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a b s t r a c t 

Two new panel cointegrating rank tests which are robust to cross-sectional dependence are 

proposed. The dependence in the data generating process is modeled using unobserved 

common factors. The new tests are based on a meta-analytic approach, in which the p - 

values of the individual likelihood-ratio (LR) type test statistics computed from defactored 

data are combined into the panel statistics. A simulation study shows that the tests have 

reasonable size and power properties in finite samples. The application of the tests is illus- 

trated by investigating the monetary exchange rate model for a panel data of 19 countries. 

© 2016 The Author(s). Published by Elsevier B.V. on behalf of EcoSta Econometrics and 

Statistics. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

Since the beginning of the 21st century panel cointegration techniques have been widely used to test and estimate long- 

run macroeconomic relationships. By using time observations from different cross-sections, it is possible to increase the 

power of the conventional cointegration tests. However, the cross-sectional dependencies within the macro-panels should 

be taken into account to avoid wrong statistical inference. 

There are mainly two different types of panel cointegration tests in the literature. The first type of tests are called 

residual-based tests and the second type of tests are called system tests. The latter ones have some advantages in com- 

parison to the former ones. The system tests are not only suitable to find out the number of cointegrating relations, i.e. the 

cointegrating rank of the system, but also the test decisions are invariant to the variable used to normalize the long-run 

relationship. 

In order to use the advantages of the system tests, our aim is to develop new panel cointegrating rank tests which allow 

for cross-sectional dependence. 

In this study the testing procedure outlined in Arsova and Örsal (2016) is followed to propose new panel cointegration 

tests. Arsova and Örsal (2016) base their testing procedure on the panel analysis of nonstationarity in idiosyncratic and 
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common components (PANIC) approach of Bai and Ng (2004) . They propose a panel cointegrating rank test which is the 

standardized version of the average individual LR-type test statistics of Saikkonen and Lütkepohl (20 0 0) computed from 

defactored data. 

In contrast to Arsova and Örsal (2016) , the testing procedure in this study is based on the approach of Maddala and 

Wu (1999) and Choi (2001) , in which the new panel test statistics are based on combining the p -values of the individual 

Saikkonen and Lütkepohl LR statistics using defactored data. 

In general, the panel tests based on combining p -values have several advantages in comparison to the tests based on 

standardizing the average of the individual test statistics. The former approach allows having a much more heterogeneous 

structure in the panel. Within this heterogeneous structure different deterministic terms can be included into the data 

generating process (DGP) of each cross-section and also the lag order can vary over cross-sections. These tests may even be 

applied to unbalanced panels. 

Via Monte Carlo simulations we compare the finite-sample properties of our new tests with the test of Arsova and Örsal 

(2016) and show that the meta-analytic tests have slightly better performance in some cases. 

This paper is organized as follows. Section 2 presents the DGP and the assumptions of the new panel cointegration tests. 

Section 3 explains the testing procedure. Section 4 presents the finite-sample properties of the proposed panel cointegration 

tests and compares them with others existing in the literature. Section 5 checks the validity of the monetary exchange rate 

model. Finally, Section 6 concludes. 

Throughout the paper L and � represent the lag and differencing operators, respectively. M < ∞ denotes a generic 

constant which is independent of the dimensions of the panel N and T . 

2. Model 

The new panel cointegration tests are based on the same DGP as in Arsova and Örsal (2016) : 

Y cd 
it = Y it + �′ 

i F t , i = 1 , . . . , N, t = 1 , . . . T , (1) 

Y it = μ0 i + μ1 i t + X it , (2) 

X it = A i 1 X i,t−1 + . . . + A i, ̄p i X i,t−p̄ i + ε it and (3) 

(1 − L ) F t = C (L ) u t with C (L ) = 

∞ ∑ 

j=0 

C j L 
j , (4) 

where the m -dimensional vector Y cd 
it 

= (Y cd 
i, 1 t 

, . . . , Y cd 
i,mt 

) ′ denotes the observed cross-sectionally dependent data for unit i . 

Note that this model is the vector-valued extension of the model of Bai and Ng (2004) . Cross-sectional dependence is al- 

lowed for through the ( k × 1) vector of unobserved common factors F t . Due to the ( k × m )-dimensional matrix of individual- 

specific factors loadings �i , some factors may not influence all the cross-sections. The common factors may be either sta- 

tionary, non-stationary or a combination of stationary and non-stationary processes. 

In Eq. (2) μ0 i and μ1 i denote the parameters of the heterogeneous deterministic terms. X it is a vector of unobserved 

idiosyncratic components which has a VAR representation (see Eq. (3) ), whose lag order p̄ i may differ over cross-sections. 

The components of the X it process can be integrated at most of order one and they are cointegrated with cointegrating rank 

r i for 0 ≤ r i ≤ m . The error terms εit follow a martingale difference sequence, where E(ε it | ε is , s < t) = 0 and E(ε it ε 
′ 
it 
| ε is , s < 

t) = �i with �i being a positive definite matrix for i = 1 , . . . , N. The εit ’s are neither serially correlated nor cross-sectionally 

dependent. In other words, the sole source of cross-sectional dependence within the panel is the common component �′ 
i 
F t . 

We assume that the number of common factors is known. In practice it can be determined by the information criteria of 

Bai and Ng (2002) or Onatski (2010) . 

