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Abstract: Docosahexaenoic acid (DHA) is one of the most important long-chain polyunsaturated 
fatty acids (LC-PUFAs), with numerous health benefits. Crypthecodinium cohnii, a marine hetero-
trophic dinoflagellate, is successfully used for the industrial production of DHA because it can ac-
cumulate DHA at high concentrations within the cells. Glycerol is an interesting renewable sub-
strate for DHA production since it is a by-product of biodiesel production and other industries, and 
is globally generated in large quantities. The DHA production potential from glycerol, ethanol and 
glucose is compared by combining fermentation experiments with the pathway-scale kinetic mod-
eling and constraint-based stoichiometric modeling of C. cohnii metabolism. Glycerol has the slow-
est biomass growth rate among the tested substrates. This is partially compensated by the highest 
PUFAs fraction, where DHA is dominant. Mathematical modeling reveals that glycerol has the best 
experimentally observed carbon transformation rate into biomass, reaching the closest values to the 
theoretical upper limit. In addition to our observations, the published experimental evidence indi-
cates that crude glycerol is readily consumed by C. cohnii, making glycerol an attractive substrate 
for DHA production. 

Keywords: Krebs cycle; central metabolism; kinetic model; constraint-based model; FTIR spectros-
copy 
 

1. Introduction 
Knowledge-based bioeconomy implies the conversion of cheap renewable resources 

into biotechnological products with added value. 
Docosahexaenoic acid (DHA) is one of the most important long-chain polyunsatu-

rated fatty acids (LC-PUFAs), with numerous health benefits such as reducing the risk of 
cardiovascular diseases, cancer, and rheumatoid arthritis; alleviating depression symp-
toms and post-natal depression; and contributing to immune-modulatory effects [1]. 
DHA also has an important role in the healthy development of the fetal brain and retina, 
and thus is commonly used in infant-related food products. The global EPA/DHA market 
was estimated at USD 2.49 billion in 2019, with a projected annual growth rate of 7% until 
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2027 [2]. Currently, cold-water marine fish oil is a source of 96% of DHA, but it is not able 
to meet the increasing demand of DHA for human consumption [3] due to the depletion 
of wild fish stocks and pollution of the marine environment (with lipophilic environmen-
tal pollutants, dioxins, heavy metals, etc.). Moreover, fish and other animals lack certain 
fatty acid desaturases that are required for the de novo synthesis of LC-PUFAs. Plants, 
although a commercially important source of oils and fats, do not synthesize LC-PUFAs. 

Efforts to explore alternative sources of DHA have been made in the last decade, in-
cluding the generation of transgenic oilseed plants [4] and large-scale production of DHA-
producing microalgae and protists [5]. As microbes synthesize all of their cell lipid fatty 
acids de novo, the profile of these lipids is relatively simple, more predictable, and can be 
very rich in specific fatty acids, including LC-PUFAs. Among the protists, Crypthecodinium 
cohnii, a marine heterotrophic dinoflagellate, is successfully used for the industrial pro-
duction of DHA because it can accumulate DHA at high concentrations within the cells 
[6]. In contrast to photosynthetic microalgae, heterotrophs, such as C. cohnii, do not require 
light; hence, a high biomass density can be reached in conventional bioreactors. 

The established carbon substrates for the growth of C. cohnii are glucose, ethanol, and 
acetate. Ethanol and acetate are found to be superior to glucose for the production of 
DHA, likely because of their short conversion pathway to acetyl-CoA, the key precursor 
of fatty acid synthesis [7]. No or marginal growth on sucrose, glycerol, fructose, maltose, 
rhamnose, arabinose, lactose, and galacturonic acid has been reported previously [6,8,9]. 
However, several recent papers [10–12] demonstrated C. cohnii growth and abundant 
DHA synthesis in glycerol. Glycerol is an interesting renewable substrate since it is a by-
product of biodiesel production and other industries, and is generated globally in large 
quantities. The contradictory information in the literature about the consumption of glyc-
erol by C. cohnii, and DHA production from glycerol, calls for a closer look at this sub-
strate. Notably, glycerol consumption requires just two additional reactions (glycerol ki-
nase and glycerol-3-phosphate dehydrogenase) until it enters the metabolic “highway” of 
glycolysis. 

The systems biology approach is used to gain a mechanistic understanding of the 
functioning of metabolic pathways and the theoretical limitations of different biotechno-
logically used but insufficiently explored organisms by combining laboratory experi-
ments and mathematical modeling [13–16]. The implementation of the systems biology 
approach in education and production can lead to improvements in industrial biotechnol-
ogy facilitated by interdisciplinary synergy [15,17]. The applications of different modeling 
approaches shed light on different aspects of the process of interest [18], enabling the im-
plementation of different types of case-specific constraints [19]. 

