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LI-YORKE PAIRS OF FULL HAUSDORFF DIMENSION FOR SOME

CHAOTIC DYNAMICAL SYSTEMS

J. Neunhäuserer, Clausthal

(Received February 6, 2009)

Abstract. We show that for some simple classical chaotic dynamical systems the set of
Li-Yorke pairs has full Hausdorff dimension on invariant sets.
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1. Introduction

The term “chaos” in mathematical theory of dynamical systems was used for the

first time in the influential paper of Li and Yorke [6]. The approach of Li and Yorke is

based on the existence of Li-Yorke pairs. These are pairs of points in the phase space

that approaches each other for some sequence of moments in the time evolution and

that remain separated for other sequences of moments. The characteristic property

of dynamical systems that are chaotic in the sense of Li-Yorke is sensitivity to the

initial condition. States that are physically indistinguishable result in physically

distinguishable states for such systems.

Although there is an enormous literature on Li-Yorke chaos (see for instance [1]

and [2] and the bibliography therein) there seem to be no results from a dimensional-

theoretical point of view. In this paper we ask the natural question if for invariant sets

like repellers, attractors or hyperbolic sets of chaotic dynamical systems, Li-Yorke

pairs have full Hausdorff dimension, see section two for appropriate definitions. Our

main result in Section 5 is that this is in fact the case, if the invariant set is self-similar

or a product of self-similar sets and the dynamics of the system is homomorphic

conjugated to a full shift, see Theorem 5.1 and 5.2 below. To prove this result we

have a look at Li-Yorke pairs in symbolic dynamics in Section 3 and study Li-Yorke
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pairs in the context of iterated function systems in Section 4. Our general result can

be applied to simple classical models of “chaotic” dynamics like the tent map, the

Bakers transformation, Smales horseshoe, and solenoid-like systems, see Section 6.

To prove that Li-Yorke pairs have full dimension for more general hyperbolic systems

could be a task for further research.

2. Basic notation

Consider a dynamical system (X, T ) on a complete separable metric space X . A

pair of points (x, y) ∈ X2 is called a Li-Yorke pair for T if

lim inf
n→∞

d(T nx, T ny) = 0 and lim sup
n→∞

d(T nx, T ny) > 0,

see [6]. Now given an invariant set Λ ⊆ X , i.e. f(Λ) = Λ, we define the set of

Li-Yorke pairs in Λ for T by

LYT (Λ) = {(x, y) ∈ Λ2 ; (x, y) is a Li-Yorke pair}.

We say that Li-Yorke pairs in Λ have full Hausdorff dimension for T if the Hausdorff

dimension of LYT (Λ) coincides with the Hausdorff dimension of Λ2, i.e.

dimH(LYT (Λ)) = dimH(Λ2).

Recall that the Hausdorff dimension of A ⊆ X is given by

dimH(A) = inf{s ; Hs(A) = 0} = sup{s ; Hs(A) = ∞}

where Hs(A) denotes the s-dimensional Hausdorff measure, i.e.

Hs(A) = lim
ε→0

inf
{∑

|Ui|
s ; A ⊆

⋃
Ui, |Ui| < ε

}
,

and |Ui| denotes the diameter of a covering element Ui. Moreover we note that the

Hausdorff dimension of a Borel probability measure µ on X is defined by

dimH µ = inf{dimH A ; µ(A) = 1}.

Beside Hausdorff dimension we will use the Minkowski dimension in our proofs for

some technical reasons. Let Nε(A) be the smallest number of balls needed to cover A.

The Minkowski dimension of A is given by

dimM A = lim
ε→0

log Nε(A)

− log ε
,
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if the limit exists. We refer to the book of Falconer [3] for an introduction to the

modern dimension theory. Given a dynamical system, invariant sets like repellers,

attractors or hyperbolic sets often have a fractal geometry with non integer Hausdorff

dimension. In this way the dimension theory comes into the study of dynamical

systems, see the book of Pesin [11]. If Li-Yorke pairs have full dimension in an

invariant set for a dynamical system, this means that the measure of chaos on this

set is maximal from dimensional-theoretic point of view.