The test is built on the VECM representation of X it : 

�X it = �i X i,t−1 + 

p̄ i −1 ∑ 

j=1 

�i j �X i,t− j + ε it , t = p̄ i + 1 , . . . , T , i = 1 , . . . , N, (5) 

where �i j = −(A i, j+1 + . . . + A i, ̄p i 
) . The ( m × m ) matrix �i = −(I m 

− A i 1 − . . . , −A i, ̄p i 
) is the cointegrating matrix for each 

cross-section which can be decomposed as �i = αi β
′ 
i 

with αi and β i being full rank ( m × r i ) matrices. 

Assumptions: 

1. The assumptions on the common factors are: 

(a) u t ∼ iid (0, 
u ), E ‖ u t ‖ 4 ≤ M < ∞ . 

(b) V ar(�F t ) = 

∑ ∞ 

j=0 C j 
u C 
′ 
j 
> 0 . 

(c) 
∑ ∞ 

j=0 j 
∥∥C j 

∥∥ < M < ∞ . 

(d) C (1) has rank k 1 , 0 ≤ k 1 ≤ k . 

2. The assumptions on the factor loadings are: 
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(a) �i is deterministic and ‖ �i ‖ ≤ M < ∞ , or �i is stochastic and E ‖ �i ‖ 4 ≤ M < ∞ . 

(b) N 

−1 
∑ N 

i =1 �i �
′ 
i 

p → 
� as N → ∞ , where 
� is a ( k × k ) non-random positive definite matrix. 

3. �i , u t and εit are mutually independently distributed across i and t . 

3. Testing procedure 

Before testing for the panel cointegrating rank, the cross-sectional dependence within the panel should be eliminated. 

Therefore, as a first step, the data are defactored using the PANIC approach of Bai and Ng (2004) . In PANIC the common 

components are estimated using principal components. A detailed description of the way how the factors and loadings are 

estimated can be found in Arsova and Örsal (2016) . By subtracting the estimates of the common components, i.e. ˆ �′ 
i 
ˆ F t , 

from the observed data, the cross-sectional dependence is removed from the panel. In the next step, the GLS-based LR-type 

cointegration test of Saikkonen and Lütkepohl (20 0 0) is employed on the defactored data for each panel unit separately. 

Finally, the corresponding p -values of the individual test statistics are computed by the response surface approach outlined 

in Trenkler (2008) . 

The null and alternative hypotheses under consideration are: 

H 0 : r i = r = 0 , ∀ i, versus H 1 : r i > 0 for some i. (6) 

We propose the following panel cointegration test statistics based on a standardized version of Fisher’s χ2 p -value test 

and the inverse normal test, respectively: 

P ∗N = 

−2 

∑ N 
i =1 ln (p ∗

i 
) − 2 N √ 

4 N 

and (7) 

P ∗�−1 = 

∑ N 
i =1 �

−1 (p ∗
i 
) √ 

N 

. (8) 

Here p ∗
i 

denotes the p -value of the Saikkonen and Lütkepohl LR-type statistic under the null hypothesis of no cointegration 

for individual i (henceforth LR 

SL ∗
trace,iT (0) ) and �(.) denotes the cumulative distribution function of the standard normal dis- 

tribution. The LR-type statistics can be computed using either the estimated idiosyncratic component ˆ X it = 

∑ t 
s =2 (y is − ˆ �′ 

i 
ˆ F t ) 

for t = 2 , . . . , T and 

ˆ X i 1 = 0 , where y it = �Y cd 
it 

− 1 
T −1 

∑ T 
t=2 �Y cd 

it 
, or the defactored data Y ∗

it 
= Y cd 

it 
− ˆ �′ 

i 
ˆ F t . Note that the open 

source software JMulTi delivers the p -values of the GLS-based LR-type statistic of Saikkonen and Lütkepohl. 

The limiting distribution of the proposed tests under the null and alternative hypotheses is established in the next theo- 

rem. 

Theorem 1. Under the null hypothesis of no cointegration, and when m and p̄ = max { ̄p i | 1 ≤ i ≤ N} remain fixed, it holds that 

P ∗N ∼ N(0 , 1) and (9) 

P ∗�−1 ∼ N(0 , 1) , (10) 

as T → ∞ followed by N → ∞ , or as T , N → ∞ simultaneously with N / T → 0 . Under the alternative hypothesis the P ∗N statistic 

diverges to + ∞ and the P ∗
�−1 statistic diverges to −∞ . 

Proof. This theorem is valid under the assumption that the individual statistics are computed from cross-sectionally in- 

dependent data. For the proof in the sequential limits case we refer to Choi (2001) , while the arguments for joint limits 

with N / T → 0 follow that of Theorem 3.3 of Arsova and Örsal (2016) and Theorem 3 of Carrion-i-Silvestre and Surdeanu 

(2011) . To prove the theorem for the statistics based on defactored data, the arguments of Bai and Ng (2004 , p. 1176) can 

be followed. Let LR 

SL ∗
trace,iT (0) , i = 1 , . . . , N be statistics based on the estimated idiosyncratic components and let LR 

SL 
trace,iT (0) , 

i = 1 , . . . , N be statistics based on the cross-sectionally independent data Y it . Note that, equivalently, X it may be considered, 

as the Saikkonen and Lütkepohl test is invariant to the values of the deterministic terms and hence these could be set 

to zero. According to Theorem 3.1 in Arsova and Örsal (2016) , the asymptotic distribution of LR 

