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Abstract
The proposed modeling approach for nanocrystalline materials is an extension 
of the local phase mixture model introduced by Kim et al (2000 Acta Mater. 
48 493–504). Local models cannot account for any non-uniformities or strain 
patterns, i.e. such models describe the behavior correctly only as long as it is 
homogeneous. In order to capture heterogeneities, the phase mixture model 
is augmented with gradient terms of higher order, namely second and fourth 
order. Different deformation mechanisms are assumed to operate in grain 
interior and grain boundaries concurrently. The deformation mechanism 
in grain boundaries is associated with diffusional mass transport along the 
boundaries, while in the grain interior dislocation glide as well as diffusion 
controlled mechanisms are considered. In particular, the mechanical response 
of nanostructured polycrystals is investigated. The model is capable of 
correctly predicting the transition of flow stress from Hall–Petch behavior 
in conventional grain size range to an inverse Hall–Petch relation in the 
nanocrystalline grain size range. The consideration of second- and fourth-
order strain gradients allows non-uniformities within the strain field to 
represent strain patterns in combination with a regularization effect. Details 
of the numerical implementation are provided.
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1. Introduction

Nanocrystalline materials are defined as polycrystalline materials with an average grain size 
smaller than 100 nm. Their mechanical properties are distinctly different from those of coarse 
grained materials [2–5]. Therefore, bulk nanocrystalline materials receive great attention in 
the materials research community [6–14]. Of particular interest is the breakdown of the known 
grain size scaling relation, i.e. Hall–Petch relation [15, 16], which holds for coarse-grained 
polycrystalline materials with grain sizes above  µ1 m, for which the strengthening effect is 
proportional to / d1 , with d denoting the average grain size.

A breakdown of the classical Hall–Petch relation for nanocrystalline materials was reported 
by several authors [3, 11, 13, 17–22], and the decrease of the yield strength with decreasing 
grain size is often referred to as an inverse Hall–Petch relation. This behavior is represented by 
a descending branch of the stress- / d1 -diagram. There have been several attempts and models 
to explain the origin of the inverse Hall–Petch relation, including grain/interface boundary 
sliding [13, 23], diffusion over triple lines [24], absorption of dislocations by grain bounda-
ries [25], grain-size dependent Frank-Reed dislocation sources [26], and composite models. 
Aifantis & Konstantinidis [27] provided a theoretical explanation of the inverse Hall–Petch 
behavior based on a gradient theory with an energy-related interface term. The same authors 
attributed the inverse Hall–Petch behavior to the presence of high interfacial area, and the 
existence of nanopores [28]. Trelewicz and Schuh [20] connected the breakdown to a change 
to inhomogeneous, glass-like flow behavior for very fine grain sizes. Argon and Yip [29] sug-
gested that there are two competing mechanisms, grain boundary shear and dislocation glide, 
and associated the transition point to the inverse Hall–Petch behavior with the condition that 
both mechanisms contribute equally to the strain rate. In their model, the grain boundary shear 
mechanism is predominant below the transition point. Phase mixture models [1, 24, 30, 31],  
treating the grain interior as one phase and the grain boundary as a separate amorphous sec-
ond phase, successfully modeled and explained the transition from conventional to inverse 
Hall–Petch relation. As the main deformation mechanisms in nanocrystals, grain boundary 
diffusion and sliding were considered (e.g. [3, 32, 33]) which are closely related [34, 35]. As 
stated by Kim & Estrin [35], it is essential to account for dislocation glide as well as diffusion 
mechanisms in models of the mechanical behavior of nanocrystalline materials. Upon further 
reduction of the grain size, the diffusion-controlled mechanisms are mainly responsible for 
plastic deformation. Bouaziz et al [36] pointed out that this effect led to a decrease in strain 
hardening and an increase in strain-rate sensitivity of the flow stress.

As nanocrystalline materials are highly sensitive to grain size and strain rate changes, 
inhomogeneities inevitably result in incompatibilities within the structure leading to gradient 
effects. Aifantis [37] showed that gradient enhancement (of second-order) for nanocrystalline 
materials captured the experimentally observed phenomena such as the size dependence of 
the elastic moduli and hardness. His results demonstrated a successful application of gradient 
terms in the context of elastic deformations, plastic flow, and diffusion.

Higher order gradients can be motivated by two considerations: (i) introduction of non-
uniformities in the strain field to represent microstructural features more closely and (ii) 
smoothing of non-uniformities within the strain field to regularize the solution, see Askes et al 
[38]. Aspect (i) is represented by the second-order gradient model with a positive coefficient 
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in the second gradient term whereas aspect (ii) is intended for incorporating the fourth-order 
 gradient5. Fourth-order strain-gradient models have rarely been studied so far: Askes et al [38] 
proposed a model in the context of elasticity based on a discrete microstructure consisting 
of a chain of particles and springs. Estrin & Mühlhaus [48] introduced a fourth-order strain-
gradient constitutive model for gradient plasticity. Both approaches result in an equivalent 
second-order gradient formulation but possess different features with respect to the fourth-
order gradient. The solution of the displacement field with the (positive) fourth-order gradient 
elasticity model by Askes et al [38] exhibits harmonic terms multiplied with exponential terms 
whereas the solution of the model6 by Estrin and Mühlhaus [48] only shows a superposition 
of harmonic terms.

In the following, we propose a second- and fourth-order strain gradient phase mixture 
model for nanocrystals. The model is implemented into an in-house finite element code to 
examine the capabilities of the chosen formulation. To the authors’ knowledge, this is the first 
fourth-order strain-gradient phase mixture model for nanocrystalline materials presented in 
the literature.

2. Fourth-order strain-gradient phase mixture model for fine-grained materials

In the following, we extend the local phase mixture model by Kim et al [1] to include spatial 
non-uniformities and strain patterning. The point of departure is the stress–strain relation

( ) ( ) ( ) ( )σ σ σ ε σ ε σ ε εε ε= + ∆ + ∆ = + ∆ + ∆∆ ∆ r s˙ ˙2 2
2 (1)

which reduces to

( ) ( )σ σ ε
ε

ε
σ ε ε ε= +

∂
∂
+
∂
∂
= + ∂ + ∂
ε

r
x

s r s˙ ˙ x x

2

2

4

4
2 4 (2)

in a one-dimensional setting. Here, ε represents the local plastic strain and ( )σ ε̇  the local strain 
rate dependent stress. ∆ = ∇div  is the Laplacian operator; r and s are the coefficients of the 
second- and fourth-order derivative terms, respectively. In the following, a second- and fourth-
order strain-gradient phase mixture model for fine-grained materials is presented and studied 
for various scenarios and boundary conditions.

