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Abstract: The aim of the article is to describe a predicate-based logical model for the problem-
solving of robots. The proposed article deals with analyses of trends of problem-solving robotic
applications for manufacturing, especially for transportations and manipulations. Intelligent agent-
based manufacturing systems with robotic agents are observed. The intelligent cores of them are
considered from point of view of ability to propose the plans of problem-solving in the form of
strategies. The logical model of adaptive strategies planning for the intelligent robotic system is
composed in the form of predicates with a presentation of data processing on a base of set theory.
The dynamic structures of workspaces, and a possible change of goals are considered as reasons for
functional strategies adaptation.

Keywords: adaptation; problem-solving; robotics; predicates; manufacturing system

1. Introduction

Mobile robots are remarkable cases of highly developed technology and systems. The
robot community has developed a complex analysis to meet the increased demands of the
control challenges pertaining to the movement of robots. The research on mobile robots
has attracted many researchers in recent years. In practical application, very often, the
robot operating system (ROS) is used for the communication between the robot and its
control system. Different control systems are applied in Robotino. For instance, in [1,2], a
linear model predictive control is used for optimal motion control, with a great advantage
obtained in terms of global optimality and in computational load.

This paper is an extension of work originally presented in SPEEDAM 2020 [3], which
proposed an analysis of a computer-integrated system of mobile robots application for
transportation and the manipulation of goods inside manufacturing workspaces, and
connected to works of P. Mercorelli and O. Sergiyenko: the consideration of a set theory-
based dynamic model to describe problem-solving processes in the execution of mobile
robots’ paths or manipulation tasks. The description of a logical model as a key element of
the decision-making system for robotic applications was connected to works of O. Tsymbal.

Modern manufacturing systems are described by an intensive application of infor-
mation technologies on the base of computer networks, artificial intelligence, and digital
technologies, and must correspond to requirements of mobility, of fast responses to the
changing quality of products, of small sizes, specific, individual, customer, and environ-
mental demands. In the last two decades, industrial engineers and scientists have spent a
substantial amount of time and effort in researching the advanced production systems and
their influence in the global market [4,5].
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The parts of the mentioned concepts of manufacturing systems are already widely
applied in practice, and result in an essential decrease of designer time. Others are still at
the research and conceptualization stage. In any case, the core element of manufacturing
systems control is in the introduction of the manufacturing intelligence. The participation
of numerous units of equipment, including technological, transportation, and warehouse
units, as well as humans acting in workspaces, makes it possible to describe and simulate
manufacturing systems as multi-agents, as well as their origins and functioning.

Robotic systems of the transportation and manipulation types are key points of
manufacturing and other automated systems. The intelligence of robots is defined by
their ability to observe the workspaces, to analyze them, to make decisions concerning the
problems, and to execute transportation movements/manipulations to reach the proposed
goals in industrials areas. In this view, decision-making systems for robotics are important
for both theory and experiments.

The aim of this article is to propose the logical approach to the decision-making of
robots for manufacturing workspaces, added with adaptation solutions to respond to the
dynamics of industrial areas.

2. Agent-Based Systems and Role of Robots

The open architecture of multi-agent systems (MAS) has become the basic direction of
distributed artificial intelligence development. From a practical point of view, these agents
are considered as self-controlled software objects with self-estimation systems and inde-
pendent problem-solving tools for their own needs, and for other agents (by requests) [4].

The conceptual agent model consists of four components:

• perception, which is a source for information about the external world;
• effector, which is the agent’s interface to change the world or the agent’s community;
• communication system, which is the tool for information exchange between other

members of the agent’s community;
• aims, which are the list of goals for the agent’s execution.

Any manufacturing system can be considered as a sort of MAS because they consist
of various kinds of technological equipment (with/without intelligent features), possibly
including manipulation and transportation robots, and human personnel, which are united
by an automated control system. Modern manufacturing systems (which are mainly
decentralized) are typical applications of MAS. There are many benefits of such applications
for manufacturing systems: distributed processing of information, in a way which is
different from united big systems; quality increase, supplied by learning and interaction
with objects; support of system integration.

For the condition of manufacturing, the agent is an object with a certain intelligent
level, which can be considered as physical (worker, machine) or a logical object (task,
directive, order). In this way, a robot with manipulation and transportation functions looks
as an ideal manufacturing agent (MA). In [5,6], we can see presentation of such an agent.