SL ∗
trace,iT (0) is not only the 

same as the distribution of LR 

SL 
trace,iT (0) , but the two statistics are also asymptotically equivalent. This implies the asymptotic 

independence of LR 

SL ∗
trace,iT (0) over i and hence the independence of the corresponding p -values. �

As explained in Arsova and Örsal (2016) , due to the defactoring procedure, the cointegrating matrix β i cannot be esti- 

mated with the consistency rate O p (T −1 ) . Therefore, the rank determination is carried out with a modified sequential testing 

procedure. By using a suitable estimator for the orthogonal complement 1 of the cointegrating matrix, i.e. ˆ βi ⊥ , it is possible 

to test for cointegrating rank higher than zero. 

Within the modified sequential testing procedure, first the defactored data (i.e. Y ∗
it 

) is tested for no cointegration. If 

H 0 : r i = 0 , ∀ i is rejected, then the next step is to test H 0 : r i = r̄ = 1 , where r̄ = max { r i | 1 ≤ i ≤ N} . For this purpose, the 

1 Let A be an ( m × n ) matrix with rank (A ) = n, then the orthogonal complement A ⊥ is an (m × (m − n )) matrix with rank (A ⊥ ) = m − n, such that 

A ′ ⊥ A = 0 . 



64 D.D. Karaman Örsal, A. Arsova / Econometrics and Statistics 2 (2017) 61–72 

orthogonal complement of the cointegrating space β i ⊥ is estimated from the defactored data. With the help of the estimator 
ˆ βi ⊥ it is possible to select the appropriate candidates for stochastic trends in the system. In other words, the null hypothesis 

of higher cointegrating rank can be tested by checking whether d = m − r̄ different stochastic trends exist. Therefore, the null 

of no cointegration is tested on the d = m − r̄ dimensional vector ˆ β ′ 
i ⊥ Y 

∗
it 

. This procedure is repeated until the null hypothesis 

cannot be rejected or until H 0 : r̄ = m − 1 is tested. 

The orthogonal complement of the cointegrating space β i ⊥ is estimated using the r̄ largest eigenvalues of the eigenvalue 

problem ∣∣∣λ 1 

T 
ˆ S i, 11 − ˆ S i, 10 ̂

 S −1 
i, 00 

ˆ S i, 01 

∣∣∣ = 0 , (11) 

where the moment matrices ˆ S i, jk , j , k ∈ {0, 1} are computed from the defactored data in the same way as in Johansen (1995 , 

pp. 96–97) allowing for a deterministic trend. 

4. Simulation study 

4.1. Data generating process 

The Monte Carlo study is based on the same DGP as in Arsova and Örsal (2016) in order to allow for comparison. The 

following three-variate DGP is used to generate the data: 

Y it = μ0 i + μ1 i t + X it + �′ 
i F t , (12) 

X it = 

( 

ψ a 0 0 

0 ψ b 0 

0 0 1 

) 

X it−1 + ε it , (13) 

ε it ∼ N 

[ ( 

0 

0 

0 

) 

, 

( 

1 θ1 θ2 

θ1 1 θ3 

θ2 θ3 1 

) ] 

and (14) 

F t = BF t−1 + u t , u t ∼ N(0 , 
F ) , (15) 

where the terms θ i , i = 1 , 2 , 3 induce instantaneous correlation between the stationary and the nonstationary components 

of the system. This process is a modification of the DGP used by Toda (1995) , who finds that the performance of Johansen ’s 

(1995) likelihood-based cointegration tests depends on the magnitude of the instantaneous correlation coefficients. The same 

DGP is employed by Saikkonen and Lütkepohl (20 0 0) with similar findings. In particular, the Saikkonen and Lütkepohl test 

has greater size and consequently better power when the correlation between the stationary and the nonstationary com- 

ponents is high. Within the simulation study we consider cases both with and without correlation between the stationary 

and nonstationary components. To save space only the simulation results with correlation are reported, as they represent 

the worse-case scenario in terms of size. Upon request simulation results without correlation can be provided. 

Throughout the simulation study we use T − 1 = { 25 , 50 , 100 , 200 , 500 } and N = { 10 , 25 , 50 , 100 } . The initial values for 

X it are set to zero. To generate DGP with true cointegrating rank zero, we set ψ a = ψ b = 1 . The true cointegrating rank one 

is generated by the combinations (ψ a , ψ b ) = { (0 . 7 , 1) , (0 , 95 , 1) } , and the true cointegrating rank two is generated by the 

combinations (ψ a , ψ b ) = { (0 . 7 , 0 . 7) , (0 . 95 , 0 . 7) } . The deterministic terms μ0 i and μ1 i are set to zero, since the LR-type test 

statistics of Saikkonen and Lütkepohl (20 0 0) are invariant to the values of the deterministic terms. The number of common 

factors is k = 2 with σ 2 
F 

= 1 . For non-stationary factors B = I 2 , and for stationary ones B = 0 . 9 I 2 . Finally, the factor loadings 

are independently uniformly distributed random variables with appropriate dimension, i.e. �i ∼ i.i.d. U[ −1 , 3] . Results with 

factor loadings �i ∼ i.i.d. U[ −1 , 7] are similar and available upon request. The number of replications is set to 10 0 0. The 

simulations are executed in GAUSS. 