The polycrystalline material, an example of the microstructure is shown in figure  1, is 
subdivided into grain interiors and grain boundaries (see figure 2(a), assuming that the strain 
(and strain rate) is the same in both phases. The grain interiors are treated as one single phase. 
Regardless of the grain size d, the grain boundary width w  =  1 nm is assumed to be constant 
[49, 50]. Approximating the nanocrystalline grain as being cube-shaped [1], the volume frac-
tion of the grain boundary phase is determined by f  =  1  −  [1  −  w/d ]3. Tschopp et al [51] 
investigated the volume fraction of grain boundaries and triple junctions for space-filling 
tetrakaidecahedral grains leading to a very similar distribution over the grain size as for cubic 
grains (see also [1]). The presented volume fraction is a simplification as only grain bounda-
ries and grain interior are considered.

5 Alternatively, a negative sign of the second-order gradient term leads to a stabilized numerical behavior as well, 
which is usually the case in strain-gradient (crystal) plasticity models [37, 39–44] or non-local damage models  
[45, 46]. In such models a fourth-order gradient (with a negative sign) would result in a destabilizing effect and 
therefore is omitted. A positive coefficient of the second-order gradient term leads to destabilizing behavior which 
motivates the incorporation of the fourth-order gradient (with a positive sign) to restore the well-posedness of the 
problem [47].
6 For the case of gradient elasticity.
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Due to assumed parallel arrangement of grain boundary and the grain interior, the first stress 
contribution is additively determined by the rule of mixtures as ( ) [ ]σ ε σ σ= + −f f˙ 1GB GI, 
where σGB and σGI denote the stress in the grain boundary and grain interior phase, respectively.

The phase mixture model is augmented by gradient contributions as schematically illus-
trated in figure 2(b). Whereas the local phase mixture model by Kim et al [1] only allows for 
homogeneous solutions, the non-local gradient extensions capture non-uniformities.

Two gradient models are introduced, which are motivated by gradient models from the 
literature: a physical based fourth-order gradient phase mixture model (see e.g. [38, 48]) as 
well as a postulated gradient enhancement of the model with a negative coefficient in the 
second-order gradient term (see e.g. [39–42]). Both gradient enhanced phase mixture models 
are able to capture the inverse Hall–Petch behavior, as will be shown later. Additionally, these 
extensions capture size-dependent strengthening and hardening. In the fourth-order gradient 
phase mixture model non-uniformities, e.g. in form of heterogeneities or boundary conditions, 
are introduced to represent the microstructure. The total stress is determined additively as

Figure 1. TEM bright-field image showing the microstructure of a nanocrystalline 
gold film (Courtesy of J Schmauch and C Braun, Universität des Saarlandes, FR 7.2 
Experimentalphysik).

Figure 2. Schematic illustration of local phase mixture model: (a) nanocrystalline 
material with grain size d and grain boundary width w. In the phase mixture model 
a nanocrystalline grain is approximated as being cube-shaped. (b) Rheological 
interpretation of phase mixture model including gradient effect. Each dashpot represents 
a viscoplastic mechanism and the spring accounts for the gradient effects.

B Klusemann et alModelling Simul. Mater. Sci. Eng. 24 (2016) 085016
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[ ] [ / ]σ σ σ ε ε= + − + ∂ + ∂f f h l l1 2 5 ,x xGB GI g
2 2 4 4 (3)

where hg is the gradient hardening modulus and the prefactor 2/5 is chosen following Askes 
et al [38]. The stress in the second-order strain-gradient phase mixture model reads:

[ ]σ σ σ ε= + − − ∂f f h l1 .xGB GI g
2 2 (4)

A drawback of the latter model is that it can only map very simple strain profiles. However, 
numerically, this model is less complex than the fourth-order gradient phase mixture model.

The deformation mechanism in the grain boundary is assumed to be associated with diffu-
sional mass transport along grain boundaries [1, 35]. Thus, plastic flow in the grain boundary 
phase is determined by

ε σ=
Ω

A
k T

D

d
˙ ,GB

GB
2 GB (5)

where Ω represents the atomic volume, k the Boltzmann constant, T the absolute temper-
ature and A a material coefficient. Based on molecular-dynamics simulations, Yamakov et al 
[34] noted a dependence of A on the grain size, with values of up to A  =  55.5 reported for 
the small grain size limit for spherical grain shape. A  =  50 is assumed in this work. The 
coefficient of self-diffusion within the grain boundary is determined by Arrhenius’ law: 

( )= −D D exp Q

k TGB GB 0
GB  where QGB denotes the activation energy comprising the energy for 

self-diffusion in the unstressed boundary and vacancy migration energy; DGB 0 is the pre-
exponential factor in the grain boundary diffusivity [1]. The stress in the grain boundary phase 
controlled by diffusion cannot exceed a certain maximum value and thus considered to be 
capped at that level. Following Kim et al [52], this limiting stress equals the yield strength of 
the amorphous state σam:

⎧
⎨
⎪

⎩⎪

k T

A

d

D
˙ if

sgn ˙ otherwise

,GB

2

GB
GB GB am

am GB

σ
ε σ σ

σ ε
= Ω

| | | |

| |

⩽

( )
 (6)

with sgn • • •= | |( ) /  being the sign function. By this version of equation (6), the local model 
formulation by Kim et al [1] is extended to capture cyclic loading as well. Diffusion as well 
as grain boundary sliding are often considered as the main deformation mechanisms in nano-
crystalline materials. As stated in [35], the grain boundary sliding mechanism requires grain 
boundary diffusion as an accommodation mechanism, so that both mechanisms are closely 
connected and the rate-controlling deformation mode is still grain boundary diffusion.

