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On the Power and Performance of a Doubly Latent
Residual Approach to Explain Latent Specific Factors

in Multilevel-Bifactor-(S-1) Models

Tobias Koch and Ulrike Semmler-Busch
Leuphana University Lüneburg

A doubly latent residual approach (DLRA) is presented to explain latent specific factors in
multilevel bifactor-(S-1) models. The new approach overcomes some important limitations of
the multiple indicators multiple causes (MIMIC) approach and allows researchers to predict
latent specific factors at different levels. The DLRA is illustrated using real data from a large-
scale assessment study. Furthermore, the statistical performance and power of the DLRA is
examined in a Monte Carlo simulation study. The results show that the new DLRA performs
well if more than 50 clusters and more than 10 observations per cluster are sampled. The
power to test structural parameters at level 2 was lower than at level 1. To test a medium effect
at level 2, we recommend to sample at least 100 clusters with a minimum cluster size of 10.
The advantages and limitations of the new approach are discussed and guidelines for applied
researchers are provided.

Keywords: MIMIC approach, multilevel bifactor models, multilevel structural equation
models, simulation study

Bifactor models are gaining increasing attention in psychol-
ogy (Eid, Geiser, Koch, & Heene, 2017; Koch, Holtmann,
Bohn, & Eid, 2017a; Reise, 2012; Wang & Kim, 2017).
Originally, Holzinger and Swineford (1937) proposed the
bifactor model to separate general and specific components
from unsystematic error variance using confirmatory factor
analysis. The great flexibility and intuitive appeal of the
bifactor model has led many researchers to apply bifactor
models to different research designs including longitudinal

designs (e.g., latent state-trait modeling, Schermelleh-Engel,
Keith, Moosbrugger, & Hodapp, 2004; Steyer, Ferring, &
Schmitt, 1992; Steyer, Mayer, Geiser, & Cole, 2015; Steyer,
Schmitt, & Eid, 1999), multitrait-multimethod measurement
designs (Eid, Lischetzke, & Nussbeck, 2006; Jeon & Rijmen,
2014; Koch, Eid, & Lochner, 2018; Koch, Holtmann, Bohn,
& Eid, 2017b) as well as multilevel measurement designs
(Gkolia, Koustelios, & Belias, 2018; Koch, Schultze, Burrus,
Roberts, & Eid, 2015; Scherer & Gustafsson, 2015; Wang &
Kim, 2017). Today, the bifactor model has become an attrac-
tive and widely applied method for modeling multidimen-
sional data in psychology (Eid et al., 2017; Reise, 2012).

In the classical bifactor model proposed by Holzinger and
Swineford (1937), it is assumed that a general latent factor
loads on all indicators measuring the same underlying con-
struct, whereas a latent specific factor just loads on particular
indicators that belong to the same facet or domain.
Furthermore, it is assumed that the specific factors are mutually
uncorrelated as well as uncorrelated with the general factor.
The latent specific factors are often referred to as residual
factors, representing the reliable part of the observed variables
that has been corrected for the influences of the general factor.
Due to the orthogonality of general and specific factors, it is
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possible to decompose the total variance of each observed
variable into a general, a specific, and an error component.

A growing body of research is devoted to the analysis of
general and specific factors by the inclusion of manifest or latent
explanatory variables into the bifactor model (Koch et al.,
2017a). Multilevel bifactor models seem to be especially attrac-
tive, as they allow researchers to relate explanatory variables to
the general and the specific factors at eachmeasurement level. In
educational research, researchers often seek to identify key
predictor variables for the specific factors (e.g., teacher, word-
ing, or facet-specific effects) using a multilevel bifactor model-
ing approach (Koch et al., 2015; Scherer & Gustafsson, 2015;
Wang, Kim, Dedrick, Ferron, & Tan, 2017). Similarly, psychol-
ogists have included external variables into single- and multi-
level bifactor models to explain general as well as specific
components of self-esteem (DiStefano & Motl, 2006; Tomás,
Oliver, Galiana, Sancho, & Lila, 2013), risk-taking (Nicholson,
Soane, Fenton-O’Creevy, & Willman, 2005), optimism
(Alessandri, Vecchione, Tisak, & Barbaranelli, 2011), leader-
ship performance (Gkolia et al., 2018), teaching quality (Scherer
&Gustafsson, 2015), teaching quality (Hindman, Pendergast, &
Gooze, 2016), cognitive abilities (Dickinson, Ragland, Gold, &
Gur, 2008; Reynolds, Keith, Ridley, & Patel, 2008), psycho-
pathy (Patrick, Hicks, Nichol, & Krueger, 2007), burn-out
(Shirom, Nirel, & Vinokur, 2010) and depression (Yang,
Tommet, & Jones, 2009).

According to Koch et al. (2017a), explanatory variables
cannot be directly linked to the latent factors in the bifactor
model if the external variables correlate with both the gen-
eral and the specific factors. Bifactor models assume ortho-
gonality of general and specific factors. This assumption is,
however, violated if a classical multiple indicator multiple
cause (MIMIC) approach is used to link explanatory vari-
ables to the latent factors in the model. Specifically, the
classical MIMIC approach leads to a suppression structure
because X (explanatory variable) shares variance with both
G (general factor) and Sk (specific factors), whereas G and
Sk are assumed to be uncorrelated in the bifactor model. The
orthogonality of G and Sk does no longer hold if a common
cause (e.g., X ) is added into the model. As a consequence,
the bifactor model is misspecified because it does not repre-
sent the original bifactor model with uncorrelated general
and specific factors. If the above suppression structure is not
properly modeled, researchers must expect parameter bias of
the structural coefficients Koch et al. (2017a). Note that the
suppression structure will also arise if an explanatory vari-
able is linked to the specific factors and solely correlates
with the general factor in the bifactor model. To properly
handle the suppression structure and avoid parameter bias,
Koch et al. (2017a) proposed two modeling strategies: the
multiconstruct bi-factor approach and the residual approach.

The basic idea of the two modeling strategies is to correct
the original explanatory variables from unwanted influences
of the general factor, when explaining the latent specific
effects in the bifactor model. The multiconstruct bi-factor

approach is limited to explanatory variables that can be
decomposed into two orthogonal components (Koch et al.,
2017a). For example, the multiconstruct bifactor approach
has been successfully implemented in the context of latent
state-trait modeling (Courvoisier, Eid, & Nussbeck, 2007;
Hamaker, Kuiper, & Grasman, 2015; Luhmann,
Schimmack, & Eid, 2011). In this context, it is common to
decompose time-varying covariates into a general (i.e., time-
invariant) and a specific (i.e., time-variable) component. In a
second modeling step, the general and specific components
of the time-varying covariate are linked to the correspond-
ing trait and state factors in the latent state-trait model.

The residual approach is more general than the multicon-
struct bifactor approach and can also be used if the explanatory
variables cannot be decomposed into two orthogonal compo-
nents. The residual approach is based on a latent linear regres-
sion analysis and requires twomodeling steps. First, the general
factor G is partialled out from the covariate (e.g., η) using a
latent regression analysis. If the assumption of multivariate
normality holds, the residual variable of the latent regression
analysis represents the part of the original covariate that is free
of (first-order) influences of the general factor and thus may be
termed residualized covariate (�). In a second step, the residua-
lized covariate � is used as an independent variable to explain
the latent specific factors Sk in the bifactor model. The regres-
sion coefficient of a latent specific factor on the residualized
covariate can be interpreted as latent partial regression coeffi-
cient, representing the link between the specific factor and the
covariate while controlling for the general factor. The residual
approach circumvents the suppression structure by correcting
the covariates from confounding (first-order) influences of the
general factor. Following a similar logic, the residual approach
can be used to explain the general factor in a bifactor model
while controlling for the specific factors.

In this study, we introduce a combination of the doubly
latent approach proposed by Marsh et al. (2009) and the
residual approach proposed by Koch et al. (2017a). The new
approach is termed doubly latent residual approach (DLRA),
as it combines the advantages of both approaches. Specifically,
the DLRA allows researchers to (a) properly model the pre-
viously described suppression structure, (b) simultaneously
include multiple explanatory variables at both levels, and (c)
account for measurement error as well as sampling error when
aggregating level-1 explanatory variables (i.e., doubly latent
approach). To examine the statistical performance and power
of the DLRA, we present the results of a Monte Carlo simula-
tion study. To the best of our knowledge, no study has yet
proposed an adequate transformation method to properly relate
explanatory variables to the latent specific factors in multilevel
bifactor models. Furthermore, it is not fully clear what sample
size is required to explain latent specific effects of different
effect sizes in multilevel bifactor models. With this study we
aim to fill this gap in current research.

