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Abstract. The US EPA regional emission model SMOKE
was adopted and modified to create temporally and spatially
distributed emission for Europe and surrounding countries
based on official reports and public domain data only. The
aim is to develop a flexible model capable of creating
consistent high resolution emission data for long-term runs of
Chemical Transport Models (CTMs). This modified version
of SMOKE, called SMOKE for EUROPE (SMOKE-EU)
was successfully used to create hourly gridded emissions for
the timespan 1970–2010.

In this paper the SMOKE-EU model and the underlying
European datasets are introduced. Emission data created by
SMOKE-EU for the year 2000 are evaluated by comparison
to data of three different state-of-the-art emission models.
SMOKE-EU produced a range of values comparable to
the other three datasets. Further, concentrations of criteria
pollutants calculated by the CTM CMAQ using the four
different emission datasets were compared against EMEP
measurements with hourly and daily resolution. Using
SMOKE-EU gave the most reliable modelling of O3,
NO2 and SO2−

4 . The amount of simulated concentrations
within a factor of 2 (F2) of the observations for these
species are: O3 (F2 = 0.79,N = 329 197), NO2 (F2 = 0.55,
N = 11 465) and SO2−

4 (F2 = 0.62,N = 17 536). The lowest
values were found for NH+4 (F2 = 0.34,N = 7400) and NO−3
(F2 = 0.25,N = 6184). NH+

4 concentrations were generally
overestimated, leading to a fractional bias (FB) averaged
over 22 measurement stations of (FB = 0.83± 0.41) while
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better agreements with observations were found for SO2−

4
(FB = 0.06± 0.38, 51 stations) and NO−3 (FB = 0.13± 0.75,
18 stations).

CMAQ simulations using the three other emission
datasets were similar to those modelled using SMOKE-EU
emissions. Highest differences where found for NH+

4 while
O3 concentrations were almost identical.

1 Introduction

Chemistry transport models (CTMs) are used for a variety
of purposes (air quality modelling, source attribution,
assessment of abatement strategies, etc.) with modelling
domains ranging from global coverage down to local scales.
In addition to the meteorological data, lack of knowledge
on emissions introduces a major uncertainty in the CTM
modelling results (Russell, 2000; Seaman, 2000; Hanna and
Davis, 2001; Anderson and Langner, 2005; Sofiev et al.,
2009).

In general there are two ways of modelling emissions.
The “Bottom-Up” approach models emissions by combining
sources with activities and emission factors. By definition,
the source is the spatial location of the emitter, the activity
is the temporal emission pattern and the emission factor
determines the amount of pollutants emitted (Benkovitz,
2004). This approach is practicable for uniform sources.
Bottom-up is mostly used for biogenic and mobile sources
since they can be combined to a limited number of source
types (e.g., coniferous trees, broadleaf trees for biogenic
emissions; diesel vehicles, gasoline vehicles for mobile
sources). The opposite methodology, the “Top-Down”
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approach is used for groups of disparate sources which
can not be easily combined but for which regional annual
total emissions can be estimated from sales, usage or other
statistics (e.g., power plants). These estimated annual total
emissions are also called emission inventories. They are
usually separated into several source sectors combining
chemical processes (e.g., combustion, solvents) and/or
economic units (e.g., industry, private households). For
the use in CTMs these aggregated emissions are spatially
and temporally disaggregated using spatial surrogates and
temporal profiles. A spatial surrogate is a proxy for the
fraction of the total emissions emitted in each grid cell.
Because there are only a limited amount of European
emission inventories and surrogates, all emission models use
similar types of input data. The datasets used for SMOKE-
EU are introduced in greater detail in Sect. 2.

Besides proprietary emissions models, which are not
publicly available, there are several public models. Each
of these models has its own restrictions, e.g., compatibility
to a certain CTM, temporal coverage, spatial resolution for
regional modelling or the focus on a single nation or region.
The EMEP emission data provided by MSC-W have a large
temporal coverage for all of Europe with spatial resolution
of 50× 50 km2. Temporally disaggregated emissions are
not published (Webdab, 2010). The Dutch CTM LOTOS-
EUROS developed by TNO and RIVM as well as the French
CTM CHIMERE have their own emission models producing
suitable emission data (Schaap et al., 2005; Vautard et al.,
2007). Yu et al. adapted the SMOKE model to prepare
emission data for the UK. The Dutch TNO and the German
IER emission models are two widely used emission models
capable of producing high resolution emissions (Friedrich
and Reis, 2004; Visschedijk et al., 2007) but are not public.
However, the emission datasets calculated by TNO can be
obtained free of cost. The EDGAR emission database
contains emissions of air pollutants on a 1× 1 degree grid
for the years 1990, 1995 and 2000 (Olivier, 2001). The
mentioned models are only representative examples of the
European emission models. Given the variety of emission
models available for Europe the question arises, “What
benefit can be gained from an additional model?” The
rational for this emission model is to provide a flexible
tool capable of creating consistent high resolution emission
datasets for long-term CTM runs over Europe based only
on open source data. Flexibility means that the model can
be easily altered as regards the input data and output format
and that new species, or different photochemical splits, can
be included with a minimum amount of work. Consistency
requires that emissions for each year are calculated using
similar input data and the same algorithms. This consistency
in approach is in contrast to many emission models, which
use the best available data for each new report year, with
report years usually being every five or ten years. Such
an approach leads to a steady improvement of the emission
datasets but comes at the cost of compatibility with older

datasets, since these older report years are not compatible
with the new methodologies. The model introduced in this
paper is specifically designed for long-term CTM runs and,
thus, needs to overcome these problems.

For the evaluation of SMOKE-EU, datasets from three
widely used emission models are used. These are the TNO-
GEMS datasets created with the TNO model, a purchased
dataset from IER further called IER-GKSS and the official
EMEP emissions. These emission datasets are introduced
in further detail in Sect. 3.1. The emissions are compared
with respect to the total emissions, the spatial distribution and
the temporal distribution. Furthermore, all four emissions
datasets are being used as input for the CMAQ (Community
Multiscale Air Quality) CTM for the year 2000. The
calculated air concentrations of the species O3, NO2, NO−

3 ,
SO2, SO2−

4 and NH+

4 are compared with measurements from
rural measurement sites. These comparisons are thoroughly
described in Sect. 4.

2 Methodology

The emission model SMOKE is the official emission model
of the Unites States Environmental Protection Agency
(US EPA) and is one of the most used emission models
world wide (Houyoux et al., 2000; MCNC Environmental
Modelling Centre, 2008; UNC Carolina Environmental
Program, 2005). SMOKE was originally created by
the MCNC Environmental Modelling Centre (EMC) and
developed further by the US EPA. It is the official emission
model of the Models-3 Community Modelling and Analysis
System (CMAS) and creates emission data suitable for
CMAQ (Byun and Ching, 1999; Byun and Schere, 2006).
Anthropogenic emissions are calculated using the “Top-
Down” methodology while biogenic emissions are calculated
by the Bottom-Up model BEIS3 (Guenther et al., 2000;
Pierce et al., 1998; Schwede, 2005). Although SMOKE is
highly specialized for usage with officially reported data in
the US, there have been several successful attempts to use it
for other regions. In Europe, for example, SMOKE has been
adapted to use the national emission inventories of Spain and
the UK (Borge et al., 2008; Yu et al., 2008).

The SMOKE emissions model uses a modular setup
(Fig. 1). Area, point, mobile and biogenic sources are
calculated by different modules and merged into a single
output file. Short descriptions of the major modules for area
and point source processing and their function, as well as
the modules of the biogenic bottom-up model BEIS3, can be
found in Appendix A. In order to run SMOKE, four kinds of
data are needed for the different species: the bulk emission
inventory, spatial surrogates, speciation profiles and temporal
profiles. For plume rise calculations and biogenic emissions
certain meteorological input data are needed additionally
(e.g., temperature, radiation, wind, humidity).

Geosci. Model Dev., 4, 47–68, 2011 www.geosci-model-dev.net/4/47/2011/
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Fig. 1. SMOKE and BEIS3 (green) core programmes including modifications for SMOKE EUROPE (blue). Short descriptions of the most
important modules can be found in Appendix A (Baek et al., 2009).

The Smkinvenmodule reads the data in the inventory file
which contains the aggregated emissions distinguished by
a 6 digit regional code FIPS (US Federal Implementation
Planning Standards) and a 10 digit source code SCC (Source
Classification Code). In the US, the emission inventories
are usually published at county level, leading to a high
spatial resolution. Also the 10 digit SCC code allows
for detailed partitioning of source types. The subsequent
SMOKE modules search for different profiles matching the
FIPS and SCC codes of each emission source, using the best
fit if no exact match is possible (Baek et al., 2009).

2.1 SMOKE for EUROPE (SMOKE-EU)

The SMOKE model has been under development for over
a decade. Therefore, it is highly specialized on the usage
of official data of the US. Since this model setup is not
directly compatible to European data reporting schemes,
several adjustments need to be made for the use of SMOKE
for Europe.

