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Abstract: Croon and van Veldhoven discussed a model for analyzing micro–macro multilevel designs
in which a variable measured at the upper level is predicted by an explanatory variable that is
measured at the lower level. Additionally, the authors proposed an approach for estimating this
model. In their approach, estimation is carried out by running a regression analysis on Bayesian
Expected a Posterior (EAP) estimates. In this article, we present an extension of this approach to
interaction and quadratic effects of explanatory variables. Specifically, we define the Bayesian EAPs,
discuss a way for estimating them, and we show how their estimates can be used to obtain the
interaction and the quadratic effects. We present the results of a “proof of concept” via Monte Carlo
simulation, which we conducted to validate our approach and to compare two resampling procedures
for obtaining standard errors. Finally, we discuss limitations of our proposed extended Bayesian
EAP-based approach.

Keywords: multilevel modeling; micro–macro design; nonlinear; Bayes; EAP

MSC: 62H08

1. Introduction

In organizational research, one may be interested in which factors determine an
organization or team’s outcome, such as the team’s productivity in terms of the number
of sales. For a general framework, see Schneider et al. [1]. The research conducted for the
purpose of studying these factors typically face a data structure in which employees are
nested in organizations/teams. To analyze such data, multilevel analysis is often used. The
term “multilevel analysis” subsumes various approaches, some of which were developed in
parallel in very different disciplines, such as economics, psychology, and education sciences.
The multilevel analysis involves the use of hierarchical models, models with mixed effects,
or multilevel models, terms that are largely used synonymously in the statistical literature.
In the following, we will use the term “multilevel model”. Over the past 20 years, these
models have established themselves as the standard for analyzing multilevel data, mainly
because of their usefulness to examine cross-level interactions and the availability of free
software that has been developed and complemented commercial software for performing
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multilevel analyses. Moreover, a number of influential textbooks have been published
(e.g., [2–6]) that make it easier to get started with multilevel analysis.

A research design can be considered a multilevel design if at least one of the variables
has a multilevel structure. Following this view and focusing on one level of clustering (i.e.,
two-level designs), designs can then roughly be differentiated according to whether the
dependent variable is measured at the lower or the upper level. Among the designs in
which the dependent variable is measured at the upper level, the micro–macro design [6]
stands out because it is of great relevance in organizational research. In this design, the
dependent variable is predicted by a variable measured at the lower level (e.g., [7]; see
also [8]). Croon and van Veldhoven [9] proposed an approach for analyzing data from
micro–macro designs. An important feature of their approach is that estimation is carried
out by an ordinary least squares regression analysis with Bayesian Expected a Posterior
(EAP) estimates as input. Almost one decade after Croon and van Veldhoven [9] published
their article, there has been renewed interest in the use of this type of estimation. Despite
the criticism of its lack of flexibility [10], the method offers simple computations for an
otherwise computationally very demanding class of models. For example, Zitzmann [11]
emphasized the method’s favorable statistical properties and showed how the method
can be used to estimate multiple indicator two-level measurement models. Zitzmann and
Helm [12] extended the method in such a way that it can be used for performing two-level
mediation and moderation analyses. Aydin et al. [13] and Aydin et al. [14] discussed the
necessity of an extension to three-level models, and Aydin and Algina [15] proposed such
an extension.

In this article, we present an extension of Croon and van Veldhoven’s approach for
analyzing data from micro–macro designs to interaction and quadratic effects of explanatory
variables. Specifically, (a) we define the Bayesian EAPs, (b) present an efficient way for
estimating them, and (c) we explain how their estimates can be used to obtain the effects in
the model. Moreover, (d) we conduct a “proof of concept” Monte Carlo study in which we
also compare the performance of a standard bootstrap procedure for obtaining standard
errors with the jackknife proposed by Zitzmann [11] jackknife. Finally, (e) we discuss one
possibility to extend the model and a limitation of our proposed method.

2. Nonlinear Extension of Croon and Van Veldhoven’s Model

We begin with the dependent variable, which is measured at the upper level. This may
be a measure of productivity, such as a team’s productivity Y. The explanatory variable,
on the other hand, is measured at the lower level. For example, it is possible to assess
a characteristic of the team leader such as leadership behavior by his or her employees’
perceptions X1 of the team leader’s capacity to set a vision and goals and to support the
team to achieve them. To this end, questionnaires or interviews are typically used [9]. One
efficient way of assessing the leadership behavior of their team leader is ask employees to
rate this characteristic and then average the ratings across the employees in the team [16].
This mean is assumed to reflect the employees’ shared perception of their team leader and
should ideally be formed by a latent instead of the common manifest aggregation procedure
(see [17] for a detailed discussion). The latent mean ξ1 varies between teams but not across
employees in a team, whereas the individual deviations δ1 from this mean vary across the
employees within a team. Thus, the measurement model for a team leader’s behavior in
terms of his or her employees’ shared perception can be formulated as:

X1ij = ξ1j + δ1ij (1)

for an employee i = 1, . . . , n in a team j = 1, . . . , J. A central assumption is that employees
from the same team differ less in their perceptions from each other than employees from
different teams, which implies that the perceptions within a team are not independent
of one another. This dependency can be quantified by the Intraclass Correlation (ICC).
Formally, the ICC quantifies the proportion of the total variance that is located between the
teams, and it can take on values between 0 and 1.
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To investigate how leadership behavior ξ1 is related to team productivity Y (controlling
for a covariate Z), the following regression model can be used, which was proposed by
Croon and van Veldhoven [9]:

Yj = α + β1ξ1j + γZj + ε j (2)

where β1 denotes the effect of the explanatory variable of interest, which describes the
effect of the leadership behavior on team productivity. γ is the coefficient of the covariate.
The effect of the leadership behavior indicates by how many units the productivity of the
team will increase on average when the leadership behavior is increased by one unit, while
the covariate is kept constant. The covariate is a characteristic that is measured directly at
the upper level. One may consider the personality of the team leader as a covariate, for
example. The team leader’s personality can be measured by asking the team leader rather
than his or her employees.

