
 

Vision-Based Deep Learning Algorithm for Detecting Potholes
Gajjar, Kanushka; Niekerk, T. Van; Wilm, Thomas; Mercorelli, Paolo

Published in:
Journal of Physics: Conference Series

DOI:
10.1088/1742-6596/2162/1/012019

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Gajjar, K., Niekerk, T. V., Wilm, T., & Mercorelli, P. (2022). Vision-Based Deep Learning Algorithm for Detecting
Potholes. Journal of Physics: Conference Series, 2162, Article 012019. https://doi.org/10.1088/1742-
6596/2162/1/012019

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 15. Juli. 2025

https://doi.org/10.1088/1742-6596/2162/1/012019
http://fox.leuphana.de/portal/en/publications/visionbased-deep-learning-algorithm-for-detecting-potholes(d82b6409-21de-4768-bbf6-625d19feab9a).html
http://fox.leuphana.de/portal/de/persons/paolo-mercorelli(33935938-096b-4124-be32-439ac541c36e).html
http://fox.leuphana.de/portal/de/publications/visionbased-deep-learning-algorithm-for-detecting-potholes(d82b6409-21de-4768-bbf6-625d19feab9a).html
http://fox.leuphana.de/portal/de/publications/visionbased-deep-learning-algorithm-for-detecting-potholes(d82b6409-21de-4768-bbf6-625d19feab9a).html
http://fox.leuphana.de/portal/de/journals/journal-of-physics-conference-series(8d33c441-9e40-4b19-86f6-2a4edae6bfb6)/publications.html
https://doi.org/10.1088/1742-6596/2162/1/012019
https://doi.org/10.1088/1742-6596/2162/1/012019


Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Vision-Based Deep Learning Algorithm for
Detecting Potholes
To cite this article: K Gajjar et al 2022 J. Phys.: Conf. Ser. 2162 012019

 

View the article online for updates and enhancements.

You may also like
Durability of potholes filled with waste
materials
Zafar and Jagdeep Singh

-

The Vehicle as a Mobile Sensor Network
base IoT and Big Data for Pothole
Detection Caused by Flood Disaster
A Mochamad Rifki Ulil, Fiannurdin,
Sritrusta Sukaridhoto et al.

-

Pothole detection system design with
proximity sensor to provide motorcycle
with warning system and increase road
safety driving
Hadistian Muhammad Hanif, Zener Sukra
Lie, Winda Astuti et al.

-

This content was downloaded from IP address 193.174.36.232 on 03/03/2022 at 10:19

https://doi.org/10.1088/1742-6596/2162/1/012019
https://iopscience.iop.org/article/10.1088/1755-1315/889/1/012056
https://iopscience.iop.org/article/10.1088/1755-1315/889/1/012056
https://iopscience.iop.org/article/10.1088/1755-1315/239/1/012034
https://iopscience.iop.org/article/10.1088/1755-1315/239/1/012034
https://iopscience.iop.org/article/10.1088/1755-1315/239/1/012034
https://iopscience.iop.org/article/10.1088/1755-1315/426/1/012039
https://iopscience.iop.org/article/10.1088/1755-1315/426/1/012039
https://iopscience.iop.org/article/10.1088/1755-1315/426/1/012039
https://iopscience.iop.org/article/10.1088/1755-1315/426/1/012039
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjssAEO2eB04Q_fi1Yia8lEuJeSFC86FIvYNjbqKf3C7n1LJDQfYdR6TpyzeolhmaOsXmdi6AWvQEK5RM7RZO45LEL0YeWKOmqVU9htwaXiPiNXeQnzw_qalfqDA1tJkEWwEJs-kSmP-kwntc3JFy2EduCP4sMhuvskDgGbkQL--oUgXsm59sDRYxnNlT1yQo1EdO5PFd1HoAB_28moX3_jOWf3INJLnSz0RrckqugQtAGH8GZmPMe1ZNoi1fICdQpJhZJC2vBnsmcOPkGPp39glrU5rslPS2Scc&sig=Cg0ArKJSzJMU2QHZxGED&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/242/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3DBanner%26utm_campaign%3D242Abstract%26utm_id%3D242Abstract


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

APSAC 2021
Journal of Physics: Conference Series 2162 (2022) 012019

IOP Publishing
doi:10.1088/1742-6596/2162/1/012019

1

 
 
 
 
 
 