In order to achieve a high spatial resolution, SMOKE
uses emission aggregates on county basis and distributes
them using static surrogates for each region. This is
done by theGrdmat module which creates a single, static
gridding matrix (GRDMAT ) for each year. When used
with European emissions aggregated on the national level,
these static surrogates lead to a static spatial distribution
for each country over the whole year. This is a valid
assumption for sources that are spatially static, for example,
mobile emissions which are connected to the road network
throughout the year. For emissions that are influenced by
local events, such as combustion for heating, static surrogates
in combination with large or heterogeneous regions can lead
to an unrealistic emission distribution. This is due to the
fact that the spatial distribution of heating demand is not
static throughout the year but changing depending on the
temperature. Furthermore, the temporal disaggregation in
SMOKE is done via monthly, weekly and hourly profiles.
This can lead to large emission changes between the last day
of a month and the first day of the next month.

www.geosci-model-dev.net/4/47/2011/ Geosci. Model Dev., 4, 47–68, 2011
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In order to overcome these restrictions of SMOKE, in
SMOKE-EU a new module has been introduced whose basic
function is to create a distinct gridding matrix (GRDMAT )
for each day of the year. This matrix, because it modifies
the gridding matrix for each day, is called the modification
matrix (MODMAT ) and the module calculating itModmat.
By definition, unless parts of the surrogate are outside the
modelling domain, the sum of each surrogate is always 1
(Eq. 1). This is also true for the average of all modification
matrices (Eq. 2) but not for each single daily modification
matrix (Eq. 3). The changing sum of each modification
matrix for each day represents an annual temporal profile for
each grid cell, thus, replacing the monthly temporal profiles
used by the original SMOKE model.

N∑
i=1

GRDMAT (i) = 1

N = number of grid cells (1)

N∑
i=1

[
T∑

j=1
MODMAT (i,j)

]
T

= 1

T = number of time steps (365 days year−1) (2)

N∑
i=1

MODMAT (i,j)ε [0,T ] (3)

Equation (4) shows the calculation of gridded emissions
by SMOKE. For each species, hourly emissions in g s−1

or mole s−1 are calculated by multiplying the gridding
matrix (GRDAMT ), the speciation matrix (SPCMAT),
the emission profile matrix (EP) and the temporal factors
(TMPFAC ) with the annual total emissions (TOT). Since it
is not time dependent, the gridding matrix is calculated only
once for each year (Eq. 4).

E(t,x,y,z) = GRDMAT (x,y) · SPCMAT(x,y)

· EP(z) · TMPFAC (t) · TOT (4)

The Modmatmodule calculates separate gridding matrices
for each day as indicated by Eq. (5). For better readability,
the horizontal dimensionsx andy have been substituted by
the grid cell numbern. The change matrixCHGMAT (n, t)
is calculated from external files. Here, for all emissions from
heating, change factors have been calculated using the 2 m
temperature as a proxy for heating demand (Aulinger, 2010).
For each day, the gridding matrix (GRDMAT ) is multiplied
with the change matrix (CHGMAT ) and normalized. The
normalization matrix (NORMAT ) is calculated once by
multiplying the static gridding matrix with the change matrix
(Eq. 6).

MODMAT (n,t) =

GRDMAT (n) ·CHGMAT (n,t) ·T ·

N∑
i=1

[GRDMAT (i)]

NORMAT (n)
(5)

NORMAT (n) =

N∑
i=1

[
GRDMAT (i) ·

T∑
j=1

[CHGMAT (i,j)]

]
(6)

While the annual total emissions remain unchanged, the
spatial as well as the temporal distribution vary. This leads
to a mixture of spatial and temporal disaggregation. Thus,
the originally applied monthly profiles are redundant, since
they are already represented by the 365 daily modification
matrices.

Although several changes to the original SMOKE source
code have been made, SMOKE-EU is not a completely
new emission model. It is rather a specific setup of the
SMOKE model which can be used to prepare high resolution
emission data for Europe. A large part of SMOKE-EU is
the numerous input files needed in order to run SMOKE for
Europe. These datasets and their usage is described in the
following sections.

2.2 Emission inventories

European emission inventories and datasets are quite
heterogeneous. Most countries use different methodologies
to assess their national emissions. This results in different
national emission inventories, possibly using different
emission factors, for similar sources and allocation of these
to different source categories. Amongst those countries
which do publish their emission inventories, most countries
use a national map projection making transformation of the
data necessary. For SMOKE-EU it was decided to aim for
overall consistency by using Pan-European datasets when
available.

2.2.1 The European Monitoring and Evaluating
Programme (EMEP)

Initiated by the Convention on Long-range Transboundary
Air Pollution (LRTAP), signed in 1979, the European
Monitoring and Evaluation Programme (EMEP) was imple-
mented. National annual emission estimates are reported
by the parties under the LRTAP convention, using the
standardized methods defined by the CORINAIR (CORe
Inventory of AIR emissions) guidebooks (Vestreng, 2007;
Webdab, 2010). The officially submitted data is published
together with a corrected version that was reviewed by
national experts.

EMEP publishes annual national totals for all European
countries, including Russia, and also Turkey and North
Africa. The species covered by the EMEP inventory are CO,

Geosci. Model Dev., 4, 47–68, 2011 www.geosci-model-dev.net/4/47/2011/
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Table 1. SNAP: Selected Nomenclature for sources of Air
Pollution.

Sector Description

SNAP 1 Combustion in energy and transformation industries
SNAP 2 Non-industrial combustion plants
SNAP 3 Combustion in manufacturing industry
SNAP 4 Production Processes
SNAP 5 Extraction and distribution of fossil fuels and

geothermal energy
SNAP 6 Solvent use and other product use
SNAP 7 Road transport
SNAP 8 Other mobile sources and machinery
SNAP 9 Waste treatment and disposal
SNAP 10 Agriculture
SNAP 11 Other sources and sinks

NOx, SO2, NH3, Non-Methane Volatile Organic Compounds
(NMVOC), primary particulate matter (PM) as PM10 and
PM2.5, several Heavy Metals (HMs) and some Persistent
Organic Pollutants (POPs). The emissions are distributed
over 11 SNAP source sectors (Selected Nomenclature for
sources of Air Pollution) (Table 1). SNAP is a standard
defined by the CORINAIR guidebooks which ensures that
emissions reported by different nations are compatible
(European Environmental Agency, 2007). EMEP covers the
years 1970–2009 with additional projections for 2010, 2015
and 2020. In addition to the national reports, emissions from
international shipping are included in the inventory.

2.2.2 The European Pollutants Emission Register
(EPER)

EPER is the European Pollutant Emission Register, the first
Europe-wide register of industrial emissions into air and
water, which was established by the European Commission
in July 2000 (European Commission, 2000). EPER has
been released for two base years. For the EU15 (Austria,
Belgium, Denmark, Finland, France, Germany, Greece,
Ireland, Italy, Luxembourg, the Netherlands, Portugal, Spain,
Sweden and the UK) in 2001 and for the EU27 (EU15
+ Bulgaria, Cyprus, Czech Republic, Estonia, Hungary,
Latvia, Lithuania, Malta, Poland, Romania, Slovakia and
Slovenia) in 2004. There are considerable differences
between the emission data released in 2001 and 2004,
mainly due to the fact that the 2004 data is more complete.
We have used only the 2004 inventory for point source
modelling (European Pollution Emission Register, 2010). It
covers approximately 12 000 industrial point sources with
information about annual total emissions, source code and
geographical location. The NACE (Nomenclature statistique
des activit́eséconomiques dans la Communauté euroṕeenne)
code is a more sophisticated source identifier than the SNAP
code. It consists of several hundred different source types,

especially distinguishing between different industries. A
large percentage of NACE codes are covered by SNAP 3 and
SNAP 4.

2.2.3 Merging EMEP and EPER into a combined
emission inventory

Since the EPER inventory includes the exact geographical
location of each source, no surrogates are needed to estimate
the spatial distribution of the emissions. Furthermore, the
industrial processes of each source are known. This allows
for a more precise estimation of the effective emission
heights. Because of this, EPER sources are considered more
precise than EMEP sources. Since EPER only contains
major point sources, the missing emissions are taken from
the EMEP inventory which is an estimate of the national
total emissions. This is done by the subtraction of EPER
from EMEP. In very few cases the EPER emissions, for a
certain species and sector, exceed the EMEP emissions. In
those cases EPER emissions are used, leading to slightly
higher emissions than reported in the EMEP inventory. The
preparation of the SMOKE-ready inventory files is done by a
newly written java-based preprocessor called InvenCombine.
The calculations are done in three steps:

1. Conversion of EPER from NACE to SNAP sectors.

2. Adjustment of the EPER base year 2004 emissions to
the modelling year.

3. Merging of the two inventories.

While most sectors can be converted directly, there are
still some incompatibilities between the two systems.
NACE has a wide range (more than 100) of industrial
sources, distinguished by industrial sector, while SNAP
differentiates between two general processes – industrial
combustion (SNAP 3) and manufacturing and industrial
processes (SNAP 4).

In order to correctly convert the EPER data, for each
region and for each species, all NACE classes fitting into
SNAP 3 and SNAP 4 are first combined into a single sector
and then redistributed depending on the ratio of SNAP 3 to
SNAP 4. In a second step, the 2004 EPER data is attributed
to each SNAP sector and each species according to the
relative change of EMEP emissions between 2004 and the
inventory year. Finally the SNAP converted and adjusted
EPER emissions are subtracted from the EMEP emissions.