The model of MA usually includes the library of procedures (the experience of the
system in the form of actions) [6–8], inference drive (problem-solver) [9–12], knowledge
base (more general than procedures), ana a perception processor with the possibility to
communicate with the sensors of robots [11,13]. MA concepts have found their implemen-
tations for robotic group tasks [13–17], for manufacturing problems [18–22], and also for
social and collaborative robotic problems [23–27]. The simulation component allows the
estimation of possible results for the activity of MA [13,14]. Like any computing systems,
MA includes memory and communication units [15,16]. The coordination subsystem
checks the internal functions of MA, and receives the queries for coordination from other
MA [3]. According to the general structure of manufacturing, [7] proposes the architecture
of the manufacturing system on an agent-based concept, whereas the core of the system
can be based on a number of technologies, presented in [25,26,28–37]. Decision-making
systems became an object of software development design in the works [38,39].



Mathematics 2021, 9, 3044 3 of 13

From the point of view of multi-agent manufacturing systems functioning, the in-
teraction of agents at every level is not the only key point. Another important thing is
the implementation of agents. Other important tasks are resource planning, technological
processes design, and schedules development [10,13,18]. MA can be implemented in the
forms of virtual (as an automated control system function set) or physical (as industrial or
transport robot) agents, able to analyze the constructive and technological specifications
of manufacturing for specific workplaces of the flexible manufacturing system (FMS), to
monitor the production process, to check-up the manufacturing technology acceptance,
to respond to predicted or unpredicted manufacturing situations, and to supply the se-
lected functions of operative manufacturing control [10,11]. The paper is organized in
the following way: Part 3 is dedicated to the formal description of strategies planning;
Part 4 describes the decision-making model, based on predicates; in Part 5, the adaptation
technique of the assembling planning is shown; Part 6 describes practical implementations.
The paper closes with a discussion of the results.

3. Formal Description of Strategies Planning

From an analysis of the manufacturing agent conception, we can see the need to
describe the creation and activity of the problem-solving component. Such a component
must include: the set of operative procedures (actions) with common knowledge support;
an inference engine as the core of problem-solving; and a dynamic database with informa-
tion on the surrounding workspace of the manufacturing system [8]. The actions of the
manufacturing robotic agent can be described in the form of procedures, which allow the
transformation of states of the robotic platform and of the external workspace (WS) [9].

The robotic agent (RA) can be described by: number of sets, X,D,S; of platform states;
of robotic system decisions; and of WS.

Correspondently, xi∈X,di∈D,si∈S can be introduced as atoms for the model, which de-
scribes robotic agents and their WS. We can also introduce standard operations ¬,∧,∨,→,↔
and well-formed formulas on the base of them:

¬x,x∧y,x∨y,x→y,x↔y

To describe the theory, sets X,D,S, the functions, and the predicates are introduced.
Transition of states for RA: xi=f(x0,. . . ,xi−1), for i-th element of set X.
Transition of states for WS: si=ψ(s0,. . . ,si−1).
To define the logics of the problem-solving system, the set of predicates (pt) is introduced:

pt(xi), pt(si), pt(di),pt(xi, si), pt(xi, di), pt(di, si), pt(xi, di, si)

These predicates define:

pr(xi,si)⊂pt—states of the RA in the workspace (WS),
ps(xi,si)⊂pt—states of the WS in the system of the RA,
pa(xi,si)⊂pt—actions of the RA inside the WS,
pg(pr,ps)⊂pt—goals of the RA inside the WS.

Every goal of the RA is formulated as a new (or existing) state of the RA or WS:

pg(pr,ps)←(pr(xi,si)∨ps(xi,si))

The database of the RA is combined from:

pr(xi),pr(xi,si),ps(si),ps(xi,si)

The knowledge base of the RA includes possible action pa(xi,si)s of the RA in the WS.
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Predicate pa(xi,si) is a strategy, which solves goal (pr(xi,si),ps(xi,si)), if there exists
such a conjunction of RA actions pa(xi,si) (with n—total number of actions), which supplies
pg(pr(xi,si), ps(xi,si)):

pg(pr(xi, si), ps(xi, si))←pa0(xi, si)∧pa1(xi, si)∧. . .∧pan−1(xi,si),or
pg(pr(xi, si), ps(xi, si))←∧n−1

i=0 pai(xi, si),
(1)

which defines, that for every robotic platform state xi and state of workspace si, the
goal state pr(xi,si) of the robotic agent or the state ps(xi,si) of the workspace can be
reached by n-number of actions (upper indexes) and besides: ∃f,f∈F:xi=fi(xi−1,si−1),
∃ψ,ψ∈Ψ:xi=ψi(xi−1,si−1), with F and Ψ—general sets of RA and WS transitions.