Vision-Based Deep Learning Algorithm for Detecting Potholes 

K Gajjar1,a, T van Niekerk2 , Thomas Wilm3 and P Mercorelli4  
1 Engineering, Built Environment and IT, Nelson Mandela University, Port Elizabeth, 
South Africa 

2 Engineering, Built Environment and IT, Nelson Mandela University , Port Elizabeth, 
South Africa 

3 Volkswagen Group South Africa, Uitenhage, South Africa 
4 Institute of Product and Process Innovation – PPI Leuphana University of 
Lueneburg, Universitaetsallee, 1 21335 Lueneburg, Germany 

aE-mail: kanushkagajjar0@gmail.com 

Abstract. Potholes on roads pose a major threat to motorists. Driving over a pothole has the 
potential to cause serious damage to a vehicle, which in turn may result in fatal accidents. 
Currently, many pothole detection methods exist. However, these methods do not utilize deep 
learning techniques to detect a pothole in real-time, determine the location thereof and display 
its location on a map. The success of determining an effective pothole detection method, which 
includes the aforementioned deep learning techniques, is dependent on acquiring a large 
amount of data, including images of potholes. Once adequate data had been gathered, the 
images were processed and annotated. The next step was to determine which deep learning 
algorithms could be utilized. Three different models, including Faster R-CNN, SSD and 
YOLOv3 were trained on the custom dataset containing images of potholes to determine which 
network produces the best results for real-time detection. It was revealed that YOLOv3 
produced the most accurate results and performed the best in real-time, with an average 
detection time of only 0.836 s per image. The final results revealed that a real-time pothole 
detection system, integrated with a cloud and maps service, can be created to allow drivers to 
avoid potholes.   

1. Introduction 
Since South Africa is a developing country, the development and maintenance of roads is of great 
significance. Well-maintained roads contribute largely towards the country’s economy and tarred 
roads have become an absolute necessity in the 21st century in light of economic demands on 
government by the citizenry. Potholes can be defined as areas of a road surface that have formed a hole 
after being cracked and worn away [1]. Potholes start as small cracks, which if not repaired timeously, 
can increase considerably in size. Flat and smooth surfaces are required to ensure a comfortable drive, 
however, potholes can result in an unpleasant and potentially dangerous ride. The tyres are likely to 
get damaged and would require re-alignment. Currently, there is no mechanism to caution drivers of 
approaching potholes. Consequently, potholes remain a serious hazard. However, technology is 
available that reduces the impact of a pothole on a vehicle. Variations of this technology have been 
installed in several vehicles including the S-class Mercedes, Ford Focus, Jaguar Land Rover and Audi 
A8. The technology in the S-class Mercedes is referred to as Magic Body Control, which is a 
suspension that can predict surface unevenness and prepare accordingly [2]. This technology does not 
completely eliminate the effect of a pothole but simply reduces it. However, it is possibly more 
beneficial for a driver to detect any damage in the road beforehand. Driving over a pothole may have 
serious implications for a vehicle, for example, a flat, or damage to a tyre, rims, suspension, steering 
and possibly the body of the car [3]. Complete avoidance of a pothole would eliminate these 
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possibilities. The overall aim of this project is to identify the most suitable deep learning algorithm to 
detect a pothole whilst driving, determine the GPS location thereof, display the determined position on 
a map as pin and send the data to a cloud server for information storage and sharing. Various topics 
relating to solving the proposed problem was explored. From this exploration, it was possible to 
determine which method would produce the most desirable result. It was revealed that deep learning 
methods produce desirable results. It should be noted that although vision, vibration, stereo-imaging 
and laser based techniques can be utilised to solve the pothole detection problem, some of these 
methods have been utilised for more than a decade. SpotholeAI and CarVi are two applications that 
were developed in the last year and both utilise deep learning methods to detect potholes. An 
investigation of various deep learning detection algorithms was conducted.  The algorithms selected 
for this project include Faster R-CNN, SSD and YOLOv3. Each of the selected algorithms will be 
compared and the most suitable will be utilised for the purpose of this project. The IoT system will 
collect the GPS data from its module and store it in the cloud. Hence, no manual data must be 
collected. The data must be in real-time and monitored through the cloud. 

