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Abstract

In order to enhance the efficiency and reliability of bus transportation systems, it is important to predict travel time precisely in the
planning phase. With the precise prediction of bus travel times, the cost can be reduced for bus companies, such as from planning
fixed buffer times between trips, while a better service can be provided for passengers. In this study, historical bus travel data from
a bus line of the HOCHBAHN bus company in Germany in 2019 are used for the analysis. We develop two neural network models,
namely multilayer perceptrons and a long short-term memory neural network, for predicting the bus travel time between timepoints
for a trip occurring at a given time of day, on a given day of the week, and in given weather conditions. Both neural networks are
combined with a genetic algorithm and a Kalman filter to improve accuracy. The genetic algorithm is implemented to tune the
neural network parameters, such as the number of hidden layers and neurons in a hidden layer, while the Kalman filter algorithm
is used to adjust the travel time prediction for the next trip using the latest bus operation information. In the experiment, we test
our models month by month and split data for each month into three parts: the data of the first two weeks for training, one week
for validation and the last week for prediction. The experiment results show that the hybrid model is powerful for predicting the
bus travel time. In particular, the combination of the multilayer perceptrons with the genetic algorithm and Kalman filter provides
the best travel time prediction (with an improvement of 56.2% compared with the planned bus travel time from the bus company).
In order to make a recommendation for bus companies to plan vehicles with more accurate bus travel times, we test our hybrid
models with larger training sets to predict the travel times e.g. in August. However, due to the structure of the planning problem,
the plan for buses should be estimated before a new month begins. We cannot consider the real information during the planning,
therefore we apply our hybrid models without the Kalman filter and they provide on average about 26% improvement compared
with the planned travel time.
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1. Introduction

In everyday operation, the plans for buses cannot be kept as planned, e.g. due to delays, which might be caused
by traffic jams or weather. Bus companies either plan some fixed buffer time to absorb the delays, or recover the
plans in the operation. Both methods are expensive, since they cause further vehicle and personnel costs. In order to
reduce costs for the bus company and provide a better service for passengers, it is important to predict bus travel times
precisely.

Bus travel time forecasting has been widely studied using various methods by many researchers, including a histor-
ical model based on historical travel time, a dynamic model based on GPS data, a statistical estimation model (e.g. a
Kalman filter), a machine learning model (e.g. long short-term memory neural network (LSTM)) and a hybrid model.
An overview of the existing methods used to estimate the arrival time / travel time of buses can be found in Altinkaya
and Zontul (2013), Choudhary et al. (2016) and Agrawal (2020).

In recent years, increasing interest has been shown in the use of hybrid models, which take advantage of multiple
algorithms. For example, a Kalman filter is combined with dynamic data in a multilayer perceptrons (MLP) model
(Chen et al. (2004), Yu et al. (2010), Zaki et al. (2013), Tantawy and Zorkany (2014)). In Yang et al. (2016), a genetic
algorithm (GA) is combined with a support vector machine model to tune hyperparameters. Such hybrid models are
shown to increase the accuracy of machine learning models.

From recent researches on bus travel time prediction, LSTM has often been selected to improve the accuracy and
performance of the prediction model (Pang et al. (2018), Petersen et al. (2019), Han et al. (2020)). However, a Kalman
filter has not yet been combined with LSTM in the literature.

Therefore, we summarize the contributions of this work as follows.

e We develop a new hybrid model taking a Kalman filter in an LSTM model and compare this with the hybrid
model of Chen et al. (2004), which combines a Kalman filter with an MLP model, to see the prediction accuracy.

e We apply a GA to find a perfect combination set of hyperparameters for constructing both neural networks, i.e.
number of neurons, hidden layers, batch size and time window size.

e We apply our hybrid models to predict the bus travel time for a bus line of the HOCHBAHN bus company in
Germany based on the data of that bus line in 2019.

e We provide a recommendation for the bus companies to create better plans for vehicles.

In the following sections, we will describe our hybrid model in Section 2 and some computational results and a
recommendation for the bus company in Section 3 along with the conclusion in Section 4.

