Robotics in Industry 4.0

History, Presence and Future of Robotics in Car Industry

Simulierte oder gelebte Kollaboration: Bewegung und Entgrenzung in der Industrie 4.0 Lüneburg, February 2nd, 2016 Univ.-Prof. Dr. rer. nat. Sabina Jeschke IMA/ZLW & IfU Faculty of Mechanical Engineering RWTH Aachen University

Outline

I. Introduction – Robots in the Connected World

- The fourth industrial revolution
- The rise of robotics
- ... in all areas

II. Robots in the Car Industry

- The changes in the car industry: The product...
- ... and the production!

III. The Evolutionary Change: Automotive Production Tomorrow

- Decentralized steering paradigms
- Changes in intralogistic flows
- Coupling to Logistics 4.0
- Hybrid teams: new human-robot cooperation
- 3D-Printing
- Robotics for eCars

IV. The **Revolutionary Change: Future Perspectives and Challenges**

- Robots in maintenance and repair
- The car is a computer (!?)
- Towards organic and cognitive computing
- From embodiment ... to humanoids
- V. Summary

02.02.2016

The connected world **Breakthroughs – A new era of artificial intelligence**

Communication technology bandwidth and computational power

Embedded systems

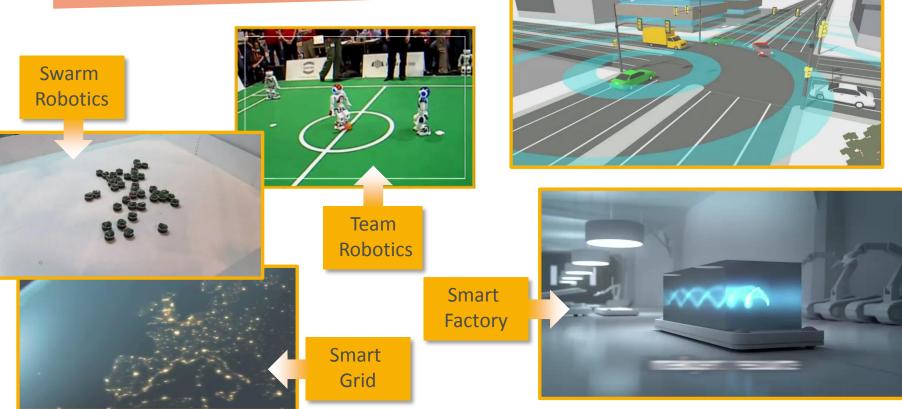
Watson 2011

3

Semantic technologies information integration

Google Car 2012

02.02.2016 S. Jeschke IMA ZLW IfU


The connected world Breakthroughs – Everybody and everything is networked

Communication technology bandwidth and computational power

mology Embedded systems

Car2Infrastructure

Semantic technologies information integration

02.02.2016 S. Jeschke IMA ZLW IfU

The connected world **... entering all spheres: from public to privat...**

Household

Industry

[9]

Military

Medicine

The connected world Rise of autonomous intelligent systems in all areas

Breakthrough – the Google Driverless Car 2012

Management of uncertainty: resulting from

- differences between procedures of humens vs technical systems
- changing environment and
- highly time-dependent processes

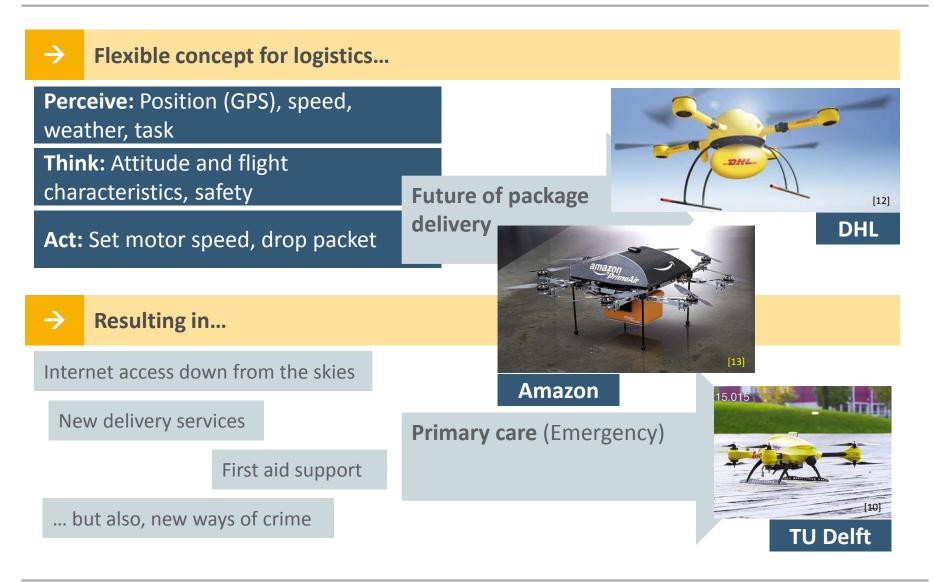
 \rightarrow

Drones: unmanned aerial vehicles

© Maternet 2012

→ Mobile robotics in production & logistics: from "stupid" stationary to intelligent mobile systems

Swarm Intelligence: not one but many....


