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This paper examines application of linear general model predictive control (LGMPC). The
stability of the LGMPC is proven by means of a demonstration of a theorem stating a
sufficient and constructive condition. Lower bounds conditions are found for one of these
matrices and then a system with saturation is taken into consideration. The conditions
can be interpreted through physical aspects. The results obtained were tested by means of
computer simulations and an example with a water recovery process is considered.

1 Introduction

Model predictive control (MPC) is a technique that can be used to
calculate feedback control for both linear and nonlinear systems
using online optimisation techniques. Due to its great flexibility,
MPC is likely to be the method with the most practical applications
among modern control algorithms. MPC is suitable for limited,
multivariable systems and for control problems where regulation of
the control function is very difficult or even impossible. One of the
great advantages of MPC is its ability to handle the limitations of
the system, which makes these methods very interesting to industry.

Linear control theory generally deals with systems that are de-
fined in continuous time and that can be described by ordinary
differential equations in which the process model is the cornerstone
of MPC. The model should fully capture the process dynamics and
also be set up so that the predictions can be calculated.

The application of MPC to mechatronic systems for servo design
attracts the attention of many scientists because of the continuous
development of microprocessor technology. Mechatronic systems
such as electrical motor control [1], two-stage actuation system con-
trol and machine tool chattering control [2] have shown promising
results. Various advanced techniques are being rapidly developed
that integrate MPC to improve performance [3]. However, the sam-
pling frequencies previously used in the research literature may
be too low for general mechatronic systems. Moreover, simula-
tions show that the existence of modelling errors leads to obvious
steady-state errors. Both of these points, especially during real-time
implementation, may influence the performance of mechatronic
systems. For example, the calculation of the solution of MPC tech-

niques in an off-line explicit way has been demonstrated [4, 5], and
MPC has been also applied to piezoelectric actuators [6]. Find-
ing the conditions for stability is one of the interesting issues in
optimisation.

The goal of this paper is to find the lower bounds of a matrix
characterising the cost function that gives stability in an optimal
solution. The results obtained by means of a proportional integral
(PI) controller by Mercorelli et al. [7] and Mercorelli [8, 9] are
extended in this contribution. This work considers a water distilla-
tion system in which water is separated from mud and impurities
using a standard solution based on a heating system combined with
a pressure control structure. The experimental setup represents a
good example in terms of sustainability. Nevertheless, the algorithm
proposed can be applied to any other linear system and represents
an advancement in terms of the choice of weighting parameters for
the cost function.

The paper is organized as follows. Section 2 is dedicated to
model a water recovery system. Section 3 presents backgrounds
of MPC. In Section 4 and 5, the structure of LGMPC is analysed
without and with input saturation respectively. In Section 6, the
proposed control technique is applied to a simulated example in the
context of a Water Recovery Process. Conclusion closes the paper.

2 Mathematical model of the system

Figure 1 shows a schematic of the system being considered. The
system comprises three elements: a boiler, a compressor and an
evaporator. The waste water is located in the middle of the boiler.
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The main nomenclature
min(t): input mass flow (kg/sec)
mo(t): output mass flow (kg/sec)
m(t): mass (Kg)
dm(t)

dt : mass flow (kg/sec)
p(t): pressure inside the evaporator (Pa)
T : temperature (K)
V: volume (l)
pi: initial pressure (Pa)
pd: desired pressure (Pa)
Rg: vapour constant
Aw: anti-windup signal
Kb: weight factor for the anti-windup action
VL: a Lyapunov function
Ak: discrete system matrix
Bk: discrete input matrix
Hk: output matrix
Gp: model predictive control state matrix
F1p: model predictive control ”delta” input matrix
F2p: model predictive control input matrix