In the present work, the authors focused on the experimental work and mathematical 
modeling of C. cohnii-central metabolic fluxes with three substrates: (i) glucose, as the most 
widely used carbon substrate for laboratory cultivation of this dinoflagellate [6]; (ii) etha-
nol, reported to be the best substrate for accumulation of DHA [20]; and (iii) glycerol, as 
an important renewable substrate, yet with somewhat contradictory evidence on its con-
sumption and DHA production in C. cohnii [9,11,12]. The enzymatic capacity of metabolic 
pathways towards Acetyl-CoA (DHA precursor) is analyzed by a kinetic model. The 
availability of metabolic resources at the central metabolism scale is assessed by a stoichi-
ometric model.  

2. Results 
2.1. Comparison of Growth, Substrate Consumption, and Accumulation of PUFAs with Glucose, 
Ethanol and Glycerol 

Batch cultivation results with a single carbon substrate, or their combinations with 
glycerol, are shown in Figures 1 and 2, respectively. The growth on glycerol was com-
pared to the growth on glucose and ethanol within a range of substrate concentrations. 
As seen in Figure 1, at all concentrations, the tested growth and substrate consumption 
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with glycerol were roughly comparable to those with ethanol but proceeded significantly 
slower than with glucose. In contrast, Taborda et al. [12] and Safdar et al. [10] reported the 
growth and uptake rates for glycerol as comparable or even surpassing those with glu-
cose. Apparently, growth parameters might vary depending on the strain, inoculum size 
and other cultivation parameters. Glycerol can be applied in a wide range of concentra-
tions without any significant variations in its uptake kinetics or growth inhibition. Etha-
nol, in contrast, is demonstrated to inhibit growth at concentrations above 5 g/L [20]. 
Clearly, our data confirm that glycerol could serve as the sole carbon substrate for C. cohnii 
cultivation. At the same time, it could potentially be used as a co-substrate for mixotrophic 
cultivations. Under mixotrophic growth conditions (Figure 2), the uptake of glycerol and 
glucose occurred simultaneously, although at the initial stage of cultivation, glycerol 
slightly slowed down glucose consumption (compared with the growth on glucose as the 
sole carbon source, shown in Figure 1). Additionally, ethanol could be taken up simulta-
neously with glycerol (Figure 2).  
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Figure 1. Growth and substrate consumption of C. cohnii on media with ethanol (a), glycerol (b), or 
glucose (c). 

 
(a) 

 
(b) 

Figure 2. Mixotrophic growth of C. cohnii on glycerol with ethanol (a) or with glucose (b). 

The early-stage accumulation of PUFAs in the C. cohnii biomass, cultivated on each 
of the three carbon sources, was monitored by FTIR spectroscopy, following the approach 
used in Didrihsone et al. [21]. FTIR was chosen as a rapid analytical method, requiring a 
small sample size and no complex pretreatment steps. The validity of infrared spectros-
copy to estimate the content of saturated, monounsaturated and polyunsaturated fatty 
acids has been reported previously [22–24]. Yoshida and Yoshida [25] evaluated the FTIR 
spectra of synthetic and dietary triglyceride oils with various PUFAs, including DHA. The 
second-derivative spectra for the alkene (-HC=CH-) C-H stretching vibrational mode of 
several synthetic triglycerides and dietary PUFA oils showed that the peak position cor-
responded to the peak position in raw spectra, and the position was changed from 3005 
to 3013 cm−1 when the extent of unsaturation was increased from mono-ene to hexa-ene. 
Particularly in spectra of DHA oils, the alkene peak position was at 3013.4 cm−1. Here, the 
second-derivative spectra revealed a small peak at 3014 cm−1 as a simple, separate spectral 
feature, and accordingly, could be ascribed to the =CH- stretching of cis-alkene in PUFAs 
of the C. cohnii cells (Figure 3). The vast evidence accumulated so far on the fatty acid 
composition of C. cohnii cells indicates that DHA is the dominant PUFA in this species 
[26–30]. Apart from DHA (C22:6), there is a small amount of C22:5, while the rest of its 
fatty acid fraction is composed of C18:1, and of C12-C18 saturated fatty acids. Notably, 
DHA is the only representative of hexa-enes at measurable quantities; therefore, the spec-
tral feature at 3014 cm−1 can be specifically related to C. cohnii DHA. 

The strongest absorbance at 3014 cm−1 was found in the glycerol-grown cells. Nota-
bly, the accumulation of PUFAs with glycerol was already well-pronounced after 28 hours 
of cultivation. At this early time point, hardly any absorbance was seen in the glucose-
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grown cells, despite the fact that glucose enabled faster growth. The absorbance of the 
ethanol-grown cells was more similar to that of the glycerol culture; nevertheless, after 70 
hours of cultivation, the glycerol-grown cells had accumulated significantly more PUFAs 
(Figure 3). Previously, we performed a chromatographic analysis of the fatty acid compo-
sition of C. cohnii CCMP 316 biomass grown in fed-batch mode with ethanol [30]. Follow-
ing the same methodology, we also analyzed the DHA content of the same strain, grown 
in batch mode on 40 g L−1 glucose under conditions similar to those of the present study 
(unpublished data). The DHA content in these cultivations was in the range of 3.0–3.5% 
of the biomass dry weight. Here, this value would correspond to the black lines at the top 
panel of Figure 3, providing a rough absolute scale for the change of DHA content, seen 
in the spectra. 