 \rightarrow

02.02.2016 S. Jeschke

Robotics in public administration ... leading to robotics for logistics tasks

02.02.2016

Robotics in public administration The vision of a smart city...

02.02.2016

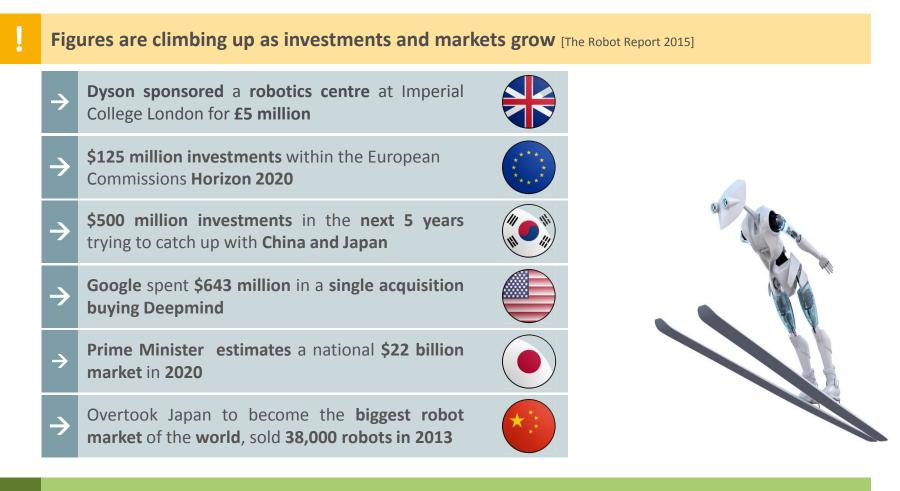
Robotics in public administration ... leading to robotics in garden maintenance and cleaning

> New ways to handle cleaning and garbage collection...

-> ... as well as garden maintenance

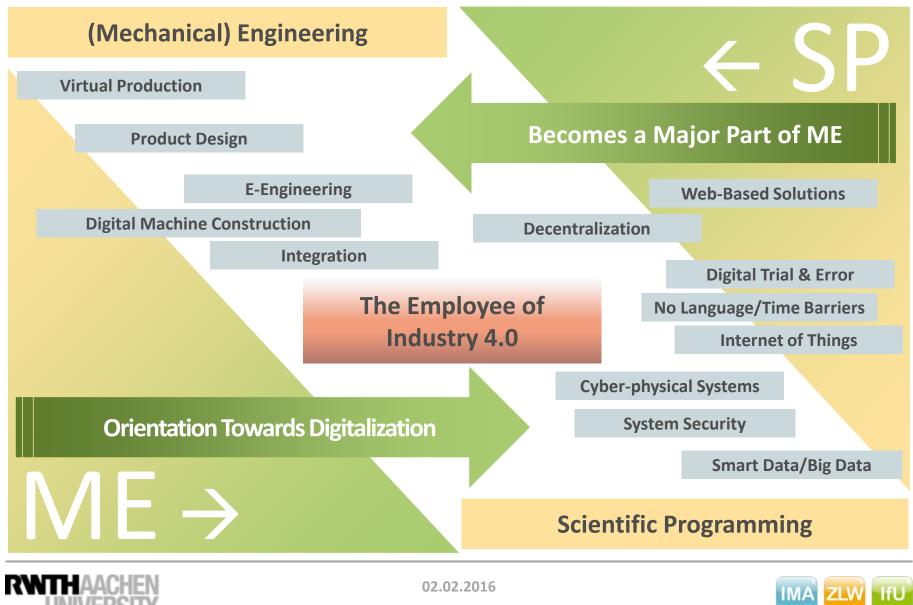
Plant care like watering, manuring, cutting, ...