2. Materials and methods 

2.1. Data collection and processing  
It was necessary to identify an area in South Africa where potholes are prevalent. St. Francis Bay and 
Jeffrey’s Bay in the Eastern Cape Province were identified for the purpose of this study. Additional 
data containing pothole images was found online. The latter was produced by [4] who completed a 
project relating to pothole detection using vision and machine learning methods. The images taken by 
[4] were taken in the Vaal Triangle area in Gauteng, Stellenbosch and Somerset West in the Western 
Cape. Initially, it was assumed that these two sets of data would be adequate, however, with the advent 
of time, it was revealed that more images were required to enhance training for the network. If the 
dataset is too small, overfitting, which refers to a model that models the training data too well can 
occur. The detail and the noise in the training data has been mastered to such an extent that the 
performance of the model on new data is negatively impacted [5]. Thus, it was necessary to produce 
additional images. These images which were produced by Volkswagen Group South Africa (VWSA) 
were taken in Uitenhage and surrounding areas in the Eastern Cape Province. These areas were 
identified as those containing a large number of potholes.  

 The entire dataset of instances of potholes comprised of 1910 images. The images of the 
datasets was gathered through a GoPro Hero 3+. This camera was selected because it produces good 
quality images whilst moving. Thus, it was not necessary to de-blur the images in the pre-processing 
steps, thereby reducing the processing time. The camera was set at a resolution of 1280 x 720pixels. 
The goPro used by [4] was set to the time lapse mode at an interval of 0.5 seconds/image and at a 
resolution of 3680 x 2760pixels. 

 The collected data was arranged into positive and negative sets. The positive set of data 
contained images with potholes, while the negative dataset comprised of images without potholes. The 
data collected by [4] was divided into two scenarios, positive and negative sets as well as divided into 
a complex and simple scenario. In the simple scenario, it was assumed that the roads were well lit and 
open, while in the complex scenario, a more real-world scenario is depicted. This scenario includes 
instances of shadows on the road. This dataset comprised of images which were taken at various times 
throughout the day. All of the data was separated into the training and test sets.  

 The images were cropped such that only the road surface was illustrated. The sky and other 
unnecessary information was cropped out of the image. This had to be done because the computer 
utilised for training had inadequate GPU memory for training. Reducing the size of the image and 
eliminating unnecessary data such as the sky and grass resulted in less memory to train the network. 
The computational time of the algorithms was also reduced as a result of cropping the images. The 
images were not resized because significant aspects of the image would have been lost thus making it 
difficult to train the network.  

 The cropped images containing potholes were annotated by utilising the Image Processing 
Toolbox in MATLAB. The annotation process involved colouring in the regions in which there were 
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potholes manually. This colouring process was completed by utilising the WACOM Cintiq Pro 13. 
This compact device is an advanced creative pen display which enables a user to have a direct pen-on-
screen connection. Using this device saved time because it would have been extremely difficult and 
time consuming to colour each pothole using a mouse. Once the masks were created from the semantic 
segmentation, these were utilised to create the bounding boxes. Since the VWSA dataset was acquired 
at a later stage, the images within this dataset were annotated using a different graphical annotation 
tool: labelImg. Figure 1 below shows this tool. Only bounding boxes were created for this dataset. 
Initially, the results acquired using semantic segmentation and bounding boxes would have been 
compared, however, at a later stage it was decided that comparisons between various other networks 
using only bounding boxes would be made. 

  

 
Figure 1. Labelling of images in labelImg 

The overall process to be followed to achieve the desired results is illustrated in Figure 2 below. 
 

 
Figure 2. Overall process to be followed to achieve the end goal 
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2.2. Development and methodology  
Various network architectures were utilized for this project. More than one network architecture was 
utilized to determine which performed the best with the given dataset. The network architectures 
included SSD (Single Shot Detection) with the Inception v2 backbone, Faster RCNN (Region-based 
CNN) with Inception v2 backbone and YOLOv3 (You Only Look Once). This section discusses why 
YOLOv3 was selected as the network used for the application of this project. The overall network 
architecture is also expounded upon in this section.  

The results revealed that although Faster R-CNN was more accurate than SSD, the inference time 
was extremely slow and unsuitable for real-time detection. Although SSD was fast, the accuracy of the 
detection was unsatisfactory. These results are shown in Section 3.2. Further research was completed 
and it was revealed that videos generally shot at a speed of at least 24fps, the Faster R-CNN would 
likely not be able to keep pace. Since Faster R-CNN is a regional based method which comprises of 
two phases, proposing regions and processing these, it proves to be somewhat inefficient for real-time 
detection.  