2. Methods

The bus travel time model is constructed in two main phases as illustrated in Figure 1. In the first phase, the selected
independent variables based on historical data of trips and weather data, namely day of week, time of day, trip and
precipitatiogl, are trained in the LSTM network with determined weight vectors to minimize the mean square error
(MSE = %W, where y and § are the actual and predicted driving time, P is a number of output neurons and
n is the sample size of the data). All independent variables are transformed with one-hot encoding while the travel
time variable is normalized with the min-max scaling method. The hyperbolic tangent is selected to be an activation
function of the neurons in the hidden layers of LSTM, while the ReLU function is employed with neurons on the
last hidden layer. The sigmoid function is used for the recurrent procedure. The training data are passed through
backpropagation through training 50 epochs with a 0.001 learning rate. The training process is terminated if there is
no improvement of loss function after five epochs. We also apply a dropout technique to prevent overfitting on training
the model with a rate of 0.2. A truncated Gaussian distribution is utilized to generate random initial weights and bias
values, and every parameter is updated with the Adam optimizer. A similar implementation of LSTM can be found in
Petersen et al. (2019) and Han et al. (2020).

Furthermore, the parameters in Table 1, including the number of neurons in the hidden layers, number of hidden
layers, batch size and time window size, are tuned with GA to find the best combination. The initial settings of the
number of neurons, number of hidden layers, batch size, and time window size are 16, 1, 32 and the length of the
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Fig. 1: The procedure for predicting bus travel time. “ML approach” is either the LSTM or the MLP model.

journey or the number of trips in a journey, respectively for both the MLP and LSTM approaches. Note that we
define a journey as the travel from the beginning bus stop to the ending one, while a trip is the travel between two
bus stops. More details about tuning using the GA can be found in Yang et al. (2016). The combinations in vectors
establish a population. Each generation contains ten individual vectors that will be evaluated by the square root of
MSE, a.k.a. the fitness function and then ranking the vectors. The four best combination sets are kept to become part
of the next generation, while the other six disqualified vectors are arbitrarily picked with a 10% chance of being one
part of the next generation. The free space of the new population is fulfilled with a new set of candidates, which
the rest of the parents in this generation will create offspring by a cross-over method in which a child will get some
bit-strings or parameters from one parent and retrieve another part from another parent. And there is a 20% chance
that a mutation happens to the children to ensure genetic diversity. The population in this new generation runs through
the same procedures of evaluation, ranking, offspring and mutation, and then repeats until there are five generations.
Subsequently, the best combination of hyperparameters set in the last generation is implemented in the final neural
network. A similar procedure on training the neural network and tuning the hyperparameters with GA is also applied
to an MLP model as our baseline model for comparison.

Hyperparameter type Tuning set
Number of neurons [16,32,64,128,256]
Number of hidden layers [1,2,3]

Regularization: Mini-batch [16,32,64,128,256,512]
[0.51,11,1.51,21]

Time window size for LSTM where / is the number of trips of each journey

Table 1: The scope of hyperparameters for tuning.

In the second phase, the prediction from the first stage is used as a pre-travel time estimation. We use a Kalman
filter with real-time data to adjust the pre-estimation for the arrival time of the next stop in this journey. The Kalman
filter procedures can be separated into two parts: predict and update (see Figure 2). The predictor equations in the
predict stage are used for estimating the current state and error covariance. X, denotes the estimated state while P,
represents the estimated error covariance at time interval 7. The state X, has two dimensional variables of J; and V;
which denote the duration between the stop 7 — 1 and ¢ and the arrival time up to the last stop respectively. In the initial
state, ¢ = 0, the predicted state £ = ( (,‘3) ) = (3) and the covariance P; is set to be Py = (1 1). The superscript ~ implies
the output parameters from the prediction stage. The weight matrix A is a transition parameter to link between the
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previous time step ¢ — 1 and the current step 7, and describes the relationship between them; A = (}?) is the initial
setting. The input parameter u; is the trip travel time from the pre-travel time estimation between stop ¢ — 1 and stop
t that has matrix B to connect this input term with the state x. The matrix B is predefined as B = (7!). The updater
equations deal with improving the estimate values by an actual measurement including the actual driving time at time
interval ¢, z;. The weight matrix H links the state x; to the measurement z;, with a predefined value H = (0 1). This
stage introduces a weight matrix, namely Kalman gain, which plays a crucial role in relating the measurement and the
estimation (Bishop, 2006). The way to combine Kalman with an MLP model can be found in Chen et al. (2004). In
such a way, the prediction of the models based on historical and real-time data is expected to achieve higher accuracy
(see next section).