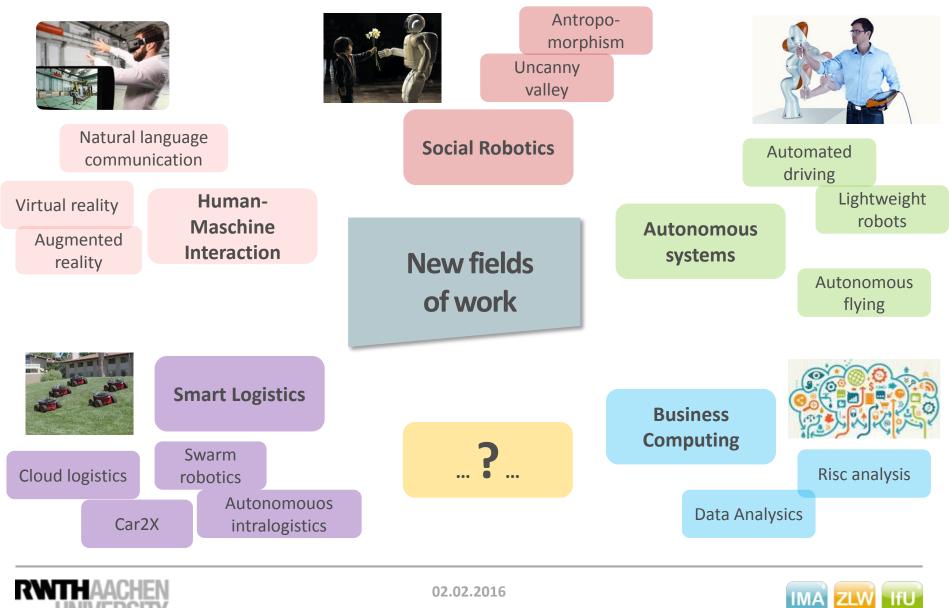
... and sowing, planting, ...



02.02.2016

The connected world Robots in general – some facts and numbers


Summary: Robots are already used in multiple scenarios and use cases. The technology is available and high investments are already in place → the race has already begun.


02.02.2016 S. Jeschke

Scientific Programming - the New Latin for Engineers "Informatics is the new latin"...

Scientific Programming - the New Latin for Engineers Leading to: Interdisciplinary science and education

I. Introduction – Robots in the Connected World

- The fourth industrial revolution
- The rise of robotics
- ... in all areas

II. Robots in the Car Industry

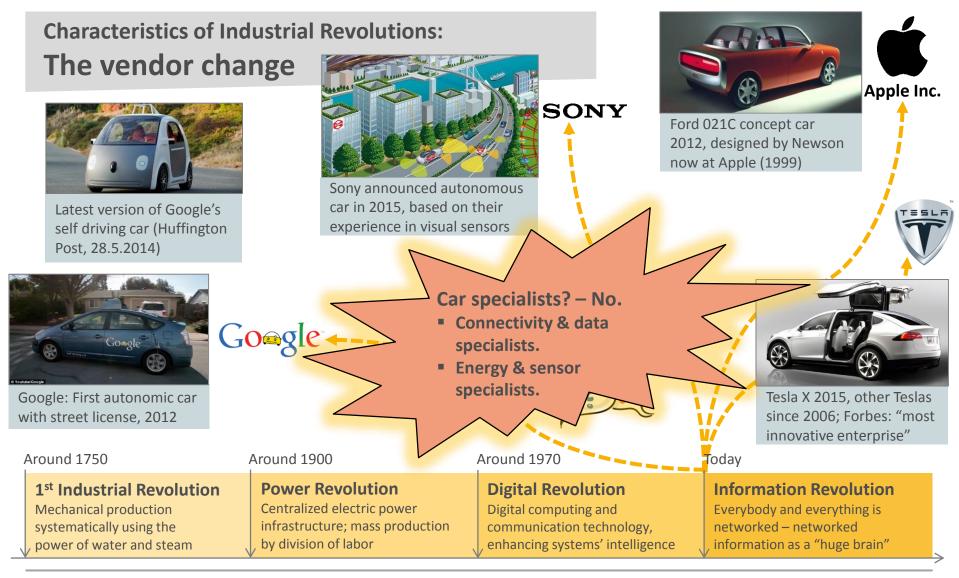
- The changes in the car industry: The product...
- ... and the production!

III. The Evolutionary Change: Automotive Production Tomorrow

- Decentralized steering paradigms
- Changes in intralogistic flows
- Coupling to Logistics 4.0
- Hybrid teams: new human-robot cooperation
- 3D-Printing
- Robotics for eCars