 
Figure 3. Vector-normalized, second-derivative FTIR spectra of C. cohnii biomass, showing relative 
amounts of accumulated PUFAs when grown with glycerol vs. glucose (A) or with glycerol vs. 
ethanol (B). Spectra obtained from cultivations with three concentrations of each carbon source are 
presented: with 5 g/L, 10 g/L and 40 g/L of glucose; 8 g/L, 14 g/L and 27 g/L of glycerol; and 0.7 
g/L, 1.5 g/L and 3 g/L of ethanol. 

2.2. Pathway-Scale Kinetic Model of Substrate Uptake  
2.2.1. Structure of the Model 

A kinetic ordinary differential equation (ODE)-based model of C. cohnii, including 
metabolic reactions that connect glucose, ethanol and glycerol uptake and the Krebs cycle 

A

B
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with the production of Acetyl-CoA, the precursor of DHA, was developed. The model is 
organized into three compartments (extracellular, cytosol and mitochondria). The model 
contains 35 reactions and 36 metabolites (Figure 4).  

 
Figure 4. Metabolic network scope of the kinetic model. Dashed lines show transport reactions. 
Abbreviated metabolites—ExtGlucose: external glucose; ExtGlycerol: external glycerol; ExtEtha-
nol: external ethanol; Glu6P: glucose 6-phosphate; Fru6p: fructose 6-phosphate; Fru1,6P: fructose 
1,6-bisphosphate; DHAP: dihydroxyacetone phosphate; Gra3P: glyceraldehyde-3-phopshate; 
Gri1,3P: glycerate-1,3-biphosphate; Gri3P: glycerate-2-phosphate; Gri2P: Glycerate-2-phosphate; 
PEP: phosphoenolpyruvate; Acetyl-CoA: acetyl coenzyme-A. (Enzymes: HK: hexokinase; PGI: 
Phosphoglucose isomerase; PFK: Phosphofuctokinase; ALD: Fructosebiphosphate aldolase; TPI: 
Triosephosphate isomerase; Gra3PDH: Glyceraldehyde phosphate dehydrogenase; PGK: 3-phos-
phoglycerate kinase; PGM: Phosphoglycerolmutase; ENO: Phosphopyruvate hydratase; PYK: Py-
ruvate kinase; PDH: pyruvate dehydrogenase; PYC: pyruvate carboxylase; CS: citrate synthase; 
ACO: aconitate hydratase; IDE: isocitrate dehydrogenase; OGDH: 2-oxoglutarate dehydrogenase; 
SS: succinyl-CoA synthetase; SDE: succinate dehydrogenase; FUH: fumarate hydratase; MDE: 
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malate dehydrogenase; ACL: ATP-dependent citrate lyase; ME: malic enzyme; ADH: alcohol de-
hydrogenase; ALDH: acetaldehyde dehydrogenase; AcA LIG: acetate CoA ligase.) 

The model structure was developed based on research by Zhang’s group on tran-
scriptomics [31] and the 13C metabolic flux analysis [32] of DHA production in the case of 
glucose consumption. This kinetic model structure is similar to the structure proposed in 
Cui et al. [32]; however, the pentose phosphate pathway and glutamate dehydrogenase 
reactions were removed to make the kinetic model simpler and because the fluxes through 
these reactions were relatively small. The model does not include energy and redox cofac-
tor moieties. The kinetic equations and some parameters of the reactions were obtained 
from the following databases: Brenda [33], SABIO-RK [34] and UniProt [35]. The tricarbox-
ylic acid cycle reaction parameters were adapted from [36]. The equilibrium constant of 
reactions was assessed using Equilibrator [37] and the NIST database 
(https://randr.nist.gov/enzyme/, accessed on 3 January 2022). The unit used for the reac-
tion fluxes in the model is mmol·L−1·min−1. 

2.2.2. Parameter Estimation Results 
Three experimental parameter sets have been developed for the kinetic model to ac-

count for different substrate uptakes: glucose, glycerol and ethanol. The most detailed 
published dataset available corresponds to the consumption of glucose based on 13C met-
abolic flux analysis [32] with a glucose consumption rate of 3.58 mmol·min−1·L–1 and reac-
tion rates, including the Krebs cycle and Acetyl-CoA production. For modeling purposes, 
a single, concentration-independent substrate uptake rate for glycerol and ethanol was 
derived from the cultivation experiments described in Section 2.1.  

During the parameter estimation, it became clear that a single set of model parame-
ters could not describe all three examined substrates. The same parameter set of kinetic 
models could be used for glucose and glycerol experiments. This could be expected be-
cause of the common pathway of glucose and glycerol from Gra3P to pyruvate, which 
then enters the mitochondria, serving as the precursor for both mitochondrial oxaloacetate 
(reaction PYC) and mitochondrial Acetyl-CoA (reaction PDH). It turned out that, in the 
case of ethanol that enters the Krebs cycle via Acetyl-CoA, the PDH reaction rate had to 
be close to zero to facilitate all of the mitochondrial pyruvate flux towards mitochondrial 
oxaloacetate. 

