trained on Keras 2.3.1 using Tensorflow 1.14.0 as the backend. 

3.2. Evaluation 

For evaluating algorithm performance, we chose one of the 
standard classification metrics, namely the fraud recall metric. 
It is defined as 𝑅𝑅 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄ , where TP denotes the 
number of defective samples that were correctly classified as 
defective, while FN denotes the number of defective samples 
that were falsely classified as non-defective. In other words, 
fraud recall represents the ratio of correct positive (defective) 
predictions to the total number of defective samples. A high 
recall rate corresponds to a low FN rate. In the automotive 
industry, high FN rates are much more costly than a false alarm 
(FP). As such, we have chosen to put heavy emphasis on this 
metric in our evaluation. Furthermore, the general accuracy 
shown in Fig. 4 and Fig. 5 depicts the ratio of correct positive 
and negative predictions to the total number of samples in the 
dataset.  

Fig. 2. (a) Non-defective surface; (b) Defective wrinkled surface; (c) Defective 
cracked surface.  

Fig. 3. The network architecture of the CAE used in this work. 
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Fig. 1. The general structure of an AE. 
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applied on them to better detect edges. Fig. 2 shows an example 
of the defects seen, along with the surface appearance before 
and after applying the filters.  
 

2.3. Network Architecture 

The specific parameters for the encoder and the decoder 
networks are shown in Tables 1 and 2, respectively. The input 
images are of size 256 × 256 pixels and undergo further 
processing by three convolutional layers in the encoder as well 
as in the decoder, with the rectified linear unit (ReLU) as the 
non-linear activation function. The max-pooling and up-
sampling layers shown in orange and green in Fig. 3 work 
opposite to each other; the former reduces the dimensions of 
the feature maps, forcing the encoder to learn more sparse 
features while the latter expands the dimensions of the feature 
maps back to the original input size.  

Table 1. Encoder network parameters. 

Layer type Filters Size/stride Output shape 

Input   (256,256,1) 

Convolutional 64 3×3/1 (256,256,64) 

Max-pooling  2×2/2 (128,128,64) 

Convolutional 32 3×3/1 (128,128,32) 

Max-pooling  1×1/1 (128,128,32) 

Convolutional 16 3×3/1 (128,128,16) 

Max-pooling  2×2/2 (64,64,16) 

Table 2. Decoder network parameters. 

Layer type Filters Size/stride Output shape 

Convolutional 16 3×3/1 (64,64,16) 

Up-sampling  2×2/2 (128,128,16) 

Convolutional 16 3×3/1 (128,128,16) 

Up-sampling  1×1/1 (128,128,16) 

Convolutional 31 1×1/1 (128,128,32) 

Up-sampling  2×2/2 (256,256,32) 

Convolutional 1 3×3/1 (256,256,1) 

 
As for the CNN model used, our architecture is similar to the 
state of the art CNN proposed by Chollet in [18] to build 
powerful image classifiers using only a few thousand training 
examples. It consists of three convolutional and max-pooling 
pairs as the feature extractors and two dense layers as the 
classifiers. The model also includes batch normalization and 

two dropout layers to help against overfitting. The hyper-
parameters, such as the activation functions, number of filters, 
learning rate and number of hidden layers were tuned using the 
‘Talos’ library [19], which combines all possible parameters in 
a grid and chooses the best combinations to minimize the loss 
or maximize evaluation accuracy. 

3. Results 

3.1. Training and testing 

We trained both models using various subsets of the full 
data. For the CNN model, we used 10,000 non-defective 
samples and varied the number of defective samples used for 
training as follows: 200, 400, 600, 800, 1000, 1500, 2000, and 
2500. The combined samples were then split into 80% for 
training and 20 % for testing. As for the CAE model, we only 
used non-defective samples for training in the order of 500, 
1000, 1500, 2000, 4000, 6000, 8000, 10000. The samples were 
split into 90 % for training and 10 % for testing. The test set 
also included additional 2,500 defective images to test how 
well the algorithm can detect these defects. To counteract the 
stochastic nature of the algorithms, both models were trained 
and evaluated 10 times for 30 epochs each. The results for each 
subset are then the average of the 10 trials. The models were 
trained on Keras 2.3.1 using Tensorflow 1.14.0 as the backend. 

