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A GEOMETRIC PROCEDURE FOR
ROBUST DECOUPLING CONTROL OF
CONTACT FORCES IN ROBOTIC MANIPULATION

Paolo Mercorelli and Domenico Prattichizzo

This paper deals with the problem of controlling contact forces in robotic manipulators
with general kinematics. The main focus is on control of grasping contact forces exerted
on the manipulated object. A visco–elastic model for contacts is adopted. The robustness
of the decoupling controller with respect to the uncertainties affecting system parameters
is investigated. Sufficient conditions for the invariance of decoupling action under pertur-
bations on the contact stiffness and damping parameters are provided. These conditions
are meaningful for several classes of manipulation systems with general kinematics.

Keywords: geometric approach, robustness, manipulators, elastic contacts

AMS Subject Classification: 93D09, 19L64, 70Q05, 14L24,

1. INTRODUCTION

This paper deals with the problem of controlling contact forces in robotic manipula-
tors with general kinematics. Manipulation systems with general kinematics, are a
class of mechanisms including non–conventional manipulators such as, for example,
multiple fingers in a robot hand, multiple arms in cooperating tasks, robots interact-
ing with the object by using their inner links and so on [11, 12]. Contact elasticity
cannot be neglected in advanced robotics. This occurs in industrial applications
whenever it is necessary to assemble and manipulate non–rigid (rubber or plastic)
parts. In medical applications, like micro manipulation of tissues in surgery or in
laparoscopy, it could be necessary to squeeze the tissue part of the patient’s organ
in order to exert a cutting action (see Figure 1).

Moreover, modelling contact elasticity is mandatory not only for deformable ma-
nipulated parts but also for soft fingertips as those in [1]. For these reasons a
visco–elastic model for contacts is considered in this paper. The main focus is on
the control of grasping (or squeezing) contact forces exerted on the object.

Actually, a simultaneous control of contact forces and object motions is needed
during manipulation. Furthermore, in many advanced manipulation tasks, the de-
coupling control of contact forces with respect to the object motion is a basic re-
quirement of the control design. As an example, consider the manipulation system
of Figure 1 and model the compliant contacts through visco–elastic lumped param-
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eters as depicted in Figure 2 a). One can image to have to grasp or to squeeze the
tissue without moving it in order to have precise incision.

Fig. 1. Micro manipulation of internal tissues in surgery or laparoscopy.

Interests in control by using geometric approach are recently increased in theoret-
ical aspects and applications as well, see for instance [3], [7], [10], [13]. In particular
on problems like non-interaction and noise localization. A non–decoupling control
policy, for instance a force step on the prismatic joint, squeezes the manipulated
object but gives rise to an undesired and dangerous transient motion of the ob-
ject. In [13] geometric control properties and structures are derived for mechanical
systems in order to find noise localizing laws. In [6] the decoupling control law is
derived through a geometric approach to the problem. The decoupling noninteract-
ing controller is based on the knowledge of the manipulation system dynamics and
the visco–elastic contact behaviour whose identification is a difficult task. Thus, a
certain degree of uncertainty is always present in the parameters of the visco–elastic
contact model. In this paper, robustness of the decoupling controller with respect
to the uncertainties affecting system parameters is investigated. In particular, suffi-
cient conditions are provided under which the decoupling control action is invariant
with respect to the perturbations on the contact stiffness and damping parameters.
These conditions are meaningful for several classes of manipulation systems with
general kinematics.

2. NOTATION AND DYNAMIC MODEL

This section summarizes notation and some results on the analysis of dynamics for
manipulation with general kinematics. The model of the general manipulation sys-
tem we consider is comprised of a mechanism with an arbitrary number of actuated
links and of an object which is in contact, at one or more points, with some of the
links.

Let q ∈ IRq be the vector of generalized coordinate, completely describing the
configuration of the manipulation system, let τ ∈ IRq be the vector of actuated
(rotoidal) joint torques and (prismatic) joint forces. Moreover, let u ∈ IRd be the
vector of the generalized coordinates for the object (d = 3 for 2D cases while d = 6
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for 3D cases) and let w ∈ IRd be the vector of external disturbances acting on the
object. To clarify the vector notation see Figure 3.

a) b)

Fig. 2. Deformable contacts: squeezing action of the prismatic joint.