Therefore, pa(xi,si)=tr‖ fi+ψi ‖ and presents trace of norm.
The problem-solving process is the sequence of m-alternatives to reach the goals of

the RA:
pg0(pr,ps)←pg0

0(pr0,ps0,pa0)∧pg0
1(pr1,ps1,pa1)∧. . .

∧pg0
n−1(prn−1,psn−1,pan−1)=∧n−1

i=0 pg0
i (pri,psi,pai)

pgm(pr,ps)←pgm
0 (pr0,ps0,pa0)∧pgm

1 (pr1,ps1,pa1)∧. . .
∧pgm

n−1(prn−1,psn−1,pan−1)=∧n−1
i=0 pgm

i (pri,psi,pai).

(2)

As a result, the global (final) goal is defined as follows:

pgtotal(pr, ps)← ∨m−1
j=0 ∧

n−1
i=0 pgm

i (pri, psi, pai). (3)

Every RA starts planning from the development of the initial plan of actions in the
WS. It includes the next transitions:

pr(x1,s1)←pa0
0(pr(x0,s0)∨ps(x0,s0))

pr(x2,s2)←pa0
1(pr(x1,s1)∨ps(x1,s1))

pr(xn=Y,sn)←pa0
n−1(pr(xn−1,sn−1)∨ps(xn−1,sn−1)).

(4)

Such transitions can be correct for a static WS, but become practically wrong if the WS
is dynamic, with an impossibility to reach the desired state:

pr(xi, si) 6= pa0
i (pr(xi−1, si−1) ∨ ps(xi−1, si−1)). (5)

In this case, the strategy must be modified (signed with *):

pr(xi,si)←pa*
i (pr(xi−1,si−1)∨ps(xi−1,si−1)),

pr(xi+1,si+1)←pa*
i+1(pr(xi,si)∨ps(xi,si)),

(6)

with the general result for m* (modified) strategy:

pgm∗(pr, ps)← pgm∗
0 (pr0, ps0, pa0) ∧ pgm∗

1 (pr1, ps1, pa1) ∧ . . .
∧pgm∗

n−1(prn−1, psn−1, pan−1) = ∧n−1
i=0 pgm∗

i (pri, psi, pai).
(7)

4. Model of Robotic System Planning on Base of Predicates

Let’s define RA states as set X=
{

X0,X1,. . . ,Xn−1}. In the process of the execution of
the decision, the automated control system of the RA provides transformation of the initial
state state

(
x0

0,x0
1,x0

2,. . . ,x0
n−1
)

into a specific goal state state
(
xm

0 ,xm
1 ,xm

2 ,. . . ,xm
n−1
)
, with upper

indexes for states, and lower indexes for different objects of the RA.
If the system (the RA and the WS around it) at the initial time is a set of argu-

ments x0
0,. . . ,x0

n−1 and is characterized by a state state
(
x0

0,x0
1,x0

2,. . . ,x0
n−1
)
, then consid-

ering the discrete process of planning strategies, which consists of individual actions
action0,. . . , actionk, we can indicate that the transition from one discrete state to another is
a certain relationship between objects:

state
(

x1
0, x1

1, . . . , x1
n−1

)
← action0

(
state

(
x0

0, x0
1, . . . , x0

n−1

))
. (8)
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Here, state is a relationship (predicate) that characterizes the state of the system as a whole,
and action (state) means the action of transition from one state to another.

All activities related to the transitions from one state of the system to another (by
executing a list of solutions) are sets of predicates:

state
(
X1)←action0

(
state

(
X0)),

state
(
X2)←action1

(
state

(
X1)),

state
(
Xn−1=Y

)
←actionn−2

(
state

(
Xn−2)) .

