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Abstract. This paper deals with an application in which a hybrid extended Kalman Filter
(HEKF) is used to estimate state variables in a U-shaped electro-magnetic actuator to be used
in mechanical systems. In this context a hybrid Kalman Filter is the one which switches between
different models. The paper proposes a hybrid model for an extended Kalman Filter to be used
as an observer to estimate the state and to control the force of the actuator. Applications
include position, velocity and force control in automotive, engine and manufacturing systems.
This work is focused on the estimation of state variables of the actuator. Simulated results show
the effectiveness of the proposed approach.

1. Introduction
Dynamic systems are usually classified as continuous or discrete dynamic ones. However, real
systems cannot often be clearly classified into one of these categories. Most real dynamic systems
contain continuous and discrete dynamics as well. This mixture of continuous and discrete
dynamics is called a hybrid dynamic system (or short: hybrid system). Therefore, hybrid
dynamic systems exhibit continuous and instantaneous changes, having features of continuous-
time and discrete-time dynamical systems. Many examples of hybrid systems are given not only
from physics, but also from automotive and industrial applications. Hybrid systems can be not
only found in modern technologies in which continuous variables are mixed with non-continuous
ones. An overview on this literature can be found in [1] and in [2]. Very often just the necessity
of reconfigurations of the controller as well as the observer generate many difficulties as shown
in [3]. Nevertheless, in electro-magnetic mechanical actuators, observers as in [4], [5] and in
particular Kalman Filter (KF) as an observer such as in [6] and [7] are very often applied. In [8]
an electromagnetic mechanical actuator for engines is considered. In this application the kernel
of the actuator is represented by a U-shaped electromagnetic actuator, which controls the intake
and exhaust valve for engines. In contrast to this work, the contribution of this paper is oriented
to the control of an actuator to be used in manufacturing systems for the problem of precise
positioning. In applications it is often desirable to implement control without a position sensor
due to the restricted mounting space and the expense. In this case, an estimator could be the
basis for sensorless control in which position and velocity signals are reconstructed from electrical
measurements [9, 10]. Another challenging problem, for reasons of safety is represented by the
soft landing of the positioning. Achieving a soft landing is a difficult job that requires precise
state estimation. To achieve sensorless control, in the literature, there are several different
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approaches propose which are based on observers. The Kalman Filter is one of the most used
algorithms in this context, with the extended version utilized when nonlinearities are present in
the system. The extended Kalman Filter (EKF) is a heuristic method for nonlinear filtering and
estimation problems. When it is tuned well, it is often effective and is widely used in practice.
Nevertheless, the EKF needs to be enhanced and adapted to the particular application; in
this case, the EKF is a viable and computationally efficient candidate for general applications.
In general, applications of Kalman Filters offer the possibility of implementing a state-based
controller in any field with automatic controls. An adaptive extended Kalman Filter has been
used to improve the performance of industrial drive control by estimating some important loads
of the industrial drive [11]. A novel sensorless force control approach for robot-assisted motion
of the human arm based on the Kalman Filter has been presented in [12] as well as an intelligent
system that incorporates Kalman Filters and a fuzzy expert system to track the tip of a fastening
tool and to identify the fastened bolt [13]. In general, because these control structures avoid
bulky and complicated measurement systems, they are easily applicable to real world problems.
The proposed method presented in this paper is general and can be applied to all types of
problems in which position and velocity measurements are not possible or are too expensive to
be acquired.

2. Contribution of the paper
The proposed method presented in this paper is quite general and could be applied to all types
of problems in which position and velocity measurements are not possible or are too expensive
to be acquired. The main contributions of this paper are as follows:

• the introduction of an observer for a sensorless control scheme

• the use of a hybrid extended Kalman Filter based on five switching models

This paper provides an extensive description of an application combining a hysteresis hybrid
observer with an extended Kalman Filter and hysteresis automation, resulting in sensorless
control. The hybrid observer scheme is designed to expand upon the continuous extended
Kalman Filter. The proposed structure consists of five models. Between these models there
are five switching conditions to make sure that the observer works inside the correct region
of the state space. An artificial hysteresis between the switching states is introduced to
avoid chattering problems when the velocity is close to zero. The proposal considers already
consolidated structures on extended Kalman Filter and uses theory of hybrid systems to get a
hybrid structure of this filter. Using this combination of well known approaches yields to a new
structure of Kalman Filter, which shows a very accurate and fast observation of states. The
proposed observer works in the way that the current is measured, and the position and velocity
of the electromagnet are estimated. The behavior of the system is a hybrid one, because it has
points in state space where it switches its behavior. These switching points are met e.g. on upper
or lower limits. The paper is organized as follows. In Section 4, a hybrid model of the actuator
is presented. In Section 3 fundamental aspects of KF are recalled together with the description
of the structure of the proposed EKF which is devoted to estimate the state variables of the
actuator. In particular Section 5 presents the validations of the proposed approach though
simulations and also shows the performance of the proposed observer. Conclusion closes the
paper.