To extend the model, we consider an additional explanatory variable, which may be a
team’s climate. Similar to leadership behavior, this variable can be assessed by employees’
perceptions X2. The latent mean ξ2 across the employees in the team reflects the employees’
shared perception of the team, and thus, the measurement model for a team’s climate
reads similar to the measurement model in Equation (1). Both explanatory variables may
be assumed to interact in such a way that a positive team climate enlarges the effect of
leadership behavior. To complete the nonlinear specification, it is further assumed that the
explanatory variables have quadratic effects. The resulting model takes the form of the
prototype for simultaneously estimating interaction and quadratic effects [18]. The model
is expressed by the following regression. For better readability, we omit the employee and
team indices:

Y = α + β1ξ1 + β2ξ2 + β3ξ1ξ2 + β4ξ2
1 + β5ξ2

2 + γZ + ε (3)

The coefficient β3 denotes the interaction effect of the two explanatory variables, and
β4 and β5 are their quadratic effects. The interaction effect indicates that the strength
and perhaps even the direction of the relation between team productivity and leadership
behavior is moderated by the team climate. In a similar vein, the quadratic effects of
leadership behavior and team climate describe how the relations of the team productivity
with leadership behavior and team climate depend on the levels of leadership behavior
and team climate, respectively. Next, we give a detailed description of how this extended
nonlinear model can be estimated with the help of Bayesian EAP estimates.

3. Bayesian EAP-Based Model Estimation

Technically speaking, the measurement model in Equation (1) can also be interpreted
as decomposing each employee’s perception into two orthogonal or uncorrelated parts:
the latent mean across the perceptions of the employees of a team regarding their team
leader’s behavior and an individual deviation from this mean. Thus, the model allows
the quantification of the differences in employees’ perceptions between and within the
teams by two variance components, which we hereafter call the between variance and the
within variance.

3.1. Definition of (Adjusted) EAPs

To formally define a Bayesian EAP, we first make some distributional assumptions.
Specifically, we assume the employees’ perceptions X1 to have a grand mean of zero (center-
ing) to facilitate the presentation and later estimation. Moreover, we assume that the latent
mean ξ1 across the perceptions of the employees of the team follows a normal distribution:

ξ1j ∼ N
(

0, σ2
ξ1

)
(4)

where ∼ reads “is distributed as”, N(·, ·) stands for the Gaussian or (univariate) normal or
distribution, and σ2

ξ1
is the between variance of the employee’s perceptions. The individual
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deviations δ1 from each latent mean are normally distributed around 0 with a within
variance of σ2

δ1
. As the deviations’ variance is the same for all teams, homoscedasticity is

inherently assumed.
The latent mean across the perceptions of the employees of the jth team corresponds

with the observed mean X̄1•j = ∑n
i=1 X1ij/n, where n is the number of employees surveyed

in the team. Note that n does not vary across teams; that is, the same number of employees
is surveyed in each team (balanced data). Thus, the team’s likelihood function is:

X̄1•j ∼ N
(

ξ1j, σ2
δ1

/n
)

(5)

From a Bayesian perspective, Equation (4) can be viewed as a Bayesian prior distri-
bution [19]. As mentioned in other articles of this Special Issue, Bayesian estimates can be
obtained from the posterior distribution, which results from combining the prior with the
likelihood (i.e., from Bayes’ theorem; [20]). Now, if we combine the prior in Equation (4)
with the likelihood in Equation (5), we yield the following (team-specific) normal posterior:

ξ1j ∼ N

(
σ2

ξ1

var
(
X̄1•j

) X̄1•j,
σ2

ξ1

var
(
X̄1•j

)σ2
δ1

/n

)
(6)

where var(·) denotes the variance (thus, var
(
X̄1•j

)
denotes the variance of the observed

mean across the employees’ perceptions). For detailed information about the derivation of
this equation, see Appendix A. The mean of this posterior

ξ̄1j =
σ2

ξ1

var
(
X̄1•j

)︸ ︷︷ ︸
= ω

X̄1•j (7)

is called the EAP of the latent mean. ω is the weighting factor, which can be interpreted
as the reliability of the observed counterpart of the latent mean across the perceptions of
the employees of a team. The fact that the EAP is the mean of the posterior can be further
substantiated by noticing that the setup is similar to the simple normal model in which
Equation (4) is the prior for the variable’s mean, and Equation (5) is the likelihood (see
also [19] p. 134). Although we made explicit use of the Bayes’ theorem in the definition of
the EAP, we will skip the word “Bayesian” for the sake of simplicity. It is also interesting to
note that from a non-Bayesian perspective, as indicated by Equation (7), the EAP is simply
the prediction from a regression of the latent on the observed mean [21], and this is why
the weight can be analytically derived via the ordinary least squares principle.