Unit delay Measurement
= Z
t—1—t J' ]
¥
Update

Predict I X
1. Compute the Kalman gain

1. Predict the state ahead E’f — P HT [:HP]I— HT 4 R] 1
t t i g
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Fig. 2: Kalman filter cycle based on the study of Bishop (2006).

3. Computational results

The bus line data of our case study include four journey patterns, which contain 12, 10, 22 and 20 bus stops. We
tested our models month by month in 2019 (except December) due to the limited computational power. We split the
preprocessed data for each month into three parts for each journey pattern, so the data of the first two weeks are used
for training, the data for the following week are used for validation, and we predict the bus travel time for the last
week. Note that in our experiment we ignore holidays; bus service types “deadhead”, “inbound” and “outbound”; and
journeys with unfinished drives.

We use the same independent variables as in Chen et al. (2004) in our models, including the day of the week,
time of the day, trip and precipitation. We also do a data analysis to see how they influence the actual driving times
compared with the planned ones. It shows the following similar results for all journey patterns: the actual bus driving
time on weekdays tends to be longer for each trip than on the weekends; the time of the day impacts the driving time,
especially in the rush hours. The difference in the driving time for a trip can be up to e.g. 800 seconds at different
times of the day. Lastly, the bus travel time tends to increase slightly during precipitation (snow/rain).

We forecast the bus arrival time for journey n, A,, which is calculated using the sum of the bus travel times of all
trips in n by considering independent variables. The objective of the model is to make the forecasted A, as close as

possible to the actual driving time, z,, for each journey n. We use the RMSE,, = 4/ Z:,(+AJ to measure the difference

between A, and z,, for each journey n. In other words, the model aims at minimizing RMSE,, for each journey n.
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3.1. Test scenarios

In order to see the performance of our hybrid models, we test three scenarios. The prediction models are tested
in these scenarios to determine which approach consistently outperforms the others. The baseline model, which is
based on Chen et al. (2004), is denoted as MLP_KF. The hybrid models of neural network with GA are MLP_GA and
LSTM_GA for MLP and LSTM respectively, while the hybrid models of neural network with GA and the Kalman
filter are denoted as MLP_GA _KF and LSTM_GA KF.

First, we want to see whether our hybrid models generally work well for all journey patterns. Figure 3 shows the
results for one journey pattern with 12 stops (in other words, 11 trips) in April, and we can achieve similar results for
all patterns in the same month. It is obvious that an approach using hybrid models of a neural network (either MLP or
LSTM) with GA and the Kalman filter can achieve better accuracy than the baseline model, MLP_KF, especially the
hybrid MLP_GA _KF model. Table 2 shows the percentage improvement of the RMSE for each hybrid model compared
with the planned and baseline models respectively. The planned refers to the planned bus driving time from the bus
company. Overall, MLP_GA _KF has a better improvement over the baseline model, with an improvement of over 35%
in RMSE. Meanwhile, LSTM_GA _KF attains an improvement of over 28%. Additionally, we can conclude that the
models without adjusting with real-time information (MLP_GA and LSTM_GA) tend to have a worse performance in
all patterns. But these models still produce better results than the planned model. The non-hybrid models (MLP and
LSTM) provide worse results than the planned model.

RMSE with accumulation by trip
Journey pattern 101 with 12 stops

in April
900 p
RMSE_MLP
800 ~— RMSE_MLP_KF
RMSE_MLP_GA
700 —— RMSE_MLP_GA_KF
RMSE_LSTM
600 —— RMSE_LSTM_KF
RMSE_LSTM_GA
% 500 RMSE_LSTM_GA KF
w RMSE_LSTM_GA 1D
= —— RMSE_LSTM_GA_1D_KF
X 400 = - =
300 B 4 7
200
100
1 2 3 4 5 6 7 8 9 10 11
Trip ID

Fig. 3: Comparison of RMSE:s for different models of journey pattern with 12 stops in April.

In the second scenario, we test our hybrid models for 11 months on the journey with 12 bus stops to examine
the models consistently in different months related to seasonal factors. Similar results can be achieved as in the first
scenario. The overall results in Table 3 show that MLP_GA _KF and LSTM_GA _KF can achieve higher accuracy than
the baseline model, on average approximately 46% and 39% respectively. And their results are much better than the
planned driving times from the bus company, on average 56.4% and 50.0% respectively. However, MLP_GA and
LSTM_GA do not consistently provide better prediction for the whole year than the planned model, for example in
January and February.