(9)

Thus, the goal of a strategy planning system is to find the appropriate number of
actioni that would satisfy the statei conditions of the system. The choice of the actioni
action to convert the state(Xi) to state state(Xi+1) is made to ensure compatibility of the
action arguments and the corresponding state Xi+1, which, in practice, will mean the
possibility of implementing the state (local goal) Xi+1 by the performing of action:

Xi+1←action
(

Xi
)

,

with Xi+1 as a possible result of action action for the condition of state Xi.
The predicate scheme is adaptive if the components of the antecedent (right part of

the predicate expression) and the result of the scheme (consequent) change depending on
changes in the state of the robotic system (RS) and the workspace (WS):

state(Y)← action(S0), action(S1), . . . , action(Sn−1) , (10)

Here, Y—final goal of RA; S0, S1, . . . Sn−1—the sequential states of the control system.
However, in case of the dynamics of the WS (world of robot), the state of the robot

can also be transformed (such changes are not obligatory, but probable), and there are
possible situations when, for some, state state(Xi−1) action actioni−1

(
state

(
Xi−1

))
will

not transform the system to state state(Xi), thus:

state
(

Xi
)
6=actioni−1

(
state

(
Xi−1

))
. (11)

For this case, the initial solution is in the determination of predicate action, which
satisfies the condition. However, the actual number of real actions is limited (unlike the

number of states), and the solution can be found in search of the predicate vector
→

action,
which satisfies the goal of system.

Therefore, if there is set X of the world’s objects, and X0 is a set of their initial states,
then to supply goal state X, it is needed to compose a plan consisting of sequences of
actions, expressed by predicate action, and with states of the system—by predicate state:

state
(
X0),

state
(
X1)← action0

(
state

(
X0)),

state(Y)← actionn−1
(
state

(
Xn−1)). (12)

If, at some step i, the state Xi is unobtainable, that state
(

Xi
)
6=actioni−1

(
state

(
Xi−1

))
,

then the adaptive strategies planning system must generate the new order of action predi-

cates
→

action, that will satisfy the changes of the WS:

state
(

Xi1
)
← action1

n−1

(
state

(
Xi−1

))
, state(Y)← actionm−1

n−1

(
state

(
Xn−1

))
. (13)

A similar situation is when the decision-making system (DMS) has information that
the goal of system is changed. It means that the goal state state(Y) will be changed to some
state(Yi). Here, two variants are possible:
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(a) the information on the change of the goal comes at the moment when the system

is in the state i—state(xi), and it is possible to generate plan
→

action to transit from xi to
state yi;

(b) the information on the change of the goal comes at the moment when the system

is in the state i—state(xi), but the generation of plan
→

action is possible only from state
state(xi−k), where k≤i, so to generate the plan, the system must return to previous states,
possibly up to state state(x0).

Again, it will need the generation of a new order of predicate actions.
According to definition, the plan of decision will consist of sets {action0, action1, . . . ,

actionn}, and the entire plan (of all the plans), developed during the problem-solving. The
adapted decision plan will be the expression:

planadaptive(Y)←action0(state
(
X0),

action1
(
state

(
X1),. . . ,actionn−1

(
state

(
Xn−1)))) (14)

Such a plan is in the final decision of the adaptive DMS.
The developed plan will be changed up to the execution of the last subgoal of planned

order, and the plan’s adaptation can be considered as its essential specification.
Also, note the need to evaluate the actions proposed by the DMS in a sequence of

predicates.
As is known, a predicate has verity value. In classics, it is a mapping of n arguments

to verity value. Though the fuzzy sets theory directs to the possible introduction of a fuzzy
predicate term [10,11], the classic predicate has only two values: true and false. At this
point, the DMS transition from one state state(Xi−1) to state state(Xi) also has values of
true or false, so the system transfers to a new state or does not. Probably, it is difficult to
predict the state of the whole system even in ideal cases, and more to give the simple system
evaluation in binary values of true or false. Rather, the verity or falsity will describe the
particular system parameters. As to predicated theory, the robot’s world can be described
as a relation set between the world’s objects, for instance, is_a—membership to the object’s
type, is_at—one object positioning near the other, stands—object’s being in some state, etc.

5. Planning for Assembling System and Its Adaptation

The flexible integrated assembling system (FIAS) contains assembling automatic (sol-
dering) machines, assembling-transport robots, storehouses, defining set qi∈Eq, i=0. . . n−1.
The aim of FIAS is the execution of assembling technological process (modules) of radio-
electronic devices, in particular, for the printed circuit board M.