2.3 Spatial surrogates

Spatial surrogates are the proxies used to allocate the national
total emissions to the emissions model grid. The sum
of each surrogate is 1, by definition, unless parts of the
country for which the emissions have been aggregated are
outside the model domain (e.g., Russia). If there are
no specific surrogates for a certain region the population

www.geosci-model-dev.net/4/47/2011/ Geosci. Model Dev., 4, 47–68, 2011
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Table 2. Spatial surrogates used for different SNAP sectors and biogenic emissions. A list of abbreviations can be found in Appendix C.

Sector Datasets used for spatial disaggregation

SNAP 1 EPER, CLC (commercial and industrial units), GLC (urban area), GPWv3
SNAP 2 GPWv3, 2 m temperature
SNAP 3 EPER, CLC (commercial and industrial units), GLC (urban area), EUROSTAT (employees in industry), GPWv3
SNAP 4 EPER, CLC (commercial and industrial units), GLC (urban area), EUROSTAT (employees in industry), GPWv3
SNAP 5 EPER, CLC (ports), GPWv3
SNAP 6 GPWv3
SNAP 7 TREMOVE, OSM and DCW (motorways, roads), CLC (urban area), GLC (urban area)
SNAP 8 TREMOVE, CLC and GLC (airports, agricultural areas), OSM and DCW (railways, waterways, roads)
SNAP 9 CLC (dump sites), GPWv3
SNAP 10 CLC (agricultural areas, pastures), GLC (agricultural areas), EUROSTAT (employees in agriculture, animal stocks)
Biogenic GsfM (Tree distribution), CLC (land use), GLC (land use)

density is used as the basis for anthropogenic emissions.
Maes et al. (2009) showed that disaggregating the combined
EPER and EMEP emissions with European datasets leads to
spatially distributed emissions comparable to high resolution
national emission inventories. A list of datasets used for each
SNAP sector is shown in Table 2. All surrogate input datasets
are interpolated to the SMOKE-EU modelling domain and
converted to the SMOKE format by several preprocessors.
In the following, the surrogate datasets are briefly described:

Gridded Population of the World version 3 (GPWv3)
depicts the distribution of human population across the
globe. It contains globally consistent and spatially
explicit human population information and data. It
is released for every fifth year starting in 1990 on a
2.5′

× 2.5′ resolution. Furthermore, future projections
until 2015 are available (Balk, 2004; Sedac, 2010). The
GPWv3 population density dataset is used as the default
surrogate.

Corine Air Land Cover (CLC)dataset was created
by the European Environmental Agency (EEA) and is
freely available (Corine Land Cover, 2010). So far the
dataset has been released for 1990, 2000 and 2006. CLC
distinguishes 45 different land use classes with a spatial
resolution of 100× 100 m2. It covers all member states
of the European Union.

Global Land Cover (GLC2000)dataset provided by the
Land Cover Institute of the United States Geological
Survey (USGS) is a global land use database. It
was released once, for the year 2000, with 1× 1 km2

resolution. It distinguishes 24 different land use classes.
The GLC2000 data was used as a surrogate for all
regions without CLC coverage (USGS, 2009).

Openstreetmaps (OSM)is a public domain vector
database combining GPS (Global Positioning System)
data from thousands of volunteers around the world. It

contains a free global street and land use map. Since the
start of the project in 2004, almost complete coverage
of streets and railroads in the EU has been achieved.
The 2009/12 version of OSM has been used to create
surrogates of motorways, major rural roads and railways
(Openstreetmap, 2010).

Digital Chart of the World (DCW)is a public do-
main vector database developed by the Environmental
Systems Research Institute, Inc. (ESRI) for the US
Defense Mapping Agency (DMA). It contains data on
roads, railways and waterways. The DCW is freely
available for the year 1992 (Digital Chart of the World,
1992). This dataset has been used to disaggregate
mobile emissions before 1993. Between 1993 and 2000,
an interpolated dataset consisting of OSM and DCW is
used.

GSfM Land Use Databaseis a compilation of different
land use datasets. Besides other land use data it contains
the Forest database (JRC/TNO), which distinguishes
136 different tree types and was created for UBA
(Federal Environment Agency), and the CLC2000
landuse dataset (Smiatek, 1998). Since the CLC dataset
distinguishes only between 5 forest types, the UBA
forest database was used to determine the tree coverage
for the biogenic emissions model BEIS3. Land use
dependent emissions like NO are calculated using the
CLC database.

TREMOVEis a policy assessment model, designed to
study the effects of different transport and environment
policies on the emissions of the transport sector (EC,
2007). The model provides estimates for policies
such as road pricing, public transport pricing, emission
standards, subsidies for cleaner cars etc., the transport
demand, modal shifts, vehicle stock renewal and
scrappage decisions as well as the emissions of air

Geosci. Model Dev., 4, 47–68, 2011 www.geosci-model-dev.net/4/47/2011/
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Table 3. NUTS level definition.

NUTS 1 3 million–7 million inhabitants
NUTS 2 800 000–3 million inhabitants
NUTS 3 150 000–800 000 inhabitants

pollutants and the welfare level. It models both
passenger and freight transport and covers the period
1995–2030 (TREMOVE, 2010). The v2.7b Basecase
dataset of the TREMOVE bottom-up emission model
has been used to split the EMEP emissions estimated
for sector SNAP 7 (Road transport) into motorway,
rural and urban subsectors as well as to distinguish
between different vehicle and fuel types. The EMEP
sector SNAP 8 (Other mobile transport) is split into
the subsectors transport by rail, inland shipping and
airplanes.

EUROSTATis the statistical service of the European
Union. It releases statistics concerning the economy,
environment, society, industry, agriculture and regional
development (EUROSTAT, 2010). Some EUROSTAT
statistics date back as far as 1953. All statistical
values are reported using the Nomenclature of Units for
Territorial Statistics (NUTS) geocode standard which
is the official European system for referencing sub-
divisions of countries (European Commission, 2003).
NUTS regions are defined by the amount of inhabitants
(Table 3). The EUROSTAT data is usually available
as monthly national or annual regional values, with
regional values going down to NUTS3 level. The
EUROSTAT regional statistics on NUTS2 level are
used to further disaggregate industrial and agricultural
emissions depending on the number of employees in
certain industries, number of employees in agriculture
and animal stocks for NH3 emissions from animals.

2.4 Vertical distribution

For the use in CTMs it is still common to apply static vertical
distribution factors to the emissions of each sector or even
to put all emissions into the lowest layer. With effective
emission heights of industrial sources in the range of 100 m
to 600 m Plume rise calculations can have a strong impact on
the calculated air concentrations and depositions. Emissions
in higher layers are likely to be transported further away from
the source, wet depositions are less if a higher amount of
pollutants is above the cloud layer and particles need longer
until they reach the ground by dry deposition giving them
more time for interaction with other species. For example,
comparisons of different CTM runs showed a change in the
SO2−

4 to SO2 ratio depending on the emission height.

All non-VOC emission sources from the SNAP sectors
1, 3, 4, 5 and 9 are treated as elevated sources. VOC
emissions from dump sites (SNAP 9) are interpreted as
surface evaporations and, thus, are not elevated. Data
for stack height, stack diameter, exit velocity and exit
temperature are applied to all EPER sources depending
on NACE sector following Pregger and Friedrich (2009).
All emissions not covered by EPER are first horizontally
distributed as described in Sect. 2.3 and then supplemented
with average stack data depending on SNAP sector. For
countries covered by EPER it is assumed that the remaining
sources are only minor sources, thus, having lower average
stack heights than their corresponding EPER sources. For
those countries not covered by EPER, a sectoral emission-
weighted average is built using stack data for major sources.
The vertical distribution of emissions by point sources is
calculated using the SMOKE moduleLaypoint. It calculates
the effective emission heights using the Briggs plume rise
equations. (Briggs, 1972; Houyoux, 1998). This leads
to different effective emission heights depending on the
meteorological fields used as input for the PiG calculations.

2.5 Temporal distribution

SMOKE-EU uses the LOTOS-EUROS monthly, weekly and
diurnal profiles which features distinct profiles for each
SNAP sector (Builtjes, 2003). For SNAP sector 2 (Non-
industrial combustion plants) the 2 m temperature is used to
create the annual temporal profiles using theModmatmodule
(Aulinger, 2010). This leads to a more realistic, year specific
temporal disaggregation. While currently all other SNAP
sectors use the static LOTOS-EUROS profiles for temporal
disaggregation, there are other possible applications for
Modmat. For example, it seems promising to use the soil
moisture as an additional proxy for NH3 emissions from
agricultural areas.

The biogenic emissions which are calculated by the
bottom-up model BEIS3 are temporally disaggregated using
meteorological fields. VOC emissions of trees are depending
on the near surface temperature (2 m–10 m) and the incoming
radiation. Biogenic NO emissions are depending on soil
moisture and soil temperature.