In models such as Croon and van Veldhoven’s model and our extended nonlinear
model, effects can be biased when EAP estimates are used as input in ordinary least squares
regression analyses [22]. Therefore, it is necessary to adjust EAPs for other variables in the
model. The model in Equation (2) contains also the team leader’s personality Z. Thus, an
adjustment needs to be made to the EAP of the latent mean across the perceptions of the
employees of a team. The adjusted EAP can be expressed as follows:

ξ̄1j =
σ2

ξ1
− β2var

(
Zj
)

var
(
X̄1•j

)
− β2var

(
Zj
)︸ ︷︷ ︸

= ω

X̄1•j +

(
1 −

σ2
ξ1
− β2var

(
Zj
)

var
(
X̄1•j

)
− β2var

(
Zj
))βZj (8)

where β is the result of a regression of X̄1•j on Z. In this equation, ω is the conditional
reliability (i.e., conditioned on the covariate; [23]) (see Appendix B for detailed information
about the derivation). Because the nonlinear model in Equation (3) contains the team
climate as another explanatory variable, this variable also needs to be taken into account.
Thus, one way to express the adjusted EAP is:
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ξ̄1j =
(
X̄1•j, X̄2•j, Zj

)
var−1(X̄1•j, X̄2•j, Zj

)(
σ2

ξ1
, σξ1ξ2 , σξ1Z

)T

︸ ︷︷ ︸
= ω

(9)

where X̄2•j = ∑n
i=1 X2ij/n is the observed mean across the perceptions of the employees

of a team regarding the team’s climate, σξ1ξ2 is the between covariance of the employee’s
perceptions X1 and X2, and σξ1Z is the between covariance of X1 and Z. var−1(·) gives
the inverted covariance matrix, T is the transpose operator, and ω is a vector containing
the weights of X̄1•j, X̄2•j, and Zj. The equation indicates once more that the EAP is the
prediction from a regression and that the weights are the coefficients in this regression and
can thus be derived by ordinary least squares. To adjust the EAP of the latent mean across
the perceptions of the employees of a team regarding the team’s climate, an analogous
adjustment is made.

What is more interesting is how an adjusted EAP can be defined for the product of
the latent means in Equation (3). To tackle this problem, it is instructive to consider one
of its solutions in single-level models. Here, products of indicators from two explanatory
variables are formed and used as derived “product indicators” of a latent variable whose
effect is the interaction effect (i.e., the product indicator approach; e.g., [24–26]). Moreover,
scholars have pointed out that the measurement models in our extended nonlinear model
(see Equation (1)) can be viewed as describing the relation between a latent variable (i.e.,
the latent mean) and its indicators (i.e., the perceptions of the employees of a team; [27]).
This similarity suggests that the EAP of the product of the two latent means can be defined
as the prediction from a regression on the observed mean across the products of the
employees’ perceptions X1 of their team leaders and X2 of their team, which is given as
X1X2•j = ∑n

i=1 X1ijX2ij/n.
Because the model in Equation (3) includes also the quadratic effects, an adjustment

for the squares of the latent means needs to be made. The adjusted EAP is:

ξ1ξ2 j =
(

X1X2•j, X2
1•j, X2

2•j

)
var−1

(
X1X2•j, X2

1•j, X2
2•j

)(
σ2

ξ1
σ2

ξ2
+ σ2

ξ1ξ2
, 2σ2

ξ1
σξ1ξ2 , 2σ2

ξ2
σξ1ξ2

)T

︸ ︷︷ ︸
= ω

(10)

where X2
1•j = ∑n

i=1 X2
1ij/n and X2

2•j = ∑n
i=1 X2

2ij/n. In this equation, the variance of the
product of the latent means and the covariances between this product and the squares
of the latent means are expressed in terms of the variances and covariances of the latent
means applying Theorem 13 of Bohrnstedt and Goldberger [28]. It is important to note
that although the nonlinear model contains the latent means and the covariate as variables,
these variables need not to be taken into account in the adjustment. This is because the
product of the latent means and their squares are uncorrelated with these other variables
due to centering. The adjusted EAP of the square of the latent mean across the perceptions
of the employees of a team regarding their team leader’s behavior is:

ξ2
1 j =

(
X1X2•j, X2

1•j, X2
2•j

)
var−1

(
X1X2•j, X2

1•j, X2
2•j

)(
2σ2

ξ1
σξ1ξ2 , σ4

ξ1
, 2σ2

ξ1ξ2

)T

︸ ︷︷ ︸
= ω

(11)

The adjusted EAP of the square of the latent mean across the perceptions of the
employees of a team regarding their team’s climate can analogously be expressed. So
far, we have only defined the EAPs. In the next section, we will discuss how these EAPs
can efficiently be estimated in order to help applied researchers implement the extended
nonlinear model on their own.