3. Tracking embedded hybrid behaviors using an Extended Kalman Filter
Our state estimation architecture tracks the nominal system dynamics using a robust observer
scheme implemented as a combination of an Extended Kalman Filter (EKF) and an automated
switching between several models for the magnet. The hybrid observer has to track (i) continuous
behavior in individual modes of operation and (ii) discrete mode changes. At mode changes,
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the new state space model and the initial state of the system are recomputed, and the error
covariance matrix is updated. The hybrid observer scheme is designed to expand upon the
continuous extended Kalman Filter. Hysteresis is introduced to avoid chattering problems when
the velocity is close to zero. Model uncertainty and measurement noise are implemented as
white noise, using uncorrelated Gaussian distributions with zero mean. To be able to estimate
the operation mode, the model discussed in section 4 is extended by an additional state and
then it is as follows:

ẋ = fq(x(t)) + g(t)u(t) + w(t), (1)

x(t) =


i(t)
s(t)
v(t)
q(t)

 , g(t) =


1

L(s(t))

0
0
0

 , (2)

where function f represents the nonlinearities, and w(t) is the model uncertainty. The measured
output can be written as follows:

y(t) = Hmx(t) + ζ(t), (3)

where Hm = [1 0 0 0], and ζ(t) is the measurement noise variance. An EKF is based
on linearized dynamics, output functions at the current estimate and on propagating an
approximation of the conditional expectation and covariance. In the prediction mode q, the
predicted state is

x(k/k − 1) = x(k − 1/k − 1) + Ts
(
fq(x(k − 1/k − 1)) + Bmu(k − 1)

)
, (4)

and the predicted error covariance matrix is

Pq(k/k − 1) = Pq(k − 1/k − 1) + Ts
(
Fq(x(k − 1/k − 1))Pq(k − 1/k − 1)

+ Pq(k − 1/k − 1)Fq(x(k − 1/k − 1))
)

+ Rw, (5)

where k ∈ Z, Rw is the process noise covariance matrix, Pq(k− 1/k− 1) is the error covariance
matrix, Fq(x(k − 1/k − 1)) is the Jacobian matrix of the system calculated at the estimated
state, and Ts is the sampling time.
In particular, the Jacobian matrix Fq(x(k− 1/k− 1)) and Pq(k− 1/k− 1) with variable q ∈ N,
where q = 1, 2, ..., 5 are related to the five dynamic modes of the actuator. In the correction
mode,

Kq(k) = Pq(k/k − 1)HT
m

(
HmP(k/k − 1)HT

m + Rζ

)−1
(6)

x(k/k) = x(k/k − 1) + Kq(k)
(
y(k)−Hmx(k/k − 1)

)
(7)

Pq(k/k) = Pq(k/k − 1)−Kq(k)HmPq(k/k − 1),

(8)

where Kq(k) is the Kalman gain and Rζ is the measurement noise matrix. The mode change
calculations are based on the system mode at time step k, q(k), and on the state of the system
x(k). In contrast to the standard extended Kalman Filter there are discontinuities because of
the switching state q(t). To make sure that the observer works in a robust way, all states has
to be recalculated at switching points and the Kalman Filter has to use different models for the
differnt modes of operation.
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4. Description of the actuator and its hybrid mathematical model
Figures 1 and 2 represent a simplified scheme of the U-shaped Electromagnetic actuator which is
proposed to be observed. The general mathematical model can be found in the literature such as
[14]. To test the proposed algorithm, an actuator is considered. The actuator consists only of