2.6 Chemical speciation

Some substances in the emission inventories are composites
of many different distinct species. For all CTMs, volatile
organic compounds (VOC) need to be separated into several
organic species, depending on the photochemical mechanism
in use. Nitrogen oxides are usually reported as NOx and
need to be split into NO and NO2. SMOKE-EU currently
splits all NOx emissions into 90% NO and 10% NO2 (EPA,
2010). Besides this there can be other substances which
need to be speciated, such as primary particulate matter for
CMAQ. SMOKE is able to split any species from the bulk
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emission inventory into arbitrary subspecies. This makes it
easy to adjust the emission model to match different chemical
mechanisms and other user demands.

Primary Particulate Matter (PM)in the bulk emission
inventory is separated into two size classes. These are
particles smaller than 10 µm (PM10) and particles smaller
than 2.5 µm (PM2.5). For CMAQ PM2.5 needs to be
further speciated into primary elemental carbon (PEC),
primary organic aerosols (POA), primary nitrate aerosols
(PNO3), primary sulfate aerosols (PSO4) and other particles
(PMFINE). Each of the 10 SNAP sectors has its own
PM split, while some sectors also have splits on sub-sector
level. Vehicles, for example, have different PM splits
depending on vehicle type (Heavy Duty Vehicles, Light Duty
Vehicles, Buses) and fuel type (Diesel, Gasoline). The
PM splits were adopted from the SMOKE emission model
(EPA, 2010). Additionally, split factors for emissions from
international shipping have been implemented (Agrawal,
2008).

Volatile Organic Compounds (VOCs)need to be speciated
according to the photochemical mechanisms used by the
CTM. At this point SMOKE Europe supports VOC splits for
the mechanisms Carbon Bond 4 (CB-IV) and Carbon Bond 5
(CB05) (Gery et al., 1989). New photochemical mechanisms
can be easily implemented by supplying the split factors for
each SNAP sector. The split factors have been calculated
using the chemical VOC analysis of Passant (2002).

3 Evaluation of the emission data

First of all, the impact of theModmat module on the
spatial and temporal disaggregation of the emissions is
assessed. This is done by the comparison of two different
datasets created with SMOKE-EU. The first emission
dataset, the default case, uses only static temporal profiles
and surrogates. The second dataset is created using the
Modmat module for the calculation of emissions from
residential heating (SNAP 2). In this caseModmat uses the
2 m temperature from meteorological input fields as a proxy
for heating demand (Aulinger, 2010).

In a second step, the SMOKE-EU emissions for the
year 2000 are statistically compared to three state-of-the-art
emission datasets. The comparison is done separately for the
6 inventory species: NOx, SO2, CO, PM10, NH3, VOC. First,
the total emissions for the EU27 countries are compared,
then the horizontal, vertical and temporal distributions of
the different emission datasets are compared. Only selected
figures are shown for each statistical comparison.

3.1 Emission datasets used for comparison

In order to evaluate the emissions created by SMOKE-EU
three emission datasets calculated by widely used models
have been used for comparison. These datasets will be

Fig. 2. Modelling domain used for CTM calculations with
54× 54 km2 grid resolution and 30 vertical layers.

referred to as EMEP, IER-GKSS and TNO-GEMS. All
emission datasets are compared for the GKSS 54× 54 km2

modelling domain (Fig. 2).
EMEP: the EMEP emission dataset created by the

Meteorological Synthesizing Centre – West (MSC-W) is
based on the EMEP emission inventory. Species covered
are CO, NOx, SO2, NH3, PM10, PM2.5 and NMVOC. The
spatial distribution of the emissions for each SNAP sector
is provided by the national authorities every five years.
The methodology used for the preparation of these gridded
data can differ for each country. For countries without
information on the spatial distribution of emissions the
population density is used as a proxy. In the reporting year
2010, of 48 Parties which are considered for the extended
EMEP area, only 16 Parties reported sectoral gridded data
for the year 2000 and 23 Parties reported sectoral gridded
data for 2005 (Mareckova et al., 2010). EMEP still has to
perform the spatial distribution of emissions for more than
half of the European countries by applying its own methods
(Mareckova, 2008). For the temporal disaggregation of
the annual emission estimates IER temporal profiles for
air quality calculations are used by the EMEP unified
model (Benedictow et al., 2009; Simpson et al., 2003).
Still only gridded annual totals on a 50× 50 km2 domain
together with SNAP specific vertical profiles are published
by EMEP (Webdab, 2010). The LOTOS-EUROS temporal
profiles have been used for temporal disaggregation in this
comparison.

IER-GKSS: an emission dataset for the GKSS 54× 54 km2

modelling domain over Europe was purchased from the
University of Stuttgart Institute for Rational Use of
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Energy (IER) and is here referred to as IER-GKSS. The
IER emissions model is based on the EMEP/CORINAIR
emission guidebooks. It features distinct temporal profiles
for each country and SNAP sector as well as VOC and
PM splits. The dataset purchased by GKSS has no vertical
distribution (Friedrich and Reis, 2004).

TNO-GEMS: the Netherlands Organization for Ap-
plied Scientific Research (TNO) GEMS emissions are a
0.125× 0.0625 degrees dataset created by the TNO emission
model for the EU FP7 project GEMS (Global and regional
Earth-system Monitoring using Satellite and in situ data).
For the preparation of this emission dataset, the official
European national annual total emissions reported for the 11
SNAP sectors have been split into sub-sectors and spatially
distributed according to proxy data. For point sources,
the exact geographical location of major combustion plants,
oil refineries, oil and gas production facilities (including
off-shore), coke ovens, iron and steel plants, non-ferrous
metals smelters, cement factories, chemical plants, waste
incinerators and major airports in Europe are used. Area
sources are distributed using European datasets, namely
location and (partly) traffic intensities of highways and
major secondary roads, urban, rural and total population
density, distribution patterns of various agricultural activities,
a detailed land use and land cover dataset, the locations and
densities of forested areas and the location and densities
of sea shipping routes on European seas (Visschedijk and
Denier van der Gon, 2005). For temporal disaggregation
of the annual emissions the TNO model uses hourly, daily
and monthly emission factors for each species and country.
The emissions are vertically distributed using the SNAP
dependent EMEP profiles. The TNO-GEMS dataset is scaled
to match the EMEP emissions for 2003 (Visschedijk et al.,
2007).

3.2 Evaluation of the impact of theModmatmodule

SMOKE-EU has been set up to process anthropogenic
emissions from the sector SNAP 2 of the EMEP emission
dataset. The default scenario uses the population density
as a static surrogate for SNAP 2 sources and LOTOS-
EUROS temporal profiles. SNAP 2 emissions are mostly
due to residential heating and, thus, correlated to the near
surface temperature. The modified scenario uses the 2 m
temperature from meteorological fields as input data for
the Modmat module, which in this case calculates daily
gridding matrices using the average heating demands related
to specific emissions (Aulinger, 2010). This changes the
spatial as well as the annual temporal distribution.

Comparing the two emission datasets revealed two
major effects of theModmat module. As expected these
correlate with the size of the aggregated region. The
largest differences between the default and the modified
scenario could be observed for the spatial disaggregation of
large regions or regions with strong temperature gradients.

Fig. 3. All values are averaged over the whole 54× 54 km2

domain (Fig. 2) for the year 2000.(a) Comparison of temperature
dependent temporal profiles SMOKE default with the modified
version.(b) Inter annual comparison of temperature dependent CO
temporal profiles.

For Switzerland, which is one of the smallest European
countries, differences of up to 20% in annual total emissions
have been found in certain grid cells. This can be explained
by differences in the annual heating demand north and
south of the Alpes. The annual total emissions for the
whole country did not change. Also the annual temporal
disaggregation no longer follows monthly average profiles.
This leads to a smoothing of the annual profiles and avoids
the sometimes strong emission changes at the end of each
month (Fig. 3a). Additionally each year now has a unique
temporal profile, making theModmat module particularly
interesting for long-term runs. It can be seen that in the year
2000 more heating occurred in January than in December,
while the years 1999 and 2001 show the opposite (Fig. 3b).
The inter annual variability of the temporal profiles is as high
as the deviation between the default and modified SMOKE-
EU version.

In order to assess the impact ofModmat in the default
SMOKE-EU version on air concentrations, the emissions
from both the default and the modified scenario were used
as input for the CMAQ CTM. For 250 rural grid cells daily
average calculated air concentrations for SO2, NO and CO,
the three main emitted substances in SNAP 2, have been
compared to one another. The statistical indicators used for
comparison are the Mean Normalized Error (MNE) and the
Mean Normalized Bias (MNB) (Appendix B). The average
MNE is 20% (6% to 56%) with a MNB of 9% (−18% to
50%). When comparing the concentrations calculated using
the complete emission datasets with all EMEP and EPER
emission sources, values are: MNE = 3.5% (0.8% to 49%)
and MNB = 1%(−9% to 38%). The annual total emissions
for the whole domain remain unchanged. This shows that the
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Fig. 4. Comparison of the annual total anthropogenic emissions
of different emission datasets for the year 2000. Only emissions
from the EU27 in the 54× 54 km2 domain (Fig. 2) are taken into
account. (The SMOKE-EU dataset also includes 18 000 Gg a−1

biogenic NMVOC emissions).

usage of theModmatmodule, even for a single SNAP sector,
has a significant impact on the calculated air concentrations
in certain regions.