3.2. Evaluation 

For evaluating algorithm performance, we chose one of the 
standard classification metrics, namely the fraud recall metric. 
It is defined as 𝑅𝑅 = 𝑇𝑇𝑇𝑇 (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)⁄ , where TP denotes the 
number of defective samples that were correctly classified as 
defective, while FN denotes the number of defective samples 
that were falsely classified as non-defective. In other words, 
fraud recall represents the ratio of correct positive (defective) 
predictions to the total number of defective samples. A high 
recall rate corresponds to a low FN rate. In the automotive 
industry, high FN rates are much more costly than a false alarm 
(FP). As such, we have chosen to put heavy emphasis on this 
metric in our evaluation. Furthermore, the general accuracy 
shown in Fig. 4 and Fig. 5 depicts the ratio of correct positive 
and negative predictions to the total number of samples in the 
dataset.  

Fig. 2. (a) Non-defective surface; (b) Defective wrinkled surface; (c) Defective 
cracked surface.  

Fig. 3. The network architecture of the CAE used in this work. 
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3.3. CNN 

Fig. 4 and Table 3 show the results for the benchmark CNN 
algorithm. It can be seen that while the general accuracy 
reached was above 95 % for all subsets, the fraud recall was 
only 49.5% when training with 10,000 non-defective samples 
and 800 defective samples. It later peaks at 92.8 % when 
training with 10,000 non-defective samples and 2,000 defective 
samples. Within the range of 200 to 1,000 defective samples 
used for training, i.e. when the ratio of defective to non-
defective samples is between 2 % and 10 %, the algorithm 
performed poorly, as the fraud recall was under 65.7 %. The 
general accuracy is consistently high due to the large number 
of non-defective samples included in the training and test sets.  

Table 3. The detailed dataset sizes before being split for training and testing 
along with the results for the CNN model 

Dataset size Defective 
samples 
included 

Ratio defective 
to non- 
defective 

General 
accuracy 
(%)  

Fraud 
recall 
(%)  

10,200 200 0.02 98 0 

10,400 400 0.04 96.2 2.1 

10,600 600 0.06 95 6.2 

10,800 800 0.08 96.2 49.5 

11,000 1,000 0.1 96.8 65.7 

11,500 1,500 0.15 98.5 89.6 

12,000 2,000 0.2 98.8 92.8 

12,500 2,500 0.25 97.9 90.1 

3.4. CAE 

The CAE algorithm achieved a maximum detection 
accuracy of 96.5 % when trained with a dataset of 10,000 non-
defective samples. The algorithm converges slightly slower 
than CNN, however the fraud recall continuously improves 
from 78.9 % for 2,000 training samples to 82.3 % for 4,000 
samples and ultimately 95.5% for the full dataset. The 
calculated threshold 𝑇𝑇 used in order to classify the test set is 
presented in Fig. 6, where it is clear that a large majority of 
reconstruction errors exhibited by the defects exceeds this set 
threshold. In this case, this amounts to 95.5 % of all defective 
samples, specifically 2,387 samples. 

Table 4. The detailed dataset sizes along with the results for the CAE model 

Dataset size Defective 
samples 
included 

General 
accuracy 
(%)  

Fraud 
recall (%)  

3,000 2,500 47.5 46.5 

3,500 2,500 51.6 50.6 

4,000 2,500 74.1 72.7 

4,500 2,500 78.8 78.8 

6,500 2,500 84.5 82.3 

8,500 2,500 89.1 86.7 

10,500 2,500 94.8 93.4 

12,500 2,500 96.5 95.5 

 

4. Discussion 

In this work, we tested a CAE on a dataset of non-defective 
and defective images obtained from a real production line and 
compared its performance with a state of the art CNN. While 
the CNN was able to correctly classify non-defective images as 
being non-defective with a very high accuracy, it failed to do 
so for unseen defective images. The algorithm required at least 
1,500 defective samples to be used, which corresponds to 13 % 
of the total dataset size, in order to achieve reliable fraud recall 
rates. In cases where the production line does not produce many 
defects, a standard CNN would most likely fail in correctly 
classifying defective samples as being defective. On the other 

Fig. 4. CNN model performance in classifying defects while trained using 
various subsets of the full data. 

Fig. 5. CAE model performance in detecting anomalies/defects while 
trained using various subsets of the full data. 