The remainder of the article is organized as follows.
First, two versions of multilevel bifactor models are

ON THE POWER AND PERFORMANCE OF A DOUBLY LATENT 213



discussed. Second, the DLRA is presented. Third, the
DLRA is illustrated using real data from a large-scale edu-
cational study to examine the key determinants of teacher
effects at the student and the class level. Fourth, the statis-
tical performance and power of the DLRA is examined
under a variety of different data constellations in a Monte
Carlo simulation study. Finally, the advantages and limita-
tions of the DLRA are discussed and detailed guidelines for
applying researchers are provided.

MULTILEVEL BIFACTOR MODELS

According to Eid et al. (2017), two versions of bifactor
models can be distinguished: (a) the classical bifactor
model that assumes as many specific factors as there are
facets in the design and (b) the restricted bifactor model that
encompasses a reduced number of specific factors, which
will be termed bifactor-(S-1) model in the remainder of the
article. In this study, we focus on multilevel bifactor-(S-1)
models, as such measurement designs are increasingly
applied in practice. In the discussion, we consider ways to
properly treat covariates in classical multilevel bifactor
models with S specific factors.

A typical example of a bifactor-(S-1) model is a multi-
rater measurement designs, where different types of raters
(e.g., teacher report versus student self-report) serve as
facets. In educational research, it is quite common that a
class teacher is asked to rate all students in a class. As a
consequence, teacher and student ratings are nested within
higher clusters (e.g., classes). However, student as well as
teacher reports are fixed for each particular student in a class
and resemble different perspectives on the target-student.
Therefore, student and teacher reports cannot easily be
replaced by one another. To properly model multilevel
research designs with fixed raters that are nested within
classes, Koch et al. (2015) proposed a multilevel bifactor-
(S-1) model. Originally, the model was developed for the
analysis of multilevel-multitrait-multimethod designs with
nested structurally different methods (Koch et al. 2015). In
this study, we treat raters as facets and consider a mini-
mal multilevel design including two indicators, one con-
struct, and two raters. Later in the article, we extend our
measurement design to multiple facets (i.e., 2, 3, or 4 raters).

The basic idea of the multilevel bifactor-(S-1) model
proposed by Koch et al. (2015) is to select a reference
facet (e.g., student self-report) and contrast the remaining
facets (e.g., teacher report) against this reference facet at
each measurement level. We recommend researchers to
select the most outstanding facet (i.e., the closed approxima-
tion to a gold standard) as the reference facet based on
previous findings or substantive theory (Geiser, Eid, &
Nussbeck, 2008). In the multilevel bifactor-(S-1) model, a
reference facet is chosen by modeling S –1 (instead of S)
specific factors at each measurement level. If, for example,

researchers want to select the first facet as the reference
facet (e.g., self-report), then the specific factor of the first
facet is dropped at each level. The specific factors belonging
to the non-reference methods (e.g., teacher report) are
defined as latent residual variables of a latent regression
analysis, in which the true-score variable of the non-reference
methods is regressed on the true-score variable of the reference
method. Hence, the latent specific factors in the multilevel
bifactor-(S-1) model reflect the reliable part of a non-reference
method (e.g., teacher perspective) that is not shared with the
reference method (e.g., student perspective) at a particular
measurement level. This way, the multilevel bifactor-(S-1)
model allows to contrast different facets (e.g., teacher and
student perspective) by means of a latent linear regression
analysis at each level (cf. Eid, 2000; Eid, Lischetzke,
Nussbeck, & Trierweiler, 2003; Koch et al., 2015).

The multilevel bifactor-(S-1) model bears three advan-
tages. First, it enables researchers to contrast different facets
(or methods) that do not share a common metric (e.g., self-
reports versus objective tests). Second, it allows to define the
specific factors as residual factors at each level, which repre-
sent the reliable part of a particular facet that is not shared
with the general factor at that level. Third, it allows research-
ers to decompose the true variance of each indicator belong-
ing to a non-reference facet into a level-specific part that is
shared with the reference facet (i.e., consistency coefficient)
and a level-specific part that is not shared with the reference
facet (i.e., specificity coefficient). Figure 1a shows a multi-
level bifactor-(S-1) model with common latent factors.

As can be seen from Figure 1a, the first facet (e.g., stu-
dents’ self-reports) serves as the reference facet, as no latent
specific factor is modeled for the first facet (k ¼ 1). The
corresponding measurement equation for the self-report of a
target-student p nested in cluster c can be written as follows:

YW
cpi1 ¼ αBGi1 þ λBGi1G

B
c1 þ λWGi1G

W
cp1 þ εWYcpi1; (1)

where i denotes indicator and k represents the facet (here:
self-reports; k = 1). The superscripts (W= within and B
= between) denote the measurement level. According to
the Equation (1), each observed variable YW

cpi1 belonging to

indicator i of the first facet k ¼ 1 is decomposed into an
additive constant αBGi1, a weighted between general factor

λBGi1G
B
c1, a weighted within general factor λWGi1G

W
cp1, and an

error variable εWYcpi1. The values of the between general

factor GB
c1 represent the true scores of the first facet mea-

sured at level 2 (e.g., the overall self-reported intrinsic
motivation of a particular class). The values of the within
general factor reflect the true scores of the first facet mea-
sured at the student level (e.g., true self-reported intrinsic
motivation of a student corrected for the true average intrin-
sic motivation of the class). The error variables capture
unsystematic error variance at the within level. The
observed variables YW

cpik belonging to indicator i measured
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by the remaining facets (k�1, e.g., teacher reports) are
decomposed as follows:

YW
cpik ¼ αBGik þ λBGikG

B
c1 þ λBSikS

B
ck þ λWGikG

W
cp1

þ λWSikS
W
cpk þ εWYcpik : (2)

The specific factors SBck and SWcpk in Equation (2) repre-
sent the reliable (between or within) part of a specific
facet k (here: teacher reports) that is not shared with the
reference facet (here: students’ self-reports). More spe-
cifically, the between specific factor SBck can be inter-
preted as teacher effect measured at level 2, that is, the
true teacher perspective that is not shared with the stu-
dent perspective at the class level, whereas SWcpk denotes

the teacher effect measured at level 1, that is, the true
teacher perspective that is not shared with the student

perspective at the student level. Again, the error vari-
ables εWYcpik capture unsystematic error variance at the

within level.
The above multilevel bifactor-(S-1) model with common

latent factors may be too restrictive, especially if additional
indicator-specific method effects exist (e.g., wording effects
due to positive and negative worded items). To account for
additional indicator-specific method effects, the measure-
ment Equations (1) and (2) can be extended in the following
way (see also Figure 1b):

YW
cpi1 ¼

αBG11 þ λBG11G
B
c1 þ λWG11G

W
cp1 þ εWYcp11 for i ¼ 1;

αBGi1 þ λBGi1G
B
c1 þ λWGi1G

W
cp1þ

λBIMi1IM
B
ci þ λWIMi1IM

W
cpi þ εWYcpi1 for i � 1:

0
BB@

(3)

(a)

Between Within

τB
c11

τB
c21

τB
c12

τB
c22

Y W
cp111

Y W
cp121

Y W
cp211

Y W
cp221

GW
cp1

SW
cp2

GB
c1

SB
c2

εW
Y cp11

1

1

1

1

1

1

(b)

Between Within

τB
c11

τB
c21

τB
c12

τB
c22

Y W
cp111

Y W
cp121

Y W
cp211

Y W
cp221
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cp1

SW
cp2

GB
c1

SB
c2

εW
Y cp11

IMW
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1
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1

1

1

1

1

1

1

1

FIGURE 1 Path diagram of a multilevel bifactor-(S-1) model with (a) common latent factors and (b) with additional indicator-specific method factors for a
minimal design with two indicators and two facets (here: raters). YW

cpik = within observed variable (p = person, c = cluster, i = indicator, and k = facet or rater).
GB

c1 = between latent trait factor. GW
cp1 = within latent trait factor. SBck = between latent specific factor. SWcpk = within latent specific factor, IMB

ci = between

indicator-specific factor. IMW
cpi = within indicator-specific factor. εWYcpij = within error variable. The mean structure is not shown to avoid clutter.
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For the remaining facets (i.e., k�1), the measurement equation
of the observed variables is given by

YW
cp1k ¼

αBG1k þ λBG1kG
B
c1 þ λWG1kG

W
cp1þ

λBS1kS
B
ck þ λWS1kS

W
cpk þ εWYcp1k for i ¼ 1;

αBGik þ λBGikG
B
c1 þ λWGikG

W
cp1þ

λBSikS
B
ck þ λWSikS

W
cpkþ

λBIMikIM
B
ci þ λWIMikIM

W
cpi þ εWYcpik for i � 1:

0
BBBBBBB@

(4)

In Equations (3) and (4), latent indicator-specific factors
were specified at both levels. To account for the heteroge-
neity among the indicators, it is sufficient to specify i� 1
latent indicator-specific factors. Again, researchers have to
select a reference indicator (e.g., i ¼ 1, positively worded
items or parcels) and contrast the remaining indicators (e.g.,
i�1, negatively worded items or parcels) against this refe4r-
ence indicator. The indicator-specific factor IMW

cpi captures

the reliable part of the negatively worded items that is
neither shared with the positively worded items nor with
the general or the specific factors at level 1. Similarly, the
indicator-specific factors IMB

ci capture the heterogeneity

among the indicators that is not shared with the general or
the specific factors at level 2.