Here M=< B,Ch,T,R,C,L,. . . >, where B—the printed circuit board, Ch—microchips,
T—semiconductor devices, R—resistors, C—capacitors, L—inductances.

The configuration of the device is determined by its construction design MG, which
defines the purpose location of elements at the printed circuit board. Actually, the module
(board) is a rectangular matrix, filled by elements of set M (shown at Figure 1).

Figure 1. Workspace for manipulation task.
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Initially, M0 is zero matrix. FIAS generates decisions dk∈D,k=0,. . .,l−1, which are imple-

mented by actions (technological transitions): ak∈A,k=0,. . .,l−1. Decision
→
D for the order of

assembling operations execution is a sequence of operations ai∈A,i=0. . .l−1, which are in the
settings to board B of some elements from sets Ch, T, R, C, L . . . , for example:

→
D={Ch0, Ch1,T0,T1,R0,Ch3,C0,L0,. . . }

To reach the goal state MG, there are transformations Mi= fi(Eq, Di, Mi−1):

M0→M1→M2→. . .→MG

The filling of M is defined by the order of assembling operations. Such an order is set
by design project MG, technological rules Tr, and the abilities of technological equipment

E. Therefore,
→
D=g

(
MG, Tr, E

)
. The purpose of the search is to find such a sequence of

transitions f1,. . . ,fn, that provides transformation from initial state M0 to goal MG.
The strategies planning process is an act of constant comparison of the system’s goal

to the current state and current possibilities. The strategies planning process according
to the discontinuity of operations also must be discrete, be correspondent to the goal’s
achievement, and implement the particular technological operations.

In general, the strategies planning process is a mapping of such a view:

F : D × X→ Y , (15)

that is, strategies planning process means an application of decision set D = {D0, D1, . . . ,Dn}
to the set X0, . . . , Xn−1, that formally is considered as a Cartesian product of sets D×X→Y,
where Y is the set which defines ACS at the moment of goal achievement.

The transition of the robotic system (RS) from its initial state to goal is a sequence of
the state’s transformations, and has the view:

x0
0

x0
1

. . .
x0

n0

⇒


x1
0

x1
1

. . .
x1

n1

⇒


x2
0

x2
1

. . .
x2

n2

⇒ . . .⇒


xn

0
xn

1
. . .
xn

nn

 ≡


y0
y1
. . .
ynn

 (16)

It corresponds to a real situation, when, in the process of generation and execution of
the solution, there is an evolution of RS states.

However, the mentioned sequence of changes describes not only the problem-solving
process, but also the dynamics of the system’s changes in time. On strategies planning, the
system’s state changes in active mode, so, at every step, the strategies planning may change
the characteristics of the RS. To consider the sequence of actions on strategies planning,

there is need to define the function (vector) of problem-solving
→
D = {D0,D1,. . . ,Dn−1}.

Therefore, the application of decision Di for every step of ACS functioning leads to a
transformation of vector column Xj

i →Xj
i+1 of RS states.

x0
0

x0
1

. . .
x0

n0

*D0⇒


x1

0
x1

1
. . .
x1

n1

*D1⇒. . .


xn−1

0
xn−1

1
. . .

xn−1
nn−1

*Dn−1⇒


xn

0
xn

1
. . .
xn

nn

≡


y0
y1
. . .
ynn

 (17)

Note, that the case of adaptive strategies planning needs to take into account the effect
of “third side”, for example, of external world objects or rivals, which affects (positively
or negatively) the strategies planning process. From one side, the effect of the external
workspace may be direct, and, to take into account its existence and effect on the strategies
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planning process, we need to introduce the additional factor S of external WS states,
containing the objects’ set Si=

{
si

0, si
1, . . . ,si

m
}

, with index i for discrete states of external WS:


x0

0
x0

1
. . .
x0

n0

 ∗


s1
0

s1
1

. . .
s1

m0

 ∗ D0 ⇒ . . .


xn−1

0
xn−1

1
. . .

xn−1
nn−1

 ∗


sn−1
0

sn−1
1
. . .

sn−1
mm

 ∗ Dn−1 ⇒


xn

0
xn

1
. . .
xn

nn

 ≡


y0
y1
. . .
ynn

 (18)

The other way is in the introduction of functional dependence for particular acts of
strategies planning of workspace’s states:

F : D(S)× X → Y, (19)

and, correspondingly:


x0

0
x0

1
. . .
x0

n0

 ∗ D0




s1
0

s1
1

. . .
s1

m0


⇒ . . .