In the grain interior, dislocation glide mechanism (ε̇disl) as well as diffusion mechanisms are 
considered to operate concurrently (following [1]), as the model is intended to cover several length 
scales, from coarse grained to nanometer grained materials. The relevant diffusion mechanisms 
are lattice diffusion, known as Nabarro–Herring creep [53], contributing the strain rate ε −˙N H, and 
the grain boundary diffusion. The latter is referred to as Coble creep [54], contributing the strain 
rate ε̇Coble. Consequently, the total plastic strain rate for the grain interior phase is given as

˙ ˙ ˙ ˙ .GI disl Coble N Hε ε ε ε= + + − (7)

The dislocation glide contribution is determined by

ε ε
σ
σ

ρ
ρ

ε=
| |

−
−

( ) ( )
⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥ H d d˙ ˙ sgn ˙ ,

m
m

disl 0
GI

0 0

2

c (8)
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where ε̇0 is a reference strain rate, σ0 is the initial yield stress associated with the initial dislo-
cation density ρ0, and 1/m describes the strain rate sensitivity of the flow stress. ( )H •  denotes 
the Heaviside step function, accounting for the limiting grain size dc for the dislocation-related 
viscoplastic model to be applicable. The evolution equation of the dislocation density ρ is 
given by [55]

⎡

⎣
⎢
⎢

⎡
⎣⎢

⎤
⎦⎥

⎤

⎦
⎥
⎥ρ ρ ε

ρ
ρ

ε
ε

ρ
ρ

= | | + −
| |

∗

−

C C C˙ ˙
˙

˙
.

n

0 disl 1
0

20
disl

1

0
 (9)

The quantity

⎡
⎣⎢

⎤
⎦⎥

α µ
σ

=C M
b

d

M GI

0

2

 (10)

accounts for dislocation storage at grain boundaries, where M represents the Taylor factor, b 
the magnitude of the Burgers vector, α a material constant, and µGI the shear modulus of the 
grain interior. The first and second terms in equation (9) account for strain hardening with 
C1 being a constant. The last term describes dynamic recovery where C20 denotes a material 
parameter, ε∗˙  a reference strain rate and n the (temperature-dependent) exponent associated 
with dynamic recovery.

The strain rate due to Coble creep reads [1]

k T

w

d

D

d
˙ 14 .Coble

GB
2 GIε π σ=

Ω
 (11)

The strain rate due to diffusion within the bulk (Nabarro–Herring creep) is written as

ε σ=
Ω

−
k T

D

d
˙ 14N H

L
2 GI (12)

in terms of the lattice self-diffusion coefficient DL at temperature T.
The set of equations (6)–(12) provide a full constitutive description of the local phase mix-

ture model which is used with the gradient extended stress relations (3) or (4) to complete the 
higher-order strain-gradient phase mixture model.

3. Numerical treatment of gradient enhanced phase mixture model

To solve for the second-order gradient term in the finite element context, we apply a dual 
mixed approach in spirit of Svedberg & Runesson [56], where we introduce a global variable 
g2, denoting the strain gradient as

ε= ∂ = ∂ =
∂
∂

g u
u

x
: .x x2

2
2

2
 (13)

For the implementation of the fourth-order gradient model, we introduce an additional global 
variable g4, representing the fourth gradient of the displacement

ε= ∂ = ∂ = ∂ =
∂
∂

g g u
u

x
: ,x x x4

3 2
2

4
4

4
 (14)

following the implementation of the second-order gradient model. The weak forms of the 
boundary value problem involving the fourth-order gradient read
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∫

∫ ∫

∫ ∫

σ σ σ

ε ε ε

= ∂ + −

= + ∂ + −

= + ∂ ∂ + ∂ − ∂

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

u x u L u L

g g x g x g L g L

g g x g g x g g g L g L

0 d 0 0 ,

0 d d 0 0 ,

0 d d 0 0 ,

L

x

L L

x

L L

x x x x

0
0 0

0
2 2

0
2 2 0 2 0

0
4 4

0
2 4 2 4 2 0 4 0

0

0 0

0 0

 

(15)

which satisfy the boundary conditions for all test functions ∗u , ∗g2 and ∗g4. L0 denotes the length 
of a one-dimensional specimen. Equation (15)1 represents the linear momentum balance with 
the stress σ given by equations (3) and (4), respectively. Equations (15)2 and (15)3 are the 
weak forms of the field equations for the strain gradients g2 and g4, respectively. This approach 
allows to prescribe boundary conditions up to the third gradient of the strain ( ε= ∂g x4

3 ) and it is 
sufficient to work with linear interpolation functions. In turn, this results in a constant strain ε,  
second-order strain-gradient ε∂x

2  and fourth-order strain-gradient ε∂x
4  in each element. A proof 

of concept of the implementation procedure for gradient elasticity is presented in the appen-
dix. It is useful to work with appropriately scaled forms of equation (15) within the finite ele-
ment implementation, e.g. normalizing the implementation with respect to an average element 
size, as otherwise for small element sizes the stiffness matrix is ill-defined. This is especially 
true for the applied monolithic solution approach in this work.

The gradient augmented phase mixture model involves the numerical solution for the total 
plastic strain rate, equation (7), which is challenging as it includes a power-law function via 
equation (8). As the model is based on the strain rate (as opposed to the strain itself), even a 
small time step can result in drastic changes of the strain rate, especially for large values of m. 
Consequently, the value from the last time step may not represent an adequate starting point 
for the local Newton iteration even if the time step is small. Following the method presented 
by Wulfinghoff and Böhlke [57], the power law form is approximated as linear for ε β ε>˙ ˙disl  
where β ε̇ denotes a chosen strain rate value. Therefore, the strain rate is determined by a 
piecewise definition as

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪⎪

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢

⎤

⎦
⎥

H d d

m H d d

˙

˙ sgn ˙ if ˙ ˙ ,

˙ ˙ otherwise,

m
m

m mdisl

0
GI

0 0

2

c disl

GI GI, ˙ 0
GI, ˙

0

1

0

2

c

ε

ε
σ
σ

ρ
ρ

ε ε β ε

β ε σ σ ε
σ
σ

ρ
ρ

=

| |
− | | | |

+ −
| |

−β ε
β ε

−

− −

( ) ( ) ⩽

[ ] ( )

 (16)
where σ β εGI, ˙ denotes the stress at the strain rate β ε̇7. This approach is illustrated schematically 
in figure 3.