The above multilevel bifactor-(S-1) models allow research-
ers to decompose the total variance of each observed variable
into general, facet-specific, indicator-specific, and error com-
ponents. Table 1 summarizes the different variance coeffi-
cients that can be computed in the multilevel bifactor-(S-1)
model with indicator-specific factors. Below we briefly
explain the meaning of the most relevant variance coefficients
in the model. A detailed discussion of these coefficients can
be found in the study by Koch et al. (2015). The consistency
coefficients (ConB, ConW ) are indicators of the convergent
validity between teacher and student reports at each level. The
between consistency coefficient ConB can be interpreted as a
measure of rater congruence between student and teacher
reports at the between level, whereas ConW is a measure of
the rater congruence at the within level. The total consistency
coefficient is the sum of ConB and ConW and ranges between
0 and 2. The specificity coefficients (SpeB, SpeW ) are the
complements of the previously described consistency coeffi-
cients and reflect the degree of rater disagreement at each
level. In this study, the within and between specificity coeffi-
cients will be interpreted as measures of teacher effects at both
levels. The total specificity coefficient is the sum of SpeB and
SpeW . The indicator-specificity coefficients (ISpeB and ISpeW )
are measures of the heterogeneity among the indicators at

TABLE 1
Variance Components in the Multilevel Bifactor-(S-1) Model with Indicator-Specific Factors

Coefficient Level Formula

True score variance Within σ2Wτ
¼ ðλWGikÞ2VarðGW

cp1Þ þ ðλWSikÞ2VarðSWcpkÞ þ ðλWIMikÞ2VarðIMW
cpiÞ

Between σ2Bτ
¼ ðλBGikÞ2VarðGB

c1Þ þ ðλBSikÞ2VarðSBckÞ þ ðλBIMikÞ2VarðIMB
ciÞ

Total σ2Tτ ¼ σ2Wτ
þ σ2Bτ

Observed variance Total σ2Y ¼ σ2Tτ þ σ2ε

Consistency Within ConW ¼ ðλWGikÞ2VarðGW
cp1Þ=σ2Wτ

Between ConB ¼ ðλBGikÞ2VarðGB
c1Þ=σ2Bτ

Total ConT ¼ ConW þ ConB

Specificity Within SpeW ¼ ðλWSikÞ2VarðSWcpkÞ=σ2Wτ

Between SpeB ¼ ðλBSikÞ2VarðSBckÞ=σ2Bτ

Total SpeT ¼ SpeW þ SpeB

Indicator-specificity Within ISpeW ¼ ðλWIMikÞ2VarðIMW
cpiÞ=σ2Wτ

Between ISpeB ¼ ðλBIMikÞ2VarðIMB
ciÞ=σ2Bτ

Total ISpeT ¼ ISpeW þ ISpeB

Intra-class correlation ICCτ ¼ σ2Bτ
=ðσ2Bτ

þ σ2Wτ
Þ ¼ σ2Bτ

=σ2Tτ
Reliability RelY ¼ ðσ2Wτ

þ σ2Bτ
Þ=σ2Y ¼ σ2Tτ=σ

2
Y

Note: The above coefficients refer to the observed variables belonging to the non-reference facet (i.e., k�1). σ and Varð�Þ denote variance, τ = true score
variable, Y = observed variable, T = total, W = within, B = between, G = latent general factor, S = latent specific factor, IM = latent indicator-specific method
factor, ε = error variable. c = cluster, p = person nested in cluster, i = indicator, k = facet (reference or non-reference).
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each level. The true intra-class correlation (ICCτ) is defined as
ratio of the true between variance to the total true variance of
an indicator. Finally, the reliability (RelY ) of an indicator is
defined as ratio of the overall variance to the observed
variance.

DOUBLY LATENT RESIDUAL APPROACH

The DLRA is a combination of the classical doubly
latent modeling approach proposed by Marsh et al.
(2009) and the residual approach proposed by Koch
et al. (2017a). The DLRA requires three modeling
steps and is illustrated for one covariate included into a
multilevel bifactor-(S-1) model with common latent fac-
tors (see Figure 2a) and with indicator-specific latent
factors (see Figure 2b).

In the first modeling step, the doubly latent approach by
Marsh et al. (2009) is performed by specifying adequate
measurement models for the explanatory variables at both
levels. Figure 2a illustrates the decomposition of the expla-
natory variables ZW

cpi into a common latent factor ηWcp mea-
sured at level 1 and a common latent factor ηBc measured at
level 2, where p = person, c = cluster, and i = indicator:

ZW
cpi ¼ μBi þ λBηiη

B
c þ λWηi η

W
cp þ εWZcpi: (5)

In Equation (5), ηBc reflects the reliable part of the
covariate at level 2 (i.e., true average mean of the
covariate), whereas ηWcp denotes the reliable part of the

covariate measured at level 1 (i.e., the deviation of the
individual true score from the true average mean of the
covariate). For example, ηBc may represent the true aver-
age level of parental support in a class, whereas ηWcp may

represent the deviation of the true student’s level of
parental support from the true average of the class. In
practice, the model with common latent factors (see
Equation 5) may be too restrictive. A less restrictive
model with additional indicator-specific factors at level
2 ηBci is depicted in Figure 2b. The measurement equation
of this model can be expressed as follows:

ZW
cpi ¼ ηBci þ λWηi η

W
cp þ εWZcpi: (6)

The indicator-specific latent factors ηBci account for the hetero-
geneity among the indicators at level 2. To avoid problems of
multicollinearity, we generally recommend specifying com-
mon (instead of indicator-specific) factors if possible (see
Equation 5).

In a second modeling step, the ηWcp and ηBci (see Equation
5) components of the covariate are residualized using the
residual approach proposed by Koch et al. (2017a). In case

of a multilevel bifactor-(S-1) model with common factors
(see Figure 2a), the level-specific components of the covari-
ates are regressed on the corresponding latent general fac-
tors measured at each level. The corresponding latent
regression equation can be expressed as follows:

ηBc ¼ γB0 þ γB1G
B
c1 þ �Bc ; ðlevel 2Þ (7)

ηWcp ¼ γW1 G
W
cp1 þ �Wcp: ðlevel 1Þ (8)

Note that the intercept parameter has been dropped in
Equation (8), as the covariate at the within level ηWcp is
defined as zero-mean latent residual variable. The residuals
in the above regression equations (see Equations 7 and 8)
represent the residualized covariates (�Bc and �Wcp).

Following a similar logic, researchers can correct the covari-
ates of indicator-specific and general effects if the covariates
share variance with both of these factors. The latent regression
equations can be expressed as follows (see Figure 2b):

ηBc1 ¼ γB01 þ γB1G
B
c1 þ δB1 IM

B
c2 þ �Bc1; ðlevel 2Þ (9)

ηBc2 ¼ γB02 þ γB2G
B
c1 þ δB2 IM

B
c2 þ �Bc2; ðlevel 2Þ (10)

ηWcp ¼ γW1 GW
cp1 þ δW1 IMW

cp2 þ �Wcp: ðlevel 1Þ (11)

Again, the intercept parameter has been dropped in
Equation (11). The residuals of these latent regression ana-
lyses (Equations 9–11) are defined as residualized explana-
tory variables (�Bc1, �

B
c2, and �Wcp).

In a third modeling step, the residualized covariates �Bc1, �
B
c1

and �Wcp are used as independent variables in a latent regression

analysis to predict the latent specific effects at each level. The
latent regression equations can be written as follows (see
Figure 2a and 2b):

SBc2 ¼ βB�Bc þ ζBc ; ðlevel 2Þ (12)

SWcp2 ¼ βW1 �
W
cp þ ζWcp: ðlevel 1Þ (13)

In Equation (12), �Bc is a vector containing �Bc1 and �Bc2 .
The corresponding latent regression coefficients βB1 and

βB2 are included in the vector βB. Equation (13) states a
linear latent regression of the latent specific factor SWcp2
on the residualized covariate �Wcp at level 1. The latent

regression coefficients in Equations (12) and (13) (i.e.,
βB1 , β

B
2 , and βW1 ) can be interpreted similary to the partial

regression coefficients in ordinary multiple regression
analysis. This means that the regression coefficients
represent the associations between the specific factors
(dependent variables) and the explanatory variables
(independent variables) when controlling for general as
well as indicator-specific effects at each level. In
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contrast, the explanatory variables are not residualized in
the MIMIC approach, but directly related to the latent
factors in the bifactor model. This means that the latent
regression coefficients under the MIMIC approach are
not corrected for confounding influences of the general
and the indicator-specific factors and, thus, may be
biased if the covariate also correlates with the general
and indicator-specific factors (Koch et al., 2017a).