IV. The **Revolutionary Change: Future Perspectives and Challenges**

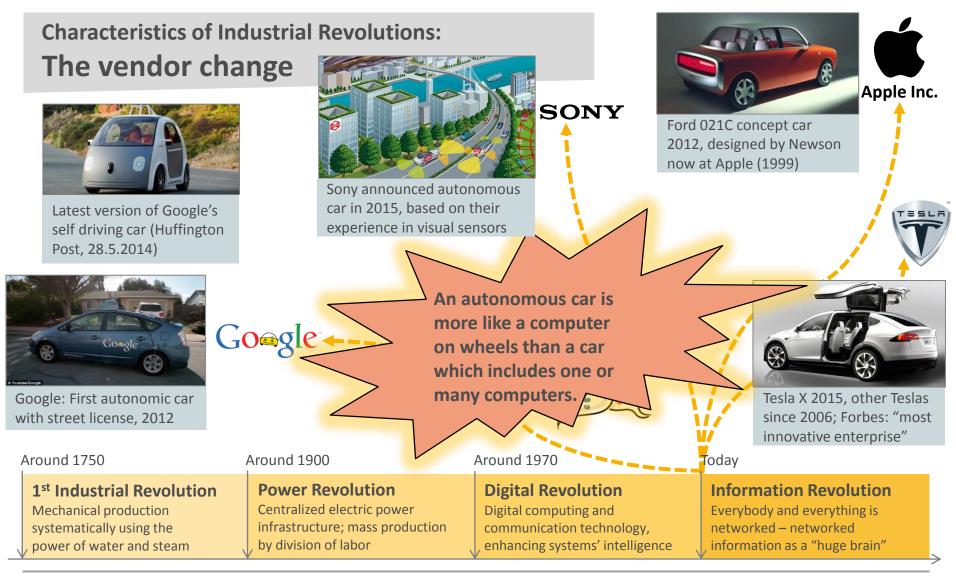
- Robots in maintenance and repair
- The car is a computer (!?)
- Towards organic and cognitive computing
- From embodiment ... to humanoids
- V. Summary



The connected world **The vendor change around "cars"**

For other dimensions of "take overs", see keynote "Innovation 4.0": http://www.ima-zlw-ifu.rwth-aachen.de/keynotes/LTLS 15Okt2015.pdf

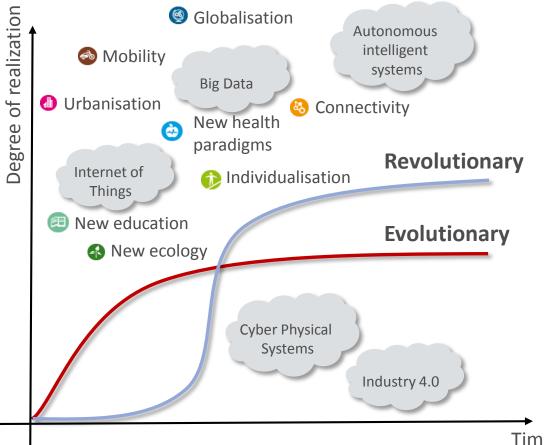
14


02.02.2016

For other dimensions of "take overs", see keynote "Innovation 4.0": http://www.ima-zlw-ifu.rwth-aachen.de/keynotes/LTLS_15Okt2015.pdf

The connected world The vendor change around "cars"

15



02.02.2016

Innovations in 4.0 The two ways of innovation

Business Dictionary.com

"Innovations are divided into two categories:

- Evolutionary innovations (continuous or dynamic evolutionary innovation) that are brought about by many incremental advances in technology or processes and
- Revolutionary innovations (also called discontinuous innovations) which are often disruptive and new."

Time

IMPORTANT:

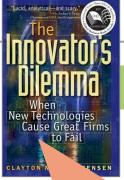
- In times of Industrial Revolutions, the revolutionary innovations dominate.
- In the times between, the evolutionary innovations dominate.

02.02.2016

From the Basics to Innovation in 4.0 **The innovators' dilemma**

Evolutionary

Evolutionary innovations:


- Improvement and optimization of an already existing product or process
- Changes ,locally'

Mainly carried out by established players

Revolutionary innovations:

- Something "really new"
- Characterized by categorial changes and with strong consequences for the society, ,globally'
- Mainly carried out by market newcomers

By C. M. Christensen, 1997 new edition 2015

- The more professional organization are, the stronger they tend to remain in their traditions since...
 - ... management structure is organized in such a way that it "reproduces" itself
 - ... clients' sugestions always address traditional ways
 - ... self-affirmation feedback...
- Standard management methods as TQM, CIP(KVP), Kaizen, standards, lean management, etc. address evolutionary processes
- … hampering categorial changes, system changes and disruptive changes

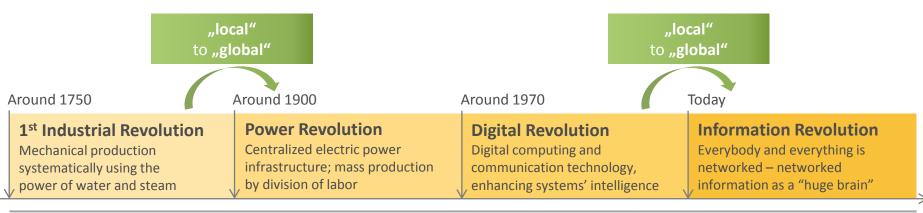
02.02.2016 S. Jeschke

The connected world "Information Revolution" – implications for the car industry

Everybody and everything is networked – Big Data & Cyber-Physical Systems

In February 2015, Audi installed collaborative robots – "Cobots" in Ingolstadt, working "hand-in-hand" with humans

For the automobile industry, that means:


The production is changing - AND the product is changing !