3.3 Comparison of annual total emissions

First of all, the annual total emissions of the four emission
datasets have been compared. The SMOKE-EU, EMEP and
IER-GKSS datasets were created for the year 2000 while
the TNO-GEMS emissions are for 2003. Figure 4 shows
the absolute annual anthropogenic emissions in Gg a−1

for the EU27. Biogenic emissions, as well as emissions
from international shipping, have been excluded from this
comparison since they are not included in all datasets.
Due to biogenic emissions the total NMVOC emissions
in the SMOKE-EU dataset are higher by 18 000 Gg a−1.
The annual averages of all datasets and their deviations
are: NOx (12 500 Gg± 6.8%), SO2 (10 600 Gg± 9.1%),
CO (38 900 Gg± 16.7%), PM10 (2830 Gg± 7.1%), NH3
(4000 Gg± 39.8%), VOC (10 500 Gg± 10%).

Figure 5 shows that most inventories have annual
total emissions similar to those reported by EMEP with
differences less than 10%. Only the IER-GKSS NH3
emissions are 30% lower than the EMEP values. The
SMOKE-EU emissions are somewhat higher than the EMEP
reports, since in some countries EPER emissions exceed
EMEP emissions. Since the total emissions of the four
datasets are similar, no further investigation concerning the
aggregated emissions have been made.

3.4 Comparison of horizontal disaggregation

All spatial statistics have been calculated using the EU27
emissions only. The values compared are gridded annual

Fig. 5. Annual total emissions of the EU27 (biogenic emissions are
not included) relative to those of EMEP. Data for different emission
datasets for the year 2000 on a 54× 54 km2 domain (Fig. 2).

total emissions for the species CO, NOx, SO2, PM10, NH3
and NMVOC. All figures in this section show the best fit
(Figs. 6a, 7a, 8a) and the worst fit cases (Figs. 6b, 7b, 8b).
Generally SO2 emissions show the best agreement for all
four datasets. This is due to the fact that SO2 emissions are
well-known concerning the total amount emitted as well as
their spatial and temporal distribution. NH3 emissions on the
other hand have the highest uncertainties and, thus, generally
show the largest differences. Three statistical methods have
been chosen in order to compare the spatial disaggregation
of the four different emissions datasets:

3.4.1 The frequency distribution of emissions

First the frequency distributions of the emissions have
been compared. They give an impression of the overall
distribution of the emissions, i.e., whether there are more
high emission point sources or more low emission areas in
a dataset. In general, the distribution of all species is very
similar with a strong peak for low values. For most species
there is almost no difference in the frequency distribution
(Fig. 6). This leads to correlations between 0.8 and 0.99.
Only for NH3 a shift towards lower emission can be seen for
the IER-GKSS emissions.

3.4.2 The frequency distribution of the deviation using
EMEP as reference

The deviations of the annual total emissions for all
grid cells have been calculated and plotted as frequency
distributions. This statistical measure actually compares
the spatial surrogates of the different emission datasets. A
shift of all emissions from those of the EMEP dataset by
one grid cell, for example, would give high deviations for
two identical frequency distributions of emissions. Again
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Fig. 6. Frequency distribution of different emission datasets for the
year 2000 on a 54× 54 km2 domain (Fig. 2). Only emissions of the
EU27 are taken into account.(a)SO2 emissions(b) NH3 emissions.

it could be shown that all four datasets are very similar
concerning their spatial distribution. As expected the lower
NH3 emissions in the IER-GKSS data leads to slight shift
towards negative deviations (Fig. 7).

3.4.3 The spatial variability as indicated by variograms

As a third measure for the spatial distribution, variograms
have been calculated (Eq. 7).

f (h) =
(z(x +h)−z(x))2

2
(7)

wherex = reference grid cell;h = distance to origin.
The interval size is 100 km. Since it is not possible to show

the variograms for every grid cell, a representative origin
has been chosen. The variograms shown here have their
origin in a central cell of the EU27. As Eq. (8) indicates
the values of a variogram are dependent on the emissions
in the origin grid cell. To eliminate the influence of the
concentration of the origin grid cell and, therefore, create
a more representative comparison, average total emissions
have also been calculated. Thesespatial averagesshow
the annual average concentrations within concentric circles
around the origin with 100 km distance. It can be seen that
the spatial distributions as well as the variograms for SO2
follow a similar pattern (Fig. 8). Some differences can still
be seen. Looking at the variograms for SO2 it can be seen
that the EMEP dataset shows the lowest square differences,
which indicates a lower amount of grid cells with much
higher emissions than the origin cell. This is most probably
due to the lack of point sources in this dataset. The spatial
averages show higher SO2 emissions in the 500–700 km

Fig. 7. Frequency distribution of different emission datasets for the
year 2000 on a 54× 54 km2 domain (Fig. 2).(a) SO2 emissions(b)
NH3 emissions.

Fig. 8. (a) Spatial average annual SO2 emissions of different
emission datasets for the year 2000.(b) Variograms for SO2
emissions of different emission datasets for the year 2000. All
values are for concentric circles with a 100 km distance on a
54× 54 km2 domain (Fig. 2).

circles (30–40%) for the IER-GKSS datasets. This indicates
that the∼8% higher total SO2 emissions in this dataset are
due to higher emissions in a certain area rather than a general
overestimation (Fig. 4).

NH3 shows the largest differences with a much higher
squared difference in the 600 km and 900 km circles for
the SMOKE-EU emissions, while the spatial averages show
only slightly higher NH3 emissions in these areas of the
SMOKE-EU dataset (Fig. 9). This could be due to a
stronger partitioning of high and low emission grid cells in
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Fig. 9. (a) Spatial average annual NH3 emissions of different
emission datasets for the year 2000.(b) Variograms for NH3 of
different emission datasets for the year 2000. All values are for
concentric circles with 100 km distance on a 54× 54 km2 domain
(Fig. 2).

this area. A possible reason is the spatial disaggregation
by EUROSTAT NUTS2 statistics. The IER-GKSS dataset
shows lower emissions of NH3 throughout the domain
compared to the other datasets.

3.5 Temporal distribution

Temporal profiles were available for the SMOKE-EU, IER-
GKSS and the TNO-GEMS emissions. These temporal
profiles are not directly comparable. The SMOKE profiles
are available for each SNAP sector, the original IER-GKSS
profiles are not available and the TNO-GEMS profiles are
available for each region and species. In order to gain
comparable temporal profiles for all three datasets, the
average emissions for all grid cells of the EU27 were used
to create species-dependent temporal profiles with daily
resolution.

For most species these annual time series show deviations
of less than 20% for all 365 daily temporal factors.
Figure 10 shows an example plot for NO. The biogenic
NO emissions, which occur mainly during summer, lead
to a slightly different temporal profiles in the SMOKE-EU
dataset (Fig. 10a). Temporal profiles of NOx, PM10 and
CO are similar. The highest deviations were found for
NH3 (Fig. 10b). Here the large, sudden changes between
months of the original SMOKE temporal disaggregation can
be seen.

3.6 Vertical distribution

The vertical distributions of the SMOKE-EU emissions were
compared to the EMEP vertical distributions. For this
purpose, annual average vertical profiles for each species

Fig. 10. Averaged annual temporal profiles with daily resolution
of different emission datasets for the year 2000 on a 54× 54 km2

domain (Fig. 2). (a) NO emissions(b) NH3 emissions. The
biogenic NO emissions included in the SMOKE-EU dataset lead to
higher average emissions in summer and lower average emissions
in winter.

Fig. 11. Average vertical distribution of different emission datasets
for the year 2000. (a) SO2 emissions(b) NO emissions. For
comparison with the SMOKE-EU dataset, the official EMEP
vertical profiles were interpolated from 6 to 30 layers. The TNO-
GEMS dataset uses the EMEP vertical distributions. All values are
averages over a 54× 54 km2 domain (Fig. 2).

were calculated. Also the 5 emission layers of the EMEP
profile were interpolated to the 30 layers of the SMOKE-
EU dataset. As in Sect. 3.5, this does not necessarily
represent the actual profiles used by the emission models.
In Fig. 11, it can be seen that the SMOKE-EU plume
rise calculations result in lower emission heights than the
official EMEP vertical distribution. EMEP distinguishes
10 static vertical profiles, one for each SNAP sector.
The SMOKE-EU effective emission heights are determined
using temperature, pressure and wind dependent plume rise
calculations, thus, leading to different emission heights for
each source throughout the year. For some species EMEP
uses large emissions in high layers (SOx: 400–600 m 30%
>600 m 20%) (NOx: 400–800 m 10%). The SMOKE-EU
plume rise calculations show almost no emissions higher
than 600 m with less than 10% above 400 m.
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4 Comparison of CTM calculated concentrations to
observations

The CTM CMAQ4.6 of the US EPA (US EPA, 2009) was
used to simulate atmospheric concentrations of air pollutants
for the year 2000. Figure 2 shows the modelling domain
containing Europe and the surrounding countries. The
spatial resolution is 54× 54 km2 with 30 vertical layers, the
photochemical mechanism used is CB-IV. Meteorological
fields are taken from the COSMO-CLM model (Rockel
and Geyer, 2008; Rockel et al., 2008). Monthly average
boundary conditions were derived from the MOZART global
model (Horowitz et al., 2003; Niemeier et al., 2006). With
this setup, four CMAQ runs using different emission datasets
were calculated. The three emission datasets for comparison
with SMOKE-EU have been used as described in Sect. 3.1.
Additionally, VOC and PM emissions were split using the
same distribution as SMOKE-EU. SMOKE-EU is the only
one among these datasets which takes into account biogenic
emissions.