EMPIRICAL ILLUSTRATION

The DLRA is illustrated using data from the BiKS-8–14
study.1 The BiKS-8–14 study is a German large-scale
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FIGURE 2 Path diagram of the doubly latent residual approach for a multilevel bifactor-(S-1) model with (a) common latent factors and (b) additional
indicator-specific method factors for a minimal design with two indicators and two facets (here: raters). YW

cpik = within observed variable (p = person, c = cluster,
i = indicator, and k = facet or rater). ZW

cpi = covariate measured by indicator i . GB
c1 = between latent trait factor. GW

cp1 = within latent trait factor. SBck = between

latent specific factor. SWcpk = within latent specific factor, IMB
ci = between indicator-specific factor. IMW

cpi = within indicator-specific factor. εWYcpij and εWZcpij
= within error variable. The mean structure is not shown to avoid clutter.

1 The acronym BiKS stands for educational processes, competence
development and selection decisions in preschool and school age.
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assessment study investigating students’ educational devel-
opment from age 8 to 14 using multiple methods (i.e.,
objective competence tests, self-reports, teacher reports, as
well as parent reports). For a detailed description of the
BiKS-8–14 study see Artelt, Blossfeld, Faust, Roßbach,
and Weinert (2013). Here, we re-analyzed data from the
first measurement wave of the BiKS study and focused
exclusively on students’ intrinsic motivation assessed via
self-reports and teacher reports. In the BiKS study, each
student was rated by his or her class teacher. In total, the
data comprised the ratings of 2,365 students (52.33% males;
average age = 9.49) from 155 classes (or class teachers) and
82 schools. The data were analyzed using a twolevel bifac-
tor-(S-1) model (Koch et al., 2015). The third for (school)
level was not explicitly modeled, but controlled in the
analysis using the Mplus option “type = twolevel complex”
(Muthén & Muthén, 1998–2017). As a result, the standard
errors and fit statistic were adjusted for the clustering in the
data (Muthen & Satorra, 1995). In this study, we chose
students’ self-reports as the reference facet. The teacher
reports served as the non-reference facet. In line with
Koch et al. (2015), the non-reference facet was contrasted
against the reference method at both levels. The within
specific factor represents the unique perspective of the
class teacher on a particular student’s intrinsic motivation
that is not shared with the student’s self-report (i.e., indivi-
dual teacher effect). The between specific factor captures the
perspective of the class teacher on the class-specific intrinsic
motivation corrected for the students’ self-reported intrinsic
motivation (i.e., class-specific teacher effect). The general
factors in the model represent the students’ self-reported
intrinsic motivation measured at level 1 and level 2. In
addition, we modeled latent indicator-specific factors to
account for the heterogeneity among the indicators at each
level (see Figure 1b). The goal of the present study was to
(1) examine the congruence between teachers’ and students’
self-reports within and across classes and (2) explain the
teacher-specific perspective on students’ intrinsic motivation
by relating a residualized explanatory variable (i.e., parental
support perceived by the class teacher) to the latent specific
factors at each level. The research questions of the present
study can be summarized as follows:

1. To what extent do teacher and student ratings overlap
within and between classes?

2. To what extent do teachers have a different perspec-
tive on students’ intrinsic motivation that is not shared
with the students’ self-reports (i.e., amount of teacher
effects at each level)?

3. Does parental support perceived by the class teacher
explain teacher effects at each level?

The first research question refers to teachers’ judgment
accuracy, which can be defined as the congruence between
students’ self-reports and teacher reports (Praetorius, Koch,

Scheunpflug, Zeinz, & Dresel, 2017). Teachers’ judgment
accuracy was examined with regard to the consistency coef-
ficients at both levels (see Table 1). The second research
question refers to the amount of teacher effects at each level,
which were examined with regard to the specificity coeffi-
cients. To answer the third research question, we related the
explanatory variable (i.e., parental support perceived by the
teacher) to the latent specific factors at each level using the
DLRA.

RESULTS

First, we fitted a multilevel bifactor-(S-1) model with common
latent factors (see Figure 1a) to the data. This model did not fit
the data well, χ2 (6, N = 2365) = 527.70, p < .001, CFI = .82,
RMSEA = .19, SRMRL1 = .01, SRMRL2 = .13. Second, we fitted
the less restrictive multilevel bifactor-(S-1) model with
indicator-specific method factors (see Figure 1b). This model
fitted the data acceptably well, χ2 (5, N = 2365) = 48.43, p
< .001, CFI = .99, RMSEA = .06, SRMRL1 = .00, SRMRL2

= .12, and was therefore chosen for the subsequent analyses. In
a third step, we related a residualized covariate (i.e., parental
support) to the latent specific factors at both levels using the
DLRA. An example Mplus code for this final model is pro-
vided in Appendix C. Note that we specified common latent
factors with regard to the residualized covariate at both levels
to avoid problems of multicollinearity. The fit of this explana-
tory multilevel bifactor-(S-1) model was acceptable, χ2 (15, N
= 2365) = 267.72, p < .001, CFI = .96, RMSEA = .08, SRMRL1

= .03, SRMRL2 = .12. The averaged intra-class correlations
ranged between .11 for students’ self-reports and .25 for tea-
cher reports. The averaged intra-class correlation for the expla-
natory variable (parental support) was .17. Table 2 summarizes
the results of the multilevel bifactor-(S-1) model.

Research question 1 and 2 can be answered by means of
the consistency and specificity coefficients that were com-
puted at each level (see Table 2). The consistency coeffi-
cients of the teacher reports varied between .084 and .090 at
level 1 and between .034 and .037 at level 2. This suggests
that the congruence (or convergent validity) between student
and teacher reported intrinsic motivation was higher at the
individual student level than at the class level. Overall, the
consistency coefficients were relatively low and corre-
sponded to a latent correlation between student and teacher
reports of r = .30 at level 1 and of r = .19 at level 2. These
results indicate a relatively low level of convergent validity
(or teacher accuracy) at the within and the between level.
The specificity coefficients ranged between .851 and .910 at
level 1 and between .905 and .963 at level 2 (see Table 2).
This shows that a large proportion of true variance of the
teacher ratings was due to the unique perspective of the
class teacher that was not shared with the students’ self-
reports (i.e., teacher effects). Including the residualized cov-
ariate (here: parental support), 36% of the interindividual
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differences in the teacher effects could be explained at level
1 and about 20% of the interindividual differences in the
teacher effects could be explained at level 2. The unstandar-
dized regression coefficients of the residualized covariate
were positive. This indicates that teachers who perceived
the level of parental support as high also tended to overrate
students’ intrinsic motivation at each level (i.e., the indivi-
dual and the class level), when controlling for students’ self-
reported intrinsic motivation at each level. The standardized
regression coefficient at level 2 was non-significant. This
result may be partly explained by a lack of statistical power
at level 2. To evaluate the statistical performance and power
of the DLRA in greater detail, we conducted a Monte Carlo
study.

SIMULATION STUDY

Many applications of multilevel bifactor models involve a
relatively low number of level-1 and level-2 observations.
Moreover, researchers typically apply multilevel bifactor
models that include multiple specific factors at each level.
We conducted a simulation study to examine the statistical
performance and power of the DLRA under different data
constellations.

Results of previous simulation studies suggest that multi-
level bifactor-(S-1) models without covariates perform well
if at least 50 clusters and more than 10 observations per
cluster are sampled (Koch et al., 2015). Other studies indi-
cate that a larger number of clusters (100 or more) may be
required to obtain proper parameter and standard error esti-
mates in multilevel structural equation models (MSEMs,
Hox, 2010; Julian, 2001). Results of recent simulation stu-
dies suggest that the number of level-1 observations per
cluster (i.e., cluster size) can reduce standard error bias in

longitudinal MSEMs (Koch, Schultze, Eid, & Geiser, 2014).
Moreover, studies have shown that the performance of the
doubly latent approach is positively related to the amount of
information (i.e., number of clusters and the intra-class
correlation) that is available with regard to the level-2 con-
struct (Lüdtke, Marsh, Robitzsch, & Trautwein, 2011).
Based on these results, we varied the following factors in
our simulation study:

(a) existence of indicator-specific effects: a) yes b) no
(b) number of latent specific factors: 1, 2, or 3
(c) effect size in terms of R2 at each level: small effect

(R2 ¼ :05), medium effect (R2 ¼ :15), large effect
(R2 ¼ :35), huge effect (R2 ¼ :50)