4.2. Simulation results 

Table 1 presents the size results of the new tests for different experimental settings with different true cointegrating 

ranks. The left part of the table shows the size properties of the standardized Fisher-type test ( P ∗
N 

) and the right part of 

the table presents the results of the inverse normal test ( P ∗
�−1 ). Both tests have size distortions when the true cointegrating 

rank is zero and T is small, i.e. T = 25 . Size distortions are also present when the cross-sectional dimension is higher than 

the time dimension as a result of the violation of the assumption that T → ∞ first, followed by N → ∞ , or in case of joint 

limits, N / T → 0. With increase in both the time and the cross-sectional dimension the size of both tests approaches the 5% 

nominal significance level. Overall, for the true cointegrating rank of zero the inverse normal test has better size properties 

when T ≥ 50. 

On the contrary, both tests are undersized when the true cointegrating rank is higher than zero. However, with increase 

in both T and N the size reaches the 5% nominal level, when the stationary process(es) in the system are not near unit root 
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Table 1 

Size of the tests for different true cointegrating rank conditions. 

P ∗N P ∗
�−1 

r 0 = 0 r 0 = 1 , ψ b = 1 r 0 = 2 , ψ b = 0 . 7 r 0 = 0 r 0 = 1 , ψ b = 1 r 0 = 2 , ψ b = 0 . 7 

T −1 N ψ a = 0 . 7 ψ a = 0 . 95 ψ a = 0 . 7 ψ a = 0 . 95 ψ a = 0 . 7 ψ a = 0 . 95 ψ a = 0 . 7 ψ a = 0 . 95 

25 10 0 .118 0 .012 0 .002 0 .0 0 0 0 .0 0 0 0 .089 0 .017 0 .001 0 .0 0 0 0 .0 0 0 

25 0 .188 0 .004 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .165 0 .004 0 .0 0 0 0 .0 0 0 0 .0 0 0 

50 0 .219 0 .001 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .218 0 .004 0 .0 0 0 0 .0 0 0 0 .0 0 0 

100 0 .286 0 .003 0 .0 0 0 0 .0 0 0 0 .0 0 0 0 .297 0 .004 0 .0 0 0 0 .002 0 .0 0 0 

50 10 0 .078 0 .032 0 .0 0 0 0 .015 0 .0 0 0 0 .056 0 .030 0 .001 0 .027 0 .002 

25 0 .092 0 .032 0 .001 0 .012 0 .0 0 0 0 .068 0 .021 0 .002 0 .025 0 .001 

50 0 .091 0 .014 0 .0 0 0 0 .002 0 .0 0 0 0 .080 0 .016 0 .0 0 0 0 .020 0 .0 0 0 

100 0 .136 0 .006 0 .0 0 0 0 .002 0 .0 0 0 0 .128 0 .007 0 .0 0 0 0 .015 0 .0 0 0 

100 10 0 .061 0 .038 0 .006 0 .034 0 .007 0 .056 0 .023 0 .005 0 .025 0 .017 

25 0 .080 0 .028 0 .002 0 .021 0 .004 0 .065 0 .025 0 .002 0 .026 0 .014 

50 0 .069 0 .022 0 .0 0 0 0 .024 0 .001 0 .066 0 .020 0 .0 0 0 0 .031 0 .013 

100 0 .093 0 .010 0 .0 0 0 0 .010 0 .001 0 .079 0 .010 0 .001 0 .025 0 .009 

200 10 0 .083 0 .057 0 .022 0 .029 0 .020 0 .056 0 .035 0 .018 0 .029 0 .021 

25 0 .072 0 .028 0 .006 0 .028 0 .007 0 .054 0 .018 0 .005 0 .032 0 .017 

50 0 .063 0 .031 0 .008 0 .030 0 .005 0 .056 0 .022 0 .013 0 .039 0 .018 

500 10 0 .076 0 .046 0 .027 0 .043 0 .034 0 .049 0 .028 0 .018 0 .035 0 .027 

25 0 .062 0 .037 0 .019 0 .047 0 .024 0 .050 0 .038 0 .018 0 .045 0 .029 

50 0 .064 0 .041 0 .016 0 .039 0 .014 0 .063 0 .040 0 .020 0 .053 0 .032 

Notes : r 0 denotes the true cointegrating rank of the DGP. The results are based on the DGP which allows for correlation between the stationary and non- 

stationary components of the process. For the process with r 0 = 0 , we set (θ1 , θ2 , θ3 ) = (0 , 0 , 0) , since the parameters θ i , i = 1 , 2 , 3 , show the correlation 

only between the stationary and nonstationary components. If r 0 = 1 , then (θ1 , θ2 , θ3 ) = (0 . 8 , 0 . 3 , 0) , and if r 0 = 2 , then (θ1 , θ2 , θ3 ) = (0 , 0 . 8 , 0 . 3) . 

Table 2 

Power of the tests when the hypothesized rank is below the true rank. 