xn−1

0
xn−1

1
. . .

xn−1
nn−1

 ∗ Dn−1




sn−1
0

sn−1
1
. . .

sn−1
mm


⇒


x0

n
x1

n
. . .
xnn

n

 ≡


y0
y1
. . .
ynn

 (20)

Therefore, Di, as the strategies planning act, depends on the state of external workspace objects.
The difference of both the ways is not very expressive, but the explanation can be

inequal. In the first case, the strategies planning system directly interacts with WS, and
such an interaction leads to changes on RTS states, and, therefore, the act of strategies
planning relates to the system’s state, affected by the WS. For the second case, the planning
act depends on the WS state, and must take into account its effect during the definition
of the decision’s procedures (strategies), and the decision executor transforms the state of
RTS being WS-dependent.

Therefore, the ACS goal at the stage of strategies planning for the given task is in

determination of ordered set (vector)
→
D ⊂ D, as a set of problem-solving acts, implement-

ing the transition of the robot’s ACS from initial state X0 to the goal Y as to expression
F : D × X→ Y.

The importance of adaptive problem-solving arises in the case of essential changes
on the conditions of decision implementation. For cases of the robot’s static workspace,
the goal Y, as a state of RTS, is reached by the application of the possible action’s set
→
D = {D0,D1,. . . ,Dn−1}, which transfers the systems from initial state X0 to the goal Xn−1 =

Y. The set of selected actions
→
D is considered as a decision plan.

For a static WS, an initial decision plan
→
D =

{
D0

0,D0
1,. . . ,D0

n−1
}

is developed, where
the particular decision acts (strategies) are directly connected, and the application of local
problem-solving act Di to the current state Xi will transfer the system to the state Xi+1,
which is, correspondingly, the goal for the decision act Di. In its turn, the state Xi+1 is initial
for the new state Di+1, which will transfer the system from state Xi+1 to Xi+2, etc.

In the case of a WS dynamic state, the problem-solving system application of decision
acts Di can transfer the system to state Xi+1, which can be insufficient to implement action
Di+1, and will acquire the additional decision acts D′i+1, D′i+1, etc. Therefore, the changes
of WS will lead to an indetermination of possible problem-solving tools.

6. Practical Implementations

Proposed mathematical models are used as a basis for development of decision-
making systems for mobile and manipulation robots.

Initially implemented with Prolog language, the decision-making system (DMS),
based on principles of proposed models, was added by graphical simulation procedures,
and translated to C++/MFC. It had view of a classic STRIPS-like system, which describes
the robotic workspace (such as for a transportation robot), consisting of rooms with boxes
inside, and connected by opening/closing doors. The user’s interface allows the selection
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of the agent of action (robot or boxes), the type of action (go/push (for boxes); open/close
(for doors)), and, in this way, to set the task (goal) for the system. According to the
formulated goal (if formulated correctly), the DMS finds the action scheme which satisfies
the goal, automatically sets subgoals, and reaches them. Structurally, the DMS consists of a
decision-maker procedure and action scheme procedures descriptions.

The decision-making procedure includes the stages:

- selection of the action scheme, compatible to the goal (subgoal);
- satisfaction of pre-conditions for the selected action scheme, possibly with recursive

execution of subgoals;
- execution of post-conditions (for lists of deleted and added facts).

Correspondingly, every action scheme includes the parts of the action result, and of
precondition and post-condition facts lists. Implementation of the DMS is shown in Figure 2.

Figure 2. Decision-making system implementation.

This DMS deals with elements of sets, mentioned in Sections 3 and 4 of this article.
Here, X includes the positions and states of the robot (such as is_at(robot, door45, now); or
is_with(robot, box1, now)), S contains states of WS (such as stands(door12, closed, now);
or is_in(box1, room1. now)), whereas D consists of a list of actions: “go_to”;“open_door”;
“take_box”; “push_box”; etc.

Later implementations of the DMS, based on the predicate’s models, were included to
projects with the NXT MindStorms mobile robot with a visual-guided control system, and,
currently, with the Festo Robotino (version 2). These projects consider the predicate-based
DMS as the upper level of decision making to plan actions within distributed workspaces,
or for manipulations (if robots are equipped with manipulators), whereas lower decision-
making levels are mostly based on path-optimized methods to plan movements within
the discrete workspace of a particular work cell (e.g., as shown in Figure 3 for the Festo
Robotino Robot).