3.2. Estimating the Adjusted EAPs

To estimate the adjusted EAPs, we first need to estimate the variances and covariances
in the equations. Estimates will be indicated by a hat ( ˆ ) symbol. The estimates of the
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variances and covariances can then be plugged into the equations in order to obtain the
EAP estimates. A straightforward way of estimating the variances and covariances is using
estimators from the Analysis of Variance (ANOVA) literature (see [9,15]). We begin with the
estimation of the variances and covariances of the observed quantities X̄1•j, X̄2•j, and Zj.
In the case of balanced data (i.e., equal numbers of employees across teams), the estimate
of the variance of the observed mean across the perceptions of the employees of a team
regarding their team leader’s behavior is given as the mean sum of squares:

v̂ar
(
X̄1•j

)
=

∑J
j=1

(
X̄1•j − X̄1••

)2

J − 1
(12)

where X̄1•• = ∑J
j=1 ∑n

i=1 X1ij/n is the grand mean across the employees’ perceptions. Note
that Equation (12) is simply the sample variance of X̄1•j. For the variance of the observed
mean across the perceptions of the employees of a team regarding the team’s climate, an
analogous estimate is formulated. To estimate the variance of the personality Z of the team
leader, one can use:

v̂ar
(
Zj
)
=

∑J
j=1

(
Zj − Z̄•

)2

J − 1
(13)

The estimate of the covariance between X̄1•j and Z is the mean sum of cross products:

ĉov
(
X̄1•j, Zj

)
=

∑J
j=1

(
X̄1•j − X̄1••

)(
Zj − Z̄•

)
J − 1

(14)

An analogous estimate is used for the covariance of X̄2•j and Z. The covariance
between X̄1•j and X̄2•j is estimated by:

ĉov
(
X̄1•j, X̄2•j

)
=

∑J
j=1

(
X̄1•j − X̄1••

)(
X̄2•j − X̄2••

)
J − 1

(15)

One efficient way for computing all estimates at once is computing the estimate of a
covariance matrix:

v̂ar
(
X̄1•j, X̄2•j, Zj

)
=

∑J
j=1

((
X̄1•j, X̄2•j, Zj

)
− (X̄1••, X̄2••, Z•)

)T((X̄1•j, X̄2•j, Zj
)
− (X̄1••, X̄2••, Z•)

)
J − 1

(16)

In the estimation of the adjusted EAP of the latent mean across the perceptions of the
employees of a team, this estimate can be used in place of the covariance matrix of the
observed quantities in Equation (9). However, to estimate the adjusted EAP, one also needs
to estimate the variance of the latent mean and its covariances. Estimating these between
variances and covariances is less straightforward but still not very difficult. What helps to
find estimates is that scholars have noticed that the measurement model of a latent mean is
a random-effects model [27], with the latent mean being the team-specific random effect.
Due to this equivalence between a measurement model and random-effects model, it is
possible to employ the ANOVA estimator for the variance of the random effect to estimate
the between variance (see, e.g., [29] for illustrations of how these estimates can be drived
using the ANOVA method). The estimate of the between variance in the measurement
model for the latent mean across the perceptions of the employees of a team regarding their
team leader’s behavior is given by:

σ̂2
ξ1

=
∑J

j=1

(
X̄1•j − X̄1••

)2

J − 1
−

∑J
j=1 ∑n

i=1
(
X1ij − X̄1•j

)2

J(n − 1)


/

n (17)
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As the measurement model for the latent mean across the perceptions of the employees
of a team regarding the team’s climate is structurally equivalent, the estimate of the between
variance σ2

ξ2
looks similar. The estimates of the between covariances are:

σ̂ξ1ξ2 =
∑J

j=1

(
X̄1•j − X̄1••

)(
X̄2•j − X̄2••

)
J − 1

−

∑J
j=1 ∑n

i=1
(
X1ij − X̄1•j

)(
X2ij − X̄2•j

)
J(n − 1)


/

n (18)

σ̂ξ1Z =
∑J

j=1

(
X̄1•j − X̄1••

)(
Zj − Z̄•

)
J − 1

− 0/n (19)

If we plug these estimates of the between variance and covariances together with the
estimate of covariance matrix into Equation (9), then the estimate of the adjusted EAP is:

ˆ̄ξ1j =
(
X̄1•j, X̄2•j, Zj

)
v̂ar−1(X̄1•j, X̄2•j, Zj

)(
σ̂2

ξ1
, σ̂ξ1ξ2 , σ̂ξ1Z

)T

︸ ︷︷ ︸
= ω̂

(20)

From a computational perspective, it makes sense to compute this estimate and the
estimate of the adjusted EAP of the latent mean across the perceptions of the employees
of a team regarding the team’s climate in one step in order to avoid the need for a second
matrix inversion and thus to save computing time. To this end, we compute:

(
ˆ̄ξ1j, ˆ̄ξ2j

)
=
(
X̄1•j, X̄2•j, Zj

)
v̂ar−1(X̄1•j, X̄2•j, Zj

) σ̂2
ξ1

σ̂ξ1ξ2

σ̂ξ1ξ2 σ̂2
ξ2

σ̂ξ1Z σ̂ξ2Z


︸ ︷︷ ︸

= Ω̂

(21)

Note that Ω̂ is the estimate of a weight matrix rather than of a weight vector in this
equation. Alternatively, the result of the matrix inversion could first be stored, and then,
both EAP estimates could be computed separately using this stored result.