3. Li-Yorke pairs in symbolic dynamics

Consider the spaces of one and two sided sequences Σ = {1, 2, . . .m}N, Σ̃ =

{1, 2, . . .m}Z with the metric

dist(s, t) =
∑

m−|k||sk − tk|,

where s = (sk) and t = (tk). These are perfect, totally disconnected and compact

metric spaces. The shift map σ on this spaces is given by

σ((sk)) = (sk+1).

For an introduction to symbolic dynamics consider for instance [5].

Two sequences s and t form a Li-Yorke pair in Σ (or Σ̃) for σ with respect to the

metric dist, if they coincide on a sequence of blocks with increasing length and do

not coincide on one subsequence. We construct here Li-Yorke pairs in the following

way: Fix s ∈ Σ and an arbitrary sequence N = (Nn) of natural numbers. Let the

first digit of t ∈ Σ be s1 and let the second digit by t2 = s2 + 1 modulo m. Then we

choose N1 arbitrary digits. Next choose two digits of s and one digit of s+1 modulo

m. Now we again choose N2 arbitrary digits and three digits from s and one of s+1

modulo m and so on. Thus we consider subsets of Σ given by

ΣN(s) = {t ∈ Σ; tk = sk for k ∈ {ui, . . . , ui + i},

and tui+i+1 = sui+i+1 + 1 mod m for i = 0, . . . ,∞}

where u0 = 1 and ui is given by the recursion ui+1 = ui + Ni + i + 1.

Proposition 3.1. A pair (s, t) ∈ Σ2 with t ∈ ΣN(s) is a Li-Yorke pair for σ.

P r o o f. Under the assumptions we have

lim
i→∞

d(σui(s), σui (t)) 6 lim
i→∞

1/mi = 0,

lim sup
i→∞

d(σui+i+1(s), σui+i+1(t)) > 1/m

giving the required asymptotic. �
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By this proposition we obviously have

ΠN := {(s, t) ; s ∈ Σ and t ∈ ΣN(s)} ⊆ LYσ(Σ),

where LY is the set of Li-Yorke pairs defined in the preceding section. Moreover, for

the two-side sequence we have

Π̃N := {(s̃, t̃) ; s̃ ∈ Σ and t ∈ ΣN(s)} ⊆ LYσ(Σ̃),

where s is the part of s̃ with positive indices. In the next section the symbolic sets

defined here will be used. In addition we will use the natural bijection Σ onto ΣN(s)

which we denote by prs,N. This bijection just fills arbitrary digits of sequences

in ΣN(s) successively with a given sequence of digits from Σ; compare with the

construction of ΣN(s) above. In our study of the dimension of Li-Yorke pairs of

dynamical systems that are conjugated to shift systems, the symbolic approach will

be useful in Section 5.

4. Li-Yorke pairs for iterated function systems

Consider a system of contracting similitudes, Si : R
w → R

w

|Six − Siy| = ci|x − y|

with ci ∈ (0, 1) for i = 1, . . .m. It is well known [4] that there is a compact self-similar

set Λ with

Λ =

m⋃

i=1

Si(Λ).

The set may be described using the projection π : Σ → Λ given by

π((sk)) = lim
n→∞

Ssn
◦ . . . ◦ Ss1

(K)

where K is a compact set with Si(K) ⊆ K. In our study of Li-Yorke pairs for

dynamical systems on X we are interested in the subset of Λ given by

ΛN(s) = π(ΣN(s)),

where the set of symbols ΣN(s) was introduced in the preceding section. We use an

extension of the classical argument to proove the following result on the dimension

of ΛN(s):
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Proposition 4.1. Let Si : K → K for i = 1, . . . , m be contracting similitudes for

some compact set K ⊆ R
w with Si(K) ∩ Sj(K) = ∅ for i 6= j.

If N = (Nn) is a sequence of natural numbers with

lim
M→∞

M2
/ M∑

n=1

Nn = 0,

then for all s ∈ Σ

dimH ΛN(s) = dimH Λ = D,

where D is the solution of
m∑

i=1

cD
i = 1

for the contraction constants ci of the similitudes.

P r o o f. Fix s = (sk) and N = (Nn) throughout the proof. Write Λ̄ for ΛN(s),

Σ̄ for ΣN(s) and pr for the bijection from Σ onto Σ̄ defined at the end of Section 3.