Figure 1. Simplified scheme of
pot-magnet

Figure 2. Free-body diagram of
magnet anchor

a half magnet system. The data for the physical dimensions and characteristics are taken from
a real magnet. A state vector x(t) = [i(t), s(t), v(t)] and an input voltage u(t) are considered
for the system in Fig. 1. The current is represented by i(t), the position of the armature by
s(t), the velocity by v(t) and the input voltage by u(t). The general system can be represented
in the following way. The electrical dynamics are governed by the equation

di(t)

dt
=

1

L(s(t))

(
u(t)−

(
R+

dL(s(t))

dt

)
i(t)
)
, (9)

where i(t) indicates the current, u indicates the supply voltage, R indicates the resistance and
L indicates the inductance. The inductance L is a function of the current i(t), through the
magnetic permeability, and of the distance s(t). In particular,

L(s(t)) =
N2µrµoA

c1 + 2µrs(t)
, (10)

where N represents the number of windings, µr and µ0 represent the relative permeability and
the vacuum permeability respectively, A is the surface involved in the magnetic flux and c1 is a
physical constant that depends on the current position of the magnet. From (10) the following
expression can be derived:

dL(s(t))

ds
= − 2N2µ2rµoA

(c1 + 2µrs(t))2
. (11)

Since there is no equation for dL(s(t))
dt but one for dL(s(t))

ds the following equation is needed:

dL(s(t))

dt
=
dL(s(t))

ds

ds(t)

dt
=
dL(s(t))

ds

ds(t)

dt
=
dL(s(t))

ds
v(t). (12)

The mechanical dynamic equation is the following:

d2s(t)

dt2
=
Fm(t)− Fg(t)

m
, (13)
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where Fm(t) represents the magnetic force and is:

Fm(t) =
N2µ2rµoAi

2(t)

(c1 + 2µrs(t))2
, (14)

Fg is the gravitational force. According to the range of the velocity v(t) in which the actuator
works, it can be considered a linear affine function of the velocity. This model can be summa-
rized as follows: 

di(t)
dt
ds(t)
dt
dv(t)
dt


︸ ︷︷ ︸

ẋ(t)

=

 −(Ri(t)+
dL(s(t))

ds
v(t)i(t))

L(s(t))

v(t)
Fm(t)−Fg(t)

m


︸ ︷︷ ︸

f(t)

+

 1
L(s(t))

0
0


︸ ︷︷ ︸

g(t)

u(t). (15)

The model described above now can be used as basis to build a more accurate model as described
in the upcoming part. According to the description of the dynamic modes proposed in [14] it
is possible to individuate five operation modes with five switching variables for the proposed
actuator in the context of the application presented above. The state diagram represented in
Fig. 3 shows the principle of the switching strategy. If variable q ∈ N, where q = 0, 1, 2, 3, 4
are related to the five dynamic modes of the actuator, then the five phases can be described as
follows:

• i. q = 0, Latent phase lower limit (as long as i(t) < ion): initial conditions → i(0) = 0;
s(0) = 0; v(0) = 0.

• ii. q = 1, Lifting phase (as long as 0 < s(t) < smax0, v(t) > 0): initial conditions i(0) = ion;
s(0) = 0; v(0) = 0.

• iii. q = 2, Contact phase (as long as s(t) = smax and di(t)
dt = 0): initial conditions i(0) = i(t);

s(t) = smax; v(t) = 0.

• iv. q = 3, Latent phase upper limit (as long as i(t) > ioff ): initial conditions→ i(0) = i(t);
s(0) = smax; v(0) = 0.

• v. q = 4, Back phase (as long as v(t) < 0 and s(t) > 0): initial conditions i(0) = ioff ;
s(t) = smax; v(t) = 0.

ion, ioff are two constant currents, smax is the position in which the actuator establishes the
contact. Moreover, it is possible to introduce another switching variable to identify smax in
which the contact phase starts and the time in which the back phase starts. To get a clear
representation the following constants are used:

K1 = N2µrµ0A
l1

, K2 = l1, K3 = 2µr, K4 = N2µ2rµ0A

K5 = N2µrµ0A, K6 = Ri +Rm, K7 = Rd +Rm.