4. Numerical examples of higher-order strain-gradient phase mixture models

The numerical examples are based on a one-dimensional copper rod (length L0, cross-sec-
tional area A0) loaded in tension at different strain rates. The material parameters of copper—
the material of choice in this study—are summarized in table 1. The rod is discretized into 
equally spaced elements. Linear shape functions are used for all global field equations. The 
left end of the bar ( | ==u 0x 0 ) is kept fixed and a constant strain rate is applied to the right end 

7 Considering that ˙ ˙disl ⩽ε ε holds, and that all contributions of the grain interior strain rates are in the same direction, 
it is convenient to work with 1β>  where β is close to one.
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(u u t L˙n x L n x L1 00 0
ε| = | + ∆+ = = ). In the following, we study two sets of boundary conditions 

for the higher-order terms. We refer to them as either ‘micro-hard’ or ‘micro-free’, in the 
spirit of boundary conditions in strain-gradient plasticity theories [58]. Micro-hard boundary 
conditions read
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where the latter two conditions are relevant only for the fourth-order gradient phase mixture 
model. In contrast, micro-free boundary conditions are specified as
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(18)

4.1. Second-order strain-gradient phase mixture model

Local models cannot account for any non-uniformities or strain patterns, i.e. such models 
describe the behavior correctly only as long as the overall solution is homogeneous. As soon 
as heterogeneities or incompatibilities are present, this results in gradient effects which can be 
captured with a non-local extension of such models [48]. Additionally, sample size depend-
ence has been reported for nanocrystalline materials [61, 62] which requires the incorporation 
of a length scale into the model.

Stress–strain curves for the phase mixture model augmented with a second-order gradient 
term with a negative coefficient according to equation (4) are displayed in figure 4. The results 

Figure 3. Regularization ε̇disl
approx, equation  (16)2, of power-law function ε̇disl

exact, 
equation (16)1, by a piecewise defined function to improve the convergence of the Newton 
scheme due to improved starting values for ε̇disl. Due to the strong coupling of ε̇disl and 
ρ̇, more than one ‘linear’ step may be necessary to be within the convergence radius of 
the Newton scheme.
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Table 1. Material parameters used in the fourth-order gradient phase mixture model, 
representative for copper.

Parameter Symbol Value Unit Source

Burgers vector magnitude b 0.256 nm —
Grain boundary width w 1 nm [50]
Taylor factor M 3.06 — [59]

Amorphous state limit of strength  
of boundary phase

σam 900 MPa [1]

Material coefficient related to  
grain boundary self-diffusion

A 50 — [34]

Atomic volume Ω ⋅ −1.18 10 29 m3 [60]

Self-diffusion coefficient for GB  
diffusion (nc)

DGB ⋅ −2.6 10 20 m2 s−1 [49]

Lattice self-diffusion coefficient DL ⋅ −1.5 10 40 m2 s−1 [1]

Critical grain size dc 8.2 nm [1, 24]
Reciprocal of strain rate  
 sensitivity

m 230 — [1]

Reference strain rate ε̇0 0.005 s−1 [1]
Yield stress σ0 180 MPa [1]
Dislocation density storage   
parameter

C1 52.86 — [1]

Constant coefficient in the  
 dynamic recovery term

C20 18.5 — [1]

Recovery term reference  
strain rate

ε∗˙ 1 s−1 [1]

Dynamic recovery exponent n 21.25 — [1]
Material constant α 0.33 — [1]
Shear modulus µGI 42.1 GPa [60]

Gradient hardening modulus hg 500 MPa —

Note: Temperature dependent parameters are taken at room temperature (T  =  293.15 K).

Figure 4. Second-order strain-gradient phase mixture model. Stress–strain response 
for grain size d  =  10 nm at three strain rates { } ε = − − − −˙ 10 , 10 , 10 s5 3 1 1 for different 
internal length scales l/L0  =  {0, 1/10, 1/2, 1}. Incorporation of the second-order 
gradient always leads to a stress increase. For d  =  10 nm at low strain rates (e.g. for 

{ } ε = − − −˙ 10 , 10 s5 3 1), Coble creep is the dominant deformation mechanism, whereas 
otherwise dislocation glide is dominant. The gradient contribution slightly depends on 
the predominant deformation mechanism as this influences the resulting strain profiles.
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reflect the size dependence of the stress which strongly depends on the internal length scale l. 
For l  =  0, the local phase mixture model is recovered and the results qualitatively agree with 
the ones by Kim et al [1]. With increasing length scale l the stress level rises, in accordance 
with strain-gradient plasticity models in the literature [40, 63–65]. This effect is similar for all 
grain sizes as well as strain rates, the exact value of the gradient stress contribution depending 
on the local strain profile, see for example figure 5(a). Due to the micro-hard boundary condi-
tions, which constrain the plastic strain, a heterogeneous deformation profile occurs over the 
length of the rod. The resulting boundary layer increases its width with increasing internal 
length scale l, which is consistent with the literature [40].

In the classical Hall–Petch region (here exemplarily seen for d  =  100 nm and above), an 
increase of the grain size leads to widening of the boundary layer as well (see figure 5(a)). It 
should be noted that the predicted exponent in the Hall–Petch relation (d−n) lies in the range of 
0.6–0.7, i.e. is somewhat different from the canonical Hall–Petch value of 0.5. As known from 
previous studies on the local phase mixture model (e.g. [67]), for very fine-grained mat erials 
at low strain rates (here illustrated for ≈d 50 nm and  ε≈ − −˙ 10 s5 1) an inverse Hall–Petch 
behavior is observed, which is captured by the higher-order strain-gradient model as well, 
as shown in figure 5(b). The numerical results show the ‘strongest size’, the transition grain 
size from classical Hall–Petch to an inverse behavior, in the grain size range d  =  18–70 nm 
depending on the applied strain rate. The experimental results of [66] identify the strong-
est size as d  =  22 nm. The inverse Hall–Petch effect leads to a diffuse boundary layer in the 
strain profile, where the sharpest strain profile with the smallest boundary layer is observed 
at the transition point. A further decrease of the grain size induces an increasing boundary 
layer thickness. An inverse Hall–Petch behavior is characteristic for nanocrytalline materials  
[3, 19, 66, 68]. Two distinct types of behavior are seen. For coarse-grained material, the slope 