As a result, we developed two structurally identical kinetic models that were able to 
simulate the experimentally observed data. Both models were deposited in the BioModels 
[38] database in SBML (level 2 version 4) and COPASI formats: (1) glucose and glycerol 
consumption model (Biomodels ID: MODEL2112280001) with a Vmax of PDH being 907 
mmol·min-1·L–1 (File S1) and (2) ethanol consumption model (Biomodels ID: 
MODEL2112290001) with a low Vmax of PDH 1e-6 mmol·min-1·L–1 (File S2). The parame-
ters of the models are summarized in File S3 

2.2.3. Simulation Results 
The simulations of the glucose/glycerol model confirm the experimentally deter-

mined production flux of cellular Acetyl-CoA at 3.87 mmol·min−1·L–1 when consuming 
glucose at 3.58 mmol·min–1·L–1 (Table 1). The same model predicts the cellular Acetyl-CoA 
production flux at 1.44 mmol·min–1·L–1 when consuming glycerol at 2.42 mmol·min–1·L–1. 
The ethanol model predicts a cellular Acetyl-CoA production flux of 4.76 mmol·min-1·L-1 
when consuming ethanol at 7.76 mmol·min–1·L–1. This means that the percentage of sub-
strate that undergoes carbon transformation into two carbon atoms of Acetyl-CoA is 36, 
40 and 61% for glucose, glycerol and ethanol, respectively. The most efficient substrate in 
terms of carbon uptake (C1 moles) at the experimentally observed uptake rate is glucose 
(21.46 mmol·min-1·L–1) followed by ethanol (15.52 mmol·min–1·L–1) and glycerol (7.27 
mmol·min–1·L–1). 
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Table 1. Some simulated flux rates for different substrates. 

Experimental 
Data 

Substrate  
Concentration 

mmol·L–1 

Substrate  
Uptake 

mmol·min-1·L–1 

Single  
Carbon (C1)  

Uptake 
mmol·min-1·L–1 

Krebs 
Cycle  
Flux 

mmol·min–1·L–1 

ACL 
EC 2.3.3.8  

Flux 
mmol·min–1·L–1 

Specific 
Growth Rate μ 

h–1  

Cui et.al. 2018 
[32] 

Glucose,  
up to 50 

3.58 21.46 2.43 3.87 0.051 

This study  
Glycerol,  
up to 130 

2.42 7.27 0.90 1.44 0.023 

This study 
Ethanol,  
up to 32 

7.76 15.52 3.00 4.76 0.046 

2.3. Medium-Scale Stoichiometric Model of DHA Production 
2.3.1. Validation of the Model 

A medium-scale stoichiometric, central, carbon metabolism model of C. cohnii has 
been developed. The model is organized in three compartments (extracellular, cytosol and 
mitochondria) and has 398 reactions and 468 metabolites. Out of these 398 reactions, 35 
are transport reactions (metabolite uptake, shuttle transport, metabolite output). The 
model simulates the uptake of the substrates, as well as H2O, O2, H+ and ammonia, which 
is available to the C. cohnii for uptake in a bioreactor. The model is available in COBRA 
format and MS Excel format (File S4) and is available in the BioModels database in SBML 
format (Bomodels ID: MODEL2112300001). 

The biomass equation was created by using biomass composition data from Cui et 
al. [32], determining the amount of each metabolite needed to form 1 gram of biomass 
[39]. To determine the ratio between the nucleotides that make up the RNA and DNA, C. 
cohnii transcriptome [31] and Symbiodinium minutum genome [40] data were used. The unit 
used for the reaction fluxes in the model is mmol·gDW−1·h−1. 

The stoichiometric model was validated using published experimental results, as 
well as experiments performed during this study (Table 2), reaching the specific growth 
rate when consuming the substrate at the experimentally observed uptake rate.  

Table 2. Validation data. 

Reference Consumption 
mmol·gDW−1·h−1 

Specific Growth Rate  
μ 

h−1 
Cui et.al. 2018 [32] Glucose 0.65 0.051 

Cui et.al. 2018 with ETA [32] Glucose 0.61 0.047 
This study Glucose 0.59 0.044 

Taborda et al. 2021 [12] Glucose 0.37 0.017 
This study Glycerol 0.44 0.023 

Taborda et al. 2021 [12] Glycerol 0.43 0.019 
This study Ethanol 1.41 0.046 

Taborda et al. 2021 [12] Acetate 0.60 0.025 

The maximal biomass productivity with the given substrate uptake, according to val-
idation data (Table 2), was determined by maximizing biomass production in the stoichi-
ometric model to demonstrate that, in most cases, the μmax of the model is close or higher 
than the experimentally observed μ (Figure 5), indicating that model predictions are close 
to the experimentally determined values or above them. Higher model predictions sug-
gest that the growth in the experiment did not reach the maximal rate for unspecified 
reasons. 
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Figure 5. The stoichiometric model predicted the maximal specific growth rate max comparison 
with experimentally determined at experimentally determined values of substrate consumption 
(Table 2). 