After this comparison was made, it was decided that a third network should be explored to optimise 
the results. Since single stage-detectors produce a higher inference, further research was conducted on 
such detectors. Through thorough research, it was revealed that the YOLOv3 network performs better 
for real-time applications because the detection time per object is less when compared to Faster R-
CNN and SSD [6]. Generally, when dealing with objects of large sizes, SSD performs well. SSD 
utilises upper layers for detection. Consequently, the performance for small objects is not sound. For 
the application of this project, the size of the potholes could vary significantly, thus resulting in poor 
accuracy.  

YOLO is a deep learning algorithm which utilises convolutional neural networks for the detection 
of objects. The output of YOLO is generated by applying a 1 x 1 kernel on a feature map. In the case 
of YOLOv3, 1 x 1 detection kernels is applied on feature maps of three various sizes at three different 
locations within the network. The shape of the detection kernel is 1 x 1 x (B x (5 + C), where B is the 
number of bounding boxes a cell on the feature map is able to predict. “5” represents the 4 bounding 
box attributes and one object confidence. “C” indicates the number of classes. 

2.3. Training YOLOv3 
The Darknet deep learning framework developed by Joseph Redmon [7] was utilised for this project. 
The first task is to prepare the dataset. The YOLOv3 annotated files are required to be in a text file 
format.. The “.txt” file comprises of rows which represent a single bounding box in the image and 
contains the following information about the bounding box: 
 
<object-class-id> <centre-x> <centre-y> <width> <height> 
 

The first field, object-class-id, is an integer that represents the class of the object. This number 
ranges from 0 to (number of classes-1). Since this project only comprises of one class, this number is 
always set at 0. The second and third field, centre-x and centre-y are the x and y co-ordinates of the 
centre of the bounding box divided by the image width and height. The fourth and fifth field, width 
and height are the width and height of the bounding box divided by the image width and height. 

In YoloV3 trained on the pothole dataset, B = 3 and C = 1, thus the size of the kernel is 1 x 1 x 18. 
The second to the fifth entries are all floating-point values that range between the values 0 and 1. 

The dataset was then split into the training and test sets. 70% of the collected data was utilised for 
training and 30% was utilised for testing.  The process of transfer learning was used in the next step. A 
pre-trained model containing convolutional weights trained on ImageNet was thus utilised. By 
utilising these weights, the training time was reduced significantly [8]. The darknet.data, classes.names 
and darknet-yolov3.cfg files, which is included in the code distribution, requires information relating 
to the specifications of the object detector and relevant paths. Thus, these files were edited such that 
the relevant information was provided for each. Various hyper-parameters were configured in the 
configuration file. Once all the various components for training were set, the training could take place. 
The training continued till the loss value dropped below a specific threshold [9].  
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Once the YOLOv3 algorithm was able to accurately detect potholes on the road, it was necessary to 
upload the GPS co-ordinate of the detected pothole to a cloud server. 

The GlobalSat BU-353-S4 receiver was used for this project. This receiver comprises of a highly 
sensitive, low power consumption chipset in an ultra-compact form factor. It is powered by a SiRF 
Star IV GPS chipset and provides superior performance in urban canyons and dense foliage. The 
device is built with a magnet which can stick to the top of a vehicle. Elemental exposure is not a 
concern because it is able to withstand both freezing and extreme hot temperatures [10].  

The location of the detected pothole was required to be sent to a cloud server so that other drivers 
can be informed of the location of the potholes. The cloud server utilised for this project was Ubidots 
STEM. Ubidots is a two platform company, which comprises of Ubidots and Ubidots STEM. The 
standard STEM package is a non-commercial license that allows easier access to students, researchers 
and hobbyists globally [11]. Ubidots is an Internet of Things (IoT), data analytics and Visualisation 
Company. Data that is gathered from various sensors can be transformed into useful information, 
allowing for business decisions and machine-to-machine interactions be made. Educational research is 
possible through the utilisation of Ubidots. This platform allows for integration of IoT into business 
and research [11]. 

Figure 3 below illustrates an overview of the overall system architecture. The image on the road 
will first be captured via the camera. Once this image is captured, the neural network will run, if a 
pothole is detected. The GPS location of the detected pothole will be determined via the GPS module. 
The collected GPS data will be sent to the cloud server, Ubidots. This information will be available for 
all those who have access to the Ubidots account used to store the data. The relevant parties can then 
be informed of the potholes on the road and the location thereof. 