It is well known that dimH Λ = D, hence dimH Λ̄ 6 D, see [8]. For the opposite

inequality we construct a Borel probability measure µ of dimension D on Λ̄. To this

end consider the probability vector (cD
1 , . . . , cD

m) on {1, . . . , n} and the corresponding

Bernoulli measure ν on Σ, which is the infinite product of this measure. Now we

map this measure onto Σ̄ using pr and further onto Λ̄ using π, i.e.

µ = π(pr(ν)) = ν ◦ pr−1 ◦ π−1.

The local mass distribution princip states that

lim inf
̺→0

log µ(B̺(x))

log ̺
> D

for all x ∈ Λ̄ implies dimH µ > D and hence dimH Λ̄ > D. This is Proposition 2.1 of

[13]. Hence if we prove this estimate on local dimension the proof is complete.

By bijectivity of the coding map for all points x ∈ Λ̄ there is a unique sequence

a = (ak) such that π(pr(a)) = x, where pr is defined at the end of Section 3. We

have

{x} =

∞⋂

k=1

π(pr[a1, . . . , ak]),

where pr acts pointwise on cylinder sets

[a1, . . . , ak] := {t = (ti) ∈ Σ; ti = ai for i = 1, . . . k}
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in Σ. For further use note that pr[a1, . . . , ak] is itself a cylinder set in Σ̄, the length

of this cylinder set is k plus the digits coming from the fixed sequence s.

Given an arbitrary real ̺ > 0 we choose k = k(̺) such that

d · c(pr[a1, . . . , ak]) 6 ̺ < d · c(pr[a1, . . . , ak−1]),

where c([a1, . . . , ap]) := ca1
· . . . ·cap

for all cylinder sets and d is the minimal distance

of two sets in the construction of Λ̄, i.e.

d = min
i6=j

d(Si(K), Sk(K)).

Given another finite sequence (ā1, . . . , āk) 6= (a1, . . . , ak) the contraction property of

the maps Si implies

dist(π(pr[a1, . . . , ak]), π(pr[ā1, . . . , āk])) > d · c(pr[a1, . . . , ak]) > ̺,

here again [a1, . . . , ak] is a cylinder set in Σ and pr[a1, . . . , ak] is the corresponding

cylinder set in Σ̄. Hence we have

Λ̄ ∩ B̺(x) ⊆ π(pr[a1, . . . , ak])

and

µ(B̺(x)) 6 µ(π(pr[a1, . . . , ak])) = (c([a1, . . . , ak]))D

=
(c([a1, . . . , ak]))D

(c([pr(a1, . . . , ak]))D
(c(pr[a1, . . . , ak]))D 6

(c([a1, . . . , ak]))D

(c(pr[a1, . . . , ak]))D
d−D̺D

by the construction of the measure µ and the choice of k. Now taking logarithm this

yields

log µ(B̺(x)) 6 D
(

log ̺− log d− log
c(pr[a1, . . . , ak])

c([a1, . . . , ak])

)
6 D(log ̺− log d− ♯(k) log c),

where c = min
16i6m

ci and ♯(k) is the length of the cylinder set pr[a1, . . . , ak] minus

k, the length of the cylinder set [a1, . . . , ak]. Now dividing by log ̺ and using the

definition of k we obtain,

log µ(B̺(x))

log ̺
> D + D

(
−

log d

log ̺
−

♯(k) log c

log d + log(c(pr[a1, . . . , ak−1]))

)

> D + D
(
−

log d

log ̺
−

♯(k) log c

log d + ((k − 1) + ♯(k − 1)) log c

)
,
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where c = max
16i6m

ci . We have lim
̺→0

k(̺) = ∞, hence it remains to show that

lim
k→∞

♯(k)

k
= 0.

Given k choose M(k) such that

M(k)−1∑

n=1

Nn < k 6

M(k)∑

n=1

Nn.

By the definition of Σ̄ and the map pr we have

♯(k) 6

M(k)∑

v=1

(v + 1) < M(k)2,

hence

♯(k)

k
6 M(k)2

/M(k)−1∑

n=1

Nn.