Towards eMobility and eMobility components

18

Tesla X 2015, other Teslas since 2006; Forbes: "most innovative enterprise"

02.02.2016

The connected world "Information Revolution" – implications for the car industry

Towards eMobility and eMobility components

02.02.2016

S. Jeschke

19

The trend towards robotics **Robots everywhere: Changes in the product ...**

USA in the 1950s: "Electronic Highway"

- Project by GM and RCA
- Technology: inductive cable in the road

California 1992: "PATH" incl. cooperative driving

- Lidar/radar sensors, automated driving, platooning, real time communication
- Similar Projects: in **Europe and Asia** Towards enhanced

flexibility and intelligence

Japan 1977: "IVS" – vision based

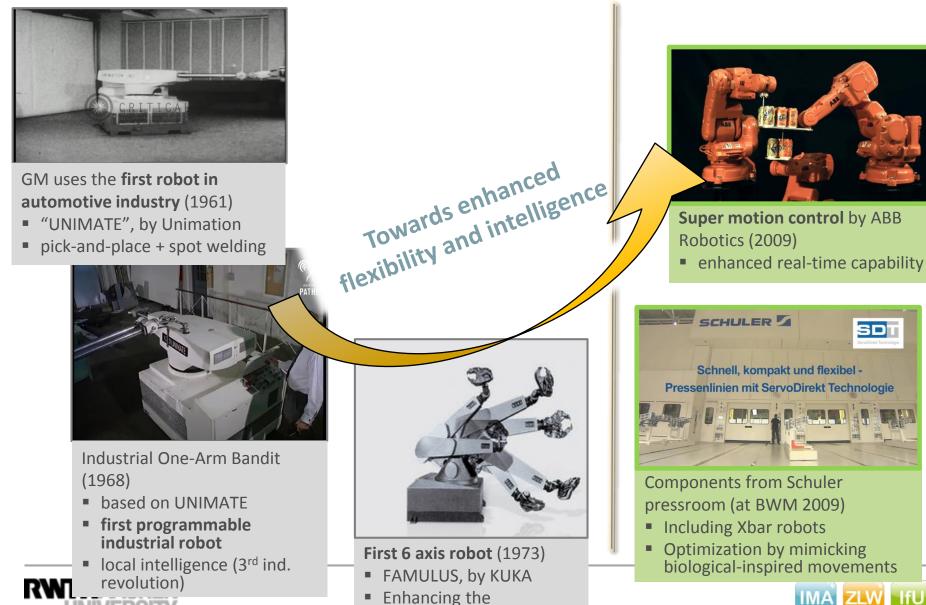
- binocular machine vision, various control algorithms, automated steering, 30 km/h
- Similar Projects in Germany, France and USA

Google's prototype of its selfdriving car (05/2014)

- built-from-scratch, no steering-wheel or pedals
- test fleet of about 100 cars
- Technology: AI, fully automated driving, vision analysis, big data, ...

Bertha Benz Drive (09/2013)

- S-Class: autonomous drive on historical route (Mannheim – Pforzheim)
- Sensors: mainly "standard" sensor technology today embedded into cars anyway



02.02.2016 S. Jeschke

The trend towards robotics **Robots everywhere: ... and in the production !**



movements of robots

IMA ZLW If

The trend towards robotics Robotics in automotive industry by the numbers and subsection

- 1980: approx. 1.200 industrial robots in Germany.
- 2000: approx.
 109.000 (about
 750.000 world-wide)
- > 50% in automotive industry

Today, no other industry applies more robots

Robotics are a part of nearly all areas of automotive industry

02.02.2016

S. Jeschke

22

How automotive production is going to change Evolutionary vs. revolutionary developments

02.02.2016 S. Jeschke

I. Introduction – Robots in the Connected World

- The fourth industrial revolution
- The rise of robotics
- ... in all areas

II. Robots in the Car Industry

- The changes in the car industry: The product...
- ... and the production!