Figure 5. Second-order strain-gradient phase mixture model. (a) Spatial distribution  
of the strain ε along the rod at an external strain ε̄ = 0.1 for different grain sizes d  =   
{10, 20, 40, 50, 100, 500, 1000} nm at a strain rate  ε = − −˙ 10 s5 1 for an internal length 
scale l/L0  =  1/10. The change from normal to inverse Hall–Petch behavior is recognized 
in the strain profiles as well. (b) Grain size dependence of proof stress 0.2σ  at ε̄ = 0.002 
for strain rates { } ε = − − − −˙ 10 , 10 , 10 s3 4 5 1 for l/L0  =  1/10. The classical Hall–Petch 
relation is captured for large grain sizes whereas for nanocrystalline material the inverse 
behavior is observed. Experimental results from [66] (for T  =  342–  453 K) show the 
same trend and a fairly good agreement with the modeling results for  ε = − −˙ 10 s3 1. 
An increase in strain rate leads to a shift to smaller grain sizes for the transition point 
between the two trends.
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in the Hall–Petch diagram is positive while below a critical grain size the Hall–Petch rela-
tion breaks down and the slope becomes negative. The critical grain size is strongly strain 
rate dependent. As explained in Kim and Estrin [67], diffusion-controlled mechanisms are 
the main cause of the inverse Hall–Petch effect as, at a fixed strain rate, stress increases with 
increasing grain size according to equations  (11) and (12). In contrast, for the dislocation 
mechanism the stress decreases with grain size as the rate of dislocation density accumulation 
is inversely proportional to the grain size as seen from equations (9) and (10). Strain hardening 
is accounted for by the evolving dislocation density ρ. As soon as the grain size approaches a 
(small) critical magnitude ( →d dc) as well as for very low strain rates the dislocation contrib-
ution decreases and becomes negligible. Therefore, for these conditions the model behavior 
is completely controlled by diffusion mechanisms. In this limit, strain hardening vanishes and 
the stress level is constant and proportional to the strain rate. This implies an increasing strain 
rate sensitivity of the flow stress in nanocrystalline materials compared to their coarse-grained 
counterparts, a trend consistent with experimental observations for fcc materials (see, e.g. 
[69–72]).

In summary, the second-order strain-gradient phase mixture model captures size-depend-
ent stress–strain behavior as well as the inverse Hall–Petch effect. However, the model is not 
capable of explicitly incorporating strain patterns. This drawback is overcome by the fourth-
order strain-gradient phase mixture model considered below.

4.2. Fourth-order strain-gradient phase mixture model

In the following, numerical results for the fourth-order strain-gradient phase mixture model 
are discussed. The incorporation of a second-order gradient term with a positive coefficient 
provides the possibility to introduce non-uniformities within the structure, e.g. due to strain 
incompatibilities, to represent strain patterns accurately within the model. In turn, the fourth-
order gradient regularizes the model leading to a stable numerical scheme.

As the influences of the gradient hardening modulus hg and length ratio l/L0 are more 
complex in the fourth-order strain-gradient phase mixture model due to the interplay between 
both gradient contributions, these are investigated in more detail here. Figure 6 shows the 
numerical results for the variation of the gradient hardening modulus hg for micro-hard bound-
ary conditions. As an example, a grain size of d  =  10 nm and a strain rate of  ε = − −˙ 10 s3 1 
are chosen to obtain a diffusion dominated deformation as this results in a nearly constant 
stress after strengthening in the local phase mixture model. This represents a challenging 
case for the stability of the fourth-order gradient model for small lengths l. The stress–strain 
curves show an initial strengthening effect increasing with hg. For increasing deformation, 
the stress increases for small values of hg whereas larger values lead to a stress decrease. The 
reason for this decrease lies in the interplay of the second and fourth-order gradient terms. 
The corresponding strain profiles (figure 6(b)) show two symmetrical strain maxima near the 
boundaries. For { } =h 500, 1000 MPag  an additional third lower strain maximum is observed. 
This indicates a transition to a more unstable material behavior. In the following numerical 
examples  =h 500 MPag  is used.

The effect of the internal length scale l on the behavior of the fourth-order strain-gradient 
phase mixture model is illustrated in figure 7. The case of diffusion dominated deformation 
is depicted for d  =  10 nm and  ε = − −˙ 10 s3 1 for illustration purposes. An initial strengthening 
effect is evident for all values of l/L0 (figure 7(a)), which can be attributed to spontaneously 
evolved strain patterns. Strengthening effects in nanocrystalline materials due to sample size 
have experimentally been found in micropillar tests and a variation of sample size for fixed 
grain sizes (e.g. [61, 62]). With increasing deformation, the stresses show a slight decrease 
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(i.e. softening), except for / →l L 10 . The strain profile (see figure 7(b)) shows two maxima near 
the ends of the rod. With increasing length scale, these merge at the rod’s center to one single 
maximum, a similar distribution as for the second-order gradient model. Further increase of 
l/L0 does not change the strain profile. Hence, this microstructure represents a stable state.

Figure 6. Fourth-order strain-gradient phase mixture model. Variation of the gradient 
hardening modulus { } =h 0, 50, 100, 500, 1000 MPag  at a diffusion dominated grain size 
d  =  10 nm and strain rate  ε = − −˙ 10 s3 1. The internal length scale is fixed at l/L0  =  1/10. 
(a) All stress–strain curves initially show a stress increase, i.e. hardening behavior. 
For large values of hg, the stress increase is followed by a decrease, i.e. the material 
softens (here exemplarily shown for { } =h 500, 1000 MPag ). (b) Corresponding 
spatial variation of the strain ε along the rod at an external strain ε̄ = 0.2. Two maxima 
in the strain profiles are present near the boundary ( { }≈x L0.15, 0.85max 0). For 

{ } =h 500, 1000 MPag  three local minima are present.