The calculated atmospheric concentrations in the lowest
model layer were compared with observations from EMEP
measurement stations. From 242 available rural measure-
ment stations those with more than 90% data coverage for
the year 2000 were used for comparison. Mountain stations
which are not representative for a model grid cell have
been excluded (e.g., CH01 Jungfraujoch at 3573 m). Six
different compounds are used for comparison, three gaseous
species (NO2 SO2, O3) and three aerosol components
(SO2−

4 , NH+

4 , NO−

3 ). Ozone concentrations are given as
hourly values while all other values are reported as daily
averages. Table 4 shows all used EMEP measurement sites
and provides information on their location and the species
observed. Figure 12 depicts a map of all measurement
stations. Some sites consistently disagree with modelled
values for all species and emission models (e.g., IT04
Ispra). This may be caused by strong topographic gradients
not resolved by the CTM, the meteorological model, local
sources influencing the station or for instrumental reasons. It
should be kept in mind that a single observation site is not
necessarily representative for the average concentrations in
a 54× 54 km2 grid cell with a height of the lowest layer of
36 m.

The statistical measures used for comparison of simulated
and observed values were selected based on those suggested
by Schl̈unzen and Sokhi (2009) and are described in further
detail in Appendix B. Table 5 provides statistical values
averaged over all relevant measurement stations as well
as their standard deviation. The general picture when
comparing the CMAQ results with measurements is that the
four emission datasets produce comparable concentrations
for all species.

The SMOKE-EU and EMEP based CTM runs predict
slightly higher ozone values than the other models (Fig. 13a).
One reason for this is the implementation of biogenic

Fig. 12.Map indicating the location of EMEP measurement stations
used for comparison with simulated air concentrations (Table 4).
The coloured areas are geographical regions used for regional
analysis in Fig. 15. Yellow: Estonia (EE), Lithuania (LT), Latvia
(LV), Poland (PL). Orange: Spain (ES), Portugal (PT). Red: Austria
(AT), Czech Republic (CZ), Hungary (HU), Slovakia (SK). Pink:
Ireland (IE), Iceland (IS), Great Britain (GB). Turquoise: Italy (IT),
Greece (GR). Green: Denmark (DK), Finland (FI), Norway (NO),
Sweden (SE). Blue: Belgium (BE), Switzerland (CH), Germany
(DE), France (FR), Luxembourg (LU), Netherlands (NL). Grey:
Russia (RU).

emissions in SMOKE-EU, leading to higher VOC and NO
emissions during summer. Also the vertical distribution
of NOx emissions in the SMOKE-EU and EMEP datasets
potentially changes the ozone regime, in certain regions,
from VOC limited to NOx limited (Fig. 11b). However, since
O3 is strongly influenced by the meteorology (Andersson
and Langner, 2005), the correlations and factor of 2 (F2)
percentages for all four emission datasets are almost identical
(Fig. 13c, Table 5). Only the Index of Agreement (IOA)
for the SMOKE-EU scenario is slightly higher (Fig. 13b).
The diagram in Fig. 15a presents a similar picture. Although
some regional differences can be seen, most measurement
stations form a tight cluster between correlations of 0.5 and
0.8. The ozone concentrations, calculated by CMAQ, are
generally 10% higher than those observed. Test runs with
meteorological fields created with a different meteorological
model (MM5) (Matthias et al., 2009) produced 20% lower
O3 concentrations.

Considering the Sulfuroxide species the highest daily
mean SO2−

4 concentrations are predicted when using the
SMOKE-EU dataset (Mean = 0.66 µg S m−3) followed by
the EMEP case with 0.61 µg S m−3 while the other two
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Table 4. EMEP measurement stations for the year 2000 used for comparison with modelled air concentrations. All station locations are
depicted in Fig. 12.

ID Name Longitude Latitude Altitude O3 NO2 SO2 SO4 NO3
[m]

AT02R Illmitz 47◦46′0′′ N 16◦46′0′′ E 117 X X X X
CH02R Payerne 46◦48′47′′ N 6◦56′41′′ E 489 X X X X
CH03R T̈anikon 47◦28′47′′ N 8◦54′17′′ E 539 X X
CZ03R Kosetice 49◦35′0′′ N 15◦5′0′′ E 534 X
DE01R Westerland 54◦55′32′′ N 8◦18′35′′ E 12 X X
DE02R Langenbr̈ugge 52◦48′8′′ N 10◦45′34′′ E 74 X X
DE04R Deuselbach 49◦45′53′′ N 7◦3′7′′ E 480 X
DE07R Neuglobsow 53◦10′0′′ N 13◦2′0′′ E 62 X X X X
DE09R Zingst 54◦26′0′′ N 12◦44′0′′ E 1 X X X X
DK03R Tange 56◦21′0′′ N 9◦36′0′′ E 13 X X
DK05R Keldsnor 54◦44′0′′ N 10◦44′0′′ E 10 X X
DK08R Anholt 56◦43′0′′ N 11◦31′0′′ E 40 X X X
EE09R Lahemaa 59◦30′0′′ N 25◦54′0′′ E 32 X X
ES03R Roquetas 40◦49′14′′ N 0◦29′29′′ E 44 X X X X
ES04R Logrõno 42◦27′28′′ N 2◦30′11′′ W 445 X X X X
ES08R Niembro 43◦26′32′′ N 4◦51′1′′ W 134 X X X
ES10R Cabo de Creus 42◦19′10′′ N 3◦19′1′′ E 23 X X X
ES11R Barcarrola 38◦28′33′′ N 6◦55′22′′ W 393 X X X X
FI09R Uẗo 59◦46′45′′ N 21◦22′38′′ E 7 X X X
FI17R Virolahti II 60◦31′36′′ N 27◦41′10′′ E 4 X X X
FI22R Oulanka 66◦19′13′′ N 29◦24′6′′ E 310 X X X
FI37R Ahtari II 62◦35′0′′ N 24◦11′0′′ E 180 X X
FR03R La Crouzille 45◦50′ N 1◦16′0′′ E 497 X
FR05R La Hague 49◦37′0′′ N 1◦49′59′′ W 133 X
FR09R Revin 49◦54′0′′ N 4◦38′0′′ E 390 X X X
FR13R Peyrusse Vieille 43◦37′0′′ N 0◦11′0′′ E 2 X X
GB02R Eskdalemuir 55◦18′47′′ N 3◦12′15′′ W 243 X
GB04R Stoke Ferry 52◦34′0′′ N 0◦30′0′′ E 15 X
GB06R Lough Navar 54◦26′35′′ N 7◦52′12′′ W 126 X
GB07R Barcombe Mills 50◦52′0′′ N 0◦1′59′′ W 8 X
GB13R Yarner Wood 50◦35′47′′ N 3◦42′47′′ W 119 X
GB14R High Muffles 54◦20′4′′ N 0◦48′27′′ W 267 X X X
GB15R Strath Vaich Dam 57◦44′4′′ N 4◦46′28′′ W 270 X X
GB16R Glen Dye 56◦58′0′′ N 2◦25′0′′ W 85 X
GB39R Sibton 52◦17′38′′ N 1◦27′47′′ E 46 X
GR01R Aliartos 38◦22′0′′ N 23◦5′0′′ E 110 X
HU02R K-puszta 46◦58′0′′ N 19◦35′0′′ E 125 X X X X X
IE02R Turlough Hill 53◦2′12′′ N 6◦24′0′′ W 420 X
IE31R Mace Head 53◦10′0′′ N 9◦30′0′′ W 15 X
IS02R Irafoss 64◦5′0′′ N 21◦1′0′′ W 66 X
IT01R Montelibretti 42◦6′0′′ N 12◦38′0′′ E 48 X X X X
IT04R Ispra 45◦48′0′′ N 8◦38′0′′ E 209 X X X X X
LT15R Preila 55◦21′0′′ N 21◦4′0′′ E 5 X X X X
LV10R Rucava 56◦13′0′′ N 21◦13′0′′ E 5 X X X X X
LV16R Zoseni 57◦8′0′′ N 25◦55′0′′ E 183 X X X X
NL09R Kollumerwaard 53◦20′2′′ N 6◦16′38′′ E 1 X X X X
NL10R Vredepeel 51◦32′28′′ N 5◦51′13′′ E 28 X X X
NO01R Birkenes 58◦23′0′′ N 8◦15′0′′ E 190 X X X X X
NO08R Skre̊adalen 58◦49′0′′ N 6◦43′0′′ E 475 X X X X
NO15R Tustervatn 65◦50′0′′ N 13◦55′0′′ E 439 X X X X
NO39R K̊arvatn 62◦47′0′′ N 8◦53′0′′ E 210 X X X X
NO41R Osen 61◦15′0′′ N 11◦47′0′′ E 440 X X X X
NO42G Spitsbergen, Zeppelinfjell 78◦54′0′′ N 11◦53′0′′ E 474 X X X
NO55R Karasjok 69◦28′0′′ N 25◦13′0′′ E 333 X X X X X
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Table 4. Continued.