III. The Evolutionary Change: Automotive Production Tomorrow

- Decentralized steering paradigms
- Changes in intralogistic flows
- Coupling to Logistics 4.0
- Hybrid teams: new human-robot cooperation
- 3D-Printing
- Robotics for eCars

IV. The **Revolutionary Change: Future Perspectives and Challenges**

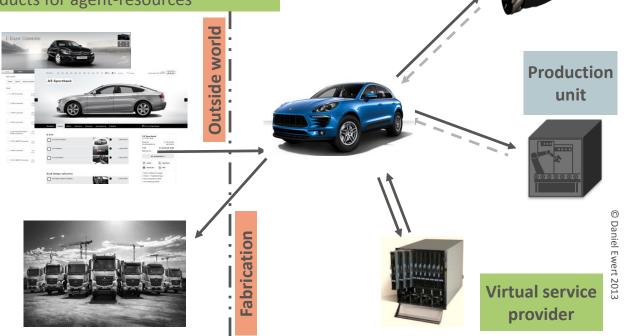
- Robots in maintenance and repair
- The car is a computer (!?)
- Towards organic and cognitive computing
- From embodiment ... to humanoids
- V. Summary

Changes already "under construction" With decentralized models towards lot size 1

Lot Size 1 in 4.0

Transport

unit

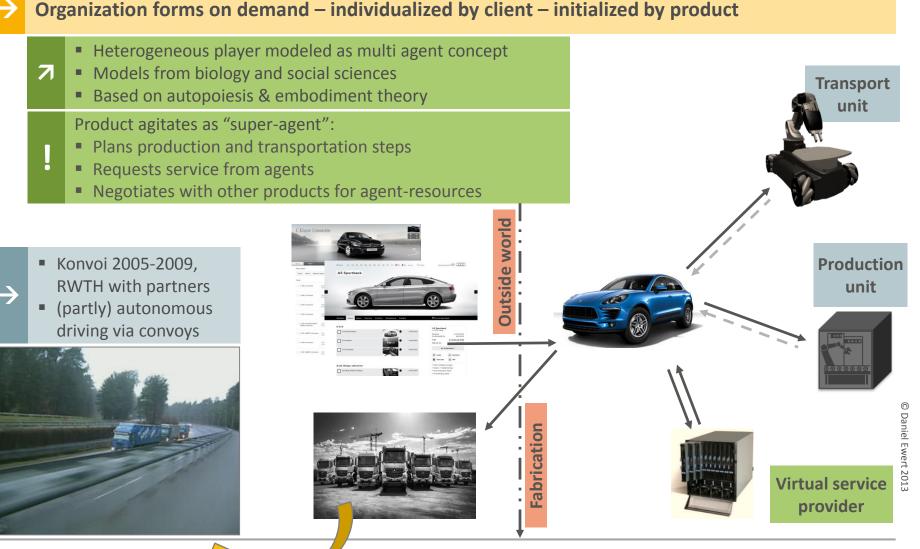

25

Organization forms on demand – individualized by client – initialized by product

- Heterogeneous player modeled as multi agent concept
- Models from biology and social sciences
 - Based on autopoiesis & embodiment theory

Product agitates as "super-agent":

- Plans production and transportation steps
- Requests services from agents
 - Negotiates with other products for agent-resources



Changes already "under construction" Horizontal coupling - manufacturing and logistics

26

02.02.2016

Changes already "under construction" Intralogistics goes mobile: The Festo Logistics League

• •

...

27

Mobile transportation robots from flexible routing

IMA ZLW IfU

Competencies:

- Iocalization & navigation
- computer vision
- adaptive planning
- multi agent strategies
- sensory & hardware

Competitions robocup:

2012: 0 points in World Cup 2013: 4th in World Cup 2014: Winner of the GermanOpen 2014: Winner of the World Cup 2015: Winner of the World Cup

Critical factors for success:

- Totally decentralized
- No "hard coded components"
- Strong cooperation
- Re-planning during tasks

7

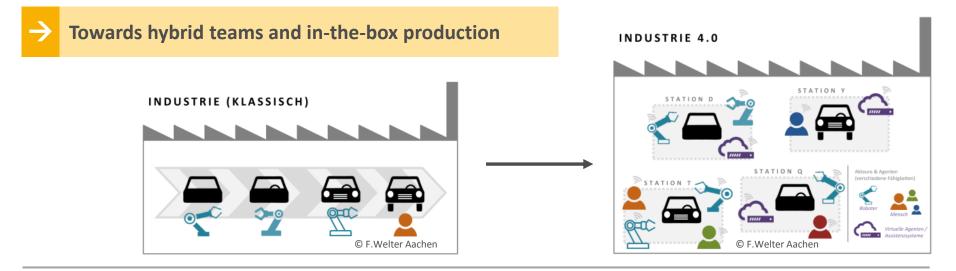
02.02.2016

Changes already "under construction" Towards human-robot cooperation: hybrid teams