Figure 7. Fourth-order strain-gradient phase mixture model. Variation of internal 
length scale l/L0  =  {0, 1/10, 1/2, 1} at a diffusion dominated grain size d  =  10 nm and 
strain rate  ε = − −˙ 10 s3 1. (a) All stress–strain curves show an initial strengthening with 
l/L0  >  0. Afterwards the stress decreases with increasing strain for smaller l/L0 (here 
exemplarily shown for l/L0  =  {1/2, 1/10}). For increasing l/L0 an increase of the global 
stress is seen. (b) Corresponding spatial variation of the strain ε along the rod at an 
external strain ε̄ = 0.2. With increasing length scale, the maxima near the specimen 
ends are propagating and merge at the center of the rod. This single maximum, similar 
to the results of second-order gradient model, does not change for large l/L0 (here 
exemplarily shown for l/L0  =  {1/2, 1}), representing stable strain patterns.
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The contributions of different stresses involved and the influence of the internal length 
scale l are illustrated in figures 8 and 9. In this example, a grain size d  =  100 nm and a strain 
rate  ε = − −˙ 10 s5 1 are assumed to be fixed, where the dislocation glide accounts for approxi-
mately 75% of the external strain ε̄ = 0.1, see figure 9(a). For ε̄≈ 0, the deformation is nearly 
completely dislocation driven, see figure  9(b). Figure  9(a) illustrates that the dislocation 
contrib ution accounts mainly for inhomogeneous strain. Similar observations were made for 
different strain rates, although the ratio of dislocation and diffusion controlled contributions 
varies. The observation that the dislocation part mainly accounts for the inhomogeneous strain 
is true even if diffusional creep is the dominant mechanism, see figures 9(a) and 10(f). With 
growing strain, the contribution of the diffusion controlled part increases—which becomes 
slightly less prominent with increasing l/L0, figure 9(b). For dislocation dominated deforma-
tion the gradient terms do not lead to a pronounced strengthening effect, see figure 8(a), in 
contrast to the diffusion controlled case (figure 7(a)). The strain profile is similar to that in the 
diffusion controlled case, however, the strain maxima are more pronounced. As micro-hard 
boundary conditions are applied, the strain and therefore the strain rate are zero at the bound-
ary. This implies that the stress in the crystalline and the grain boundary phases is zero at the 
specimen boundary as well, figures 8(c) and (d). Both stress contributions follow the strain 
profile, the undulations in the profile being more pronounced for σGB as the boundary phase 
is only deformed by creep which is directly proportional to the total local strain rate. The 

higher-order boundary conditions enforcing ε∂ | =∂ 0x B
2  so that the stress contribution σ∇2 is 

zero at the boundary as well. To satisfy the momentum balance, σ∇4 has to be the counterpart 
of the stress at the boundary, see figure 8(f). The stress due to the fourth-order strain gradient 
acts against the one of the second-order strain gradient, as expected. The high stress level for 
/ ≈l L 10  is related to the stress due to the fourth-order strain gradient alone, see figure 8(f).

Figure 8. Fourth-order strain-gradient phase mixture model. Numerical results for 
different internal length scales l/L0  =  {0, 1/100, 1/10, 1/2, 1} for grain size d  =  100 nm 
and at a strain rate  ε = − −˙ 10 s5 1. The spatial distributions are displayed for an external 
strain ε̄ = 0.1. (a) Stress–strain response. (b) Strain profile ε over rod. (c) Spatial 
distribution of crystallite stress σGI. (d) Spatial distribution of stress in boundary phase 
σGB. (e) Profile of stress σ∇2 associated with second-order strain gradient. (f) Profile of 
stress σ∇4 associated with fourth-order strain gradient.
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The effect of the variation of the grain size d is demonstrated in figure 10 at a medium strain 
rate  ε = − −˙ 10 s3 1 for several characteristic fields. The stress–strain curves show a Hall–Petch 
behavior for larger grain sizes (here exemplarily shown for d  =  {50, 100, 500, 1000} nm). 
For d  =  10 nm a lower stress level is obtained, indicating an inverse Hall–Petch behavior 
for this region. At this grain size, the dominant deformation mechanism is diffusion creep  
(figure 10(f)), where the strain rate associated with dislocation glide is three magnitudes 
smaller. The strain rate due to dislocation glide exhibits a distinct profile (figure 10(f)) which 
is visible for the overall strain profile (figure 10(c)) as well. This implies that the strain rate 
due to dislocation glide maps its strain profile even if the contribution is small (d  =  10 nm), 
see figure 10(f). As evidenced by equation (6), the stress in the boundary phase σGB linearly 
increases with the applied strain rate ε̇ until σam is reached. As the stress is proportional to d2, 
the critical strain rate at which σam is reached, increases as d decreases. For  =d 10 nm, the 
stress in the grain boundary is negligibly small, whereas for the other investigated grain sizes, 
at least partially over the rod, the amorphous strength limit of boundary phase σam is reached. 
As soon as dislocation glide becomes the dominant mechanism (figure 10(f)) the stress in the 
grain interior σGI increases with decreasing grain size, see figure 10(e), which is mainly related 
to the increase of the forest dislocation density ρ, figure 10(b). This represents the classical 
Hall–Petch behavior. The increase of the dislocation density ρ with increasing grain size is 
less pronounced for the fourth-order gradient model compared to results of the second-order 
gradient model. This implies that the gradient contribution to the stress is higher than for the 
case if the second-order gradient is present alone. The spatial distributions of the first-order 
strain gradient ε= ∂g x2  (figure 10(d)) and third-order strain gradient ε= ∂g x4

3  (figure 10(e)) 
show an opposite slope character, responsible for the stress contributions of the two gradient 
terms.

Figure 9. Fourth-order strain-gradient phase mixture model. Individual strain rate 
contributions (ε̇disl, ε̇Coble) for different internal length scales l/L0  =  {0, 1/100, 1/10, 1} 
for grain size d  =  100 nm at strain rate  ε = − −˙ 10 s5 1. The strain-rate ε −˙N H is negligible. 
(a) Individual strain rate contribution ε̇disl (black) and ε̇Coble (red) over the rod at 
ε̄ = 0.1. (b) Averaged (along the rod) strain rates ε̇̂disl (black) and ˙Cobleε̂  (red) versus 
applied strain ε̄. Dislocation glide is the dominant deformation mechanism, which is 
mainly responsible for the strain distribution. With increasing strain, the contribution of 
diffusion controlled deformation mechanism increases up to 25% of the total strain rate. 
This effect becomes less pronounced with increasing length scale l, indicating that this 
microstructure favors dislocation glide.
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As a final example, the situation of a heterogeneity within the rod is investigated in 
combination with micro-free boundary conditions. As a heterogeneity, a 5% smaller grain 
size is assumed for a domain length L0 /10 in the middle region of the rod, which is inter-
preted as a result of a mechanical or heat treatment of the material. This heterogeneous 
domain within the rod leads to a strain jump which is smoothed by gradient terms, see 
figure  11(b). The strain jump is either positive or negative, depending on whether the 
material in the heterogeneous domain is softer or stiffer than the surrounding material. 
Which situation applies depends on the previously discussed change of the Hall–Petch 
relation. The global stress level increases with increasing grain size in case of an inverse 
Hall–Petch relation whereas the stress decreases otherwise. Therefore, the stress in the 
grain interior σGI (figure 11(a)) shows a decrease or an increase in this region, which 
results in slightly less pronounced hardening at the macrostructural level. It is worth men-
tioning that the strain jump is less pronounced for the fourth-order strain-gradient model 
compared to the same simulation with the second-order strain-gradient model, showing 
a stronger regularization due to the gradient terms in case of the fourth-order strain-
gradient phase mixture model. This indicates that strong heterogeneities are required to 
form a stable pronounced pattern.