ID Name Longitude Latitude Altitude O3 NO2 SO2 SO4 NO3
[m]

PL02R Jarczew 51◦49′0′′ N 21◦59′0′′ E 180 X X X X X
PL04R Leba 54◦45′0′′ N 17◦32′0′′ E 2 X X X X X
PL05R Diabla Gora 54◦9′0′′ N 22◦4′0′′ E 157 X X X
PT04R Monte Velho 38◦5′0′′ N 8◦48′0′′ W 43 X
RU01R Janiskoski 68◦56′0′′ N 28◦51′0′′ E 118 X X X
RU18R Danki 54◦54′0′′ N 37◦48′0′′ E 150 X X X
SE02R R̈orvik 57◦25′0′′ N 11◦56′0′′ E 10 X X X X
SE11R Vavihill 56◦1′0′′ N 13◦9′0′′ E 175 X
SE12R Aspvreten 58◦48′0′′ N 17◦23′0′′ E 20 X
SE13R Esrange 67◦53′0′′ N 21◦4′0′′ E 475 X
SE32R Norra-Kvill 57◦49′0′′ N 15◦34′0′′ E 261 X

Fig. 13. Comparison of modelled O3 concentrations using four
different emission datasets with hourly observations from 40 rural
EMEP measurement sites (N = 329 197) for the year 2000 (see also
Tables 6 and 7).(a) Fractional bias(b) index of agreement(c)
relative amount of values within a factor of 2 (1 = 100%).

datasets lead to an underestimation of SO2−

4 (Mean = 0.57
and 0.54 µg S m−3) (Fig. 14 and Table 5). Similar results
can be seen for SO2 where higher values are simulated in
the SMOKE-EU case compared to the CTM runs using the
other three emission datasets (Table 5). Since the total

Fig. 14. Comparison of modelled SO2−

4 concentrations using four
different emission datasets with daily mean observations from 51
rural EMEP measurement sites (N = 17 536) for the year 2000 (see
also Tables 6 and 7).(a) Fractional bias(b) index of agreement(c)
relative amount of values within a factor of 2 (1 = 100%).

emissions as well as the spatial and temporal distribution
of the SO2 emissions are very similar in all four datasets,
these differences may be explained by different vertical
distributions. In the EMEP and the TNO-GEMS datasets
SO2 is emitted in higher altitudes and partially above
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Table 5. Statistical comparison of CMAQ results using four different emission datasets. Values are averages over all measurement stations
and their standard deviations. For more detailed results, see Figs. 13–16.

EMEP TNO-GEMS IER-GKSS SMOKE-EU OBSERVATION

O3 – 40 Stations (N = 329 197)

MEAN 77.43± 6.05 74.58± 6.26 75.86± 6.08 78.25±6.44 57.79± 6.76
FB 0.29± 0.13 0.26± 0.13 0.27± 0.13 0.3± 0.14 –
NME 0.36± 0.19 0.31± 0.18 0.33± 0.18 0.37± 0.19 –
FAC2 0.79 0.8 0.79 0.79 –
CORR 0.62± 0.08 0.61± 0.06 0.62± 0.07 0.63± 0.08 –
IOA 0.45± 0.28 0.47± 0.25 0.46± 0.27 0.47± 0.26 –

NO2 – 33 Stations (N = 11 465)

MEAN 1.31± 1.01 1.37± 1.48 1.33± 1.23 1.57± 1.32 2.31± 1.74
FB −0.47± 0.46 −0.51± 0.53 −0.49± 0.46 −0.28± 0.48 –
NME 0.37± 0.25 0.44± 0.27 0.38± 0.25 0.33± 0.23 –
FAC2 0.49 0.46 0.45 0.55 –
CORR 0.44± 0.31 0.42± 0.3 0.45± 0.3 0.45± 0.3 –
IOA 0.41± 0.41 0.35± 0.4 0.41± 0.37 0.48± 0.33 –

SO2 – 36 Stations (N = 12 430)

MEAN 0.98± 0.83 0.98± 1.03 1.09± 1.3 1.27± 1.2 0.78± 0.63
FB 0.21± 0.71 0.09± 0.65 0.1± 0.72 0.34± 0.73 –
NME 0.8± 0.65 0.63± 0.58 0.7± 0.56 1.03± 0.82 –
FAC2 0.46 0.44 0.44 0.44 –
CORR 0.4± 0.23 0.38± 0.23 0.38± 0.25 0.4± 0.23 –
IOA 0.42± 0.26 0.43± 0.25 0.42± 0.27 0.37± 0.25 –

SO2−

4 – 51 Stations (N = 17 536)

MEAN 0.61± 0.18 0.57± 0.18 0.54± 0.17 0.66± 0.21 0.71± 0.42
FB −0.02± 0.4 −0.08± 0.41 −0.13± 0.4 0.06± 0.38 –
NME 0.35± 0.33 0.34± 0.32 0.33± 0.27 0.36± 0.38 –
FAC2 0.61 0.59 0.59 0.62 –
CORR 0.44± 0.16 0.39± 0.15 0.42± 0.15 0.45± 0.16 –
IOA 0.49± 0.26 0.43± 0.27 0.44± 0.24 0.51± 0.26 –

NH+

4 – 22 Stations (N = 7400)

MEAN 1.28± 0.77 1.05± 0.6 1.03± 0.64 1.44± 0.9 0.75± 0.78
FB 0.74± 0.45 0.59± 0.47 0.57± 0.47 0.83± 0.41 –
NME 1.62± 1.31 1.24± 1.1 1.2± 1.14 1.84± 1.38 –
FAC2 0.37 0.4 0.41 0.34 –
CORR 0.46± 0.17 0.38± 0.21 0.45± 0.18 0.46± 0.18 –
IOA 0.14± 0.7 0.25± 0.59 0.25± 0.58 0.09± 0.63 –

NO−

3 – 18 Stations (N = 6184)

MEAN 0.47± 0.41 0.3± 0.24 0.32± 0.31 0.51± 0.46 0.41± 0.54
FB 0.05± 0.79 −0.2± 0.79 −0.18± 0.67 0.13± 0.75 –
NME 0.78± 0.76 0.58± 0.42 0.37± 0.32 0.81± 1.02 –
FAC2 0.25 0.18 0.22 0.25 –
CORR 0.32± 0.27 0.26± 0.21 0.32± 0.26 0.32± 0.27 –
IOA 0.29± 0.34 0.27± 0.32 0.34± 0.34 0.28± 0.25 –
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Fig. 15.Diagrams showing correlation and fractional bias of modelled atmospheric concentrations for the year 2000 of(a) O3 and(b) SO2−

4
compared to observations. Unlike in standard Tylor diagrams the fractional bias is shown on the radial axis. Different shapes indicate the
4 emission datasets used, while different colours indicate geographical regions. The location of all measurement stations as well as the
description of the regions is depicted in Fig. 12.

the boundary layer. This leads to less SO2 in the surface
layer because the emissions are distributed over a larger
area and, thus, gives them more time to form particles
before they reach the surface. Additionally, meteorology
may be significantly different at higher altitudes influencing
chemical reactions. In the IER-GKSS dataset, on the other
hand, all SO2 is emitted in the surface layer, leading to
a faster deposition and, therefore, to lower atmospheric
SO2 and SO2−

4 concentrations. CTM calculations using
a version of the EMEP and TNO-GEMS datasets without
vertical distribution agree with this finding (Table 6). In
most cases, the emissions with vertical distribution show
greater correlation, F2 and IOA. Looking at Fig. 15b, some
strong regional differences can be observed. Generally
Scandinavian (green) measurement sites, with the exception
of NO42 (Spitzbergen), have the highest correlations.
Central European (blue) sites have the lowest biases, while
the concentrations over the Spanish peninsula (orange) are
systematically underestimated. A detailed regional analysis
is beyond the scope of this paper and will be further discussed
elsewhere.

For all four emission datasets, modelled NH+

4 concen-
trations are overestimated (Fig. 16a) and show the least
agreement with observations of all the species compared
(Table 5). This is in agreement with the fact that the NH3
emissions have the highest uncertainties of all the species
in the emission datasets. The lowest concentrations and
best agreements with observations were simulated using
the IER-GKSS emissions. This can be explained by the
∼30% lower NH3 emissions in this dataset (Figs. 4, 5).
However, the low NH3 emissions in this dataset also lead

Table 6. Comparison of mean daily concentrations for the year
2000 of SO2−

4 and SO2 with and without vertical distribution of
the emissions. Values are averages over all measurement stations
(51 stations for SO2−

4 , 33 stations for SO2) and their standard
deviations. The used measurement stations are described in Table 4.