The lumped parameter visco–elastic model at the ith contact is simply described
by introducing contact vectors cm

i and co
i . The d–dimensional contact vector cm

i

(co
i ) represents the coordinates of a fixed frame at the contact point thought on

the link of the manipulator (on the object). The contact force fi and the moment
mi exchanged at the contact are represented by the vector ti = [fT

i ,mT
i ] which,

according to the visco–elastic model, can be written as

ti = KiHi(cm
i − co

i ) + BiHi(ċm
i − ċo

i ).

The parameters indicated with Ki and Bi are the stiffness and damping matrices,
respectively and Hi is a constant selection matrix describing several types of contact
models. To be more precise, in the three dimension space in presence of hard-contact,
matrix Ki and Bi are matrix 3× 3. If the contact is a soft one these matrices have
dimension 4×3, see [8]. About matrix Hi, in presence of hard-contact the dimension
is 3×6 and if the contact is soft one the dimension is 4×6. Notice that the presence
of moment mi in ti depends upon the contact interaction type.

Now let t = [f1, · · · , fn, m1, · · · , mn] be the overall contact force vector built
by grouping all the vectors ti for the n contacts. Accordingly, vector t is given by
t = KH(cm − co) + BH(ċm − ċo). The Jacobian J and grasp matrix G are defined
as usual as J = H δcm

δq and GT = H δco

δu . Thus the local approximation of the contact
force vector t can be written as

δt = K
(
Jδq−GT δu

)
+ B

(
Jδq̇−GT δu̇

)
. (1)

The dynamic model considered in the following is the linearization of the nonlinear
dynamics of manipulation systems derived in [11, 12]. Consider a reference equilib-
rium configuration (q,u, q̇, u̇, τ, t) = (qo,uo,0,0, τo, to), such that τo = JT to and
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Fig. 3. Vector notation for general manipulation system analysis.

wo = −Gto. In the neighborhood of such an equilibrium, linearized dynamics of
the manipulation system can be written as

ẋ = Ax + Bτ τ ′ + Bww′, (2)

where state, input and disturbance vectors are defined as the departures from the
reference equilibrium configuration:

x =
[
(q− qo)T (u− uo)T q̇T u̇T

]T
,

τ ′ = τ − JT to, w′ = w + Gto

and

A =
[

0 I
Lk Lb

]
; Bτ =




0
0

M−1
h

0


 ; Bw =




0
0
0

M−1
o


 ,

where Mh and Mo are the inertia matrices of the manipulator and the object,
respectively. To simplify notation we will henceforth omit the prime in τ ′ and w′.

By neglecting terms due to gravity variations, rolling phenomena at the contacts
and local variations of the Jacobian and grasp matrices and under the hypothesis
that stiffness and damping matrices are proportional B ∝ K [9], simple expressions
are obtained for Lk and Lb

Lk = −M−1Pk; Lb = −M−1Pb
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where
M = diag(Mh,Mo);

Pk = ST KS;

Pb = ST BS;

S = [J −GT ].

The remainder of this section provides some results obtained in [11] on the control
of internal forces, a problem of paramount importance in robotic manipulation.

Let us define t′ as the first order approximation of departures of contact force
vector t from the reference equilibrium to. According to equation (1), t′ (henceforth
t) can be regarded as an output of the linearized model (2), t = Ctx where

Ct =
[
KJ −KGT BJ −BGT

]
.

When manipulation systems with general kinematics are taken into account [4]
not all the internal forces are controllable. In [6] the reachable internal forces sub-
space Rti,τ for dynamic system (2) is analyzed and the internal force output eti is
defined as the projection of the force vector t onto the subspace Rti,τ

eti = Etix where

Eti = [Q(K) 0 Q(K) 0] and

Q(K) = (I−KGT (GKGT )−1G)KJ.

(3)

3. INTERNAL FORCES DECOUPLING

As pointed out in the introduction, in many advanced robotics tasks the visco–
elasticity at the contacts cannot be neglected and the decoupling control of the
internal forces from the object motions is needed. Rigid–body kinematics [5, 12] is
motions of the object and manipulator which do not involve visco–elastic deforma-
tions. For this reason they are regarded as the low–energy motions of the whole
system. Rigid–body kinematics represent the easiest way to move the manipulated
object and therefore are of particular interest in controlling manipulation. In [5]
coordinated rigid–body motions of the mechanisms are defined as motions of the
manipulator δq and of the object δu such that

[
δq
δu

]
∈ im

[
Γqc

Γuc

]

where JΓqc = GT Γuc.
Thus rigid–body object motions are those in the column space of Γuc and the

output euc is defined as the projection of object displacements u onto the column
space of Γuc

euc = Eucx where

Euc = ΓP
uc [0 I 0 0] and

ΓP
uc = Γuc(ΓT

ucΓuc)−1ΓT
uc.