 

 
Figure 3. Overall system architecture 

 
 



APSAC 2021
Journal of Physics: Conference Series 2162 (2022) 012019

IOP Publishing
doi:10.1088/1742-6596/2162/1/012019

6

 
 
 
 
 
 

3. Results 
In this section, the various evaluation metrics to determine which network performed the best is 
discussed. The three networks are compared and the results gathered from the discussed evaluation 
metrics is presented. The integrated system performance is discussed in this section too. 

3.1. Evaluation-metrics 
Mean average precision is a metric utilised to evaluate object detectors. It is the average of the average 
precision. To comprehend MAP, it is necessary to define the terms ‘precision’, ‘recall’ and ‘IoU’ 
(Intersection over Union). Precision can be defined as how repeatable a measurement is [12]. It is the 
percentage of the results that is relevant. An example of precision is how close a second arrow is to the 
first arrow on a dart board [13]. 

𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 (1) 

Recall can be defined as the percentage of the total relevant results that is classified correctly by the 
algorithm [14]. 

𝑅𝑅𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 (2) 

 If precision is increased then recall will decrease and vice versa. 

IoU can can be defined as the ratio of the area of intersection and area of union of the ground truth 
and predicted bounding boxes. The “ground truth bounding box” is the bounding box and its co-
ordinates are provided in the training set [15]. Figure 4 below illustrates that the green box represents 
the ground truth box while the red box is what the model predicts. It is clear that these two boxes have 
different co-ordinates. The area of intersection is where the one box overlaps the other and the area of 
union is the total area covered by both bounding boxes [16]. 

 
Figure 4. Representation of ground truth box and predicted box and IoU 

The confidence score can be defined as the probability that an anchor box contains an object. The 
confidence is predicted by a classifier. Both the IoU and confidence allows one to determine whether a 
predicted box is a true positive, false positive or false negative. A threshold value of 0.5 is predefined 
for the IoU [15]. 

A detection is considered a true positive (TP) only if the following three conditions are met [17]: 
• Confidence score > threshold 
• The predicted class matches the class of a ground truth 
• The predicted bounding box IoU (e.g. 0.5) is greater than the threshold of the ground-truth  
If the above conditions are not met, the prediction is considered a false positive (FP).  When the 

confidence score of a detection that is supposed to detect a ground truth is lower than the threshold, it 
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is considered a false negative (FN) [17]. When the confidence score of a detection that is not supposed 
to detect anything is lower than the threshold, it is considered a true negative (TN). However, this is 
not of great significance in object detection [16].  

A numerical metric, known as average precision (AP) can be utilised to evaluate the performance 
of a detector. AP is essentially the precision averaged over all unique recall levels. To reduce the 
fluctuations in the curve, it is necessary to interpolate the precision at multiple recall levels before 
actually calculating the metric. The interpolated precision pinterp, at a specific recall level (r) is defined 
as the highest precision found for any recall level r’ ≥ r [18]: 

             𝑃𝑃𝑟𝑟𝑜𝑜𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖 (𝑟𝑟) = 𝑖𝑖(𝑟𝑟′)𝑟𝑟′ ≥𝑟𝑟
𝑚𝑚𝑅𝑅𝑚𝑚  (3) 

There are two ways to select the levels of recall at which the precision should be interpolated. 
Traditionally, 11 equally spaced recall levels are selected (i.e., 0.0, 0.1, 0.2,...1.0). A new standard 
selects all unique recall levels presented by the data. The new method is more advanced to enhance the 
precision and measure differences between methods with low AP. It is possible to define AP as the 
area under the interpolated precision-recall curve [18]. 

𝐴𝐴𝑃𝑃 =  �(𝑟𝑟𝑟𝑟+1 − 𝑟𝑟𝑟𝑟)𝑖𝑖𝑟𝑟𝑜𝑜𝑖𝑖𝑟𝑟𝑟𝑟𝑖𝑖 (𝑟𝑟𝑟𝑟+1)
𝑜𝑜−1

𝑟𝑟=1

 (4) 

where r1, r2,...,rn is the recall levels at which the precision is first interpolated. The calculation of AP 
only considers one class. Only one class, potholes, was used for this project.   