To estimate the adjusted EAPs of the product of the two latent means and their squares,
we only need to find estimates of the variances and covariances of the observed counterparts
in the equations for these EAPs. The estimation equations for the between variances and
covariances have already been discussed. The efficient method for computing estimates of
the observed variances and covariances is computing the following covariance matrix:

v̂ar
(

X1X2•j, X2
1•j, X2

2•j

)
=

∑J
j=1

((
X1X2•j, X2

1•j, X2
2•j

)
−
(

X1X2••, X2
1••, X2

2••

))T((
X1X2•j, X2

1•j, X2
2•j

)
−
(

X1X2••, X2
1••, X2

2••

))
J − 1

(22)

Together with the estimates of the between variances and covariances, this covariance
matrix estimate can be plugged into the equations in order to estimate the adjusted EAPs
of the product of the two latent means and their squares. As mentioned, to avoid multiple
matrix inversions, it makes sense to estimate these EAPs simultaneously by:(

ξ̂1ξ2 j, ξ̂2
1 j, ξ̂2

2 j

)
=

(
X1X2•j, X2

1•j, X2
2•j

)
v̂ar−1

(
X1X2•j, X2

1•j, X2
2•j

) σ̂2
ξ1

σ̂2
ξ2
+ σ̂2

ξ1ξ2
2σ̂2

ξ1
σ̂ξ1ξ2 2σ̂2

ξ2
σ̂ξ1ξ2

2σ̂2
ξ1

σ̂ξ1ξ2 2σ̂4
ξ1

2σ̂2
ξ1ξ2

2σ̂2
ξ2

σ̂ξ1ξ2 2σ̂2
ξ1ξ2

2σ̂4
ξ2


︸ ︷︷ ︸

= Ω̂

(23)

Once all adjusted EAP estimates are computed, these estimates can be used to obtain
the coefficients in our extended nonlinear model.
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3.3. Using Adjusted EAP Estimates to Estimate the Model

The nonlinear model in Equation (3) is estimated by running an ordinary least squares
regression analysis on the estimates of the adjusted EAPs of the latent means, their product,
their squares, and the covariate. To this end, the following regression model is specified
and estimated:

Yj = α̂ + β̂1
ˆ̄ξ1j + β̂2

ˆ̄ξ2j + β̂3ξ̂1ξ2 j + β̂4ξ̂2
1 j + β̂5ξ̂2

2 j + γ̂Zj + ε j (24)

where the estimates of the coefficients are the usual ordinary least squares estimates, which
are assumed to be unbiased for the corresponding coefficients in Equation (3). In other
words, when certain conditions are met (e.g., a sufficiently large sample to overcome small-
sample bias), the regression analysis will, on average, yield the actual coefficients—an
assumption that we will test empirically in the next section of this article by using com-
puter simulations.

Apart from this favorable feature, there is also a significant drawback. It has
been emphasized that regression analysis can provide incorrect standard errors,
particularly when the data are very unbalanced or homoscedasticity is violated [9]. Some
suggestions have been made in order to overcome this limitation. For example,
Croon and van Veldhoven [9] suggested the method developed by Davidson and MacKin-
non [30] be used in this case. Another suggestion is using resampling procedures such as
Zitzmann’s jackknife. For example, for the interaction effect β3 in the model, the procedure
first computes estimates of this effect from R subsamples, each omitting d teams. d is typi-
cally much smaller than the number J of teams. In this specific variant of the jackknife, the
subsamples are obtained by dividing the indices (1, . . . , J) into R = J/d non-overlapping
subsets and then using these subsets to create the subsamples. The standard error is then
estimated on the basis of the effect estimates by:

σ̂β̂3
=


(R − 1)∑R

j=1

(
β̂3j − ¯̂β3

)2

R


1/2

(25)

where ¯̂β3 = ∑J/d
j=1 β̂3j/R is the mean across the estimates. This jackknife is computationally

very efficient because it can perform well with only 20 subsamples (see [11]). However,
some possible problems have been encountered with the use of this procedure (e.g., a
standard error that is too large due to a few extreme estimates), and this is why a bootstrap
(e.g., [31]) could be an alternative. The bootstrap repeatedly estimates the effect from R∗

subsamples, which are random samples from the original sample (drawn with replacement).
As the size of these samples, one could choose J − d (i.e., the subsample size in the jackknife).
Using the estimates, the standard error is:

σ̂∗
β̂3

=


∑R∗

j=1

(
β̂∗

3j −
¯̂β∗

3

)2

R∗ − 1


1/2

(26)

R∗ is typically a large number, and Preacher and Hayes [32] recommended at least
1000 subsamples, for example. In the next section, we will present the results of a simu-
lation study, which we conducted to validate our extension of the EAP-based approach
to interaction and quadratic effects and to compare the two resampling procedures for
obtaining standard errors.

4. Monte Carlo Study

We conducted a Monte Carlo simulation study to find out whether the EAP-based
approach performs as expected, meaning that whether it yields unbiased results for the
coefficients in the nonlinear model when the sample of teams is sufficiently large. To this
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end, we assumed the dependent variable Y (i.e., the team’s productivity), the covariate Z
(i.e., the team leader’s self-assessed personality), and the two variables X1 and X2 (i.e., the
employees’ perceptions of their team leader and their team, respectively) to be standard-
normally distributed with a variance of 1. All variables except Y were grand-mean centered,
and X1 and X2 both had a multilevel structure (i.e., the employees’ perceptions split into
latent team means (i.e., shared perceptions) and individual deviations from these shared
perceptions). The between correlation of X1 and X2 (i.e., the correlation between ξ1 and
ξ2) was set to 0.3 as were the between correlations between the two X variables and Z.
We selected this value because 0.3 lies in the middle of the typical range of empirically
observed correlations.