(4)
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In this paper we adopt the notion of internal force decoupling control that is
formalized in the following definition.

Definition 1. Consider the couple (A,Bτ ) in (2). The control law τ = Fx+Uτref

is an internal force control decoupled from object motion if the state feedback and
the input selection matrices are such that

a) min I (A + BτF,BτU) ⊆ kerEuc;

b) imEti = Eti min I (A + BτF,BτU)

where min I (A,B) is the minimal subspace A–invariant containing the column space
of B.

Observe that the decoupling control of internal forces does not affect the rigid–
body object motion (claim a) and preserves the reachability of internal forces (claim
b).

In [6] it has been proven that for general manipulation systems with ker(GT ) 6=
{0}, the problem of finding a decoupling internal force control has always a solution
and a decoupling feedback control law is proposed. The choice of matrices F and U
is based on the geometric concept of controlled invariant [2].

4. ROBUST DECOUPLING CONTROL OF CONTACT FORCES

The control law in [6] is model based and an accurate identification procedure of the
model’s parameters is needed. While techniques estimating the dynamics parameters
of the object and of the manipulator are well established, the identification of the
visco–elastic contact matrices K and B still remains a hard task and consequently
a certain degree of uncertainty is present in the system model. This section is
devoted to the analysis and design of a robust decoupling controller for manipulation
systems with structured (visco–elastic) uncertainties. We assume that a structured
uncertainty is present in the visco elastic contact behaviour. In particular we assume
that the estimated stiffness and damping matrices have the following structures Ks =
ksZ and Bs = bsZ respectively where matrix Z represents the a priori knowledge on
the visco–elastic behaviour while ks and bs (real positive values) are the estimated
stiffness and damping parameters. We assume that the measured value ks and bs

are corrupted by errors ∆k and ∆b described in a set membership context, ∆k ∈
[∆k, ∆k] and ∆b ∈ [∆b,∆b], thus it holds

K = (ks + ∆k)Z;

B = (bs + ∆b)Z.
(5)

The uncertainties on stiffness and damping matrices reflect on the linearized
dynamics (2) and on the output matrix (3) which becomes uncertain,





ẋ = A(∆k, ∆b)x + Bττ ;

eti = Eti(∆k, ∆b)x;

euc = Eucx

(6)
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where
A(∆k, ∆b) = As + ∆kAke + ∆bAbe;

Eti(∆k, ∆b) = Es + ∆kEke + ∆bEbe

(7)

being As and Es the state and the force output matrices of Section 2 are calculated
with nominal values K = ksZ and B = bsZ, while

Ake =

»
0 0

ST ZS 0

–
; Abe =

»
0 0
0 ST ZS

–
;

Eke = [Q(Z) 0 0 0] ; Ebe = [0 0 Q(Z) 0] ,

specify the structure of the system uncertainty.
After having characterized the structured uncertainties affecting the manipulation

dynamics, let us formalize the concept of robust internal force decoupling controller
[3] by extending the requirements on decoupling and reachability of Definition 1.

Definition 2. Consider the class of linear systems
(
A(∆k, ∆b),Bτ ,

[
Eti(∆k, ∆b)
Euc

])
∀(∆k, ∆b).

The control law τ = Fx + Uτref is a decoupling control of internal forces robust
with respect to the visco–elastic uncertainties if

a) ((A(∆k, ∆b) + BτF),BτU) ⊆ kerEuc;

b) imEti(∆k, ∆b) = Eti(∆k, ∆b)min I ((A(∆k, ∆b) + BτF),BτU) .

5. ROBUST CONTROLLER DESIGN

The design of the robust decoupling controller is based on the concepts of “gener-
alized controlled invariant subspace” and “parameter invariant control” introduced
in [3].

Definition 3. Consider the set of dynamic systems (A(∆k, ∆b),Bτ ) for all (∆k, ∆b),
a subspace V is a generalized controlled invariant iff there exists a constant matrix
F such that

(A(∆k, ∆b) + BτF)V ⊆ V ∀(∆k, ∆b).

By means of the above mentioned definition, it is an easy matter to extend
the generalization of controlled invariants to the self–bounded controlled invariants.
Then it is possible to define

V∗(A(∆k, ∆b),Bτ , ker(Euc)), (8)
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the maximal generalized (A(∆k, ∆b),Bτ )–controlled invariant contained in the null
space of the (object motion) output matrix Euc.