The resistance R is changing at the position limits. At the lower limit s(t) = 0 the resistance is
R = K6. At the upper limit it is R = K7.
q = 0: Latent phase lower limit (as long as i(t) < ion): initial condition → i(0) = 0; s(0) = 0;
v(0) = 0. In this phase the inductance L(s(t)) is constant because the position is constant s = 0.
Because of this, the derivative of the inductance gets zero and the system can be simplified to:

di(t)
dt
ds(t)
dt
dv(t)
dt


︸ ︷︷ ︸

ẋ(t)

=

 −(K6i(t))
K1

0
0


︸ ︷︷ ︸

f(t)

+

 1
K1

0
0


︸ ︷︷ ︸

g(t)

u(t), (16)
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Figure 3. State diagram

with L(s(t)) = K1.
q = 1: Lifting phase starting with i(0) = ion (as long as 0 < s(t) < smax, v(t) > 0): initial
conditions i(0) = ion; s(0) = 0; v(0) = 0.

di(t)
dt
ds(t)
dt
dv(t)
dt


︸ ︷︷ ︸

ẋ(t)

=

 −(K6i(t)+
dL(s(t))

ds
v(t)i(t))

L(s(t))

v(t)
Fm(t)−Fg(t)

m


︸ ︷︷ ︸

f(t)

+

 1
L(s(t))

0
0


︸ ︷︷ ︸

g(t)

u(t), (17)

with L(s(t)) = K5
(K2+K3s(t))

, dL(s(t))
ds = −2K4

(K2+K3s(t))2
and Fm = K4i(t)2

(K2+K3s(t))2
.

q = 2: Contact phase (as long as s(t) = smax and di(t)
dt = 0): initial conditions i(0) = i(t);

13th European Workshop on Advanced Control and Diagnosis (ACD 2016)                                     IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 783 (2017) 012015          doi:10.1088/1742-6596/783/1/012015

6



s(t) = smax; v(t) = 0. 
di(t)
dt
ds(t)
dt
dv(t)
dt


︸ ︷︷ ︸

ẋ(t)

=

 −(K6i(t)
L(s(t))

0
0


︸ ︷︷ ︸

f(t)

+

 1
L(s(t))

0
0


︸ ︷︷ ︸

g(t)

u(t), (18)

with L(s(t)) = K5
(K2+K3s(t))

.

q = 3: Latent phase upper limit (as long as i(t) > ioff ): initial conditions i(0) = i(t);
s(0) = smax; v(0) = 0. 

di(t)
dt
ds(t)
dt
dv(t)
dt


︸ ︷︷ ︸

ẋ(t)

=

 −(K7i(t)
K8
0
0


︸ ︷︷ ︸

f(t)

+

 1
K8

0
0


︸ ︷︷ ︸

g(t)

u(t). (19)

q = 4: Back Phase starting for i(t) < ioff (as long as v(t) < 0 and s(t) > 0): initial condition
i(0) = ioff ; s(t) = smax; v(t) = 0.

di(t)
dt
ds(t)
dt
dv(t)
dt


︸ ︷︷ ︸

ẋ(t)

=

 −(K7i(t)+
dL(s(t))

ds
v(t)i(t))

L(s(t))

v(t)
Fm(t)−Fg(t)

m


︸ ︷︷ ︸

f(t)

+

 1
L(s(t))

0
0


︸ ︷︷ ︸

g(t)

u(t), (20)

with L(s(t)) = K5
(K2+K3s(t))

, dL(s(t))
ds = −2K4

(K2+K3s(t))2
and Fm = K4i(t)2

(K2+K3s(t))2
. All these equations

describe the whole hybrid system of a magnet.

5. Validation through simulations
The simulation is done with Matlab/Simulink using the ’Hybrid Equations Toolbox’ developed
by [15]. The constants used for the simulation are shown in Table 1. To show how the hybrid
Kalman Filter is estimating the state, a simulation of the system discussed in Section 4 runs
using the Hybrid Equations Toolbox. In parallel, the hybrid Extended Kalman Filter uses the
current (plus added white noise) of this simulation as measurement to estimate the position
s(t) and the velocity v(t). To show the efficiency and accuracy of this estimation several steps
excite the simulation. The simulated state (black line) and estimated state (dashed/dotted red
line) states are always shown in the same diagram to give a good possibility of comparison. If
the magnet is already lifted and the excitation gets zero, it shows the following behavior. Now
the excitation is inverted to a step from 24V to 0V at 0.5 seconds. Now the current shows the
behavior as shown in Fig.4. The estimation here is nearly exact and without any delay. This is
because the current is the measured state with just a small uncertainty. In Fig.6 the velocity
for this kind of step is represented. The velocity is negative for a short time and then zero is
reached again because the magnet reaches the lower limit. Finally Fig. 7 shows the switching
variable for a step for 0V to 24V. Here the passed operation modes beginning at 0.5 seconds are 2
(Contact Phase), 3 (Latent phase upper limit) and 4 (Back Phase). Afterwards, the system gets
back to operation mode 1 and is ’waiting’ for an excitation. Concerning the setup parameters
of the Kalman Filter, the process noise covariance matrix Rw, the measurement noise variance
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Table 1. Constants used for simulation