P ∗N P ∗
�−1 

r 0 = 1 , ψ b = 1 r 0 = 2 , ψ b = 0 . 7 r 0 = 1 , ψ a = 1 r 0 = 2 , ψ b = 0 . 7 

ψ a = 0 . 7 ψ a = 0 . 95 ψ a = 0 . 7 ψ a = 0 . 95 ψ a = 0 . 7 ψ a = 0 . 95 ψ a = 0 . 7 ψ a = 0 . 95 

T-1 N H(0) H(0) H(0) H(1) H(0) H(1) H(0) H(0) H(0) H(1) H(0) H(1) 

25 10 0 .632 0 .130 0 .789 0 .038 0 .283 0 .003 0 .618 0 .111 0 .786 0 .041 0 .264 0 .004 

25 0 .960 0 .190 0 .992 0 .044 0 .520 0 .004 0 .972 0 .173 0 .993 0 .085 0 .540 0 .007 

50 1 0 .284 1 0 .080 0 .744 0 .002 1 0 .284 1 0 .214 0 .789 0 .004 

100 1 0 .402 1 0 .112 0 .935 0 .0 0 0 1 0 .420 1 0 .353 0 .965 0 .007 

50 10 0 .995 0 .143 0 .999 0 .565 0 .739 0 .025 0 .995 0 .119 0 .999 0 .642 0 .757 0 .040 

25 1 0 .246 1 0 .932 0 .990 0 .074 1 0 .238 1 0 .977 0 .996 0 .139 

50 1 0 .404 1 1 1 0 .099 1 0 .426 1 1 1 0 .272 

100 1 0 .650 1 1 1 0 .192 1 0 .696 1 1 1 0 .534 

100 10 1 0 .393 1 0 .998 0 .999 0 .361 1 0 .395 1 0 .999 0 .999 0 .421 

25 1 0 .798 1 1 1 0 .768 1 0 .830 1 1 1 0 .862 

50 1 0 .985 1 1 1 0 .962 1 0 .990 1 1 1 0 .988 

100 1 1 1 1 1 1 1 1 1 1 1 1 

10 1 0 .946 1 1 1 0 .972 1 0 .958 1 1 1 0 .982 

25 1 1 1 1 1 1 1 1 1 1 1 1 

50 1 1 1 1 1 1 1 1 1 1 1 1 

500 10 1 1 1 1 1 1 1 1 1 1 1 1 

25 1 1 1 1 1 1 1 1 1 1 1 1 

50 1 1 1 1 1 1 1 1 1 1 1 1 

Notes : r 0 denotes the true cointegrating rank of the DGP. The results are based on the DGP which allows for correlation between the stationary and non- 

stationary components of the process. For the process with r 0 = 0 , we set (θ1 , θ2 , θ3 ) = (0 , 0 , 0) , since the parameters θ i , i = 1 , 2 , 3 , show the correlation 

only between the stationary and nonstationary components. If r 0 = 1 , then (θ1 , θ2 , θ3 ) = (0 . 8 , 0 . 3 , 0) , and if r 0 = 2 , then (θ1 , θ2 , θ3 ) = (0 , 0 . 8 , 0 . 3) . 

processes. When the underlying DGP has near unit root process, then the size of both tests is around 3% with increase in T 

and N . That means, higher T and N dimensions are necessary for the empirical size to reach the nominal size. 

Table 2 shows the power results of the tests when the hypothesized rank is below the true cointegrating rank. H(0) and 

H(1) denote that the null hypothesis is rank zero and one, respectively. For both tests the power approaches quickly unity 

even in small samples when there is no near unit root process in the DGP. If there is a near unit root process then the tests 

cannot detect its presence very well for small T . With increase in both T and N the power also approaches unity even in the 

presence of a near unit root process. When the true cointegrating rank is two and the hypothesized rank is one, the inverse 

normal test has higher power in comparison to the standardized Fisher-type test mainly for T ≤ 100. 
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Table 3 

Size and power comparison of the P ∗N and P ∗
�−1 tests with the P and P m tests of Bai and Carrion-i-Silvestre (2013) . 