Lastly, the third experiment is a comparison between the performance of LSTM models for a univariate time series
forecast (LSTM_GA _1D_KF, using only historical travel time), and the LSTM model for multivariate time series data,
which takes four input factors into account (LSTM_GA _KF). Table 3 show that both models have a higher arrival time
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Journey
Measurement Model 12 stops | 10 stops | 22 stops | 20 stops
Planned 236.70 124.78 390.46 190.38
MLP 296.89 156.28 386.60 257.39
MLP _KF (baseline) 169.78 110.29 205.28 167.60
MLP_GA 175.57 87.75 218.26 135.36
RMSE (seconds) MLP_GA KF 0.9 | 6627 | 10679 | 98.66
LSTM 402.34 155.63 335.66 134.30
LSTM_GA 217.49 97.88 269.73 127.59
LSTM_GA _KF 122.22 71.17 131.20 93.77
MLP_KF 2827% | 11.61% | 47.43% | 11.96%
Percent improvement: MLP_GA 25.83% | 29.68% | 44.10% | 28.90%
vs. Planned MLP_GA KF 5345% | 46.89% | 72.65% | 48.18%
LSTM_GA 8.12% | 21.56% | 30.92% | 32.98%
LSTM_GA _KF 48.36% | 4297% | 66.40% | 50.75%
Percent improvement: | MLP_GA _KF 35.10% | 3991% | 47.98% | 41.14%
vs. MLP_KF LSTM_GA _KF 28.01% | 35.47% | 36.09% | 44.06%

Table 2: Percentage improvement from the planned and baseline models for all journeys, during April 2019.

Month

Measurement Model Jan Feb Mar Apr May Jun Jul [ Aug | Sep Oct Nov
Planned 71.20 70.70 153.80 | 236.70 189.80 | 229.80 153.80 143.10 178.20 | 508.30 | 236.40

MLP_KF (baseline) 97.37 97.03 132.43 169.86 140.71 148.98 127.50 115.61 132.62 | 273.13 159.83

MLP_GA 78.60 57.90 130.30 175.60 132.10 168.80 145.10 104.70 148.40 | 377.60 118.00

RMSE (seconds) MLP_GA _KF 48.76 37.43 67.36 110.25 69.34 89.31 79.25 60.42 70.86 181.34 60.09
LSTM_GA 83.5 74.1 155.6 2175 138.0 167.8 144.6 102.4 2155 398.6 149.5

LSTM_GA KF 49.53 48.70 89.58 122.36 70.31 87.53 81.48 58.48 120.01 182.69 68.32

LSTM_GA_1D_KF 63.80 52.76 74.74 150.60 99.41 131.21 88.13 60.33 7476 | 208.61 122.33

MLP_KF -36.76% | -37.24% | 13.89% | 28.24% | 25.87% | 35.17% | 17.10% | 19.21% | 25.58% | 46.27% | 32.39%

MLP_GA -10.34% 18.10% | 15.30% | 25.83% | 30.39% | 26.53% 5.64% | 26.87% 16.75% | 25.71% | 50.10%

Percent improvement: | MLP_GA_KF 31.52% | 47.05% | 56.20% | 53.42% | 63.47% | 61.14% | 48.47% | 57.78% | 60.24% | 64.33% | 74.58%
vs. Planned LSTM_GA -17.23% -4.87% | -1.18% 8.12% | 27.29% | 26.97% 597% | 28.47% | -20.94% | 21.57% | 36.75%
LSTM_GA_KF 3044% | 31.12% | 41.75% | 48.31% | 62.96% | 61.91% | 47.02% | 59.14% | 32.66% | 64.06% | 71.10%

LSTM_GA_1D _KF 10.39% | 25.38% | 51.40% | 36.38% | 47.62% | 42.90% | 42.70% | 57.84% | 58.05% | 58.96% | 48.25%

Percent improvement: MLP_GA _KF 49.93% | 61.42% | 49.13% | 35.09% | 50.72% | 40.05% | 37.84% | 47.74% | 46.57% | 33.61% | 62.40%
vs. MLP_KF LSTM_GA KF 49.14% | 49.81% | 32.35% | 27.97% | 50.03% | 41.24% | 36.10% | 49.42% 9.51% | 33.11% | 57.26%
N LSTM_GA_1D_KF 34.48% 45.63% | 43.56% | 11.34% | 29.35% | 11.93% | 30.87% | 47.82% 43.63% | 23.62% | 23.46%

Table 3: Percentage improvement from the planned and baseline models for journey with 12 stops, from January 2019 to November 2019.

prediction accuracy for all months than the baseline model and planned model. Furthermore, LSTM_GA _KF provides
better results than LSTM_GA_1D_KF compared with the baseline model (on average 39% and 31% better) and the
planned model (on average 50% and 43.6% better). The exceptions are the results for July and September.