We set the number of teams to 60, 100, or 200 teams. Whereas 60 and 100 teams
served to study the behavior of our method in small-sample, 200 teams served as the test
case for the absence of bias in large samples and thus for the validity of our approach
(asymptotic unbiasedness). The number of employees surveyed in a group was either 10 or
30 employees, and the ICCs of X1 and X2 were both set to 0.1 or 0.3, implying reliabilities
of the observed means X̄1•j and X̄2•j between 0.53 and 0.93. For each of the 3 × 2 × 2 = 12
data constellations, we generated 1000 data sets from the following nonlinear model:

Y = 0 + 0.2 · ξ1 + 0.5 · ξ2 + 0.2 · ξ1ξ2 + 0.2 · ξ2
1 + 0.2 · ξ2

2 + 0.5 · Z + ε (27)

and we estimated this model as described above in the popular statistical computing
environment R, which is also known as “the R Project for Statistical Computing” [33].

We studied the bias of our approach in recovering the main, interaction, and quadratic
effects of the explanatory variables and the coefficient of the covariate in the model. The
bias is defined as the deviation of the expected value of an estimate from the true value
in the data-generating model. We divided the bias by the true value (e.g., [34]) and mul-
tiplied it by 100% in order to obtain the percentage of bias—a measure that helped to
judge whether the bias was negligible or not. An absolute value of less than 10% was
considered negligible [35]. In addition, we studied the performance of the bootstrap for
obtaining the standard errors of the effects with 1000 subsamples. As the criterion for the
evaluation of the bootstrap, we used the coverage rate, which is the probability that the 95%
Confidence Interval (CI), which is, for example, β̂3 − z1−α/2σ̂β̂3

≤ x ≤ β̂3 + z1−α/2σ̂β̂3
for

the interaction effect in the model, captures the true value. A coverage rate of less than 91%
(more than 98%) was considered to indicate that the standard errors were underestimated
(overestimated; [35]). In addition, we compared the bootstrap with Zitzmann’s jackknife.
The CI from the jackknife differs only in that Equation (25) is used in place of the boot-
strapped standard error.

Table 1 shows the percentages of bias in estimating the coefficients in the model. As
the biases were similar for both main effects and both quadratic effects, the table shows
only the biases for the first main effect and the first quadratic effect. In addition, it shows
the coverage rates for the bootstrap and Zitzmann’s jackknife. Despite the match between
the nonlinear data-generating model and the analysis model, our approach for estimating
this model provided substantially biased estimates of the main, interaction, and quadratic
effects (i.e., it exhibited biases of more than 10%) but not for the coefficient of the covariate.
The biases were particularly pronounced when the number of teams was rather small and
the ICCs of the two Xs was low. However, these large small-sample biases could have been
expected. What is more important for the validation of the approach is that the approach
provided unbiased estimates in large samples, which suggests that the approach is indeed
an asymptotically unbiased one.

A similar picture emerged with regard to the coverage rates. Some of the coverage
rates were too high (i.e., >98%) when the ICCs were low, particularly those of the main,
interaction, and quadratic effects. It is interesting to note that the coverage rates for the
bootstrap were slightly less accurate than those for Zitzmann’s jackknife. However, they
both tended to become close to the nominal level of 95% when the ICCs increased, indicating
that the procedures provide correct standard errors.
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Table 1. Simulation Study Results: percentage bias and coverage rates.

No. of Persons Intraclass Percentage of Coverage Rate

No. of Groups per Group Correlation Bias Bootstrap Jackknife

Selected Main Effect (β1)

J = 60 n = 10 ICC = 0.1 43.6 100.0 98.0
ICC = 0.3 5.2 97.1 95.0

n = 30 ICC = 0.1 16.5 97.5 95.0
ICC = 0.3 2.4 96.4 94.3

J = 100 n = 10 ICC = 0.1 20.0 99.7 96.5
ICC = 0.3 12.0 96.9 95.5

n = 30 ICC = 0.1 −3.3 95.7 93.9
ICC = 0.3 −1.3 94.5 93.1

J = 200 n = 10 ICC = 0.1 −4.3 98.3 94.7
ICC = 0.3 0.9 94.7 93.5

n = 30 ICC = 0.1 2.1 96.4 94.3
ICC = 0.3 −2.3 95.8 94.6

Interaction Effect (β3)

J = 60 n = 10 ICC = 0.1 −528.7 100.0 99.7
ICC = 0.3 −7.9 99.8 97.2

n = 30 ICC = 0.1 48.4 100.0 98.4
ICC = 0.3 12.0 99.4 97.0

J = 100 n = 10 ICC = 0.1 25.3 100.0 99.5
ICC = 0.3 11.8 98.8 96.5

n = 30 ICC = 0.1 −9.7 99.8 98.0
ICC = 0.3 6.0 97.0 94.1

J = 200 n = 10 ICC = 0.1 −39.0 100.0 97.8
ICC = 0.3 −2.2 97.6 94.8

n = 30 ICC = 0.1 7.0 98.5 94.8
ICC = 0.3 −1.6 95.6 93.8

Selected Quadratic Effect (β4)

J = 60 n = 10 ICC = 0.1 239.2 100.0 99.9
ICC = 0.3 −4.2 99.8 97.4

n = 30 ICC = 0.1 1.6 100.0 99.1
ICC = 0.3 −11.1 98.7 96.0

J = 100 n = 10 ICC = 0.1 13.3 100.0 99.5
ICC = 0.3 0.7 98.7 95.6

n = 30 ICC = 0.1 −35.2 99.9 97.8
ICC = 0.3 −8.8 96.8 93.4

J = 200 n = 10 ICC = 0.1 54.5 100.0 98.0
ICC = 0.3 0.5 96.9 93.5

n = 30 ICC = 0.1 −11.3 98.3 95.5
ICC = 0.3 −0.3 97.2 95.7

Coefficient of the Covariate (γ)