A vapour chamber hosts water vapour produced by heating the
waste water in the upper part. In the first phase, the resistor system
heats the waste water. After that, vapour appears in the chamber.
The heating process is then turned off and the compressor is turned
on. The pressure in the vapour chamber must be reduced using the
compressor with the help of a mass flow. This mass flow (m0(t))
represents cleaned and distilled water in the output of the evaporator.
To be more precise, the vapour is condensed and transfers heat to
the waste water in the evaporator. The low pressure in the vapour
chamber allows new waste water to penetrate into the boiler. In this
case, the compressor plays the role of a controller, and the mass
flow m0(t), with the constraint that m0(t) > 0, represents its output.
The compressor includes an asynchronous motor being regulated by
means of an inverter, which is driven by a pulse-width modulated
(PWM) signal that converts the output of the LMPC controller into
a frequency. The error signal occurs in the input to the LMPC. The
section concerning the simulation demonstrates the details of the
control scheme. The dynamics of the asynchronous motor with the
inverter and the other converters are not considered in this analysis,
but they are faster than the dynamics of the controlled process.

In the first phase, the pressure in the container is approximately
1.013 bar. The pressure increases during heating as the water starts
to evaporate. At a lower pressure, the water boils and evaporates
faster. New water is added under control. The ”internal heat ex-
changer” helps to condense the vapour, which now contains no
impurities. The controller design must take the dynamic model of
the system into account. As explained above, the following equa-
tions can be taken into account, considering that the process of
regulation begins when the steam is in the boiler. The idealised
model can be presented as follows:

dm(t)
dt = min(t) − mo(t)

dp(t)
dt =

dm(t)
dt

RgT
V ,

(1)

with min(t) being a stepwise positive constant function.

Figure 1: Boiler system

Considering the forward Euler discretisation with sampling time
Ts, this expression is obtained:

m(k + 1) = Ts(min(k) − mo(k)) + m(k)
p(k + 1) = (min(k) − mo(k)) RgT

V + p(k),
(2)

and thus[
m(k + 1)
p(k + 1)

]
︸          ︷︷          ︸

ẑ(k+1)

=

[
Ts 0
0 1

]
︸      ︷︷      ︸

Ak

[
m(k)
p(k)

]
︸    ︷︷    ︸

ẑ(k)

+

[
Ts

TsRgT
V

]
︸     ︷︷     ︸

Bk

(min(k) − m0(k))︸              ︷︷              ︸
umpc(t)

(3)

3 Model predictive control
The process model is the cornerstone of MPC. The model should
fully capture the process dynamics and also be set up so that the pre-
dictions can be calculated. At the same time, it should be intuitive
and allow a theoretical analysis. The process model is necessary
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to calculate the predicted output quantities y(t + k|t), also referred
to as outputs, in a future instance, where y(t + k|t) designates the
output at time t + k from time t. The various strategies of MPC
can use numerous models to show the relationship between the
output quantities and the measurable input quantities (inputs). A
disturbance model can also be considered to describe behaviour not
reflected by the process model, as well as non-measurable input
magnitudes, measurement noise and model error. However, we
will not consider these models at this point. Virtually any form of
modelling in an MPC formulation can be used, but the following
are the most common.

3.1 Problem definition and general idea of MPC

The problem of the model-predictive approach is a generalised form
of stabilisation: the so-called tracking problem. The goal here is
that the output quantities y(t + k) follow a given reference trajectory
w(t + k), i.e. the deviation of the output quantities y(t + k) from a
known reference trajectory w(t + k) should be minimised within a
certain time window (horizon N) in order to keep the process as
close as possible to this trajectory. This can be achieved by influ-
encing the future output variables by a control sequence u(t + k)
to be calculated within a finite horizon N. For this purpose, a goal
function J is set up, which is normally quadratic in form. The ref-
erence trajectory w is assumed to be known. The calculated output
quantities y(t + k), on the other hand, depend on the chosen model
description and the future control signals u(t + k) or the vector of
the future control function changes ∆u(t) = u(t) − u(t − 1). The
basic idea of MPC can be explained in the following way. The
future control quantities y(t + k) at time t are to be predicted over a
finite horizon N using the process model. These calculated output
quantities depend on known values of the instance t and the future
control signals u(t + k), which are to be calculated and output to
the system. The future control sequence is calculated by optimising
a certain criterion, in most cases by minimising a target function
J. Starting from the current time t, this objective function is now
set up over the control horizon N and, with suitable optimisation
methods, dependent on the zuk control values u(t + k) and control
value changes ∆u are minimised.