Size, true rank r 0 = 0 Power, true rank r 0 = 1 

T − 1 N P ∗N P ∗
�−1 P P m P ∗N P ∗

�−1 P P m 

25 10 0 .134 0 .113 0 .009 0 .013 0 .134 0 .115 0 .006 0 .011 

25 0 .168 0 .149 0 .0 0 0 0 .0 0 0 0 .178 0 .161 0 .0 0 0 0 .0 0 0 

50 0 .208 0 .208 0 .0 0 0 0 .0 0 0 0 .231 0 .219 0 .0 0 0 0 .0 0 0 

100 0 .298 0 .297 0 .0 0 0 0 .0 0 0 0 .300 0 .337 0 .0 0 0 0 .0 0 0 

50 10 0 .091 0 .065 0 .018 0 .026 0 .106 0 .089 0 .026 0 .033 

25 0 .089 0 .062 0 .005 0 .005 0 .119 0 .102 0 .008 0 .012 

50 0 .098 0 .084 0 .0 0 0 0 .0 0 0 0 .151 0 .150 0 .0 0 0 0 .0 0 0 

100 0 .123 0 .130 0 .0 0 0 0 .0 0 0 0 .233 0 .254 0 .0 0 0 0 .0 0 0 

100 10 0 .069 0 .054 0 .031 0 .039 0 .146 0 .141 0 .059 0 .073 

25 0 .084 0 .057 0 .012 0 .016 0 .254 0 .237 0 .053 0 .062 

50 0 .062 0 .070 0 .003 0 .003 0 .385 0 .412 0 .030 0 .034 

100 0 .070 0 .075 0 .0 0 0 0 .0 0 0 0 .573 0 .664 0 .008 0 .009 

200 10 0 .074 0 .068 0 .037 0 .043 0 .430 0 .433 0 .125 0 .155 

25 0 .055 0 .049 0 .023 0 .031 0 .797 0 .857 0 .239 0 .267 

50 0 .069 0 .053 0 .013 0 .017 0 .983 0 .994 0 .318 0 .351 

500 10 0 .055 0 .042 0 .058 0 .074 0 .991 0 .990 0 .379 0 .420 

20 0 .067 0 .052 0 .046 0 .048 1 1 0 .665 0 .698 

50 0 .074 0 .068 0 .028 0 .034 1 1 0 .908 0 .919 

Since we use the same DGP and the same simulation setup as in Arsova and Örsal (2016) , we can compare their simu- 

lation results for the PSL 
J 

de f 
test with our results. Note that the PSL 

J 

de f 
test is a panel test based on the standardization of 

the average of the individual Saikkonen and Lütkepohl LR-type test statistics. For true cointegrating rank zero the P ∗
�−1 test 

has slightly better size properties than the PSL 
J 

de f 
, especially when N is small. The size of all the tests is almost equal when 

the true cointegrating rank of the system is one. The only difference is that the P ∗
�−1 test is slightly more undersized than 

the other two tests when T ≥ 200. The P ∗
�−1 test has also better size properties in the presence a near unit root process for 

r 0 = 2 and T ≥ 100. 

Among all three tests P ∗
N 

demonstrates the lowest power, whereas the P ∗
�−1 test has the highest power for true cointe- 

grating rank two and when the hypothesized rank is one. For the remaining simulation setups the power of the PSL 
J 

de f 
and 

P ∗
�−1 tests is comparable. 

4.3. Comparison with the test of Bai and Carrion-i-Silvestre (2013) 

In order to better align the newly proposed tests within the existing literature, we investigate their finite-sample prop- 

erties alongside those of the no-cointegration tests of Bai and Carrion-i-Silvestre (2013) . The latter authors as well assume 

that the cross-sectional dependence is driven by unobserved common factors, and allow these to be correlated with the 

stochastic regressors. They extract the dynamic factors and the idiosyncratic disturbances by an iterated procedure, and 

then determine the orders of integration of the common and idiosyncratic components separately. In the following simula- 

tions we focus on their Fisher-type test P and standardized Fisher-type test P m 

, which combine the p -values of the individual 

modified Sargan–Bhargava (MSB) statistics based on the estimated idiosyncratic errors. 

The DGP we employ for this purpose is the same as the one Bai and Carrion-i-Silvestre (2013) use for their simulation 

study; for brevity we refrain from presenting the details here and refer to the latter paper (Eqs. (5.1)–(5.6)). 2 We focus 

only on the time trend case with endogenous regressors and heterogeneous slope parameters, as in our view this setting 

is most empirically relevant. For this purpose we amend Eqs. (5.2) and (5.3) of Bai and Carrion-i-Silvestre ’s (2013) DGP to 

include linear time trend terms with slope coefficients set to 0.01 and −0 . 02 , respectively. Size and power properties of 

the tests are investigated by setting the autoregressive parameter ρ i for the idiosyncratic disturbance terms to be equal 

to 1 and 0.95, respectively (see Eq. (5.5) in Bai and Carrion-i-Silvestre, 2013 ). Therefore, the results presented in Table 3 

below are comparable with those from their Table 4. To put all tests on equal grounds, the number of common factors is 

not estimated, but rather set equal to its true value. The number of lagged differences included in the estimation of the 

long-run variance for the individual MSB statistics and the lag order of the VAR approximations for the P ∗
�−1 and P ∗N tests 

are 0 and 1, respectively. As before, panels with dimensions T − 1 ∈ { 25 , 50 , 100 , 200 , 500 } and N ∈ {10, 25, 50, 100} are 

considered. 

The size and power properties of the tests at the 5% level are presented in Table 3 . The tests of Bai and Carrion-i-Silvestre 

(2013) are undersized for small and moderate T , with the size distortions diminishing as T → ∞ . Despite the different 

2 We are grateful to Josep Lluis Carrion-i-Silvestre for providing us with the GAUSS codes. 
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Table 4 

Monetary exchange rate model: data description. 

Variable Description Source 

s Nominal exchange rate per 1 USD; end-of-period OECD 

p Consumer price index OECD 

y Industrial production index OECD 

Industrial production index for Switzerland IMF IFS 

p T Producer price index IMF IFS 

m M3 for Japan IMF IFS 

M2+ for Canada, OECD 

M2 for Czech Republic, Norway, Poland OECD 

M4 for Brazil, Turkey, UK OECD 

M3 for the remaining countries OECD, DANE for 

Colombia 

DGP, the P ∗
�−1 and P ∗N tests display properties very similar to those reported in Table 1 , being oversized for small T and 

approaching the correct size from above as T grows. As a consequence, they are also more powerful than Bai and Carrion- 

i-Silvestre ’s (2013) tests, which require large T . Therefore, in addition to being capable of not only detecting cointegration, 

but also of selecting the cointegrating rank, we would recommend the newly proposed P ∗
�−1 and P ∗N tests for practical use 

in view of their more desirable finite-sample properties. 