EMEP TNO-GEMS

3D 2D 3D 2D

SO2−

4 0.61±0.18 0.58±0.16 0.55±0.19 0.54±0.16
[µg S m−3

]

SO2 0.98±0.83 1.2±1.18 0.99±1.03 1.06±1.2
[µg S m−3

]

to an underestimation of NO−3 concentrations. The
higher NH+

4 values in the SMOKE-EU case lead to an
overestimation of NO−3 (Fig. 16b). Unexpectedly, the
smoother temporal profiles of the IER-GKSS NH3 emissions
do not lead to better correlations on the annual scale.

For NO2, CTM results show much higher Fractional
Biases (FB) for the SMOKE-EU case (Fig. 16c). Since
NO2 is generally underestimated this leads to a higher
number of values within a factor of 2 (Table 5). The
mean NO2 concentration over all measurement stations given
in Table 5 is dominated by high values at two stations
IT04 (Ispra) and NL10 (Vredepeel). The comparison of
simulated and observed NO2 concentrations show strong
spatial differences. Over the Spanish peninsula, where 5 of
33 measurement stations are located, NO2 concentrations are
generally underestimated by a factor of 5.

www.geosci-model-dev.net/4/47/2011/ Geosci. Model Dev., 4, 47–68, 2011



64 J. Bieser et al.: SMOKE for Europe

Fig. 16. Fractional bias of modelled NH+4 , NO3- and NO2
concentrations using four different emission datasets compared to
daily mean observations from EMEP measurement stations for the
year 2000 (see also Tables 6 and 7).

5 Conclusions

The US-EPA SMOKE emission model has been successfully
adapted to use publicly available pan-European datasets to
create high resolution emission data for Europe. Several
preprocessors were developed to transform these datasets
into input data required to run SMOKE for Europe (SMOKE-
EU) model. SMOKE-EU is capable of creating CMAQ ready
emission data for the whole of Europe, including western
Russia, Turkey and North Africa (Fig. 2). Currently it is
used to create emission datasets with spatial resolution in the
range of 70× 70 km2 down to 10× 10 km2. The underlying
datasets allow for a spatial resolution as fine as 1× 1 km2

(Table 2). Effective emission heights are determined via
plume rise calculations. The species calculated by the model
are CO, SO2, NOx, NH3, PM, and NMVOC split according
to the CB-IV or CB05 chemical mechanisms.

The SMOKE-EU emissions were compared to datasets
from three widely used emission models. These are
the TNO-GEMS dataset created by TNO, a dataset from

IER purchased by GKSS and the official gridded EMEP
emissions provided by the MSC-W. Comparisons with
SMOKE-EU emissions on a 54× 54 km2 grid for the year
2000 showed similar total emissions, spatial and temporal
distributions of the species. The most significant differences
were identified to be the NH3 emissions (Fig. 5) as well as
the vertical distributions (Fig. 11). Biogenic emissions lead
to significantly higher NMVOC emissions as well as slightly
higher NO emission during summer (Fig. 10). For the other
species (CO, SO2, NOx, PM) total emissions differed less
than 10% and temporal distributions differed less than 20%.

CMAQ has been used to calculate atmospheric concen-
trations of air pollutants using the four different emission
datasets. Comparison of simulated values with observations
from EMEP measurement stations showed that each of the
four CTM runs produced sound results (Table 5). The
vertical distribution has a strong influence on the simulated
SO2−

4 and SO2 concentrations (Table 6). Generally, SO2

emissions in higher altitudes have led to higher SO2−

4
concentrations near the surface and a better agreement with
observations (Fig. 14). The largest differences were found
for NH+

4 and NO−

3 concentrations (Fig. 16a, b). NH+4
was systematically overestimated while NO2 was strongly
underestimated over the Spanish peninsula (Fig. 16b, c).
Ozone concentrations, which are strongly influenced by the
meteorology, were almost identical for all datasets (Fig. 13).

Emission data created by SMOKE-EU will now be used
for European long-term CTM runs for the timespan 1970–
2010. Being a very flexible tool, SMOKE-EU will be
further enhanced in the future. Improvements planned
include temporal profiles for each country, implementation
of other photochemical mechanisms, and the implementation
of additional species (i.e., benzo[a]pyrene, mercury).

Appendix A

Short description of SMOKE and BEIS3 core
modules

SMKINVEN: reads in the raw input data, sorts the records,
and creates the SMOKE inventory files that are required by
most of the SMOKE programs.

GRDMAT: reads the surrogate files and produces the matrix
that contains the factors for spatially allocating the emission
sources to the modelling domain.

SPCMAT: calculates the matrices containing split factors for
the species speciation.

CNTLMAT: the Cntlmat program uses control packets
to create a growth matrix, and/or a multiplicative control
matrix, and/or a reactivity control matrix.
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TEMPORAL: reads the temporal profiles and produces a file
of hourly inventory pollutant emissions. Unlike the SMOKE
matrices produced by Cntlmat, Grdmat and Spcmat, the
output file from Temporal contains the actual emissions data.

ELEVPOINT: selects elevated point sources and prepares
certain input files for special elevated source or PinG
processing.

LAYPOINT: uses the SMOKE point-source inventory file
with gridded and hourly meteorology data to compute hourly
plume rise for all point sources. The plume rise is expressed
in terms of layer fractions for each source.

SMKMERGE: combines the matrices produced by the other
SMOKE programs to produce the emissions files for input
to the CTM. The Smkmerge program may be run on any
combination of source types and may incorporate temporal,
speciation, projection, and spatial processing.

NORMBEIS: reads gridded land use data and emissions
factors and produces gridded normalized biogenic emissions.

METSCAN: determines winter and summer seasons
depending on surface temperature.

TMPBEIS3: uses temperature, surface pressure and
radiation data from meteorological files to calculate hourly
biogenic emissions.

Appendix B

Statistical measures used for comparisons

Pi = Predicted value from Model
Oi = Observed value
N = sample size

MeanŌ =
1

N

N∑
i=1

Oi P̄ =
1

N

N∑
i=1

Pi (B1)

Fractional Bias(FB) FB=
P̄ −Ō

0.5
(
P̄ +Ō

) (B2)

Mean Normalized Bias(NMB)

MNB =
1

N

N∑
i=1

(
Pi −Oi

Oi

)
(B3)

Mean Normalized Error(MNE)

MNE =
1

N

N∑
i=1

(
|Pi −Oi |

Oi

)
(B4)

Normalized Mean Error(NME)

NME =

∣∣P̄ −Ō
∣∣

Ō
(B5)

Standard Deviation

σo =

√√√√ 1

N

N∑
i=1

(
Oi −Ō

)2
(B6)

Correlation coefficient

r =

1
N

N∑
i=1

(
Oi −Ō

)(
Pi − P̄

)
σoσp

(B7)

Index of Agreement(IOA)

IOA = 1−

N∑
i=1

(Pi −Oi)
2

N∑
i=1

(∣∣Pi − P̄
∣∣+ ∣∣Oi −Ō

∣∣)2
(B8)

Factor of 2(F2)

FAC2=
1

N

N∑
i=1

ni with ni = 1 for 0.5<

∣∣∣∣ Pi

Oi

∣∣∣∣ ≤ 2 (B9)

Appendix C

Abbreviations

CLC Corine Air Land Cover database
CMAQ Community Modelling Air Quality
CMAS Community Modelling Air quality System
CORINAIR Core Inventory of Air emissions
CLM Climate version of the Lokal Model
CTM Chemical Transport Model
DCW Digital Chart of the World
DMA Defense Mapping Agency
EMC Environmental Modelling Center (USA)
EMEP European Monitoring and Evaluation Program
EEA European Environmental Agency
EPA Environmental Protection Agency (USA)
EPER European Pollutants Emission Register
ESRI Environmental Systems Research Institute
EU15 European Union 15 Member states
EU27 European Union 27 Member states
EUROSTAT European Statistical Service
FIPS U.S. Federal Implementation Planning Standards
GEMS Global and regional Earth-system Monitoring

using Satellite and in-situ
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GLC Global Land Cover database
GPS Global Positioning System
GPW Gridded Population of the World
HM Heavy Metals
IER Institute for Rational use of Energy
LRTAP Convention on Long-Range Transport of Air

Pollutants
MM5 The Fifth-Generation NCAR/Penn State

Mesoscale Meteorological Model
MSC-W Meteorological Synthesizing Center – West
NMVOC Non-Methane Volatile Organic Compounds
NACE Nomenclature statistique des activités

économiques dans láe euroṕeenne
NUTS Nomenclature of Units for Territorial Statistics
OMS OpenStreetMaps
PM Particulate Matter
PM2.5 Particulate Matter smaller than 2.5 µm
PM10 Particulate Matter smaller than 10 µm
POP Persistent Organic Pollutants
RIVM National Institute for Public Health and the

Environment (NL)
SCC Source Classification Code
SNAP Selected Nomenclature for sources of Air

Pollution
SMOKE-EU SMOKE for Europe
SMOKE Sparse Matrix Operator Kernel Emissions
TNO Netherlands Organization for Applied

Scientific Research (NL)
UCAR University Cooperation for Atmospheric

Research
UBA Federal Environmental Agency (DE)
UNC University of North Carolina
USGS United States Geological Survey
VOC Volatile Organic Compounds

Supplementary material related to this
article is available online at:
http://www.geosci-model-dev.net/4/47/2011/
gmd-4-47-2011-supplement.pdf.
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