3.2 The considered case

Just two samples of the model approach are considered:

ẑ(k + 1/k) = HkAkz(k/k) + HkBkumpc(k). (4)

If ∆umpc(k) = umpc(k) − umpc(k − 1), then umpc(k) = ∆umpc(k) +

umpc(k − 1) and

ŷh(k + 1) = HkAkẑ(k/k) + HkBk(∆umpc(k) + umpc(k − 1)), (5)

where matrix Hk selects the second state variable, and thus yh(t)
represents the pressure.

ŷ(k + 2) = HkA2
k ẑ(k/k) + HkAkBk(∆umpc(k)

+ umpc(k − 1)) + HkBk(∆umpc(k + 1) + umpc(k)). (6)

It must be shown that the following vectorial expression holds:

Ŷh(k) = Gpx(k) + F1p∆Umpc(k) + F2pumpc(k − 1), (7)

where

Ŷh(k) =

ŷh(k + 1)

ŷh(k + 2)

 , ∆Umpc(k) =

 ∆umpc(k)

∆umpc(k + 1),

 (8)

and matrices Gp, F1p and F2p are given by:

F1p =

 HkBk 0

Hk(AkBk + Bk) HkBk

 , Gp =

HkAk

HkA2
k

 , (9)

F2p =

 HkBk

Hk(AkBk + Bk)

 . (10)

If

J =
1
2

N∑
j=1

(
yd(k + j) − ŷ(k + j)

)T
Qp

(
yd(k + j)) − ŷ(k + j)

)
+

N∑
j=1

(
∆umpc(k + j)

)T
Rp(∆umpc(k + j)), (11)

where yd(k + j), j = 1, 2, . . . ,N is the pressure reference profile, N
is the prediction horizon, and Qp and Rp are non-negative definite
matrices. Index (17) can be written as

J =
1
2

ŶT
h (k)QpŶh(k) +

1
2
∆UT

mpc(k)Rp∆Umpc(k), (12)

where ŶT
h (k) represents the error between the desired output and the

predicted output. The solution minimising performance index (12)
may then be obtained by solving

∂J
∂∆Umpc

= 0. (13)

An off-line computation of the solution may be obtained in an ex-
plicit form as follows:

∆Umpc = (FT
1pQpF1p + Rp)−1

(
FT

1pQp(
Ydp (k) −Gpz(k) − F2pumpc(k − 1)

))
, (14)

where Ydp (k) is the desired output column vector. For further details
see Sunan et al. [10].

4 A stability sufficient constructive condi-
tion in GMPC

Theorem 1 Let us consider the discrete SISO linear system:

z(k + 1) = Akz(k) + Bkumpc(k), (15)
y(k) = Hkz(k), (16)

obtained by a discretisation of a linear continuous system by means
of a sampling time equal to Ts. umpc(k) is the first element of the
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vector of the optimal solution [10] for the GMPC considering the
cost function:

J =
1
2

N∑
j=1

(
yd(k + j) − ŷ(k + j)

)T
Qp

(
yd(k + j) − ŷ(k + j)

)
+

N∑
j=1

(
∆umpc(k + j − 1)

)T
· Rp∆umpc(k + j − 1), (17)

where yd(k + j), j = 1, 2, . . . ,N is the position reference trajectory,
N is the prediction horizon and Qp and Rp are non-negative definite
matrices. The solution minimising the performance index (17) may
be obtained by solving

∂J
∂∆Umpc

= 0. (18)

From Sunan et al. [10], it can be seen that the optimal solution is:

umpc(k) = (FT
1pQpF1p + Rp)−1FT

1pQp(
Ydp (k) −Gpz(k) − F2pumpc(k − 1)

)
, (19)

where Ydp (k) and Yp(k) are the desired output column vector and
the measured or observed output vector. Matrices Qp and Rp are
diagonal and positively defined. Under the technical hypotheses
that Qp = I and HT

k H = I, and the assumption

i) r(1,1) >> T 2
s , where r(1,1) represents the first diagonal element

of matrix Rp,
then ∀ r(1,1) such that:

r(1,1) > BkBT
k
‖Ak‖2

1 − ‖Ak‖2
, (20)

where ‖Ak‖2 represents the maximal eigenvalue of matrix
√

AT A
and

‖Ak − Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQpGp

)
‖2

< ‖Ak + Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQpGp

)
‖2, (21)

then the system (15) is asymptotically stable.