By the assumption on (Nn) the righthand side goes to zero with k → ∞. This

completes the proof. �

Using general results in dimensions theory we may go one step further and show

that the projection of the set ΠN has full dimension in Λ2. This is the image of

Li-Yorke pairs for the shift map in the symbolic space, compare with Section 3. We

will use the following fact:

Theorem 4.1. Let F be a subset of Rn and E be a subset of Rk with k < n. Let

Lx be the n − k dimensional affine linear subspace of Rn given by the translation

x ∈ E. If dimH(F ∩ Lx) > t for all x ∈ E than dimH F > t + dimH E.

This is Corollary 7.1 of Falconer [3] based on the work of Marstrand [7]. With the

help of this theorem we get:

Proposition 4.2. Under the assumptions of Proposition 4.1 we have

dimH S = dimH Λ2 = 2 dimH Λ

where S = π(ΠN) = {(x, y) ; x ∈ Λ, y ∈ ΛN(π−1(x))}.

P r o o f. Since Hausdorff and Minkowski dimension of Λ coincide we have

dimH Λ2 = 2 dimH Λ, see Corollary 7.4 of [3]. Obviously S ⊆ Λ2, hence dimH S 6

2 dimH Λ. On the other hand Proposition 4.1 implies dimH(S ∩ ΛN(π−1(x))) =

dimH Λ for all x ∈ Λ. By Theorem 4.1 we get dimH S > 2 dimH Λ, which completes

the proof. �

285



We remark at the end of this section that the results proved here for Rw remain true

on complete separable metric spaces of finite multiplicity which have the Besicovitsh

property, compare Appendix I of [11]. The techniques we have used apply in the

general setting.

5. Li-Yorke pairs of full dimension for systems conjugated to a shift

In this section we state and prove our main results on the Hausdorff dimension of

Li-Yorke pairs of dynamical systems conjugated to a shift and having a self-similar

invariant set. The results are consequences of Proposition 3.1, Proposition 4.1 and

Proposition 4.2 below.

Theorem 5.1. Let f : R
w → R

w be a dynamical system with a compact invariant

set Λ. If (Λ, f) is homomorphic conjugated to a one-sided full shift (Σ, σ) and Λ is

self-similar then the Li-Yorke pairs in Λ have full Hausdorff dimension for f .

P r o o f. By the assumption of the theorem there is a homeomorphism π : Σ → Λ

with

(⋆) f ◦ π = π ◦ f.

If (s, t) ∈ Σ2 is a Li-Yorke pair for σ then by definition

lim inf
n→∞

d(σns, σnt) = 0 and lim sup
n→∞

d(σs, σt) > 0.

By continuity this implies

lim inf
n→∞

d(π(σns), π(σnt)) = 0 and lim sup
n→∞

d(π(σns), π(σnt)) > 0

and using (⋆)

lim inf
n→∞

d(fn(π(s)), fnπ(t)) = 0 and lim sup
n→∞

d(fn(π(s)), fn(π(t))) > 0,

which means (π(s), π(t)) ∈ Σ2 is a Li-Yorke pair of f . Since ΠN ⊆ LYσ(Σ), see

Section 3, we get

S = π(ΠN) ⊆ LYf(Λ).

Furthermore, since Λ is self-similar and fulfils the condition of Proposition 4.1, by

the properties of the coding π we have by Proposition 4.2 dimH S = dimH Λ2 and

hence dimH LYf (Λ) = dimH Λ2 concluding the proof. �

For dynamical systems which have a product structure we obtain the following

result:
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Theorem 5.2. Let f : R
w → R

w be a dynamical system with a compact invariant

set Λ. If (Λ, f) is homeormorphic conjugated to a two-side full shift (Σ̃, σ) and the

coding map is a product with two self-similar images, Λ = Λ1×Λ2, then the Li-Yorke

pairs in Λ have full dimension for f .

P r o o f. By the same argument as in the proof of the Theorem 5.1 we have

S = π(Π̃N) ⊆ LYf (Λ). Using π = (π1, π2) we have

S = {(π1(s
+), π2(s

−), π1(t
+), π2(t

−) ; s̃ = (s+, s−) ∈ Σ̃,

t̃ = (t+, t−) ∈ Σ̃ with t+ ∈ ΣN(s+)}.