The Festo Robotino is controlled by a two-level RPC (remote procedure call) protocol,
which allows a program running on one computer to access the functions (procedures) of a
program running on another computer.

To test the developed decision-making models, there is created a program to control
the movements of the Festo Robotino. In this program, the task of the robot is set in the form
of the final (target) robot position in 2D-space, for example, P (x, y). The possibility to reach
the target position is analyzed, taking into account the information about the occupied and
free areas of the robotic workspace provided by the visual monitoring system, implemented
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using a set of web-cameras. The check of the robot’s position is provided by global cameras
mounted above the workspace, and a local camera on board with the robot.

Figure 3. Example of discrete workspace for the Festo Robotino.

In a command mode, the developed program provides a number of modes, including
determination of the robot’s current position, a stop command, a setting of a target point, a
setting of vector of long-distance movement, and opening and closing the robot’s gripper.

In strategy planning mode, the user can set tasks for the robot. In particular, the next
options can be specified: action agent–robot; current action, for example, “take object” or
“take”; subject (or subjects) of action, such as “instrument”.

DMS in this program is provided in the manner described in Section 3 of the article.
The generation of the robot’s route is supported by analyses of the objects and obstacles
allocation in the robotic workspace with computer vision methods. After the decision is
made, it is implemented by the control system of the Robotino robot.

The developed software allows the consideration of the robot as a multi-agent system,
which includes: motion agent (robot motion control subsystem); vision agent (computer
vision system robot); sensory agent (implemented by the sensor system of the mobile robot
and information processing means); agent navigation (associated with the robot’s motion
control system and computer vision system); strategy planning agent.

7. Discussion

Therefore, the proposed article describes the formalization of strategies planning for
the problem-solving component of a robotic control system. Such formalization includes
the setting of a theory basis, the definition of predicates to describe the workspace, and the
states, actions, and goals for the robotic system. Here, goals are reached as conjunctions of
actions, with recursive definitions as sub-goals. The selection of the sequence of actions
to reach the desired goal is defined as strategy, selected from several alternative plans.
Such a definition makes it possible to implement a decision-making system in the form
of an automatic problem-solver, efficient for closed workspaces or areas with advanced
monitoring. This set of strategies can be considered as a knowledge base for particular
robots or groups of robots, acting as manufacturing agents.

From the formal description of problem solving, the article shifts to the implemen-
tation of Prolog-similar predicate notation (Section 4), while also supporting the idea of
a decision-making engine based on logics. The dynamics of the robotic workspace can
lead to the re-formalization of strategies, which is also discussed as a requirement for plan
modification. The proposed formalization of decision-making can be applied for trans-
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portation tasks of mobile robots, and for manipulations (Section 5 contains an example of
the assembling system).

8. Conclusions

Action planning for robotic systems can be introduced into transportation and manip-
ulation problems, and applied for the solution of manufacturing tasks [18–21], and also
for social and collaboration tasks of robots [23,25,26,30]. For transportation problems in
static workspaces, a solution can be effectively reached by computation methods. But, if
the system has knowledge how to solve the problem, AI-methods become more effective,
especially with the application of neural networks and genetic algorithms. More complex
transportation problems appear for 3D systems of the warehouse type with vertical shelves,
or for container terminals for seaports. However, with a different scale, the latter tasks look
very similar to the 3D problems of robotic manipulators, especially if they make actions
in a narrow space of obstacles [18,39]. Here, the knowledge of the system becomes more
critical, and helps to solve the problems.

However, for conditions of dynamic space, the situation is more complicated. The motion
of other objects (equipment, robots, vehicles, humans) can easily stop the execution of the best
calculated plan (or strategy—in the terms of the proposed paper). In this case, the system
must be adaptive to solve its problems, or come back to previous steps of the solution, to
previous key points, or even to starting points [11,12]. In this case, robots, like humans, must
be more logically intelligent (with experience in a greater number of operator’s schemes), while
combining computations, AI-methods, and group methods [13–16]. Possibly, in this way, we
can find the combined solution for robots which aim to be intelligent.

In future works, the authors will try to expand the proposed model with the consider-
ation of uncertain factors of robotic workspaces, with more detailed descriptions of robotic
manipulations, and by modelling the group work of robots.
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