Constant Description Value

g gravity constant 9.81m
s2

N number of windings 964
µ0 vacuum permeability 1.257e−3 V s

Am
µr relative permeability 200
A surface involved in the magnetic flux 7.6341e−5m2

smax maximum position 0.5e−3m
m mass of magnet armature 0.34kg
ion turn-on current 0.1A
ioff cut-off current 0.02A
R = Ri +Rm resistance on lower level 114.3Ω
R = Rd +Rm resistance on upper level 120Ω
l1 average field line length 22e−6m
Ts sample time 1e−4s

Figure 4. Current for a step from 24V to 0V at 0.5 seconds
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Rζ is and the initial values of the covariance matrix Pq(0) are chosen equal for each q-model
and their values are as follows:

Rw =


1 0 0 0
0 10−10 0 0
0 0 10−10 0
0 0 0 10−10

 , (21)

Rζ = 0.01 and Pq(0) = 0. It is possible to observe that matrix Rw states the precision which
which the model is known. In particular, the uncertainty is localised in the first equation in
which the nonlinearity is present.
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Figure 5. Position for a step from 24V to 0V at 0.5 seconds
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Figure 6. Velocity for a step from 24V to 0V at 0.5 seconds
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6. Performance of the proposed Observer
A performance evaluation concerning the estimation is provided using a Root-Mean-Square
(RMS) Deviation (RMSD). The following RMSD of an estimator θ̂ with respect to an estimated
parameter θ is defined as the square root of the mean square error. In case of an unbiased
estimator, the square root of the mean square error corresponds to the square root of the
variance, known as the standard deviation.

RMSD =

√
MSE(θ̂) =

√
E(θ̂ − θ) (22)

In a Kalman Filter the presence of a bias is shown to be caused by a correlation between the gain
and innovation sequences which are due to the nonlinearity on the measurements, [16]. Using
a linearisation, this correlation remains and to obtain an unbiased filter, a modification of the
EKF is considered in [17]. The variation proposed in [17] uses a modification of the nonlinear
measurement function and is claimed to give unbiased estimates. In our case, the proposed EKF
does not consist of a nonlinear output function. In this case indicator RMSD is appropriately
applied. In fact, the RMS Deviation (RMSD) or Root-Mean-Square Error (RMSE) is very often
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Figure 7. Switching variable q for a step from 24V to 0V at 0.5 seconds
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used, in particular in unbiased cases, as a measure of the differences between values predicted
by a model or an estimator and the values actually observed. The RMSD represents the sample
standard deviation of the differences between predicted values and observed values. These
individual differences are called residuals when the calculations are performed over the data
sample that was used for estimation, and are called prediction errors when computed out-of-
sample. The RMSD serves to aggregate the magnitudes of the errors in predictions for various
times into a single measure of predictive power. RMSD is a good measure of accuracy, but
only to compare forecasting errors of different models for a particular variable and not between
variables, as it is scale-dependent.

Figure 8. RMS Deviation of the Current for a step from 24V to 0V at 0.5 seconds
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7. Conclusion
The paper deals with an application in which a hybrid extended Kalman Filter is used to
estimate state variables in a Pot-Magnet to be used in mechanical systems. The paper proposes
a hybrid model to be used in the extended Kalman Filter to monitor the state and to control the
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Figure 9. RMS Deviation of the Position for a step from 24V to 0V at 0.5 seconds
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Figure 10. RMS Deviation of the Velocity for a step from 24V to 0V at 0.5 seconds
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force of the actuator to be applied in manufacturing systems. Validations using simulations are
shown and discussed to demonstrate the validity of the approach which proposed five dynamic
models to be integrated and coordinated with a switching logic structure. The proposed observer
shows a good performance and estimates the states correctly. A possible future work consists
of an implementation into a real system and in designing a controller for this system using the
proposed hybrid Kalman Filter.
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