J = 60 n = 10 ICC = 0.1 −2.7 100.0 97.1
ICC = 0.3 −2.1 95.8 94.2

n = 30 ICC = 0.1 −1.6 96.6 94.1
ICC = 0.3 −0.2 95.6 94.5

J = 100 n = 10 ICC = 0.1 −0.8 99.4 96.2
ICC = 0.3 −1.1 96.1 94.5

n = 30 ICC = 0.1 0.7 95.3 94.1
ICC = 0.3 −0.9 94.1 92.6

J = 200 n = 10 ICC = 0.1 0.2 96.8 95.1
ICC = 0.3 0.0 95.2 93.9

n = 30 ICC = 0.1 −0.6 96.3 94.9
ICC = 0.3 0.5 95.5 94.4

Note. The coverage rate is stated as a percentage.
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5. Discussion

Multilevel data with employees nested in organizations/teams are often collected to
examine which factors determine an organization/team’s performance. Of great impor-
tance in organizational research are micro–macro designs, in which an upper level variable
is predicted by a variable measured at the lower level. To analyze the data from such
designs, Croon and van Veldhoven [9] proposed an approach in which an ordinary least
squares regression analysis is carried out with Bayesian EAP estimates (which we also
called EAPs for the sake of simplicity) as input. In this article, we developed and showed
an extension of this approach to interaction and quadratic effects of explanatory variables
measured at the lower level. After defining the EAPs, we discussed how these EAPs can be
estimated and used to obtain interaction and quadratic effects. We conducted a simulation
study to validate our extended approach, and we compared two procedures for obtaining
standard errors with each other: a standard bootstrap procedure and Zitzmann’s jackknife.
The main findings were the following. First and foremost, the results with regard to the
bias showed no asymptotic bias, indicating the validity of our approach. Moreover, the
bootstrap and the jackknife performed very similarly overall, with a small disadvantage of
the bootstrap under challenging conditions. However, because the bootstrap uses much
more subsamples than the jackknife (1000 vs. only 20 subsamples), the different procedures
differ in terms of the computing effort. As often, a series of different variants of a model or
even different variants of different models are estimated, computing effort adds up, which
speaks for the use of the jackknife in research practice.

Regarding possible future extensions, it would be interesting to add further dependent
variables to the model. However, such a multivariate model is not estimable with ordinary
least squares regression analysis of EAP estimates. Thus, multiple univariate models need
to be estimated (one per dependent variable), which highlights once more that our approach
is a stepwise and thus only a limited information method [9]. However, the fact that it
does not estimate the model at once but divides it into simpler submodels can also be seen
as a feature ([36,37]; see also [38]). Studying the potential of this type of estimation for
estimating complex models is an interesting subject for future research.

A limitation of the use of EAP estimates should nevertheless be mentioned. The
approach places relatively high demands on the data. Specifically, the number of teams
should be rather large, and the ICCs should not be too low. It is interesting to note that
alternatively, the analysis can be carried out with Structural Equation Modeling (SEM)
software. However, the demands tend to be even higher with this software, at least
when maximum likelihood methods are used [12], which are the default in commercial
software such as Mplus [39]. Prominent examples of maximum likelihood methods for
nonlinear models are latent moderated structural equations (LMS; [40]) and quasimaximum
likelihood (QML; [41]). These methods determine the estimates in such a way that the
probability of the data is maximized under the model. They give unbiased results and
small standard errors only when the data provide a large amount of information (i.e.,
many teams, high ICCs). One possible alternative to our approach and the maximum
likelihood methods is the Bayesian Markov Chain Monte Carlo (MCMC) method, which
iteratively samples from conditional distributions, thereby creating an MCMC chain from
which the estimates can be computed. Similar to our approach, this method places less
demands on the data than maximum likelihood ([42,43]; see also [44,45]). Furthermore, it
enables more flexibility in specifying models [46], and it leads less frequently to estimation
problems [47,48]. However, the Bayesian MCMC method can be problematic despite the
mentioned advantages. For example, this method comes at the cost of long computing
times because a single iteration of the algorithm is slow, and the method requires many
iterations to reach convergence (see [49] for a discussion; see also [50]), particularly when
the model is empirically hardly identified. See Hecht et al. [51], Merkle et al. [52], Xu and
Liao [53] and Yi and Tang [54] for ways to speed up the method. See Hecht et al. [55] and
Hecht and Zitzmann [56] for applications to the analysis of longitudinal data. Whether
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and under which conditions the Bayesian MCMC method outperforms our approach is
however an open question, which can best be addressed in extensive simulation work.