2.3.2. Validation of Steady-State Fluxes of the Kinetic Model 
The structure of the stoichiometric model includes all reactions of the pathway-scale 

kinetic model. This enables the feasibility testing of steady-state, pathway-scale kinetic 
model fluxes within the framework of the medium-scale stoichiometric model, namely, 
the biomass production at the experimentally determined substrate consumption and in-
tracellular reaction rates of Acetyl-CoA production. This model has been validated by 
three steady-state flux datasets (File S5) of simulations mentioned in Table 1. 

The stoichiometric model could simulate the kinetic model steady-state fluxes of glu-
cose consumption, largely due to the fact that the fluxes were based on 13C flux experi-
mental data that covered all relevant branches (File S5, Sheet “Glucose”).  

In the case of glycerol, the kinetic model did not take into account the flux to the 
pentose phosphate pathway. Therefore, larger flux values for the reactions PGI, PFK and 
FBA were allowed in the stoichiometric model, and the small kinetic model values in glu-
cose and ethanol uptake were set to zero (File S5, Sheet “Glycerol”).  

The kinetic model steady-state flux set for ethanol consumption also had to be cor-
rected to enable the operation of the pentose phosphate pathway in a similar way, as in 
the case of glycerol (File S5, Sheet “Ethanol”). The transport rates of other substrates were 
set to zero. 

Steady states were reached with the accepted variability of some reactions up to 4% 
for glucose, 10% for glycerol and 3% for ethanol. This variability was introduced to com-
pensate for potential measurement errors and to meet the full balance pre-condition of 
constraint-based stoichiometric modeling. 

2.4. Model-Based Determination of DHA Production Potential 
The effectivity of carbon conversion into biomass can be analyzed in several ways. 

We looked at the biomass production rate and the efficiency of substrate carbon transfor-
mation into biomass (Table 3). The experimentally observed biomass production rate μ is 
the highest in the case of glucose and the lowest in the case of glycerol. However, glycerol 
shows the highest efficiency of substrate transformation into biomass (57.4 
mmolC1·gDW−1), while glucose is the least efficient (76.5 mmol mmolC1·gDW−1). The op-
timization of the stoichiometric model, without taking into account the fluxes simulated 
by the kinetic model, reveals that any substrate of interest can be transformed into biomass 
with a ratio of about 42 mmolC1·gDW−1. This means that the experimentally observed 
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transformation rate of glycerol is the closest to the theoretical value using 35% more car-
bon than predicted by the model in an optimal case. In the case of glucose and ethanol, 
that is 80% and 45%, respectively. 

Table 3. The efficiency of substrate transformation into biomass for experimentally observed and 
optimized data. 

Experimental Data  
Substrate  
Uptake 

mmol·gDW−1·h−1 

Carbon (C1) 
Uptake 

mmol·gDW−1·h−1 

Experimental Optimized by Stoichiometric 
Modeling 

μ 
h−1 

Carbon C1 per 
gDW Biomass 
mmol·gDW−1 

μmax 
h−1 

Carbon C1 per 
gDW Biomass  
mmol·gDW−1 

Cui et.al. 2018 [32]  
Glucose 0.65 

(=3.58 mmol·min-1·L−1) 
3.9 0.051 76.5 0.092 42.4 

This study  
Glycerol 0.44 

(=2.42 mmol·min-1·L−1) 
1.32 0.023 57.4 0.031 42.6 

This study 
Ethanol 1.41 

(=7.76 mmol·min-1·L−1) 
2.82 0.046 61.3 0.067 42.1 

The DHA production potential was determined by the stoichiometric model without 
taking into account the kinetic model fluxes for different biomass production intensities 
(Figure 6). The calculations were carried out by the stoichiometric model at experimen-
tally observed substrate uptake rates of glucose, glycerol and ethanol. The maximal spe-
cific growth rate (μmax) was determined by maximizing biomass function, assuming that 
all substrates will be targeted at biomass production with DHA as a part of the biomass. 
Knowing that the DHA fraction in the experimentally produced biomass was variable 
(Figure 3), we introduced a DHA production reaction to simulate DHA overproduction, 
which increases in cases when 80% or 40% of the maximal biomass produced. Taking into 
account equal substrate transformation ratios into biomass, calculated numbers are equal 
for all substrates. 

 
Figure 6. Estimation of DHA production potential by the constraint-based stoichiometric model at 
different biomass production intensities: 100% (=μmax), 80% and 40%. 