(d) number of clusters (nL2): 50, 100, 150, 200, 300,
and 500

(e) cluster size (nL1): 10, 15, 20, and 30

The true intra-class correlation was varied across indica-
tors belonging to different facets (raters) in the present study:
ICCτ � .10 for self-reports, ICCτ � .30 for teacher reports,
and ICCτ � .20 for the explanatory variable. At each level,
we related one explanatory variable to the latent specific
factors (1, 2, or 3) using the DLRA. The effect sizes at
each level were varied in terms of R2, ranging from .05
(small), .15 (medium), .35 (large), and .50 (huge). The
above R2 values correspond to the following standardized
regression coefficients of the residualized covariate: βs1k �
.224 (small), βs1k � .387 (medium), βs1k � .592 (large), and
βs1k � 0.707 (huge). The above regression coefficients were
invariant for the within and between model part as well as for
both types of bifactor models (i.e., with or without indicator-
specific factors). Due to the greater model complexity (i.e.
number of freely estimated parameters) of the bifactor model
with indicator-specific factors, we expected a less stable

TABLE 2
Consistency, Specificity and Latent Regression Coefficients

Within (student) level

Multilevel bifactor-(S-1) model Doubly latent residual approach

Item ConW SpeW ISpeW Rel Covariate B(SE) β(SE) R2(SE)

IML1 .09 .91 .90 Parental 0.50���(0.06) 0.60���(0.05) .36(0.06)

IML2 .08 .85 .06 .73 Support

Between (class) level

Item ConB SpeB ISpeB ICCτ Covariate B(SE) β(SE) R2(SE)

IML1 .04 .96 .24 Parental 0.36�(0.18) 0.44n:s: (0.28) .20(0.25)

IML2 .03 .91 .06 .17 Support

Note: W = within level, B = between level, Con = consistency coefficient, Spe = specificity coefficient, ISpe = indicator-specificity coefficient,
Rel = reliability, ICCτ = true intra-class correlation, B = unstandardized regression coefficient, Beta = standardized regression coefficient, R2

= determination coefficient, SE = standard error, n:s = non-significant, ���p < .001.
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performance of the DLRA in case of low sample sizes. The
unstandardized regression coefficients of the explanatory
variables on the general factors were set to γW1 = 0.935 at
level 1 and to γB1 = 1.000 at level 2 in case of bifactor models
with common factors (see Figure 2a). In case of indicator-
specific factors (see Figure 2b), we chose the following
values for the unstandardized regression coefficients: γB1 =

δB1 = 0.962 and γW1 = δW1 = 0.924. The variance of the general
factor was set to σ2GW

= 8.0 at level 1 and to σ2GB
= 1.0 at level

2. The variance of the indicator-specific factors was set to
σ2IMW

= .20 at level 1 and to σ2IMW
= .08 at level 2. As a

consequence of these settings, the variances and the effect
sizes of the residualized covariates (�Wcp and �Bc ) were identical

in the simulated models with and without indicator-specific
factors. A complete list of the parameter settings in the
simulation study is provided in Appendix A together with
an example Mplus code in Appendix C.

In total, 576 conditions with 500 replications per condi-
tion were simulated (i.e., 288,000 data sets). The data
were generated using Mplus 8.1 (Muthén & Muthén,
1998–2017) and MplusAutomation (Hallquist & Wiley,
2017) assuming complete data (i.e., no missing values).
All models were fitted to the simulated data using robust
maximum likelihood (MLR) estimation.

EVALUATION CRITERIA

The statistical performance of the DLRAwas examined with
regard to the following criteria: (a) rate of convergence, (b)
the number of warning messages referring to potential
improper solutions, (c) estimation bias and efficiency, and
(d) statistical power.

Convergence Rate

In the simulation, we computed the percentage of the simu-
lated models that converged properly after a maximum
number of 500 iterations for the Expectation Maximum
(EM) algorithm (i.e., Mplus default setting). We expected
a larger number of non-converged models in cases of small
sample sizes (e.g., nL2 = 50 and nL1 = 10) and in case of
bifactor models including additional indicator-specific
factors.

Warning Messages and Improper Solutions

Various warning messages were recorded during the simula-
tion study: warning messages referring to (a) Ψ -problems,
(b) Θ -problems, (c) computation problems with regard to
the standard errors, (d) an ill-conditioned fisher matrix, (e) a
saddle point during the estimation. Again, we expected a
larger number of warning messages in extreme conditions
with low sample size and high model complexity (i.e.,

including multiple specific factors as well as indicator-spe-
cific effects).

Estimation Bias and Efficiency

In the simulation study, we computed the relative para-
meter estimation bias (peb), the relative standard error esti-
mation bias (seb), the 95% coverage rate (cover), and the
mean square error (MSE) as an indicator of efficiency. The
relative peb was calculated for each parameter p and then
averaged over parameters of the same parameter type c :

pebðθ̂cÞ ¼ 1

nc

Xnc
c¼1

1

nrep

Xnrep
e¼1

ðθ̂pce � θpcÞ=θpc
�����

����� (14)

Similarly, the relative seb is calculated as follows:

sebðθ̂cÞ ¼ 1

nc

Xnc
c¼1

1

nrep

Xnrep
e¼1

ðŝdðθ̂pcÞe � sdðθ̂pcÞÞ=sdðθ̂pcÞ
�����

�����
(15)

In accordance with previous studies, the values of peb and
seb < .10 (10%) were regarded as acceptable (e.g., Koch
et al., 2014; Muthén & Muthén, 2002). The 95% coverage is
the proportion of replications for which the 95% confidence
interval contains the true (or population) parameter value.
The MSE is defined as variance of the parameter estimates
across all replications plus the square of the bias for that
parameter estimates. Again, the 95% coverage rate and the
MSE were averaged across parameters of the same para-
meter type. The coverage and the MSE indicate how well a
parameter and its standard error are estimated and were
interpreted as a measure of estimation efficiency. Less bias
and greater efficiency were expected with increasing sample
size at each level.

Power

Finally, we examined the statistical power for explaining
latent specific factors under various sample size conditions
as well as different model complexity (i.e., number of latent
specific factors included in the model). The goal was to
provide recommendations to applied researchers for design-
ing future studies with regard to the analysis of specific
effects using the DLRA.

RESULTS

Convergence Rate

Model non-convergence was encountered in 52 out of 576
conditions (9.03%). However, none of the simulated condi-
tions showed severe convergence problems (i.e., conver-
gence rate below 50%). Overall, there were only 14
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conditions that showed a convergence rate below 90%.
Convergence problems were primarily encountered in con-
ditions with high model complexity (e.g., indicator-specific
factors) and a low sample size (e.g., nL2 = 50 and
nL1 = 10).

Warning Messages and Improper Solutions

From 576 conditions, 12.5% showed warning messages refer-
ring to Ψ -problems, 7.81% referring to estimation problems of
the standard errors, 7.81% referring to an ill-conditioned fisher
matrix, and 10.76% referring to problems of reaching a saddle
point during the estimation. As expected, the majority of these
warning messages were encountered in extreme conditions, in
which a relatively complex multilevel bifactor-(S-1) model
including multiple latent specific factors and indicator-specific
factors was fit to small samples (nL2 = 50 and nL1 = 10).
Based on these results, we decided to remove the condition
with 50 clusters and 10 observations per cluster from further
analyses. We did not encounter any warning messages refer-
ring to Θ -problems in our simulation study. Overall, the
results are promising and show that even complex multilevel

bifactor-(S-1) models with covariates at each measurement
level can be successfully fitted to relatively small samples.

Estimation Bias and Efficiency

Figure 3 shows the averaged relative peb in the simulated
multilevel bifactor-(S-1) models with respect to the sample
size at both levels.

As can be seen from Figure 3, the averaged peb values
decreased substantially with increasing sample size at level
1 and level 2. The peb values did not exceed the cutoff
value of 10%, except for one condition including 50 clusters
and 15 observations per cluster. It is worth noting that the
averaged peb values fell below the cutoff value when the
model included multiple specific factors. A closer inspection
revealed that the variance of the indicator-specific factor at
level 1 was poorly estimated in the condition with one
specific factor, which in turn may have led to the increased
bias in the parameter estimates when explaining the latent
specific factor at level 1. Notwithstanding, the number of
specific factors in the simulated bifactor models had only a
negligible effect on the peb values (see Figure 3). In general,

FIGURE 3 Averaged peb in the simulated multilevel bifactor-(S-1) models. The y-axis shows the averaged peb across all model parameters. The x-axis refers
to the number of specific factors in the model. The upper panel denotes the number of cluster (level-2 observations) and the right panel denotes the cluster size
(level-1 observations). Bars colored in light gray refer to models with common factors. Bars colored in dark gray refer to model including indicator-specific
factors.
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the averaged peb values were consistently larger in condi-
tions including indicator-specific factors.