5. Empirical illustration: monetary exchange rate model 

To illustrate how the testing procedure works, we investigate the monetary exchange rate model (MERM). Building upon 

the assumptions of stable money demand functions, purchasing power parity and uncovered interest rate parity, the model 

postulates that the nominal exchange rate between two countries is determined by their relative money supply and output 

levels. From an econometric point of view such relationship can be established by testing for cointegration between the 

(logarithms of) the variables, and numerous studies analyzing this issue for different countries and by various techniques 

exist in the literature. The empirical evidence as to whether the MERM holds in practice is, however, inconclusive. Earlier 

single-country studies which have failed to find support for the model (e.g. Sarantis, 1994; Groen, 1999 ) have been criticized 

later on for using too short time span of data and low-power single-unit cointegration tests. Using panel data and newly 

developed panel cointegration techniques offers a convenient way to waive these criticisms. One of the earliest studies 

of the MERM employing panel data is that of Mark and Sul (2001) , whose results based on data for 19 countries in the 

post-Bretton Woods era generally support the hypothesis of cointegration. Although Rapach and Wohar (2004) criticize the 

homogeneity restrictions imposed by Mark and Sul (2001) , they as well find cointegration at the panel level using the same 

data set, but not on an individual country-by-country basis. The same data has been analyzed by Basher and Westerlund 

(2009) , who, however, find that “the monetary model emerges only when the presence of structural breaks and cross- 

country dependence has been taken into account”. Allowing only for cross-sectional dependence in their panel data for 8 

Central and Eastern European countries, Dabrowski et al. (2014) find that the MERM holds. Hence, in view of the existing 

debate whether cointegration between nominal exchange rate and monetary fundamentals exists, we shed some light on the 

issue by applying the newly proposed cointegration tests. Our approach is closest to that of Carrion-i-Silvestre and Surdeanu 

(2011) , who as well look at the stochastic properties of common and idiosyncratic components separately. 

In the present analysis we work with the model of Dabrowski et al. (2014) , which is: 

s it = μ0 i + μ1 i t + βi 1 (m it − m 

∗
it ) + βi 2 (y it − y ∗t ) + βi 3 

[
(p it − p T it ) − (p ∗t − p T ∗t ) 

]
+ u it . (16) 

Here s it is the natural logarithm of nominal exchange rate between country i and the USA, m it is the natural logarithm 

of nominal money supply, y it denotes the natural logarithm of industrial production index, p it is the natural logarithm of 

consumer price index and the p T 
it 

is the natural logarithm of producer price index. The variables with asterisk represent the 

corresponding variables for the USA. We employ the tests using monthly data in the period January 1995–December 2007 

for 19 countries: Brazil, Canada, Colombia, Czech Republic, Denmark, Hungary, India, Indonesia, Israel, Japan, Korea, Mexico, 

Norway, Poland, South Africa, Sweden, Switzerland, Turkey and the UK. A detailed description of the data can be found in 

Table 4 . 

Onatski ’s (2010) criterion selects eight common factors from the panel comprising all variables from all units. These 

eight factors are estimated after standardizing the first differenced and demeaned data, and explain almost 50% of their 

variation. The results of the panel cointegration tests applied on the estimated idiosyncratic components are summarized 

in Table 5 . The cointegration test of Saikkonen and Lütkepohl (20 0 0) is applied on the estimated idiosyncratic component 

of each country separately and the individual p -values are combined to form the panel statistics P ∗
N 

and P ∗
�−1 

proposed in 

this study. According to the reported results, at the 5% significance level the P ∗
N 

and P ∗
�−1 tests point to the existence of one 

cointegrating relation between the estimated idiosyncratic components. The PSL 
J 

de f 
test of Arsova and Örsal (2016) as well 

detects the existence of a single cointegrating relation between the estimated idiosyncratic components. 
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Table 5 

Monetary exchange rate model: results of the cointegration tests for the estimated idiosyncratic components. 