Average recall (AR) is a numerical metric that can also be utilised to compare the object detector 
performance. AR is essentially the recall averaged over all IoU ∈ [0.5, 1.0] and can be determined by 
the following equation [19]:  

𝐴𝐴𝑅𝑅 = 2 � 𝑟𝑟𝑟𝑟𝑟𝑟𝑅𝑅𝑅𝑅𝑅𝑅(𝑜𝑜)𝑑𝑑𝑜𝑜
1

0.5
   (5) 

where o is IoU and recall(o) is the corresponding recall. 

3.2. Performance metric results 
Table 1 below illustrates the results of the various performance metrics for each of the networks which 
were trained.  

 
Table 1. Performance metrics results for each network 

 Average 
Precision 

Averag
e 

Recall 

F1-Score mAP @ 
0.5 IoU 

Detection 
time per 
image 

(average) 
Faster R-
CNN 0.077 0.663 0.137 0.415 7.02s 
SSD 0.043 0.326 0.076 0.185 4.815s 
YOLOv3 0.347 0.32 0.42 0.347 0.836s 

 
The YOLOv3 network achieved the precision value of 0.347 whereas Faster R-CNN and SSD 

achieved average precision values of 0.077 and 0.043 respectively. However, the recall value of 
YOLOv3 was lower than that of Faster R-CNN, indicating that while the YOLOv3 network has a 
higher proportion of positive results in the correctly predicted values, the Faster R-CNN network 
outperforms it in its ability to correctly predict the positive results. The mAP value of Faster R-CNN 
was also higher than that of YOLOv3, further proving that Faster R-CNN has a greater level of 
precision in detecting potholes. It should be noted that, although the size of each detected pothole is 
not the same, Faster R-CNN performs the best out of all of the networks regardless of the size of the 
object to be detected. The average detection time per image was the lowest for YOLOv3. Since the 
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project had to be utilized in real-time, the YOLOv3 network was selected as the network on which the 
other operations would run i.e. acquire the GPS location of the detected pothole and storing it in the 
cloud. This network was selected because the inference time per image was the lowest.  

Video’s of the detection of the various networks can be found at the following links: 
• Faster R-CNN: https://youtu.be/ZxGJPdVJ8JQ 

SSD: https://youtu.be/8jnu8CKnlKI  
• YOLOv3: https://youtu.be/Rgx7thKWPKY 
• YOLOv3 real-time detection: https://youtu.be/7QcPcRQIa8o 

For the real-time detection using the YOLOv3 network, the vehicle was driven at 60km/h to adhere 
to the speed limit set in the city. The webcam used for the real-time testing was positioned such that 
the view of the road was akin to a driver’s viewpoint and the maximum area of the road was captured. 
The webcam was placed inside the vehicle. When driving at a speed of 60km/h and taking into 
consideration that the detection time per image of the YOLOv3 network was 0.836 seconds, the 
calculated distance from which potholes can be detected is 13.877m. Determining the distance in real-
time was beyond the scope of this project. The detection in real-time can be seen in Figure 5 below. 
Once the pothole was detected, the GPS location of the detected potholes had to be acquired. The GPS 
location of the detected pothole was then sent to a cloud server, Ubidots. The GPS data is available for 
anyone who has access to the Ubidots account created for this project. The longitude and latitude 
values of each detected pothole is stored on Ubidots. The last detected pothole is illustrated as a pin on 
a map on Ubidots. This enables one to acquire a visual representation of where the pothole is situated. 
This visual representation is shown in Figure 6 below. 

 

 
Figure 5. Screenshot showing the real-time detection 

 

 
Figure 6. Screenshot of zoomed in map showing the pin of the last detected pothole on Ubidots 

https://youtu.be/ZxGJPdVJ8JQ
https://youtu.be/Rgx7thKWPKY
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3.3. Comparison of various detection methods  
Various pothole detection methods exist. Such methods include vision-based, vibration-based, laser 
based and stereo imaging. Each of these methods have certain advantages and disadvantages. 
Table 2 below was adapted from [20]. A comparison between the various techniques utilized to detect 
potholes is illustrated below. 
 