The following algorithm [3] allows one to evaluate the subspace V∗ whose com-
putation is the first step of the synthesis of the robust decoupling controller.

Algorithm for the computation of V∗

V0 = ker(Euc);

Vk+1 = Vk ∩A−1
s (imBτ ,Vk) ∩A−1

ke Vk ∩A−1
be Vk;

if Vn = Vn−1, then Vn = V∗(A(·),Bτ , ker(Euc)).

Remark 1. It can be shown that the state feedback matrix F, which makes the
subspace V∗ invariant with respect to (As+BτF), fulfills the condition of Definition 3
as well. Recall that As is equal to A(∆k, ∆b) for (∆k, ∆b) = (0, 0) therefore the
subspace V∗ is controlled invariant with respect to the pair (As,Bτ ).

Let us define the input selection matrix U as

im(BτU) = V∗ ∩ imBτ . (9)

Then the following proposition, whose proof comes easily from Remark 1, shows
which are the state feedback matrices F and the input selectors U decoupling internal
forces from object motions, notwithstanding the visco–elastic uncertainties.

Proposition 1. The decoupling condition a) of Definition 2 is satisfied iff the
maximal controlled invariant V∗ is not empty and the input selection matrix U is
not null.

The p r o o f of this proposition is straightforward. 2

It must be stressed that this proposition provides a necessary condition for the
existence of a robust decoupling controller. Recall that in order to obtain a robust
decoupling controller both conditions a) and b) must be fulfilled. Necessary and
sufficient conditions for the second requirement of Definition 2 and for the existence
of the robust decoupling controller are provided in Propositions 2, 3 and 4.

Proposition 2. A necessary condition for claim b) in Definition 2 to hold is

EtiV∗ = imEti.

P r o o f . The proposition is simply proven by observing that for any choice of F
and U, the minimal invariant min I ((A(∆k, ∆b) + BτF),BτU) is a subspace of
V∗ for all (∆k, ∆b). Notice that the existence of non–empty V∗ is necessary for the
fulfillment of the decoupling condition a). 2
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Proposition 3. Choose matrices F and U according to Remark 1 and Proposi-
tion 1. Conditions

dim(V∗) = rank(BτU);
EtiV∗ = imEti

are sufficient for claim b) in Definition 2 to hold.

P r o o f . Simply observe that under these conditions min I ((A(∆k, ∆b) + BτF),
BτU is equal to V∗ which does not depend on corrupting errors (∆k, ∆b). 2

Proposition 4. Choose matrices F and U according to Remark 1 and Proposi-
tion 1. Condition

rank(Q(Z)) = rank(EtiBτU)

is sufficient for claim b) in Definition 2 to hold.

P r o o f . Being K ∝ Z, from the definition of matrix Q(·) in (3), it ensures that
the column spaces of Eti, Es, Eke, Ebe coincide with the column space of Q(Z).
Thus rank(Q(Z)) = rank(EtiBτU) implies that im(Eti) = im(EtiBτU) and the
proof ends. 2

Before presenting the basic procedure one wants to do some considerations. If
the subspace V∗ is also a robust conditioned invariant subspace with respect to the
couple (A(∆k, ∆b), ker(Euc)), then it is possible to extend these results to the out-
put feedback. Both in application cases and in theoretical ones the decoupling from
the outputs are an interesting problem. In [7] and [10] constructive conditions for
disturbance decoupling with algebraic output feedback are presented but without
considering their robustness. One has to remark that Euc is the measured out-
put while Eti is the controlled output1. One remarks that the robust conditioned
invariant subspace V∗ is also a robust conditioned invariant subspace iff

A(∆k, ∆b)(V∗ ∩ ker(Euc)) ⊆ V∗ ∀(∆k, ∆b),

see [2].
If the subspace V∗, as calculated above, is also robust conditioned invariant sub-

space then it is possible to find a constant matrix K such that

(A(∆k, ∆b) + BτKEuc)V∗ ⊆ V∗.

This allows us to extend Remark 1, Proposition 3 and 4 to matrix K so that one
can obtain the robust output feedback decoupling. About the calculation of matrix
K one can observe that all our systems must be no left invertible because of (9) and
because of the Proposition 1 which yields

V∗ ∩ imBτ 6= 0.