Figure 4 shows the averaged seb values in the simulated
multilevel bifactor-(S-1) models with respect to the sample
size on level 1 and level 2. According to Figure 4, the
averaged seb values exceeded the cutoff value of 10% in
the following three sample size conditions: (1) 50 clusters
with a cluster size of 15, (2) 50 clusters and a cluster size of
20, and (3) 100 clusters with a cluster size of 10. Note that
the seb was only greater than 10% when the simulated
model included additional indicator-specific factors and
one latent specific factor. Again, these results may be partly
explained by the fact that the indicator-specific factors are
empirically underidentified in these conditions. If multiple
specific factors are modeled (see conditions with 2 or 3
specific factors in Figure 4), the indicator-specific factor is
identified by at least three indicators, which leads to
unbiased standard error estimates. Overall, the results of
our simulation study reveal that the parameters and standard
errors are well recovered even in relatively small samples
(nL2 = 50 and nL1 = 20; nL2 = 100 and nL1 = 10). These
results are promising and suggest that the DLRA performs
well under a variety of data constellations. We provide a

detailed summary of the averaged peb, seb, and MSE values
as well as the 95% coverage rate in Table 3. The MSE
values and the 95% coverage rate support the above
findings.

Statistical Power

The statistical power of DLRA is illustrated in Figure 5
for the standardized regression coefficients at level 1 and
in Figure 6 for the standardized regression coefficients at
level 2. The statistical power depended on the number of
clusters (nL2), the cluster size (nL1), as well as the
effect size. However, the number of specific factors in
the bifactor model had only little impact on the statis-
tical power of the DLRA approach. A detailed summary
of the power analysis is provided in Table B1 in
Appendix B.

As can be seen from Figure 5, the power at the within
level was always greater than 80%. We did not observe a
loss in statistical power if multiple specific factors were
added in the multilevel bifactor-(S-1) model. This shows
the DLRA approach performs well at the within level if at
least 50 clusters and more than 10 observations per cluster

FIGURE 4 Averaged seb in the simulated multilevel bifactor-(S-1) models. The y-axis shows the averaged seb across all model parameters. The x-axis refers
to the number of specific factors in the model. The upper panel denotes the number of cluster (level-2 observations) and the right panel denotes the cluster size
(level-1 observations). Bars colored in light gray refer to models with common factors. Bars colored in dark gray refer to model including indicator-specific
factors.

ON THE POWER AND PERFORMANCE OF A DOUBLY LATENT 223



are sampled. However, the power at the between level fell
below 80% in some conditions (see Figure 6). To test a
small effect (R2 ¼ :05) at the between level with a prob-
ability of 80%, researchers must at least sample 300 cluster

with 10 observations per cluster. However, the power at the
between level was often close to 80% if more than 200
clusters and more than 15 observations per cluster were
sampled. To detect larger effects at the between level (i.e.,
medium, large, or huge effects), a minimal sample size of
100 clusters and 10 observations per cluster should be
sampled. Our findings suggest that the number of clusters
is a more relevant factor for a sufficient level of statistical
power at the between level than the cluster size.

DISCUSSION

In the present study, we introduced a DLRA to properly explain
latent specific factors in multilevel bifactor-(S-1) models. The
DLRA combines the advantages of the residual approach by
Koch et al. (2017a) and the classical doubly latent approach by
Marsh et al. (2009) and overcomes some important limitations
of the classical MIMIC approach when explaining latent factors
in multilevel bifactor models. Specifically, the DLRA avoids the
methodological problems that arise when directly relating expla-
natory variables to the specific factors in bifactor models (Koch
et al., 2017a).

In the DLRA, level-1 explanatory variables are first
decomposed into a within and a between component. In a
second step, the components are corrected for confounding
influences of the latent general factors on each measurement
level. The residualized explanatory variables represent the
part of the explanatory variables that is not determined by
the general factors and thus can be safely related to the
specific factors at each level. Researchers must also remove
indicator-specific influences from the explanatory variables,
if the indicator-specific factors in the model correlate with
the explanatory variables.

Another advantage of the DLRA is that it allows
researchers to relate explanatory variables to the latent spe-
cific factors on multiple measurement levels, while account-
ing for measurement and sampling error. The DLRA also
enables a clearer interpretation of the latent regression coef-
ficients. In the classical MIMIC approach, explanatory vari-
ables are not residualized, but directly related to the latent
factors in the bifactor model. Similar to multiple regression
analysis, the DLRA approach allows researchers to control
for the potentially confounding factors in the bifactor model
(e.g., influence of the general and/or the indicator-specific
factors) when relating the explanatory variables to the latent
specific factors in the model. Thus, the DLRA allows
researchers to study the relationship between explanatory
variables and the latent specific factors at each level when
controlling for general and/or indicator-specific effects.
Moreover, the residualized explanatory variables in the
DLRA are already centered as recommended by many
researchers in the context of multilevel modeling (Enders
& Tofighi, 2007; Kreft, De Leeuw, & Aiken, 1995). In this
article, the DLRA was presented using a latent linear

TABLE 3
Summary of Estimation Bias and Estimation Efficiency for Different
Sample Sizes and Models with or without Indicator-Specific Factors

Model with common factors

Averaged values Sample size 50 100 150 200 300 500

10 0.02 0.01 0.01 0.01 0.00

PEB 15 0.03 0.01 0.01 0.01 0.01 0.00

20 0.03 0.01 0.01 0.01 0.00 0.00

30 0.02 0.01 0.01 0.00 0.00 0.00

10 0.03 0.03 0.03 0.03 0.02

SEB 15 0.05 0.03 0.03 0.03 0.03 0.02

20 0.04 0.03 0.03 0.03 0.03 0.02

30 0.05 0.03 0.02 0.03 0.02 0.03

10 0.04 0.03 0.02 0.01 0.01

MSE 15 0.06 0.03 0.02 0.01 0.01 0.01

20 0.05 0.02 0.02 0.01 0.01 0.00

30 0.04 0.02 0.01 0.01 0.01 0.00

10 0.94 0.94 0.95 0.95 0.95

95% Cover 15 0.93 0.94 0.94 0.94 0.95 0.95

20 0.92 0.94 0.94 0.94 0.94 0.95

30 0.93 0.94 0.94 0.94 0.95 0.95

Model with Indicator-Specific Factors

Averaged values Sample size 50 100 150 200 300 500

10 0.04 0.02 0.02 0.01 0.01

PEB 15 0.11 0.02 0.02 0.01 0.01 0.01

20 0.04 0.02 0.01 0.01 0.01 0.01

30 0.03 0.01 0.01 0.01 0.01 0.00

10 0.06 0.05 0.03 0.03 0.02

SEB 15 0.09 0.04 0.04 0.03 0.03 0.03

20 0.06 0.04 0.03 0.03 0.03 0.02

30 0.05 0.04 0.03 0.03 0.03 0.03

10 0.17 0.04 0.03 0.02 0.01

MSE 15 9.81 0.04 0.03 0.02 0.01 0.01

20 0.09 0.03 0.02 0.01 0.01 0.01

30 0.05 0.02 0.01 0.01 0.01 0.00

10 0.94 0.94 0.95 0.95 0.95

95% Cover 15 0.93 0.94 0.94 0.94 0.95 0.94

20 0.93 0.94 0.94 0.94 0.94 0.95

30 0.92 0.94 0.94 0.94 0.94 0.95

Note: PEB = averaged parameter bias, SEB = averaged standard error
bias, MSE = mean square error, 95% Cover = 95% coverage rate. The
number of clusters is presented in the columns. The cluster size is presented
in the rows.
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regression analysis. Therefore, the DLRA approach only
corrects for linear or first-order dependencies between the
general factor and the explanatory variables. To correct for
higher-order dependencies, the DLRA needs to be extended
to higher-order or nonlinear effects.

The DLRA was illustrated using data from a German
large-scale assessment study investigating teacher effects
with regard to students’ intrinsic motivation. Our find-
ings suggest that teachers tend to overestimate students’
intrinsic motivation at the within level if teachers also
believe that their students receive a high level of par-
ental support, controlling for students’ self-reported level
of intrinsic motivation and indicator-specific effects.
Similar results were found at the between level, which
indicate that teachers tend to overestimate the intrinsic
motivation of the entire class if they believe that stu-
dents in the class receive a high level of parental support
(controlling for the students’ self-reported level of intrin-
sic motivation and indicator-specific effects).

We examined the statistical performance and power of
the DLRA in a Monte Carlo simulation study. The
results showed that the DLRA performs well in a variety
of different data constellations. Overall, the biases in
parameter and standard error estimates were negligible

and exceeded the cutoff value of 10% only in extreme
conditions. The standard errors were slightly biased if a
multilevel bifactor-(S-1) model with additional indicator-
specific factors was fitted to small samples (i.e., 50
clusters and 15 observations per cluster). To obtain
proper parameter and standard errors, we recommend
sampling more than 100 clusters and more than 10
observations per cluster. These findings are in line with
previous simulation studies in the context of multilevel
structural equation modeling (MSEM Hox & Maas,
2001; Julian, 2001; Koch et al., 2014), suggesting that
a sufficient number of clusters is required for proper
parameter and standard error estimates in MSEM. In
terms of statistical power, we recommend researchers
to sample a larger number of clusters (e.g., 200–300
clusters) in order to detect small effects at the between
level. To detect medium effects at the between level, a
sample size of 100 clusters and 10 observations per
cluster seems to be sufficient.