Proof Theorem 1 For the sake of brevity, just one prediction step
is considered, then:

F1p =
[
HkBk

]
, (22)

F2p =
[
HkBk

]
, (23)

Gp =
[
HkAk

]
. (24)

The combination of Eq. (15) with (19) gives this expression:

z(k + 1) = Akz(k) + Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQp(

Ydp (k) −Gpz(k) − F2pumpc(k − 1)
))
, (25)

which can be written:

z(k + 1) =
(
Ak − Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQpGp

))
z(k)+

Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQp

(
Ydp (k)

))
− Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQp

(
F2p(k)

))
. (26)

If

r(1,1) > BkBT
k
‖Ak‖2

1 − ‖Ak‖2
, (27)

considering that scalar r(1,1) > 0 and scalar BkBT
k > 0:

0 < ‖Ak‖2 + r−1
(1,1)BkBT

k ‖Ak‖2 < 1. (28)

Recalling that HT
k H = I

0 < ‖Ak‖2 + r−1
(1,1)BkBT

k HT
k H‖Ak‖2 < 1 (29)

and thus

0 < ‖Ak‖2 + r−1
(1,1)‖BkBT

k HT
k HAk‖2 < 1. (30)

With matrix F1p defined as in (22) and G1p defined as in (24), it is
known that matrix Bk is proportional to Ts, then considering that
Rp = r(1,1), choosing a suitable r(1,1) >> Ts and considering that
Qp = I (technical hypothesis), this condition is derived:

0 < ‖Ak‖2 +
∥∥∥∥(Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQpGp

)∥∥∥∥
2
< 1. (31)

Considering the norm properties and condition (21), then:

0 <
∥∥∥∥Ak − Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQpGp

)∥∥∥∥
2

<
∥∥∥∥Ak + Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQpGp

)∥∥∥∥
2

< ‖Ak‖2 +
∥∥∥∥Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQpGp

)∥∥∥∥
2
< 1. (32)

To conclude

0 < ‖Ak‖ −

∥∥∥∥Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQpGp

)∥∥∥∥
2
< 1. (33)

�

The constraint in (27) states a plausible condition on the controller.
If mass m → ∞, then, because of the discretisation and

according to the Landau notation,
(∥∥∥∥λmax

(
Ak

)
− 1

∣∣∣∣) → 0 with

O

(∣∣∣∣λmax
(
Ak

)
− 1

∣∣∣∣) = O( 1
m ). In the meantime, O(BkBT

k ) = O( 1
m2 ).

For a very slow system, according to (27), r(1,1) → 0, parameter
r(1,1) is present in the denominator function of the optimal solu-
tion in (19) and small values of r(1,1) are devoted to speeding up
the system. If mass m → 0, then, because of the discretisation,

O

(∣∣∣∣λmax

(
Ak

)∣∣∣∣) = O
(

1
m

)
, but in the meantime BkBT

k → ∞ with

O(BkBT
k ) = O( 1

m2 ). For a very fast system, r(1,1) → ∞, parameter
r(1,1) is devoted to slowing down the system. We can therefore con-
clude that a highly inertial system needs relatively small values of
r(1,1) to be optimised and stabilised. If the inertia is small, then the
system needs larger values of r(1,1) to be optimised and stabilised.
In fact, very fast systems can have very high abrupt changes in the
input signals and in the cost function, and the input factor needs to
be reduced to find an optimality.
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5 The case of input saturation