Table 2. Pothole detection implementation methods and technology adapted from [20] 

 Vision-based Vibration-based Laser-based Stereo-
imaging 

Device used Camera Accelerometer Laser Cameras 

Technology used 2D Imaging Force, rotation and 
orientation  

3D 
reconstruction 
of the image 
using light 
reflection 

3D 
reconstruction 
using multiple 

cameras 

Response time High Low High 

Sensing time While approaching 
the pothole 

While going through 
a pothole 

While approaching the 
pothole  

Processing Complex image Readings are directly 
used 

Collection of 
3D point cloud 

with their 
elevations 

A complex 
process of 3D 

image 
construction 

by combining 
image from 

different 
camera 

perceptions 

Cost 
High due to 

expensive parts 
(lens) 

Low High 

Characterization of pothole Based on size Based on vibrations Based on 3D image 
constructed  

Detection at night time Difficult-poor 
lighting  Can detect Based on 3D image 

constructed 

Accuracy  Depends on 
algorithm used High Depends on alignment of 

cameras and algorithms used 
 
[21] Utilized a traditional vision-based and machine learning method based on Support Vector 
Machine (SVM) to detect potholes. In machine learning, SVMs are supervised learning models with 
associated learning algorithms that analyze data utilized for classification and regression analysis. It 
was revealed that in more complicated instances such as when mud was present, defects could not be 
identified correctly [22]. The same was revealed when utilizing deep learning methods. It was found 
that shadows on the road from lampposts were frequently mistaken for potholes.  
 
In a paper by [23], a deep learning-based algorithm was utilized as a classifier for crack damage 
detection from concrete images. The CNN algorithm was utilized. It is advantageous to utilize this 
method because the features are learned automatically and no feature extraction processes need to be 
conducted. It was revealed that concrete cracks were identified correctly in realistic situations. 
Utilizing deep learning techniques for the detection of potholes in this instance revealed that potholes 
could also be correctly identified in real-life situations.  
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Research revealed that although vision, vibration, stereo-imaging and laser based techniques can be 
utilized to solve the pothole detection problem, some of these methods have been utilized for more 
than a decade. SpotholeAI [24] and CarVi [25] are apps that are able to detect potholes. These apps 
were developed in the last year and both utilize deep learning methods to detect potholes, further 
proving that such methods are suitable and can be utilized in real-time detection successfully.  

4. Discussion 
The development and maintenance of roads in developing countries such as South Africa is of great 
significance. Potholes can result in an unpleasant and potentially dangerous ride. The tyres are likely to 
get damaged and would require re-alignment. It was thus necessary to create a system whereby driving 
over a pothole could be minimised. It was possible to determine which method would be the most 
appropriate to achieve the desired result from research conducted previously. The work completed by 
[3], [4], [6] and [18] was carefully studied. It was revealed that deep learning methods produce 
desirable results. It should be noted that although vision, vibration, stereo-imaging and laser based 
techniques can be utilised to solve the pothole detection problem, some of these methods have been 
utilised for more than a decade. This research paper presented a comparative evaluation of state-of-the 
art CNN based object detection models to detect potholes on the road in real-time and from videos. 
Each of the networks were trained on a custom dataset and the performance was evaluated through the 
utilisation of various evaluation metrics. The best results for the application of this project was 
acquired through the YOLOv3 architecture, which worked the best for real-time applications because 
the inference speed was the fastest of the three evaluated architectures. The Faster R-CNN network 
proved the most accurate of the three models. SSD performed the worst in terms of accuracy, which 
could be attributed to the varying sizes of the potholes. Once it was determined that YOLOv3 would 
be the most suitable architecture for this particular application, the location, i.e. the GPS co-ordinates 
of the detected pothole had to be determined. The next step was upload these GPS co-ordinates to a 
cloud server where these could be stored and later illustrated on a map. 

5. Conclusions and recommendations…………………………………………………………………. 
The above-mentioned hypothesis is confirmed and met because the entire system was able to detect a 
pothole, determine the detected pothole GPS co-ordinates and save these to a cloud server. However, a  
number of enhancements can be made to the existing solution. Such improvements include increasing 
the dataset size. Increasing the dataset decreases the chances of overfitting occurring. Overfitting was 
discussed in Section 2.1. Increasing the dataset size also adds more diversity, i.e. more information is 
added and thus the fit is improved. A dataset comprising of images of different weather conditions can 
be included to expand the utilisation of the system. Adding a feature whereby the driver is told the 
approximate position of the pothole would greatly assist to limit the probability of the driver driving 
over the pothole. This feature could be integrated into a driver assist system. In future, developments 
could be made to display a warning of the pothole on a heads-up display.  
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