7

Teams 4.0

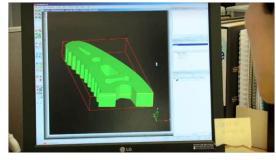
28



Audis collaborative robots in Ingolstadt, the "Cobots" pick up components and pass them to workers (02/2015)

- New "body concepts" for robots
- New types of "sensible" robots, mainly "lightweight"
- Real-time capability:
 - New fast sensors allows avoiding accidents in close cooperation
- New intelligence models:
 - New AI for "context understanding"

PhD Ying Wang, RRWTH, IMA/ZLW & IfU, 2016


02.02.2016 S. Jeschke

Changes already "under construction" New materials and material handling

- Starting from rapid prototyping, additive manufacturing is used in more an more areas
- From "maker movement" to professional products

3D Printing – The Path to Individualized Mass Production?

Multiple materials: photopolymers, thermoplastic powders, rubbers, ceramics, cements, metal alloys, noble metals, paper, ...

Already now, people consider "...a 3D printer to be a type of industrial robot." (Wikipedia)

Components 4.0

Combining **3D print** and **Robotics** may lead to totally new ways of production technology...

02.02.2016

I. Introduction – Robots in the Connected World

- The fourth industrial revolution
- The rise of robotics
- ... in all areas

II. Robots in the Car Industry

- The changes in the car industry: The product...
- ... and the production!

III. The Evolutionary Change: Automotive Production Tomorrow

- Decentralized steering paradigms
- Changes in intralogistic flows
- Coupling to Logistics 4.0
- Hybrid teams: new human-robot cooperation
- 3D-Printing
- Robotics for eCars

IV. The **Revolutionary Change: Future Perspectives and Challenges**

- Robots in maintenance and repair
- The car is a computer (!?)
- Towards organic and cognitive computing
- From embodiment ... to humanoids
- V. Summary

What has to be expected? Robots in maintenance and repair

Maintenance 4.0

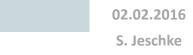
31

Spontaneous reaction: "...well, repair is a very complicated part of (re-)fabrication since all cases are 'different' – certainly, repair will be a very late phase of robot integration..."

TRUE? – 4 somewhat "crazy" thoughts...

 \rightarrow

1) Tesla's Robotic Metal Snake Charger (youtube, 2015): not exactly "repair" but "maintenance". Concept could be adapted to other tasks as oil change etc.


2) In the diagnosis – before the repair – , computers (perceived as robot w/o body) already have an important role (pic.: default memory, Bosch)

3) In medicine, all cases are "different" due to the individuality of humans – however, robots have entered the medical field (picture: Da Vinci robot)

4) Finally, research has already developed selfrepairing robots – if cars are going to be robots, the same concept could be used (youtube: Bongards' robot 2006)

Changes already "under construction" New ways for internal construction of a car

If cars are to become "computers on wheels" – then the question is:

How do we produce computers in the future... ??

- In 2011, Foxconn announced to install an army of one million robots in the coming 3 years – mainly for the fabrication of mobile computers as e.g. iPhone 6.
 - the reason: "costs", costs of labor are raising even in China, and robots are cheaper anyway
- In 2014, it became clear that high development costs and rapid changes in technology have slowed down progress.
 - However, since Sommer 2015 it is obvious that Foxconn finally comes very close to its original goals. Human workforce has already been reduced to one half.

Computer Manufactoring 4.0

Robotized automation, FRIDA/ABB: an approach to the "Foxbot"?

02.02.2016 S. Jeschke

32

What has to be expected? Vehicle concepts change dramatically...

> New vehicle concepts

Autonomous and cooperative driving lead to new vehicle concepts and new tasks for the driver

Mercedes F 015

Rinspeed XchangeE

Zoox Boz

Design 4.0

Peugeot "Ozone"

02.02.2016

What has to be expected? From embodiment ... to humanoids

Embodiment theory I: "intelligence needs a body"

The existence of a body (incl. sensors and actuators) are basic prerequisites to build experience and finally the development of intelligence.

The Bongard robot – learning through embodiment [Bongard, 2006; Lipson, 2007]

Shadow Dexterous Hand

KIT, Dillmann, SFB 588

Robonaut 2- NASA

Asimo Honda

Embodiment theory II: "different bodies = different intelligences"