Proposition 1 If the discrete SISO linear system is considered:

z(k + 1) = Akz(k) + Bkumpc(k), (34)
y(k) = Hkz(k), (35)

and
|umpc(k)| ≤ Umax ∀k, (36)

then (34) the input saturation defined in (36) is asymptotically stable
and its input avoiding the constraint if condition (27) holds together
with the input limitation. The following condition summarises the
result:

r(1,1) > max

BkBT
k ‖Ydp (k)‖2
Umax

+

∥∥∥BkF1pQpF2p

∥∥∥
2

Umax
|umpc(k − 2)|, BkBT

k
‖Ak‖2

1 − ‖Ak‖2

 .
(37)

Proof Proposition 1 The demonstration is straightforward just
considering that

|umpc(k)| < |umpc(k)| < Umax ∀k

and thus it is enough that the following condition holds:

∥∥∥∥Bk

(
(FT

1pQpF1p + Rp)−1FT
1pQp

(
Ydp (k)

))
− Bk(FT

1pQpF1p + Rp)−1F1pQpF2pumpc(k − 1)
∥∥∥∥

2
≤ Umax.

(38)

In fact, using similar considerations as before, the following
expression is obtained:∥∥∥∥Bkr−1

11 FT
1pQp

(
Ydp (k)

)∥∥∥∥
2

+ |BkF1pQpF2p| ≤ Umax, (39)

and thus, including also the stability condition, condition (37)
follows here again:

r(1,1) > max

BkBT
k ‖Ydp (k)‖2
Umax

+

∥∥∥BkF1pQpF2p

∥∥∥
2

Umax
|umpc(k − 1)|, BkBT

k
‖Ak‖2

1 − ‖Ak‖2

 .
(40)

�

It is possible to observe that for large values of Umax, the condi-
tion on the input barrier in the cost function (17) with weight r(1,1)
is not so restrictive, so larger inputs are allowed. For small values
of Umax, the input barrier limits the values of the input and no large
input values are allowed.

6 Simulation results
It must be clarified that function min(t) is a stepwise constant func-
tion with min(t) = 0.086 (kg/sec) or min(t) = 0 and in the simulated
case min(t) = 0.086 (kg/sec) is considered. Two cases should be
differentiated: weak anti-saturating action:

r(1,1) >
BkBT

k ‖Ydp (k)‖2
Umax

, (41)

and strong anti-saturating action:

r(1,1) >>
BkBT

k ‖Ydp (k)‖2
Umax

. (42)

Figure 2 shows the controlled pressure, which represents the result.
If the anti-windup action is relatively weak, more time is necessary
to re-establish the control loop. As already explained, during the
windup effect, the feedback control is broken. The long period
where the pressure is at negative values can be explained by the
absence of feedback control action. From Fig. 3, representing the
mass flow dm(t)

dt = min(t) − m0(t) (kg/sec), it can be seen that this
function is a consequence of the relation:

dm(t)
dt
≈

dp(t)
dt

. (43)

After taking the following equation into consideration one more
time:

dm(t)
dt

= min(t) − m0(t), (44)

for activating the process, a strong initial action through the
mass flow m0(t) is necessary. These two figures show that in case
of a strong anti-saturating action in Fig. 5, the controlled system
emerges from the saturation state very quickly with faster dynamics
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thanks to the stronger anti-windup action. After saturation occurs,
the control loop becomes open and there is no presence of feedback
control.
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Figure 2: Desired and obtained pressure with weak anti-saturating action
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Figure 3: Mass flow m(t)
dt = min(t) − m0(t) (kg/sec) with weak anti-saturating action

0 100 200 300 400 500 600

Time (sec)

6.5

7

7.5

8

8.5

9

9.5

10

P
re

s
s
u

re
 (

P
a

)

10
4

Obtained pressure

Desired pressure

Figure 4: Desired and obtained pressure with strong anti-saturating action
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Figure 5: Mass flow dm(t)
dt = min(t)−m0(t) (kg/sec) with strong anti-saturating action

7 Conclusion

Conservative conditions for stability are a crucial problem in opti-
misation using LMPC. This contribution is devoted to a sufficient
and constructive condition for the stability of an LGMPC, which
calculates a lower bound for the elements of matrix R. The obtained
results are physically interpreted. An illustrative example is pro-
vided in which a water recovery process is taken into consideration
to test the proposed results through computer simulations.
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