This analysis of the fourth-order strain-gradient phase mixture model shows the possibility 
of introducing non-uniformities in the strain field to accurately map the occurring pattern in 
combination with a regularization effect. The fourth-order gradient leads to a regularization 
which results in a stable numerical scheme allowing further analysis of the model. As the 
material behavior predicted by the phase mixture model is highly sensitive to grain size and 
strain rate, heterogeneities result in strain incompatibilities, which require the application of a 
gradient theory as presented in this section.

Figure 10. Fourth-order strain-gradient phase mixture model. Numerical results for 
different grain sizes d  =  {10, 50, 100, 500, 1000} nm at a strain rate  ε = − −˙ 10 s3 1 with 
l/L0  =  1/10. The spatial distributions are displayed at an external strain ε̄ = 0.1. (a) 
Stress–strain response. (b) Variation of dislocation density ρ normalized by the initial 
dislocation density ρ0 with strain. (c) Strain profile ε over rod. (d) Spatial distribution 
of normalized first order strain gradient ε= ∂g L Lx2 0 0. (e) Spatial distribution 
of normalized third order strain gradient ε= ∂g L Lx4 0

3 3
0
3. (f) Individual strain-rate 

contributions ε̇disl and ε̇Coble over rod. The strain-rate ε −˙N H is negligible.
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4.3. Choice of length scale based on the grain size

The length scale l presents an intrinsic/characteristic material parameter which significantly 
influences the model behavior as seen in the previous examples. Experimental observations 
show deviations of the classical mechanical behavior as soon as specimen dimensions become 
comparable to the intrinsic length scale (e.g. [73–75]). However, one long standing debate in 
the context of gradient models is the identification of the internal length scale parameter l.  
Often, the length scale l is chosen to represent the material’s microstructure. Kouznetsova 
et al [76] suggested that the internal length scale is given by /=l h 122 2  (h: RVE size) for 
representative volume elements (RVE) within a second-order computational homogenization 
procedure based on the FE2-method. Obviously, the choice of the RVE size plays a crucial 
role in this approach. Nix & Gao [77] correlated the length scale with microstructural features 
where l is defined as l  =  L2/b with L the spacing between dislocation obstacles and b the 
Burgers vector magnitude. Aifantis [78] related the length scale to the average dislocation 
cell size based on torsion and bending experiments. Voyiadjis and Abu Al-Rub [79] suggested 
a variable length scale rather than a fixed one. The authors derived a length scale function 
depending on the deformation as well as the resulting microstructural features. In the same 
line, Lapovok et al [80] proposed a physical definition of the length scale on the basis of  
the current dislocation cell size which is modified according to the deformation history. In the 
context of gradient models for metallic glasses, the length scale parameter is related to the 
fracture process zone size [81–83]. For an extensive overview of the identification and quanti-
fication of the length scale in gradient models the interested reader is referred to [84] where 
it is stated that a current trend is to relate the length scale parameters to the heterogeneity of 
the material.

Following Estrin and Mühlhaus [48] and Estrin et  al [85], the relevant ‘material ele-
ments’ are identified with individual grains so that l has the meaning of the average grain 
size. We assume this to be valid for nanocrystalline polycrystals, as strain incompatibilities 

Figure 11. Fourth-order strain-gradient phase mixture model. Numerical results for 
different grain sizes d  =  {25, 50, 100, 500, 1000} nm at a strain rate  ε = − −˙ 10 s5 1 
at ε = 0.1 with l/L0  =  1/10 for micro-free boundary conditions. To introduce a 
heterogeneity, it is assumed that a domain of length L0/10 with a 5% smaller grain size 
is present in the middle region of the rod. (a) Stress distribution of crystallite phase σGI 
over the rod. (b) Strain profile ε over the rod. As the material follows the Hall–Petch 
relation, a strain drop in the region of heterogeneity is observed as the material is stiffer 
there, which is reflected in an increase in σGI. The inverse Hall–Petch effect leads to a 
strain increase and a stress drop.
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between grains are significant for the mechanical response. For this purpose three differently 
sized specimens ( { } µ=L 0.1, 1, 10 m0 ) consisting of grains in the nanosized range, 10 nm 
to 100 nm, are investigated. In figure 12 the corresponding results are summarized for three 
different strain rates and micro-hard boundary conditions. The results indicate that the stress 
increases with decreasing specimen size L0 as the grain size is large compared to the speci-
men size. In particular, this effect is visible for d  =  100 nm and L0  =  100 nm, corresponding 
to a monocrystalline specimen (L0 /d  =  1). For d  =  10 nm, no significant stress increase is 
visible as the number of grains is ten (L0 /d  =  10) so that the maximum investigated ratio of 
the length scale and the specimen size is l/L0  =  1/10. For certain material parameter com-
binations, even a slight softening effect is observed (e.g. for d  =  10 nm, L0  =  100 nm and 