LR SL 
trace statistics p -values 

Country ˆ p̄ i r = 0 r = 1 r = 2 r = 3 r = 0 r = 1 r = 2 r = 3 

Brazil 2 41 .61 13 .96 8 .66 3 .62 0 .114 0 .829 0 .473 0 .256 

Canada 2 43 .89 19 .82 6 .25 0 .41 0 .070 0 .404 0 .747 0 .940 

Colombia 2 25 .21 13 .04 4 .74 1 .91 0 .875 0 .878 0 .891 0 .557 

Czech Republic 2 29 .24 17 .66 7 .71 0 .58 0 .690 0 .565 0 .580 0 .900 

Denmark 1 37 .93 18 .80 7 .76 2 .45 0 .230 0 .478 0 .575 0 .442 

Hungary 2 32 .37 16 .94 8 .40 0 .86 0 .510 0 .621 0 .502 0 .828 

India 2 24 .85 14 .80 6 .28 1 .89 0 .888 0 .776 0 .744 0 .563 

Indonesia 4 26 .91 12 .64 4 .21 1 .69 0 .807 0 .897 0 .928 0 .612 

Israel 2 36 .28 21 .68 6 .22 0 .56 0 .302 0 .284 0 .751 0 .906 

Japan 3 28 .15 15 .40 6 .97 1 .97 0 .747 0 .736 0 .667 0 .543 

Korea 2 57 .47 13 .82 7 .83 2 .82 0 .002 0 .837 0 .566 0 .374 

Mexico 2 29 .00 20 .60 6 .64 0 .68 0 .703 0 .351 0 .704 0 .875 

Norway 2 43 .77 19 .63 6 .72 1 .37 0 .072 0 .417 0 .696 0 .694 

Poland 2 60 .46 28 .64 6 .62 0 .56 0 .001 0 .049 0 .707 0 .907 

South Africa 2 21 .30 10 .05 6 .87 4 .73 0 .969 0 .975 0 .678 0 .147 

Sweden 1 32 .13 7 .15 3 .39 0 .78 0 .524 0 .998 0 .969 0 .851 

Switzerland 1 28 .42 13 .68 3 .41 1 .70 0 .733 0 .845 0 .968 0 .609 

Turkey 2 48 .69 27 .14 14 .04 0 .33 0 .021 0 .075 0 .094 0 .958 

UK 2 50 .25 24 .44 4 .29 3 .03 0 .014 0 .153 0 .923 0 .338 

Panel cointegration test statistics 

PSL 2 .31 ∗∗ −1 .35 −2 .64 −2 .10 

P ∗N 3 .74 ∗∗∗ −0 .98 −2 .40 −2 .02 

P ∗
�−1 −1 .91 ∗∗ 1 .49 2 .64 2 .12 

Notes : r denotes the cointegrating rank under the null hypothesis. Eight common factors were extracted from the whole panel to estimate the idiosyncratic 

components. The cointegration tests are performed by including a linear time trend in the data generating process. The lag order ˆ p̄ i of the VAR processes 

is determined by the Akaike Information Criterion ( p max = 4 ). ∗∗∗ and ∗∗ denote significance at the 1% level and 5% level, respectively. 

Table 6 

Monetary exchange rate model: results of the cointegration tests for the estimated factors. 

SL test Johansen test 

r 0 LR SL 
trace p -value LR J trace p -value 

0 202.45 0.0 0 0 ∗∗∗ 251.61 0.0 0 0 ∗∗∗

1 116.54 0.080 177.37 0.001 ∗∗∗

2 85.13 0.125 119.95 0.034 ∗∗

3 47.89 0.622 81.59 0.147 

4 27.17 0.794 50.87 0.379 

5 14.74 0.784 31.4 0.427 

6 3.72 0.955 16.87 0.433 

7 1.41 0.684 7.16 0.338 

Notes : r denotes the cointegrating rank under the null hypothesis. The tests were performed with 

JMulTi. The lag order of the VAR process ( p = 2 ) is determined by the Akaike Information Criterion. 
∗∗∗ and ∗∗ denote significance at the 1% level and 5% level, respectively. 

As a next step we investigate the stochastic properties of the eight common factors by applying the GLS-based LR-type 

trace test of Saikkonen and Lütkepohl (20 0 0) and the LR trace test of Johansen (1995) . The results are presented in Table 6 . 

These tests point to the existence of one or three cointegrating relationships among the eight factors, respectively. This 

implies that their nonstationarity is driven by at least five global stochastic trends. These results are remarkably similar 

to the results of Carrion-i-Silvestre and Surdeanu (2011) who as well find a single cointegrating relationship between the 

idiosyncratic components of exchange rates and macroeconomic fundamentals, after extracting four nonstationary common 

factors. 

Figs. 1 –3 depict the estimated common components (i.e. ˆ �′ 
i 
ˆ F t ) along with the observed relative variables. In these plots 

both the observed data and the estimated common components have been detrended by OLS for the ease of comparison. 

This serves as an evidence that the relative importance of the common factors in determining the stochastic properties of 

the observed individual time series is high. The estimated eight common factors are presented in Fig. 4 . 

We therefore conclude that the four observed relative variables involved in the monetary exchange model for these 19 

countries are mainly driven by at least five distinct global stochastic trends and the cointegrating relation between the 

estimated idiosyncratic components. 
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Fig. 1. OLS-detrended observed data (solid line) and OLS-detrended estimated common components (dashed line). 
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Fig. 2. OLS-detrended observed data (solid line) and OLS-detrended estimated common components (dashed line). 
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Fig. 3. OLS-detrended observed data (solid line) and OLS-detrended estimated common components (dashed line). 

Fig. 4. Estimated common factors. 

6. Conclusions 

This paper makes use of a common factor framework and a meta analytic approach to propose new panel cointegrating 

rank tests. The tests are based on p -values combination of the individual LR-type test statistics of Saikkonen and Lütkepohl 

(20 0 0) . The testing procedure allows to test the idiosyncratic components and the common factors separately for cointe- 

gration. This useful approach allows to find out the main driving sources of the long-run stationary relations. The Monte 

Carlo study shows that the proposed tests have reasonable finite-sample properties—the power of the tests is high even 

when the time dimension of the panel is small. A comparison of the P ∗
N 

and P ∗
�−1 

tests with the PSL 
J 

de f 
test of Arsova and 

Örsal (2016) leads to the conclusion that the P ∗
�−1 

has preferable better finite-sample properties in some cases. Furthermore, 
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the new tests are more powerful than the no-cointegration tests of Bai and Carrion-i-Silvestre (2013) . Based on this we 

recommend the use of the newly proposed tests for empirical analysis. 
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