Since Λ is self-similar and fulfils the condition of Proposition 4.1, by the properties

of the coding π1 we have

dimH{π(t+) ; t+ ∈ ΣN(s+)} = dimH Λ1.

By the argument used in the proof of Proposition 4.2 this implies

dimH S > 2 dimH Λ1 + 2 dimH Λ2,

see again Corollary 7.12 of [3] and [7]. On the other hand, since Minkowski and

Hausdorff dimensions of self-similar sets Λ1, Λ2 coincides, we have

dimH S 6 dimH Λ = 2 dimH Λ1 + 2 dimH Λ2

by Corollary 7.4 of [3]. This concludes the proof. �

The last section of this paper is devoted to examples.

6. Examples

In this section we consider four classical examples of chaotic dynamical systems,

namely the tent map in dimension one, the skinny Backers transformation and a

linear horseshoe in dimension two and linear solenoid-like systems in dimension three.

All these systems have self-similar invariant sets with dynamics conjugated to a full

shift on two symbols.

First consider the expansive tent map, see [5], t : R → R given by

t(x) = a − 2a|x − 1/2|,
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where a > 1. The map has an invariant repeller Λ which is given by the iterated

function system

T1x =
1

2a
x, T2x = 1 −

1

2a
x.

The dynamical system (Λ, t) is conjugated to a one-sided shift on two symbols via

the coding homomorphism induced by the iterated function system:

π(s) = lim
n→∞

Ts1
◦ Ts2

◦ . . . ◦ Tsn
([0, 1]).

By Theorem 4.1 the Li-Yorke pairs in Λ have full Hausdorff dimension for t.

Now consider the skinny Backers transformation, see [9], b : [0, 1]2 → [0, 1]2 given

by

b(x, y) =

{
(β1x, 2y) if y 6 1/2,

(1 − β2 + β2x, 1 − 2y) if y > 1/2

for β1, β2 ∈ (0, 1) with β1 + β2 < 1. The map has an attractor given by Λ × [0, 1],

where Λ is given by the iterated function system

T1x = β1x, T2x = 1 − β2 + β2x.

The system (Λ× [0, 1], b) is homomorphic conjugated to a two-sided full shift on two

symbols via π = (π1, π2) where π1 is given by the iterated function system and π2 is

just the map coming from dyadic expansion. The assumptions of Theorem 4.2 are

fulfilled and we again have Li-Yorke pairs of full Hausdorff dimension.

Next consider Smale’s horseshoe h : [0, 1]2 → R
2, see [12], fulfilling

h(x, y) =

{
(βx, τy) if y 6 1/τ,

(−βx + 1,−τx + τ) if y > 1 − 1/τ

on horizontal strips. Here we assume β ∈ (0, 1/2) and τ > 2. The map may be

extended to a diffeomorphism of R2 using stretching and folding of the middle strip

1/τ > y > 1 − 1/τ . The hyperbolic invariant set

Λ =

∞⋂

n=−∞

b([0, 1]2)

is given by Λ = Λ1 × Λ2 where Λ1 is given by the iterated function system

T1x = βx, T2x = −βx + 1
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and Λ2 is given by the iterated function system

G1y =
1

τ
y, G2y = −

1

τ
y + 1.

To this iterated function system there corresponds a homomorphic coding π =

(π1, π2) of (Λ1 × Λ2, b). Again the assumptions of Theorem 4.2 are fulfilled and

we have Li-Yorke pairs of full Hausdorff dimension.

Our last example is a solenoid like system, see [10], given by s : [0, 1]3 → [−1, 1]3

given by b : [0, 1]2 → [0, 1]2 given by

s(x, y, z) =

{
(β1x, β1y, 2z) if z 6 1/2,

(1 − β2 + β2x, 1 − β2 + β2y, 1 − 2z) if z > 1/2

for β1, β2 ∈ (0, 1) with β1 + β2 < 1. By exactly the same argument we used in the

case of the skinny Bakers transformation we see that the Li-Yorke pairs have full

Hausdorff dimension on the attractor Λ for the map s.
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