3.2. Hardware and frameworks

All travel time prediction models in this study are implemented in the Python programming language. The main
Python libraries that are used in data preprocessing and model evaluation are Pandas, NumPy and scikit-learn. Keras
2.4.3, which is an API library framework built on top of TensorFlow 2.0 (Gulli and Pal, 2017), is used for developing
neural network models. The training process is performed on Google Colaboratory (Colab) (Bisong, 2019). The
hardware used for Colab was an NVIDIA Tesla T4 GPU with a CPU processor consisting of 2-core Xeon 2.2GHz
and 13 GB of RAM. In the process of training with GA, the models ran for times varying between 0.5 and 25 hours.
LSTM_GA took the longest time, around 2-25 hours to finish the process, while the MLP_GA models took around
0.5 and 4.5 hours and the LSTM_GA_1D took between 1 and 9 hours.
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3.3. Recommendation for bus companies

As mentioned in the introduction, the precise prediction of bus travel time is important in the scheduling of buses
by bus companies. In recent years, the increasing usage of e-buses has required more precise prediction of bus travel
times due to the limited battery time. Moreover, when they are stuck in traffic jams, this also requires energy to supply
the auxiliaries for e-buses due to, for example, heating in winter or air-conditioning on rainy days (see De Cauwer et al.
(2015)). Based on the results in Subsection 3.1, we want to make a recommendation for bus companies to improve
their planned bus travel times in the vehicle scheduling problem. The vehicle scheduling problem addresses the task
of assigning buses to cover a given set of timetabled trips with consideration of practical requirements; an overview
of this problem can be found in Bunte and Kliewer (2009). The result of this problem is a sequence of trips for each
bus, from leaving its depot to going back to that depot. The result of our predicted driving time for each trip can be
used as input to the vehicle scheduling problem, instead of the planned driving time.

However, due to the structure of the planning problem, the plan for buses should be estimated before a new month
begins. That means that the real information cannot be considered during the planning, at least not yet. Therefore, our
approach with the Kalmin filter is not suitable for this application. Instead, our combined models of both MLP and
LSTM with GA can be used.

In order to see how well our hybrid models work for a larger training set, we use, for example, the May and June
data for training, and the July data for validation. And we predict the bus travel times for August. We use the similar
procedure for the travel time prediction as shown in Figure 1, but without adjusting pre-travel time estimation. We
test our models on a PC with an Intel Xeon Gold 6139M CPU @ 2.3GHz 18 core (two threads per core) and 32GB
of RAM, running on a Ubuntu Server 18.04 with 5 LTS. Table 4 shows the results of the hybrid models (MLP_GA
and LSTM_GA) for all journey patterns and the percentage improvement compared with the results of the planned
bus travel times from the bus company. In general, our hybrid models both provide similar results, namely 20%—36%
improvement in the accuracy of the bus travel times. We also check the computational time of both models. MLP_GA
needs on average less than 15% of the computational time needed by LSTM_GA. Note that the computational time
to solve MLP_GA is on average about 6,100 seconds. The chosen parameters by GA for both models are listed in
Table 5.

Journey
Measurement Model 12 stops 10 stops 22 stops 20 stops
Planned 172.9 108.3 330.1 162.6

RMSE (seconds) | MLP.GA | 127.5 (26.2%) | 81.3 (24.9%) | 218.5 (33.8%) | 129.9 (20.1%)
LSTM.GA | 124.7(27.9%) | 83.0 (23.4%) | 212.4 (35.7%) | 123.3 (24.2%)

Table 4: The RMSE values of planned vs. hybrid models for the prediction of bus travel times in August. In brackets is the percentage improvement
compared with the RMSE of the planned bus travel time.