... leading to humanoids / humanoid components

02.02.2016 S. Jeschke

I. Introduction – Robots in the Connected World

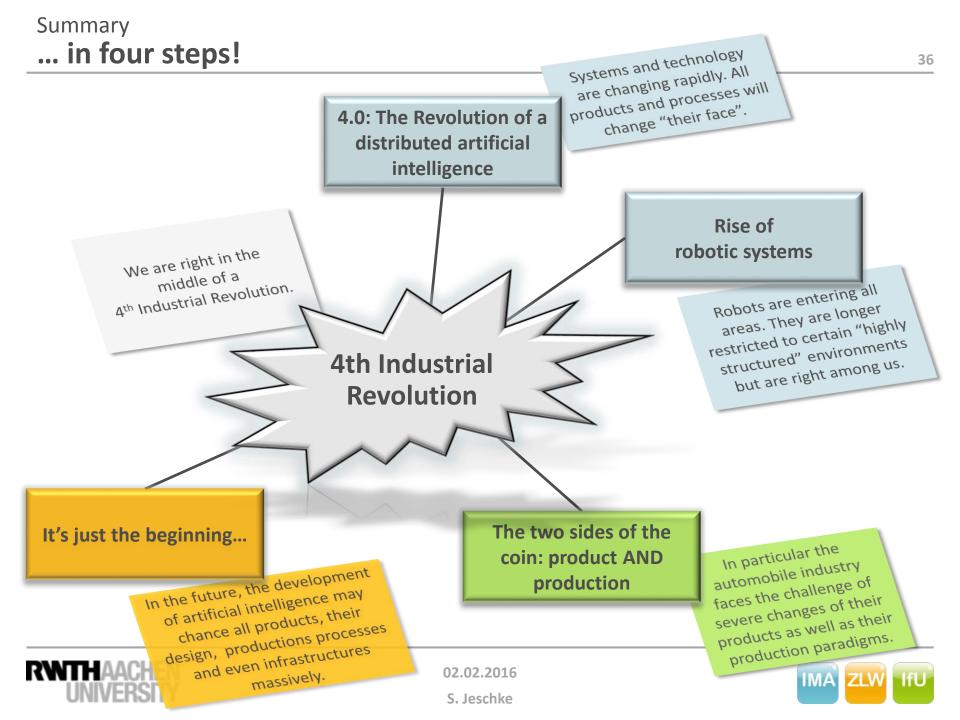
- The fourth industrial revolution
- The rise of robotics
- ... in all areas

II. Robots in the Car Industry

- The changes in the car industry: The product...
- ... and the production!

III. The Evolutionary Change: Automotive Production Tomorrow

- Decentralized steering paradigms
- Changes in intralogistic flows
- Coupling to Logistics 4.0
- Hybrid teams: new human-robot cooperation
- 3D-Printing
- Robotics for eCars


IV. The **Revolutionary Change: Future Perspectives and Challenges**

- Robots in maintenance and repair
- The car is a computer (!?)
- Towards organic and cognitive computing
- From embodiment ... to humanoids
- V. Summary

02.02.2016

Thank you!

Univ.-Prof. Dr. rer. nat. Sabina Jeschke Head of Institute Cluster IMA/ZLW & IfU phone: +49 241-80-91110 sabina.jeschke@ima-zlw-ifu.rwth-aachen.de

Co-authored by:

Dr. phil. Max Haberstroh Institute Cluster IMA/ZLW & IfU phone: +49 241-80-91145 max.haberstroh@ima-zlw-ifu.rwth-aachen.de

Dr.-Ing. Tobias Meisen Institute Cluster IMA/ZLW & IfU phone: +49 241-80-91139 tobias.meisen@ima-zlw-ifu.rwth-aachen.de

1968	Born in Kungälv/Schweden
1991 – 1997 1994 10/1994 1997	Studies of Physics, Mathematics, Computer Sciences, TU Berlin NASA Ames Research Center, Moffett Field, CA/USA Fellowship "Studienstiftung des Deutschen Volkes" Diploma Physics
1997 - 2000 2000 - 2001 2001 - 2004 04/2004 2004	Research Fellow , TU Berlin, Institute of Mathematics Lecturer, Georgia Institute of Technology, GA/USA Project leadership, TU Berlin, Institute for Mathematics Ph.D. (Dr. rer. nat.), TU Berlin, in the field of Computer Sciences Set-up and leadership of the Multimedia-Center at the TU Berlin
2005 – 2007	Juniorprofessor "New Media in Mathematics & Sciences" & Director of the Multimedia-center MuLF, TU Berlin
2007 – 2009	UnivProfessor , Institute for IT Service Technologies (IITS) & Director of the Computer Center (RUS), Department of Electrical Engineering , University of Stuttgart
since 06/2009	UnivProfessor, Head of the Institute Cluster IMA/ZLW & IfU, Department of Mechanical Engineering, RWTH Aachen University
since 10/2011	Vice Dean of the Department of Mechanical Engineering, RWTH Aachen University
since 03/2012	Chairwoman VDI Aachen
since 05/2015	Supervisory Board of Körber AG, Hamburg

02.02.2016