The stoichiometric model simulations indicate that DHA production potential in-
creases when biomass production decreases. In the case of the maximal biomass produc-
tion, the percentage of substrate carbon that forms DHA grows from 27% at the maximal 
biomass production rate up to 70% in the case of 40% of maximal biomass production rate. 
The percentage of DHA in total fatty acids (TFA) increases from 39% to 81%, respectively. 
These calculations are based on the assumption that all metabolic resources that do not 
form biomass are directed by the available metabolic reactions towards the production of 
DHA. 
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3. Discussion 
3.1. Combining Kinetic and Stoichiometric Models 

In the present study, we created kinetic and stoichiometric models of C. cohnii-central 
metabolism that are validated by 13C fluxomic data [32]. The knowledge of the involve-
ment of central metabolism reactions in the transformation of substrates to DHA is ex-
tended by the interaction of pathway-scale kinetic and constraint-based stoichiometric 
models to a larger scale, thus enabling a narrower scope of feasible metabolic scenarios.  

Kinetic models usually cover a pathway-scale number of reactions [41]. Kinetic mod-
els contain a mathematical description of the kinetics of reaction mechanisms such as the 
Michaelis–Menten reaction, mass action and others. This type of model provides an op-
portunity to quantitatively simulate the values of metabolite concentrations and reaction 
fluxes. In kinetic modeling, it is optimistically assumed that the necessary energy, redox 
cofactor and some other metabolites are supplied by the remaining metabolism in some 
way [19]. 

In contrast to kinetic models, stoichiometric models require fewer details for individ-
ual reactions and, as a consequence, can be applied at the genome-scale [42,43]. The stoi-
chiometric approach can be used for the analysis of feasible steady states, provided that 
there is information about the reaction stoichiometry. The advantage of stoichiometric 
models is their ability to find out whether all of the involved metabolites have precursors 
supplied for their production [19]. In the present work, we combined both modeling ap-
proaches [44]. 

The combination of both models enabled the feasibility of internal fluxes, which were 
calculated by the kinetic models of ethanol and glycerol, to be tested; they have never been 
measured experimentally. The test resulted in a rejection of some steady-state fluxes that 
were suggested by the kinetic model in the case of glycerol and ethanol, showing the use-
fulness of the iterative application of both model types. Steady-state fluxes that were ki-
netically feasible in the ODE-based model became unfeasible in the constraint-based stoi-
chiometric model, where all biomass compounds had to be produced in a specific propor-
tion. Thus, the stoichiometric model demonstrated that some fluxes simulated by the ki-
netic model disabled the production of all necessary metabolites in parallel with the pro-
duction of biomass at the experimentally observed specific growth rate, suggesting the 
necessity for additional experiments to determine feasible flux distributions.  

3.2. Analysis of Substrate-Specific Functioning of Central Metabolism by Experimental and 
Modeling Analysis 

Our aim here was to employ the model simulation of central metabolism for a better 
understanding of the conversion of several substrates into the target product: DHA. In 
particular, we were interested in glycerol as a potential renewable for the synthesis of 
PUFAs, still poorly studied as a substrate for growth and DHA production in C. cohnii. 
We used both model types to establish 1) if the enzymatic capacity ensured the sufficient 
supply kinetics of Acetyl-CoA, the key central metabolite needed for DHA production, 
and 2) if there was the required number of metabolic precursors available for the building 
blocks of DHA. So far, this kind of approach has not been applied in the analysis of C. 
cohnii or any other dinoflagellates. 

Both kinetic and stoichiometric models were used to simulate the observed kinetics 
for the uptake of glucose, ethanol and glycerol, with a particular focus on the early stages 
of culture growth. Kinetic and stoichiometric models were able to simulate the experi-
mental observations (Table 2).  

At the level of the pathway-scale kinetic model, it was found that the functioning of 
the model with ethanol as the substrate was only possible if the PDH reaction did not 
operate (Vmax of PDH is close to zero). The necessity to block the reaction in the case of 
ethanol is determined by the fact that, in contrast to the glucose and glycerol pathways, 
the ethanol catabolic pathway produces mitochondrial Acetyl-CoA, and all pyruvate 
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pools should be redirected for the regeneration of mitochondrial oxaloacetate to provide 
the acceptor for the CS reaction. There are several possible mechanisms for the heavy re-
duction in PDH flux: 1) the allosteric inhibition of PDH by Acetyl-CoA [45]; 2) the covalent 
modification by phosphorylation with ATP [46], and 3) the regulation of PDH expression 
at the transcriptional level. PDH allosteric inhibition by Acetyl-CoA seems most likely 
since it is supported by the kinetic model, showing higher concentrations of mitochondrial 
Acetyl-CoA in the case of ethanol consumption (2.1 × 10−3 mmol·L−1) than when consuming 
glucose (4.5 × 10−4 mmol·L−1) or glycerol (1.8 × 10−3 mmol·L−1). 

We found that with glycerol, the cells grew slower than with glucose yet tended to 
accumulate more PUFAs, than with both other substrates (Figure 3). This is supported by 
the experimental observations that the carbon from glycerol is more efficiently trans-
formed into biomass (Table 3). Potentially, another reason why glycerol is advantageous 
for DHA accumulation might be related to the storage of DHA in the cells. Most of the 
DHA in C. cohnii is incorporated in triacylglycerols [9]. Therefore, as DHA is being pro-
duced, part of the available glycerol could be directly utilized for triacylglycerol synthesis, 
removing the free DHA, and thus stimulating its synthesis. When growing on glucose or 
ethanol, the supply of glycerol for triacylglycerol synthesis requires additional metabolic 
reactions and might represent a bottleneck. 