1Recall that our task is to squeeze the object or to stretch it with a desired force without
moving it.
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In fact, one recalls that a system is called left invertible if and only if

V∗ ∩ imBτ = 0,

where V∗ is defined as in (8). In case of no left invertibility and stable internal
unassignable eigenvalues of V∗2, then the calculation of the matrix K becomes im-
mediate from the calculation of the matrix F. In particular, choosing F such that:

kerEuc ⊆ kerF,

then
K = FE†uc,

where the matrix E†uc is the pseudo inverse matrix of Euc, E†uc = ET
uc(EucET

uc)
−1.

For further detail on the calculation of the matrix K and F see [7] and [13].
A procedure for designing the robust decoupling controller of internal forces for

a given manipulation system is reported in the sequel. The procedure is based on
propositions and remarks of this section.

Procedure.

Step 1. Compute V∗.

Step 2. If V∗ 6= {0}, choose F and U according to Remark 1 and Proposition 1. If
U 6= 0, Proposition 1 holds and claims a) of Definition 2 is satisfied, otherwise
the robust decoupling controller does not exist and the procedure ends.

Step 3. Check the sufficient conditions of Proposition 2. If they are satisfied stop.

Step 4. Check the sufficient conditions of Proposition 3. If these are satisfied stop.

Step 5. If Step 3 and 4 fail, check the necessary condition of Proposition 4.

Step 6. If the necessary condition of Proposition 1 is satisfied, check condition b) of
Definition 2.

Remark 2. Steps 1 and 2 refer to the decoupling property (claim a) of the robust
controller. Steps 3 to 6 check that F and U fulfill the reachability condition (claim b).

Notice that if the procedure does not end at Step 3 or 4, a different choice of the
state–feedback matrix F and of the input selection matrix may be needed in order
to prove the robustness of the proposed control law.

2This condition is mostly guaranteed in industrial manipulators (no anthropomorphic m-nip-
lators).
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6. AN APPLICATION EXAMPLE

In this section numerical results are reported for the gripper described in Figure 2 a).
This system is a planar device with 2 degrees of freedom, a prismatic and a rotoidal
joint. Joint variables are positive when links move left. In the reference frame, the
contacts are c1 = (0, 1), c2 = (1, 1) and the object center of mass is cb = (0.5, 1). As
already explained J = H δcm

δq and GT = H δco

δu , in the presented case the matrix H is
an identity matrix. The inertia matrices of the object and manipulator are assumed
to be normalized to the identity matrix. The contact behavior is assumed isotropic
at the contact points. Given q = [q1, q2]T like the vector of generalized coordinate,
being in general cm

1 = (cos q1, 1− sin q1), cm
2 = (1− q2, 1), the jacobian matrix and

its linearization around the point q1 = π
2 assume the following values

J =



− sin q1 0
− cos q1 0

0 −1
0 0




T

; Jl =



−1 0
0 0
0 −1
0 0




T

.

About the grasp matrix, once assumed u = [x, y, θ]T to be the vector of the
generalized coordinates for the object then the contact points could be represented
as follows co

1 = (x + cos θ, 1 + y + 0.5 sen θ), co
2 = (1 + x− 0.5 cos θ, 1 + y− 0.5 sen θ).

The grasp matrix and its linearization around θ = 0 have the following form:

G =

[
1 0 1 0
0 1 0 1

0.5 sin θ −0.5 cos θ 0.5 sin θ −0.5 cos θ

]
; Gl =

[
1 0 1 0
0 1 0 1
0 −0.5 0 0.5

]
.

It ensues [9] that matrix Z, the a priori knowledge on the visco–elastic behavior, is
equal to the identity Z = I. Assume that the measured stiffness and damping are
ks = 1 bs = 2 and that the corrupting errors belong to the sets ∆k ∈ [−0.1, 0.1]
and ∆b ∈ [−0.2, 0.2]. The nominal and the uncertain matrices of the internal force
output in (7) assume the values

Es = [0.71, −0.41, 0, 0, 0, 1.42, −1.42, 0, 0, 0] ;

Eke = [9.71, −5.71, 0, 0, 0, 0, 0, 0, 0, 0] ;

Ebe = [0, 0, 0, 0, 0, 0.81, −0.71, 0, 0, 0] ;

while the object motion output matrix Euc is

Euc = [0, 0, −0.58, 1, 0, 8, 0, 4, 0, 0] .

The algorithm for the computation of V∗ stops for n = 4 and V∗ 6= {0}. Matrix
F is chosen according to Remark 1

F =
[
−14 −13 −16 0 0 −2.5 −1.5 −7 0 0
−13 −14 −16 0 0 −1.5 −2.5 −3 0 3

]
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and from (9) the input selection matrix is obtained as

U =
[
−0.7071

0.7071

]
.