Hyperparameter type MLP_GA LSTM_GA
Number of neurons 32 16

Number of hidden layers 3 3
Regularization: Mini-batch [16,32,64] | 32

Time window size for LSTM | - 2

Table 5: The tuned parameters in GA for the MLP_GA and LSTM_GA models.

Based on the computational results above, we want to make the following suggestion for bus companies. It is
worth applying MLP with GA, since it provides better prediction of bus travel time without much more computational
effort. Furthermore, different factors that might cause delays, such as construction sites or bad weather, are considered
in MLP.
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4. Conclusion

In this work, we introduce new hybrid models which combine a Kalman filter with an LSTM and an MLP model
while applying a GA to find a good combination of parameters in the neural network to predict real-world bus travel
times. On the basis of our experimental results, our implemented MLP combined with a Kalman filter and GA provided
the best prediction. We can improve the prediction for each journey pattern by on average of 45.44% compared with
the hybrid model we implemented as in Chen et al. (2004). Furthermore, based on the further computational results in
Section 3.3, we recommend that bus companies take the predicted bus travel times provided by MLP_GA, rather than
the planned times to solve the vehicle scheduling problem.

Acknowledgements

The authors want to greatly thank HOCHBAHN for providing us with data for the analysis. This work is a con-
tribution to the “Robust integrated vehicle scheduling, crew scheduling and rostering in public bus transit” project,
which is funded by the German Research Foundation grants KL 2152/7-1 and LX 156/2-1.

References

Agrawal, S., 2020. A survey of bus arrival time prediction methods, in: Security with Intelligent Computing and Big-Data Services 2019:
Proceedings of the 3rd International Conference on Security with Intelligent Computing and Big-Data Services (SICBS), December 4-6,
2019, New Taipei City, Taiwan, Springer Nature. p. 197.

Altinkaya, M., Zontul, M., 2013. Urban bus arrival time prediction: A review of computational models. International Journal of Recent
Technology and Engineering (IJRTE) 2, 164—169.

Bishop, C.M., 2006. Pattern recognition and machine learning. Springer.

Bisong, E., 2019. Google Colaboratory. Apress, Berkeley, CA. pp. 59-64. doi:10.1007/978-1-4842-4470-8_7.

Bunte, S., Kliewer, N., 2009. An overview on vehicle scheduling models. Public Transport 1, 299-317.

Chen, M., Liu, X, Xia, J., Chien, S.I., 2004. A dynamic bus-arrival time prediction model based on APC data. Computer-Aided Civil and
Infrastructure Engineering 19, 364-376.

Choudhary, R., Khamparia, A., Gahier, A.K., 2016. Real time prediction of bus arrival time: A review, in: 2016 2nd International Conference
on Next Generation Computing Technologies (NGCT), IEEE. pp. 25-29.

De Cauwer, C., Van Mierlo, J., Coosemans, T., 2015. Energy consumption prediction for electric vehicles based on real-world data. Energies
8, 8573-8593.

Gulli, A., Pal, S., 2017. Deep learning with Keras. Packt Publishing Ltd.

Han, Q., Liu, K., Zeng, L., He, G., Ye, L., Li, F,, 2020. A bus arrival time prediction method based on position calibration and LSTM. IEEE
Access 8, 42372-42383.

Pang, J., Huang, J., Du, Y., Yu, H., Huang, Q., Yin, B., 2018. Learning to predict bus arrival time from heterogeneous measurements via
recurrent neural network. IEEE Transactions on Intelligent Transportation Systems 20, 3283-3293.

Petersen, N.C., Rodrigues, F., Pereira, F.C., 2019. Multi-output bus travel time prediction with convolutional LSTM neural network. Expert
Systems with Applications 120, 426—435.

Tantawy, M., Zorkany, M., 2014. A suitable approach for evaluating bus arrival time prediction techniques in Egypt. Algorithms 2, 9.

Yang, M., Chen, C., Wang, L., Yan, X., Zhou, L., 2016. Bus arrival time prediction using support vector machine with genetic algorithm.
Neural Network World 26, 205.

Yu, B., Yang, Z.Z., Chen, K., Yu, B., 2010. Hybrid model for prediction of bus arrival times at next station. Journal of Advanced Transportation
44, 193-204.

Zaki, M., Ashour, 1., Zorkany, M., Hesham, B., 2013. Online bus arrival time prediction using hybrid neural network and Kalman filter
techniques. International Journal of Modern Engineering Research 3, 2035-2041.