Crude glycerol, derived from biodiesel production, contains inhibitory substances, 
and its utilization for food-grade DHA production poses problems, as previously ana-
lyzed by Sijtsma et al. [9]. However, an unexpected observation was recently reported by 
Taborda et al. [12]. These authors found that crude glycerol was superior to pure glycerol 
with respect to DHA yields and productivity and was comparable to glucose. This might 
have far-reaching practical applications, yet still requires a more detailed study.  

The fact that the stoichiometric model could find ways to produce DHA equally well 
from carbon supplied by any of the analyzed substrates indicates that some details of me-
tabolism (inhibition due to substrate concentration or enzyme capacity limitations and 
other factors), which are not included in the stoichiometric model, would make the sub-
strate conversion rate closer to the experimentally observed conversion rates. Unfortu-
nately, a genome-scale, constraint-based stoichiometric model cannot be developed at this 
moment as no genome sequence of C. cohnii has been published. 

The assumption that all free metabolic resources are targeted towards DHA produc-
tion is introduced for the estimation of the production potential of DHA. Metabolic engi-
neering [47] is needed to find out what fraction of the potential determined by the model 
is reachable in praxis. 

The combination of ODE-based, pathway-scale kinetic modeling and constraint-
based stoichiometric modeling with 13C data enables a more detailed insight into the flux 
distribution within the organism. The combined application of different types of models 
enables the rejection of many unfeasible hypotheses that may arise due to the limited pre-
dictivity of each separate modeling type. Both models and their combinations can be used 
to explore a wider range of problems in metabolism and its optimization. 

4. Materials and Methods 
To explore the potential of DHA production from glycerol, glucose and ethanol, the 

authors combined literature data, their own experimental results, the pathway-scale ki-
netic model and medium-scale stoichiometric model (Figure 7). The 13C data on the DHA 
production from glucose [32] were used to parametrize the Krebs cycle of kinetic and stoi-
chiometric models. After that, the substrate consumption rates with corresponding bio-
mass production rates were used to find out the potential amount of DHA that could be 
produced from the particular substrate. Pathway-scale kinetic models contributed here 
with detailed kinetic rate equations for substrate-specific transport and metabolic reac-
tions assessing the sufficiency of the enzymatic capacity of reactions and transports. The 
medium-scale stoichiometric model takes into account the main duties of central metabo-
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lism to produce biomass with balanced reactions, leading to a full accounting of all ele-
ments of reactions to establish the availability of all molecules that apply balanced reac-
tions. The DNA production potential is estimated by the stoichiometric model by fixing 
biomass production at a reasonable level and maximizing DHA production from the se-
lected substrate.  

 
Figure 7. Information flow-to and -from pathway-scale kinetic model and central carbon metabo-
lism scale constraint-based stoichiometric model. 

4.1. Experimental Materials and Methods 
Culture maintenance and cultivations were performed on a medium with sea salts 

and yeast extract, as described previously [30]. In brief, Crypthecodinium cohnii CCMP 316 
was obtained from the National Center for Marine Algae and Microbiota, USA. It was 
cultivated on a complex medium containing 2 g L−1 yeast extract, 25 g L−1 sea salt (Sigma-
Aldrich) and various concentrations of glycerol, glucose and/or ethanol, as specified in 
the Results section. Cultivations were carried out aerobically at 25 °C in 0.5 L or 1 L Erlen-
meyer shaken flasks with 200 mL of culture on a rotary shaker at 140–180 r.p.m. The con-
centrations of glucose, ethanol and glycerol in culture media were monitored by HPLC, 
as described previously [30,48]. 

FTIR spectra of algal biomass were recorded using Vertex 70 coupled with the mi-
croplate reader HTS-XT (Bruker, Germany). Spectra were recorded in the frequency range 
of 3800–600 cm−1, with a spectral resolution of 4 cm−1, and 64 scans were coadded. Only 
spectra with absorbance within the absorption limits between 0.25 and 0.80 (where the 
concentration of a component is proportional to the intensity of the absorption band) were 
used for data analysis. The FTIR spectra were vector normalized and deconvoluted (sec-
ond derivative) for more precise evaluation of weak-intensity spectral bands and to re-
solve the overlapping components, if any [49]. Data were processed using OPUS 7.5 soft-
ware (Bruker Optics GmbH, Germany). The baseline of each spectrum was corrected by 
the rubber band method. 
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4.2. Development of a Pathway-Scale Kinetic Model 
The model was developed in COPASI (COmplex PAthway SImulator) simulation 

software [50,51] version 4.34 (Build 251). The estimation for kinetic equation parameters 
that were not found in literature or databases was conducted using built-in parameter 
estimation functionality using global stochastic optimization methods. The model-specific 
parameter estimation performance of global stochastic optimization methods imple-
mented in COPASI was tested using ConvAn software [52]. During parameter estimation, 
multiple parallel optimization runs were applied, using COPASI wrapper SpaceScanner 
[53] to select the most efficient global stochastic optimization algorithms, reducing misin-
terpretation risks of optimization results [54]. The total concentration of used amino acids 
in the reactions included in the model was limited to avoid unnecessarily high enzyme 
concentrations that would not be evolutionarily favorable. 