Fig. 6. Histogram of the reconstruction errors along with the threshold 
calculated by the CAE model.   
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hand, a CAE algorithm is able to extract important features 
solely from non-defective images and through the use of the 
reconstruction errors, it is able to reliably detect unseen 
anomalous samples, regardless of where the anomalies appear 
within the ROI. In future work, we will look to dynamically 
optimize the classification threshold of the CAE algorithm in 
order to find the optimal decision boundary for every separate 
region defined. Through splitting the image into multiple 
patches we aim to isolate relevant regions of the image and 
disregard the noise in it. By doing so, an expert to manually 
define a relevant ROI would no longer be required. 
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3.3. CNN 

Fig. 4 and Table 3 show the results for the benchmark CNN 
algorithm. It can be seen that while the general accuracy 
reached was above 95 % for all subsets, the fraud recall was 
only 49.5% when training with 10,000 non-defective samples 
and 800 defective samples. It later peaks at 92.8 % when 
training with 10,000 non-defective samples and 2,000 defective 
samples. Within the range of 200 to 1,000 defective samples 
used for training, i.e. when the ratio of defective to non-
defective samples is between 2 % and 10 %, the algorithm 
performed poorly, as the fraud recall was under 65.7 %. The 
general accuracy is consistently high due to the large number 
of non-defective samples included in the training and test sets.  

Table 3. The detailed dataset sizes before being split for training and testing 
along with the results for the CNN model 

Dataset size Defective 
samples 
included 

Ratio defective 
to non- 
defective 

General 
accuracy 
(%)  

Fraud 
recall 
(%)  

10,200 200 0.02 98 0 

10,400 400 0.04 96.2 2.1 

10,600 600 0.06 95 6.2 

10,800 800 0.08 96.2 49.5 

11,000 1,000 0.1 96.8 65.7 

11,500 1,500 0.15 98.5 89.6 

12,000 2,000 0.2 98.8 92.8 

12,500 2,500 0.25 97.9 90.1 

3.4. CAE 

The CAE algorithm achieved a maximum detection 
accuracy of 96.5 % when trained with a dataset of 10,000 non-
defective samples. The algorithm converges slightly slower 
than CNN, however the fraud recall continuously improves 
from 78.9 % for 2,000 training samples to 82.3 % for 4,000 
samples and ultimately 95.5% for the full dataset. The 
calculated threshold 𝑇𝑇 used in order to classify the test set is 
presented in Fig. 6, where it is clear that a large majority of 
reconstruction errors exhibited by the defects exceeds this set 
threshold. In this case, this amounts to 95.5 % of all defective 
samples, specifically 2,387 samples. 

Table 4. The detailed dataset sizes along with the results for the CAE model 

Dataset size Defective 
samples 
included 

General 
accuracy 
(%)  

Fraud 
recall (%)  

3,000 2,500 47.5 46.5 

3,500 2,500 51.6 50.6 

4,000 2,500 74.1 72.7 

4,500 2,500 78.8 78.8 

6,500 2,500 84.5 82.3 

8,500 2,500 89.1 86.7 

10,500 2,500 94.8 93.4 

12,500 2,500 96.5 95.5 

 

4. Discussion 

In this work, we tested a CAE on a dataset of non-defective 
and defective images obtained from a real production line and 
compared its performance with a state of the art CNN. While 
the CNN was able to correctly classify non-defective images as 
being non-defective with a very high accuracy, it failed to do 
so for unseen defective images. The algorithm required at least 
1,500 defective samples to be used, which corresponds to 13 % 
of the total dataset size, in order to achieve reliable fraud recall 
rates. In cases where the production line does not produce many 
defects, a standard CNN would most likely fail in correctly 
classifying defective samples as being defective. On the other 

Fig. 4. CNN model performance in classifying defects while trained using 
various subsets of the full data. 

Fig. 5. CAE model performance in detecting anomalies/defects while 
trained using various subsets of the full data. 

Fig. 6. Histogram of the reconstruction errors along with the threshold 
calculated by the CAE model.   
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hand, a CAE algorithm is able to extract important features 
solely from non-defective images and through the use of the 
reconstruction errors, it is able to reliably detect unseen 
anomalous samples, regardless of where the anomalies appear 
within the ROI. In future work, we will look to dynamically 
optimize the classification threshold of the CAE algorithm in 
order to find the optimal decision boundary for every separate 
region defined. Through splitting the image into multiple 
patches we aim to isolate relevant regions of the image and 
disregard the noise in it. By doing so, an expert to manually 
define a relevant ROI would no longer be required. 
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