It ensues that, notwithstanding the parameter uncertainties, the control law u =
Fx + Uτref is such that the trajectories of the systems lie on the null space of
the object motion output matrix. As regards the complete reachability of internal
forces (claim b), being 6 the dimension of V∗ and 1 the rank of BτU (Step 3),
Proposition 3 does not hold. At Step 4 the computation of EtiBτU is needed. In
this case we obtain that EtiBτU = −2−∆b whose rank is unitary for all corrupting
errors ∆b ∈ [−0.2, 0.2]. The procedure ends by observing that the rank of Q(Z) =
[0.71, −0.71] is unitary as well. Hence, the chosen state feedback matrix F and
the input selection matrix U synthesize a force control law which is robust with
respect to the uncertainties affecting system visco–elastic parameters, preserves the
complete controllability of internal contact forces and does not interact with the
manipulated object motion. An interesting feature of the robustness property of the
system is that the same control law can be used to grasp and manipulate different
objects, provided that all of them are characterized by the same visco–elastic matrix
Z, the a priori knowledge on visco–elastic behaviour.

7. CONCLUSIONS

The control of internal forces was the focus of this paper. Special attention was paid
to the noninteraction between the contact forces and the object motion control, a
fundamental requirement in advanced robotics.

Since in advanced manipulation tasks the visco–elastic behaviour at the mechan-
ical contacts cannot be neglected, a lumped parameter model of the visco–elastic
behavior was taken into account.

The robustness of the decoupling control with respect to the uncertainties in the
contact model was investigated. Sufficient conditions for the invariance of the decou-
pling action under perturbations on the contact stiffness and damping parameters
were provided.

These conditions are meaningful for several classes of manipulation systems with
general kinematics.

An example was reported to show applications of the obtained results.

(Received August 2, 2002.)

REFE REN CES

[1] P.N. Akella and M. R. Cutkosky: Contact transition control with semiactive soft fin-
gertips. Trans. Robotic and Automation 11 (1995), 6, 859–867.

[2] G. Basile and G. Marro: Controlled and Conditioned Invariants in Linear System
Theory. Prentice Hall, Englewood Cliffs, N.J. 1992.

[3] S. P. Bhattacharyya: Generalized controllability, controlled invariant subspace and
parameter invariant control. SIAM J. Algebraic Discrete Methods 4 (1983), 4, 529–
533.



A Geometric Procedure for Robust Decoupling Control of Contact Forces . . . 445

[4] A. Bicchi: Force distribution in multiple whole–limb manipulation. In: ICRA, 1993.
[5] A. Bicchi, C. Melchiorri. and D. Balluchi: On the mobility and manipulability of

general multiple limb robots. IEEE Trans. Automat. Control 11 (1995), 2, 215–228.
[6] A. Bicchi D. Prattichizzo, P. Mercorelli, and A. Vicino: Noninteracting force/motion

control in general manipulation systems. In: Proc. 35th IEEE Conference on Decision
Control, CDC’96, Kobe 1996.

[7] G. Marro and F. Barbagli: The algebraic output feedback in the light of dual-lattice
structures. Kybernetika 35 (1999), 6, 693–706.

[8] M.T. Mason and J.K. Salisbury: Robot Hands and the Mechanics of Manipulation.
MIT Press, Cambridge, MA 1985.

[9] L. Meirovitch: Analytical Methods in Vibrations. Macmillan, New York 1967.
[10] F. Barbagli, G. Marro, P. Mercorelli, and D. Prattichizzo: Some results on output

algebraic feedback with applications to mechanical systems. In: Proc. 37th IEEE
Conference on Decision Control, CDC’98, Tampa 1998.

[11] D. Prattichizzo: Structural Properties and Control of Robotics Manipulation. Ph.D.
Thesis, University of Pisa, 1995.

[12] D. Prattichizzo and A. Bicchi: Dynamic analysis of mobility and graspability of general
manipulation systems. Trans. Robotic and Automation 14 (1998), 2, 251–218.

[13] D. Prattichizzo and P. Mercorelli: On some geometric control properties of active
suspension systems. Kybernetika 36 (2000), 5, 549–570.

Dr. Paolo Mercorelli, Institut für Automatisierung und Informatik, Schlachthofstr. 4,

38855 Wernigerode. Germany.

mercorelli@iai-wr.de

Dr. Domenico Prattichizzo, Dipartimento di Ingegneria dell’ Informazione – Università
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