Model parameters were either obtained from the literature or inferred from experi-
mental data. An additional parameter Vm was added to the reactions used from [36] to 
change the Vmax of these reactions without changing the Vf to Vr ratios. Kinetic equations 
of all enzymatic reactions had overexpression coefficients k that could be used for opti-
mizing enzyme concentrations to increase Acetyl-CoA or other molecule production. Cur-
rently, all coefficients k = 1 so that the model corresponds to wild-type concentrations of 
enzymes. 

Species concentration constraints were applied in the parameter estimation task in 
COPASI. From Park et al. [55], it was implemented as a constraint that the metabolite con-
centrations in this model should not exceed 12 mmol/L, except for cellular ethanol, which 
was allowed to reach 32 mmol/L. 

The metabolic flux unit in the kinetic model is mmol·min−1·L−1 since it is frequently 
used in kinetic models, while in the stoichiometric model, the metabolic flux unit is 
mmol·gDW−1·h−1. To transition from dry-weight-related measurements to absolute weight, 
it was assumed that dry weight made up 33% of the absolute weight and the cell density 
was 1 g·mL−1. Mitochondrial volume was made to be 1% of the cytosol volume [56]. 

To determine the parameters that were dependent on enzyme concentrations, three 
sets of experimental data were used. The first set included reaction fluxes adapted from 
Cui et al. 13C metabolic flux analysis for growth on glucose. The second and third sets 
included experimentally measured glycerol and ethanol consumption rates (Section 2.1.) 
determined during this study. The experimental data of glucose consumption were not 
used in parameter estimation due to the high similarity with 13C experimental data. The 
Parameter estimation task was used in COPASI; the data sets were added as different ex-
periments.  

4.3. Development of the Constraint-Based Medium-Scale Stoichiometric Model 
A constraint-based, medium-scale stoichiometric model [57] of central carbon metab-

olism, biomass production and pathways to DHA was developed, extending the scope of 
the kinetic model. Reactions were included in the model based on the results of tran-
scriptomics [31] and on the reactions from the genome annotation of the Symbiodinium 
minutum genome, which is a phylogenetically close relative of C. cohnii. The specific 
growth rate was calculated by an exponential approximation of the growth curve. It is 
assumed that DHA production is constant during the growth period. 

The model was built and optimized using COBRA Toolbox v3.0 [58] and RAVEN 2.0 
[59] functionality. The model was visualized by Paint4Net [60], Escher [61] and IMFLer 
[62] software. 

The model was validated using the experimental data generated during this study 
and those found in the literature. 
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5. Conclusions 
Kinetic and stoichiometric modeling-based analysis demonstrates the attractiveness 

of glycerol as a substrate for DHA (main fraction of PUFA [30]) production by C. cohnii, 
along with established substrates, such as ethanol and glucose. This is proven experimen-
tally and analyzed mathematically by mechanistic models of C. cohnii metabolism. The 
promising results on the applicability of crude glycerol [12] increase the attractivity of 
glycerol even further.  

The iterative application of the pathway-scale kinetic model and constraint-based 
stoichiometric model combines the accuracy of the kinetic model of the main product-
forming pathways with the large-scale stoichiometric model’s ability to determine if the 
pathways addressed by the kinetic model could be supplied with all of the necessary mo-
lecular components. Simultaneously, biomass could be produced by the metabolic net-
work of the organism of interest. This approach is important for improving the under-
standing of metabolic network functionality and increasing the predictability and effi-
ciency of metabolic engineering efforts. 

Our experiments, in combination with modeling, supported the potential of glycerol 
as another renewable substrate of C. cohnii for the production of DHA. Despite a lower 
consumption rate and lower specific growth rate, the PUFA content and efficiency of car-
bon transformation into biomass are better with glycerol than with glucose. Therefore, the 
sustainability parameters [63] of DHA production from glycerol are expected to be better 
than in the case of glucose and ethanol. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-
cle/10.3390/md20020115/s1, File S1: Kinetic model for Acetyl-CoA production from glucose and 
glycerol by C. cohnii, File S2: Kinetic model for Acetyl-CoA production from ethanol by C. cohnii, 
File S3: Parameters of kinetic models for Acetyl-CoA production from glucose, glycerol and ethanol 
by C. cohnii, File S4: Constraint-based stoichiometric model of central metabolism of C. cohnii, File 
S5: Flux distribution of kinetic models for Acetyl-CoA production from glucose, glycerol and etha-
nol (columns A–C and F). The supplementary information includes also flux values adapted for 
stoichiometric model simulations (columns D and E). Reactions marked by yellow are reactions, 
which are set to zero in stoichiometric model. Reactions marked by green are set to default upper 
and lower bounds (1000 and −1000 respectivelly). 
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