To conclude, we showed that Croon and van Veldhoven’s EAP-based approach for
analyzing micro–macro multilevel designs can be extended to interaction and quadratic
effects, and we hope that the article will contribute to the use of this approach in organiza-
tional research. The approach can easily be implemented in any statistics software, such
as SPSS, SAS or R. Finally, we would like to stress that the application of this approach is
not limited to the organizational context and that it may also be an interesting option in
other areas of multilevel research in which latent means are used (e.g., education sciences,
psychology; [14,57]).
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Appendix A. Derivation of Equation (6)

To derive Equation (6), consider the simple normal model first:

Xi = µ + εi (A1)

where µ is the variable’s mean, and εi (i = 1, . . . , N) are normally distributed residuals with
variance σ2. If we select the normal prior

µ ∼ N
(

0, σ2
µ

)
(A2)

and combine this prior with the likelihood

X̄• ∼ N
(

µ, σ2/N
)

(A3)

where X̄• = ∑N
i=1 Xi/N is the observed counterpart of µ, we obtain the following posterior:

µ ∼ N

(
σ2

µ

var(X̄•)
X̄•,

σ2
µ

var(X̄•)
σ2/N

)
(A4)

The mean of this distribution (i.e., the EAP of µ) is

µ̄ =
σ2

µ

var(X̄•)
X̄• (A5)

Now, consider the above mentioned measurement model (Equation (1)) for a team
leader’s behavior in terms of his or her employees’ shared perception:

X1ij = ξ1j + δ1ij (A6)

(see also Equation (1) in the main body of the text). We choose the prior

ξ1j ∼ N
(

0, σ2
ξ1

)
(A7)

and combine this prior with the the team’s likelihood

X̄1•j ∼ N
(

ξ1j, σ2
δ1

/n
)

(A8)
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in order to obtain the posterior. Because the setup (i.e., normal prior, likelihood) is similar
to the simple normal model, the posterior has to look similar; that is, it has to be of the
same form. Hence, the (team-specific) posterior reads:

ξ1j ∼ N

(
σ2

ξ1

var
(
X̄1•j

) X̄1•j,
σ2

ξ1

var
(
X̄1•j

)σ2
δ1

/n

)
(A9)

Appendix B. Derivation of Equation (8)

To derive Equation (8), recall that when the model contains an additional covariate,
the adjusted EAP is the prediction from a regression of the latent mean on the observed
mean and the covariate. More formally, this means:

ξ̄1j =
(
X̄1•j, Zj

)
var−1(X̄1•j, Zj

)(
σ2

ξ1
, σξ1Z

)T

︸ ︷︷ ︸
= ω

(A10)

In order to obtain ω, we first compute the inverted covariance matrix:

var−1(X̄1•j, Zj
)
=

(
var
(
X̄1•j

)
σξ1Z

σξ1Z var
(
Zj
) )−1

=
1

var
(
X̄1•j

)
var
(
Zj
)
− σ2

ξ1Z

(
var
(
Zj
)

−σξ1Z
−σξ1Z var

(
X̄1•j

) ) (A11)

By using Equation (A11) and the term β =
σξ1Z

var(Zj)
, we yield ω as:

ω =
1

var
(
X̄1•j

)
var
(
Zj
)
− σ2

ξ1Z

(
var
(
Zj
)

−σξ1Z
−σξ1Z var

(
X̄1•j

) )( σ2
ξ1

σξ1Z

)
=


var(Zj)σ2

ξ1
−σ2

ξ1Z

var(X̄1•j)var(Zj)−σ2
ξ1Z

−σξ1Zσ2
ξ1
+var(X̄1•j)σξ1Z

var(X̄1•j)var(Zj)−σ2
ξ1Z



=



σ2
ξ1
−

σ2
ξ1Z

var(Zj)

var(X̄1•j)−
σ2

ξ1Z

var(Zj)

var(Zj)
var(Zj)

−
σξ1Z

var(Zj)
σ2

ξ1
+var(X̄1•j)

σξ1Z

var(Zj)

var(X̄1•j)−
σ2

ξ1Z

var(Zj)

var(Zj)
var(Zj)


=


σ2

ξ1
−β2var(Zj)

var(X̄1•j)−β2var(Zj)
−βσ2

ξ1
+var(X̄1•j)β

var(X̄1•j)−β2var(Zj)

 =


σ2

ξ1
−β2var(Zj)

var(X̄1•j)−β2var(Zj)
var(X̄1•j)−σ2

ξ1
var(X̄1•j)−β2var(Zj)

β



=


σ2

ξ1
−β2var(Zj)

var(X̄1•j)−β2var(Zj)
var(X̄1•j)−σ2

ξ1
−β2var(Zj)+β2var(Zj)

var(X̄1•j)−β2var(Zj)
β

 =


σ2

ξ1
−β2var(Zj)

var(X̄1•j)−β2var(Zj)
var(X̄1•j)−β2var(Zj)−

(
σ2

ξ1
−β2var(Zj)

)
var(X̄1•j)−β2var(Zj)

β



=


σ2

ξ1
−β2var(Zj)

var(X̄1•j)−β2var(Zj)(
1 −

σ2
ξ1
−β2var(Zj)

var(X̄1•j)−β2var(Zj)

)
β



(A12)

Finally, substituting Equation (A12) into Equation (A10) yields:

ξ̄1j =
(
X̄1•j, Zj

)
σ2

ξ1
−β2var(Zj)

var(X̄1•j)−β2var(Zj)(
1 −

σ2
ξ1
−β2var(Zj)

var(X̄1•j)−β2var(Zj)

)
β


=

σ2
ξ1
− β2var

(
Zj
)

var
(
X̄1•j

)
− β2var

(
Zj
) X̄1•j +

(
1 −

σ2
ξ1
− β2var

(
Zj
)

var
(
X̄1•j

)
− β2var

(
Zj
))βZj

(A13)
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