Figure 12. Fourth-order strain-gradient phase mixture model. Numerical results 
for different specimen sizes L0  =  100 nm (solid line),  µ=L 1 m0  (circle marker) 
and  µ=L 10 m0  (square marker) for different grain sizes d  =  {10, 50, 100} nm, 
representative for nanocrystals, at different strain rates ε̇ and micro-hard boundary 
conditions. The internal length scale l is identified with the grain size d. (a) Stress–strain 
response at  ε = − −˙ 10 s5 1. (b) Stress–strain response at  ε = − −˙ 10 s3 1. (c) Stress–strain 
response at  ε = − −˙ 10 s1 1. (d) Spatial distribution of the strain ε along the rod at an 
external strain ε̄ = 0.1 at  ε = − −˙ 10 s1 1. This strain profile is representative for the other 
strain rates as well. Strong size effects are visible for d  =  100 nm and L0  =  100 nm 
as the structure consists of a single grain. Influence of the gradient is reduced with 
decreasing grain size leading finally to the local stress–strain results. The strain profile 
shows an evolving pattern according to the grain size to specimen size ratio. In the 
limiting case (here exemplarily shown for d  =  {50, 100} nm and L0  =  100 nm), a stable 
pattern with a single maximum is obtained.
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 ε = − −˙ 10 s5 1, see also figure 6(a). The exact amount of the hardening/softening contribution 
additionally depends on the gradient hardening modulus hg. The heterogeneous strain profile 
for  ε = − −˙ 10 s1 1, see figure 12(d), is representative for all strain rates. For a very small num-
ber of grains (i.e. five or less), a stable strain pattern with a distinct maximum is observed. As 
the number of grains increases, the maximum decreases until three local maxima are present 
(see also figure 7(b)). The maximum in the middle of the rod, for symmetry reasons, further 
decreases, whereas the other two maxima move towards the respective rod ends. For speci-
mens that are large compared to the grain size, the local solution of a constant strain over the 
bar is recovered, as the enforced micro-hard boundary conditions affect only the grains at the 
specimen ends. The effect of micro-free boundary conditions with heterogeneities within the 
specimen can easily be seen from the results presented in figure 11, and no further discussion 
of it is included here for brevity.

The identification of the length scale with the grain size provides a direct association of 
finite element mesh with the microstructure. Heterogeneities between the grains occurring in 
the specimen can be directly incorporated. The results show that the effect of boundary condi-
tions or heterogeneities diminish as soon as the specimen is ‘significantly large’ compared to 
the grain size. By contrast, if the number of grains is small, these factors play a crucial role in 
the deformation behavior. Additionally, the fourth-order strain-gradient phase mixture model 
is able to predict the transition from the classical to the inverse Hall–Petch correctly.

5. Summary

The approach taken to a constitutive description of nanostructured materials is based on the 
phase mixture model [1]. Since the phase mixture model is highly sensitive to grain size and 
strain rate, heterogeneities in the material result in incompatibilities which require the applica-
tion of strain gradients.

Two different strain-gradient extensions of the phase mixture model are presented and the 
corresponding results of their numerical implementation have been discussed. The second-
order strain-gradient phase mixture model, with a negative coefficient in the second order 
strain-gradient contribution to the stress, shows that this model captures the sample size-
dependent stress–strain behavior as well as the inverse Hall–Petch effect (grain-size-depend-
ent behavior) correctly. The results indicate that a decrease of grain size leads to a reduction 
of the width of the boundary layer near a tensile specimen ends until the breakdown of the 
Hall–Petch relation. However, the second-order strain gradient model is not capable of incor-
porating strain patterns showing complicated strain distributions.

This drawback has been overcome by the fourth-order strain-gradient phase mixture model, 
which includes second- and fourth-order strain-gradient contributions to the stress. Since the 
phase mixture model is highly sensitive to grain size and strain rate, heterogeneities result in 
strain incompatibilities. To handle these, the application of strain gradients is required. On 
the basis of the fourth-gradient approach, initial non-uniformities within the strain field have 
been shown to lead to characteristic strain patterns. The boundary conditions, heterogeneities, 
and size effects play a crucial role if the length scale approaches the dimensions of the speci-
men. A physically reasonable choice for the intrinsic length scale is its identification with the 
grain size. Mathematically, non-uniformities are induced by the positive second-order strain 
gradient, whereas the fourth-order strain gradient provides a regularization effect. The model 
is capable of correctly predicting the transition of flow stress from the Hall–Petch behavior in 
conventional grain size range to an inverse Hall–Petch relation for nanocrystalline materials. 
Additionally, an initial strengthening effect due to a spontaneously evolved strain pattern for 
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smaller sample size is captured. The inhomogeneous strain profile is mainly accounted for by 
the dislocation glide contribution to plastic strain.

The developed fourth-order strain-gradient phase mixture model is able to interpret and 
explain various experimental phenomena, such as the inverse Hall–Petch relation, change 
in strain rate sensitivity, size-dependent strengthening and strain pattern formation reported 
for ultrafine grained metals [86], where patterning during severe plastic deformation was 
observed. It is argued that the included effects are of main importance if the sample size 
approaches the grain size in the nanocrystalline regime.

With the growing importance of gradient structures for industrial applications, particularly 
in products with surfaces nanostructured by surface treatment [87–89], it becomes necessary 
to have a computational modeling basis capable of handling such gradients. The present mod-
els provide such a tool, which has been demonstrated to be physically sound and computation-
ally viable.
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Appendix. Implementation of higher-order strain-gradient enhancement:  
proof of concept for linear elasticity

In this appendix it is shown that for the proposed finite element implementation scheme, shape 
functions with C 0 continuity are sufficient—leading to a straightforward implementation of 
higher gradients. To verify our solution algorithm, we compare our numerical results with the 
analytical solutions available for the case of linear elasticity.

For this purpose, we start with the constitutive relation for fourth-order strain-gradient 
elasticity of the form
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with arbitrary constants Ci to be identified from boundary conditions.

The boundary conditions used in terms of the displacement field read
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Figure A1 shows a comparison between the analytical solution (A.2) and the numerical solu-
tion obtained with the solution algorithm described in equation (15). Both solutions show an 
excellent agreement for the displacement u, the strain field ε and the strain gradient ε∂x . This 
holds true for further fields, e.g. ε= ∂g x4

3 , as well.
A linear stability analysis of this model reveals that the incorporation of the fourth-order 

gradient does not unconditionally guarantee a uniqueness of the solution in case of constant 
stresses, a situation present in the phase mixture model for creep deformation alone. An appro-
priate choice for the internal length scale l leads to a stable and unique solution with the incor-
poration of the fourth-order gradient.

The analysis in the context of linear elasticity illustrates that the proposed finite element 
algorithm with linear shape functions is very well suitable to model the effect of higher (arbi-
trary) order strain gradients and provides a straightforward implementation scheme as applied 
to the phase mixture model.
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