In this study, we introduced the DLRA in the context
of multilevel bifactor modeling that included a reduced
number of specific factors (i.e., S -1 specific factors). It
is worth noting that the DLRA can be extended straight-
forward to traditional multilevel bifactor models that

FIGURE 5 Power of the standardized latent regression coefficients of different effect sizes at the within level. The dotted line denotes a power of .80. The
y-axis shows the statistical power of the standardized latent regression coefficients at the within level. The x-axis refers to the number of specific factors in the
model. The upper panel denotes the number of cluster (level-2 observations) and the right panel denotes the cluster size (level-1 observations). Small
effect = red line. Medium effect = green line. Large effect = blue line. Huge effect = purple line.
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include as many specific factors as there are facets in the
design (i.e., S specific factors). In some situations, it
may be however more practical to apply the multicon-
struct bifactor approach proposed by Koch et al. (2017a)
at both levels. For example, a multiconstruct bifactor
approach would be beneficial if researchers aim to relate
time-varying covariates to the latent factors in a multi-
level latent state-trait model in order to explain time-
variable and time-invariant interindividual differences at
the within (student) and the between (class) level. A multilevel
multiconstruct bifactor approach requires that the time-varying
covariates are first decomposed into two orthogonal compo-
nents at each level using the doubly latent approach proposed
(Marsh et al., 2009). In a second step, a traditional bifactor
structure is used to model the dependent and independent
(explanatory) variables at both levels. Finally, the general
factors belonging to the explanatory variables can be linked
to the general factors belonging to the dependent variables at
each level. Similarly, the specific factors belonging to the
explanatory variables can be related to the specific factors
belonging to the dependent variables at each level. It is impor-
tant to note that the results of our simulation study cannot be
generalized beyond the specific conditions implemented.

However, the following recommendations can be derived
from our results.

Tip 1: Inspect the First-Order Correlations between the
Explanatory Variables and the Latent Factors in the
Multilevel Bifactor Model

We recommend researchers to evaluate the first-order
correlations between the explanatory variables and the
latent factors in the multilevel bifactor model. This way,
researchers are able to investigate whether or not a sup-
pression structure is present in the data. The DLRA is
recommended whenever the explanatory variables corre-
late with both the general and the specific factors at a
particular level. However, the DLRA is not necessary if
the explanatory variables solely correlate with the latent
specific factors, but not with the remaining factors in the
bifactor model. In these situations, researchers can simply
relate the explanatory variables to the latent specific fac-
tors in the model and fix the remaining (non-significant)
correlations to zero. However, we recommend to center
the explanatory variables before the analysis.

FIGURE 6 Power of the standardized latent regression coefficients of different effect sizes at the between level. The dotted line denotes a power of .80. The
y-axis shows the statistical power of the standardized latent regression coefficients at the between level. The x-axis refers to the number of specific factors in the
model. The upper panel denotes the number of cluster (level-2 observations) and the right panel denotes the cluster size (level-1 observations). Small
effect = red line. Medium effect = green line. Large effect = blue line. Huge effect = purple line.
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Tip 2: Use Multiple Homogeneous Indicators

In the context of the DLRA, we recommend specifying
common factors (instead of indicator-specific factors) if
possible. Results of our simulation study suggest that the
DLRA becomes unstable in case of indicator-specific factors
(i.e., larger amount of improper solutions as well as larger
bias under the same conditions). Indicator-specific factors
pose a problem of multicollinearity, as the latent indicator-
specific factors account for the heterogeneity among the
indicators. To avoid this problem, we suggest using homo-
geneous indicators (three indicators per factor). If indicator-
specific factors are needed for theoretical or statistical rea-
sons, we suggest to evaluate the first-order correlations as
discussed above.

Tip 3: Specify Parsimonious Multilevel Bifactor Models

Our findings suggest that the number of specific factors in the
multilevel bifactor-(S-1) model had only little impact on the
trustworthiness of the parameter and standard error estimates.
In some cases, modeling multiple specific factors was asso-
ciated with less parameter and standard error bias.
Notwithstanding, we recommend specifying parsimonious
multilevel bifactor-(S-1) models. Previous simulation studies
have suggested that the ratio of observations to the number of
freely estimated parameters should exceed 5:1 (Bentler &
Chou, 1987) or 10:1 (Bollen, 1989) with regard to classical
structural equation models. We recommend a minimal sample
size of 50 clusters with 15 observations per cluster. This
corresponds to a ratio of 12:1, that is, 750 observations and
62 freely estimated parameters in case of the most complex
model. In this simulation study, we have not varied the number
of explanatory variables in the model. It can be expected that
the statistical power decreases if multiple explanatory variables
are added simultaneously into the model.

CONCLUSION

The present study investigated the statistical performance and
power of a DLRA when explaining specific factors in multi-
level bifactor-(S-1) models. The proposed DLRA overcomes
important limitations of the classical MIMIC approach and
performs well under a variety of data constellations.
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APPENDIX A
PARAMETER SETTINGS USED IN THE

SIMULATION STUDY

TABLE A1
Population Values of the Structural Parameters Used in the Simulation

Effect size

Small Medium Large Huge

Model type Dependent variable Parameter label Within Between Within Between Within Between Within Between

Model with common factors η γ1 0.935 1.000 0.935 1.000 0.935 1.000 0.935 1.000

σ2G 8.000 1.000 8.000 1.000 8.000 1.000 8.000 1.000

σ2� 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Sk β1k 0.447 0.274 0.775 0.474 1.183 0.725 1.414 0.866

σ2ζk 3.800 1.425 3.400 1.275 2.600 0.975 2.000 0.750

covζk 1.520 0.855 1.360 0.765 1.040 0.585 0.800 0.450

βs1k 0.224 0.224 0.387 0.387 0.592 0.592 0.707 0.707

R2 0.050 0.050 0.150 0.150 0.350 0.350 0.500 0.500

corζk 0.400 0.600 0.400 0.600 0.400 0.600 0.400 0.600

Model with indicator specific factors η γ1 0.924 0.962 0.924 0.962 0.924 0.962 0.924 0.962

σ2G 8.000 1.000 8.000 1.000 8.000 1.000 8.000 1.000

δ1 0.924 0.962 0.924 0.962 0.924 0.962 0.924 0.962

σ2IM 0.200 0.080 0.200 0.080 0.200 0.080 0.200 0.080

σ2� 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Sk β1k 0.447 0.274 0.775 0.474 1.183 0.725 1.414 0.866

σ2ζk 3.800 1.425 3.400 1.275 2.600 0.975 2.000 0.750

covζk 1.520 0.855 1.360 0.765 1.040 0.585 0.800 0.450

βs1k 0.224 0.224 0.387 0.387 0.592 0.592 0.707 0.707

R2 0.050 0.050 0.150 0.150 0.350 0.350 0.500 0.500

corζk 0.400 0.600 0.400 0.600 0.400 0.600 0.400 0.600

Note: δ1= regression coefficient from the indicator-specific factor to the explanatory variable,

γ1= regression coefficient from the general factor to the explanatory variable,

σ2G = variance of the general factor, σ2� = variance of the residualized covariate,

σ2IM = variance of the indicator-specific factor,

β1k = unstandardized regression coefficient from the residualized covariate to the specific factor,

σ2ζk = residual variance of the specific factor, covζk = covariance between the specific factors,

βs1k = standardized regression coefficient from the residualized covariate to the specific factor,

R2 = coefficient of determination, corζk = correlation between the residuals of the specific factors.
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APPENDIX B
POWER ANALYSIS

TABLE B1
Power of Statistical Tests of the Standardized Regression Coefficients

βWs1k βBs1k

Number of clusters (nL2) Number of clusters (nL2)

Specific factors Effect size R2 cluster size (nL1) 50 100 150 200 300 500 50 100 150 200 300 500

1 10 – 0.96 0.99 0.99 1.00 1.00 – 0.36 0.47 0.62 0.77 0.94

.05 15 0.89 0.99 1.00 1.00 1.00 1.00 0.25 0.39 0.53 0.67 0.83 0.97

20 0.96 1.00 1.00 1.00 1.00 1.00 0.33 0.48 0.65 0.75 0.88 0.98

30 1.00 1.00 1.00 1.00 1.00 1.00 0.40 0.56 0.71 0.82 0.92 0.99

10 – 0.99 1.00 1.00 1.00 1.00 – 0.77 0.91 0.97 0.99 1.00

.15 15 0.98 0.99 1.00 1.00 1.00 1.00 0.57 0.84 0.96 0.99 1.00 1.00

20 0.99 1.00 1.00 1.00 1.00 1.00 0.69 0.91 0.98 0.99 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 0.73 0.95 1.00 1.00 1.00 1.00

10 – 0.98 1.00 1.00 1.00 1.00 – 0.98 1.00 1.00 1.00 1.00

.35 15 0.98 0.99 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00

20 0.99 1.00 1.00 1.00 1.00 1.00 0.96 1.00 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

10 – 0.99 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00

.50 15 0.99 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

20 0.99 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 – 0.95 0.99 1.00 1.00 1.00 – 0.35 0.51 0.60 0.77 0.93

2 .05 15 0.90 1.00 1.00 1.00 1.00 1.00 0.26 0.42 0.55 0.68 0.83 0.97

20 0.96 1.00 1.00 1.00 1.00 1.00 0.32 0.46 0.61 0.72 0.87 0.98

30 1.00 1.00 1.00 1.00 1.00 1.00 0.37 0.53 0.66 0.79 0.91 0.99

10 – 1.00 1.00 1.00 1.00 1.00 – 0.80 0.92 0.97 1.00 1.00

.15 15 1.00 1.00 1.00 1.00 1.00 1.00 0.62 0.87 0.96 0.99 1.00 1.00

20 1.00 1.00 1.00 1.00 1.00 1.00 0.70 0.91 0.98 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 0.73 0.95 0.99 1.00 1.00 1.00

10 – 1.00 1.00 1.00 1.00 1.00 – 0.98 1.00 1.00 1.00 1.00

.35 15 1.00 1.00 1.00 1.00 1.00 1.00 0.92 1.00 1.00 1.00 1.00 1.00

20 1.00 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

10 – 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00

.50 15 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

20 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 – 0.96 0.99 1.00 1.00 1.00 – 0.40 0.50 0.63 0.79 0.94

3 .05 15 0.91 1.00 1.00 1.00 1.00 1.00 0.28 0.46 0.59 0.71 0.88 0.98

20 0.96 1.00 1.00 1.00 1.00 1.00 0.31 0.49 0.64 0.76 0.88 0.98

30 0.99 1.00 1.00 1.00 1.00 1.00 0.37 0.57 0.72 0.82 0.93 0.99

10 – 1.00 1.00 1.00 1.00 1.00 – 0.77 0.90 0.97 1.00 1.00

.15 15 1.00 1.00 1.00 1.00 1.00 1.00 0.61 0.87 0.96 1.00 1.00 1.00

20 1.00 1.00 1.00 1.00 1.00 1.00 0.66 0.91 0.98 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 0.75 0.95 0.99 1.00 1.00 1.00
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APPENDIX C
MPLUS INPUT FILES

TABLE B1
(Continued)

βWs1k βBs1k

Number of clusters (nL2) Number of clusters (nL2)

Specific factors Effect size R2 cluster size (nL1) 50 100 150 200 300 500 50 100 150 200 300 500

10 – 1.00 1.00 1.00 1.00 1.00 – 0.98 1.00 1.00 1.00 1.00

.35 15 1.00 1.00 1.00 1.00 1.00 1.00 0.93 1.00 1.00 1.00 1.00 1.00

20 1.00 1.00 1.00 1.00 1.00 1.00 0.94 1.00 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

10 – 1.00 1.00 1.00 1.00 1.00 – 1.00 1.00 1.00 1.00 1.00

.50 15 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00

20 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DATA:

FILE IS “data.dat”;

VARIABLE:

NAMES ARE

id__LK id__Sch

M__S1n IM__S2m

IM__L1n IM__L2n

Z1 Z2;

MISSING = ALL(−99);

USEVARIABLES ARE

IM__S1n IM__S2m

IM__L1n IM__L2n

Z1 Z2;

CLUSTER = id__LK;

STRATIFICATION = id__Sch;

ANALYSIS:

TYPE = TWOLEVEL COMPLEX;

ESTIMATOR = mlr;

MODEL:

%WITHIN%

Gw BY IM__S1n

IM__S2m

IM__L1n

IM__L2n;

Sw BY IM__L1n

(Continued )
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(Continued)

IM__L2n@1;

IMw BY IM__S2m

IM__L2n@1;

Gw WITH Sw@0 IMw@0;

Sw WITH IMw@0;

! Doubly Latent residual approach

! Step 1: Measurement model

Etaw1 by Z1 Z2;

! Step 2: Define residuals

Etaw1 on Gw IMw;

Xiw1 by Etaw1@1;

Etaw1@0;

Xiw1 with Gw@0 IMw@0;

[Xiw1@0];

! Step 3: Explain specific factors

Sw on Xiw1;

%BETWEEN%

Gb BY IM__S1n

IM__S2m@1

IM__L1n

IM__L2n;

Sb BY IM__L1n

IM__L2n@1;

IMb BY IM__S2m

IM__L2n@1;

Gb WITH Sb@0 IMb@0;

Sb WITH IMb@0;

IM__S1n@0;

IM__S2m@0;

IM__L1n@0;

IM__L2n@0;

! Doubly latent residual approach

! Step 1: Measurement model

Etab1 by Z1 Z2;

Z1@0 Z2@0;

! Step 2: Define residuals

Etab1 on Gb IMb;

Xib1 by Etab1@1;

Etab1@0;

Xib1 with Gb@0 IMb@0;

[Xib1@0];

! Step 3: Explain specific factors

Sb on Xib1;

OUTPUT: …;

Montecarlo:

! MULTILEVEL BIFACTOR-(S-1) MODEL WITH

! ONE GENERAL FACTOR AT EACH LEVEL (G)

! TWO SPECIFIC FACTORS AT EACH LEVEL (S)

(Continued )
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(Continued)

! TWO INDICATORS PER FACTOR (Y11 to Y23)

! ADDITIONAL INDICATOR-SPECIFIC FACTORS (IM)

! DOUBLY LATENT RESIDUAL APPROACH (z1 and z2)

Names = Y11 Y21

Y12 Y22

Y13 Y23

z1 z2;

NREPS = 500;

Nobservations = 15,000;

NCSIZES = 1;

CSize = 500(30);

SEED = 11,111;

Model Montecarlo:

%WITHIN%

! BIFACTOR STRUCTURE AT LEVEL 1

GW1 by Y11@1

Y21*1

Y12*.4

Y22*.4

Y13*.4

Y23*.4;

SW1 by Y12@1

Y22@1;

SW2 by Y13@1

Y23@1;

IM1 by Y21@1 Y22@1 Y23@1;

FACTOR VARIANCES

GW1*8;

IM1*.20;

! FACTOR INDEPENDENCIES

GW1 with SW1@0 SW2@0 IM1@0;

IM1 with SW1@0 SW2@0;

! MEANS FIXED TO ZERO

[GW1@0];

[SW1@0];

[SW2@0];

[IM1@0];

!ERROR VARIANCES AT LEVEL 1

Y11*2 Y21*2;

Y12*1 Y22*1;

Y13*1 Y23*1;

! ENTER COVARIATE AT LEVEL 1

Zw by z1@1 z2@1;

z1*2 z2*2;

! RESIDUAL APPROACH AT LEVEL 1

Zw on GW1*0.9239364 IM1*0.9239364;

Xi1 by Zw@1;

Xi1*1;

(Continued )
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(Continued)

Zw@0;

GW1 IM1 with Xi1@0;

Zw with SW1@0 SW2@0;

[Xi1@0];

! EXPLAIN SPECIFIC EFFECTS AT LEVEL 1

SW1 on Xi1*0.4472136;

SW2 on Xi1*0.4472136;

SW1*3.8;

SW2*3.8;

SW1 with SW2*1.52;

%BETWEEN%

! BIFACTOR STRUCTURE AT LEVEL 2

GB1 by Y11@1

Y21*1

Y12*1

Y22*1

Y13*1

Y23*1;

SB1 by Y12@1

Y22@1;

SB2 by Y13@1

Y23@1;

IM2 by Y21@1 Y22@1 Y22@1;

! FACTOR VARIANCE

GB1*1;

IM2*.08;

! MEANS FIXED TO ZERO

[GB1@0];

[SB1@0];

[SB2@0];

[IM2@0];

! FACTOR INDEPENDENCIES

GB1 with SB1@0 SB2@0 IM2@0;

IM2 with SB1@0 SB2@0;

!ERROR VARIANCES AT LEVEL 2

Y11@0 Y21@0;

Y12@0 Y22@0;

Y13@0 Y23@0;

! INTERCEPTS

[Y11*6 Y21*6];

[Y12*7 Y22*7];

[Y13*7 Y23*7];

! ENTER COVARIATE AT LEVEL 2

Zb by z1@1 z2@1;

z1@0 z2@0;

[z1*5 z2*5];

! RESIDUAL APPROACH AT LEVEL 2

Zb on GB1*0.9622504 IM2*0.9622504;

Xi2 by Zb@1;

Xi2*1;

Zb@0;

GB1 IM2 with Xi2@0;

(Continued )
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(Continued)

Zb with SB1@0 SB2@0;

[Xi2@0];

! EXPLAIN SPECIFIC FACTORS AT LEVEL 2

SB1 on Xi2*0.2738613;

SB2 on Xi2*0.2738613;

SB1*1.425;

SB2*1.425;

SB1 with SB2*0.855;

MODEL:

(… as above)

Output: Tech9;
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