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Abstract:

1. Introduction
The automobile industry often models its engines

using characteristic diagrams, or more specifically, en-
gine operating maps. These models require a large amo-
unt of measured data acquired with advanced instrumen-
tation. Alternatively, physics-based models may be used,
but these are very complex and must be simplified for
use, which degrades the model. Neural networks are an-
other option for modelling complex systems. They are re-
latively straightforward systems but they may be appro-
priate even for highly complex modelled problems. The
purpose of our work is to show that neural networks can
be applied successfully, even in the presence of noise. We
apply an inverse local linear model tree using a fuzzy neu-
ral network to a control loop, in the presence of noise.
The considered system is the throttle valve shown in Fig.
1, which is displayed along with the parts of the internal
combustion engine. The right side of Fig. 1 shows an en-
largement of the throttle valve with its most important
parameters. and are the mass flow rate for the in-
put and output, respectively. Also, , and ,
represent the input and output temperature and pres-
sure. is the total surface area of the plate, and

.
A robust throttle valve control has been an attractive

problem since throttle by wire systems were established
in the mid-nineties. An already tested technology is cur-
rently available, and recent advanced studies have ap-
peared, [1] and [13]. Mercorelli [8] presented

A robust throttle valve control has been an attractive
problem since throttle by wire systems were established in
the mid-nineties. Control strategies often use a feed-for-
ward controller which use an inverse model; however, ma-
thematical model inversions imply a high order of diffe-
rentiation of the state variables resulting in noise effects.
In general, neural networks are a very effective and popular
tool for modelling. The inversion of a neural network makes
it possible to use these networks in control problem sche-
mes. This paper presents a control strategy based upon an
inversion of a feed-forward trained local linear model tree.
The local linear model tree is realized through a fuzzy neu-
ral network. Simulated results from real data measure-
ments are presented, and two control loops are explicitly
compared.

Keywords: neural networks, fuzzy control, inversion of
neural networks, automotive control, noise reduction.
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In particular, the author adopted the following model:
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(2)

, (3)

is normally called induced voltage, is the cons-
tant of the motor, and is the moment of inertia. The
gear parameter indicates the ratio of the teeth. With
this approach, the backlash effect does not generate
a stationary error. The parameters and repre-
sent the viscous friction torque and the total spring

in which equation (1) represents the electrical system of
the actuator, and equations (2) and (3) describe the me-
chanical behaviour of the actuator. The coil current ,
the angular position , and the angular velocity are the
state variables, and is the input voltage. and

are the resistance and the inductance of the coil
windings.
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Fig. 1. Top: Overview. Bottom: Schematic structure of
throttle valve.
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pre
is the pretension torque of the

spring, which can be considered as a disturbance. It
should be noted that in our case, is a non-linear
function of the angular position.

In particular, the following expression

describes the Lorentz torque generated by the actuator.
Mercorelli [8] showed that the adopted model is a flat
model and that

(4)

is the with . Because of the noise
which can affect the signal from the foot pedal, a feed
forward inverse controller may generate spikes and low
tracking performances. From (4), it should be noted that
mathematical inversions of models imply a high order of
differentiation of the state variables, and consequently
noise effects. Mercorelli [8] avoided this noise effect by
developing an approximated proportional derivative (PD)
regulator, in which the D-part was replaced with a special
algorithm. Since it is always present a structural inexact
description of the model with imperfect inversion, and
external disturbances were not modelled, it was neces-
sary for the control loop to contain a feedback structure.

The inversion problem in neural networks has attrac-
ted many researchers and mathematicians. This is a diffi-
cult problem, which involves the inversion of the non-
linear membership functions. Fig. 2 presents a schematic
structure of a possible control system. This procedure
applies the LOLIMOT algorithm [9], which is based upon
Neural-Fuzzy models of Takigi Sugeno type. During the
execution of this algorithm, a ”divide and conquer stra-
tegy” is applied to the modelling problem, so that the
major problem is split into smaller ones. The basic net-
work structure of a local linear neural fuzzy model is de-
picted in Fig. 3. Every neuron consists of a local linear
model (LLM) and a validity function defining the vali-
dity of the LLM within the input space. The local linear
model output is defined by:

,

where is the LLM parameter at each neuron .

If the validity functions are chosen as normalized
Gaussians, then it follows:

where the membership function is
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2. Model inversion
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Fig. 2. Complete control scheme.

Fig. 3. Top: Network structure of local linear neural fuzzy
model. Bottom: Partition of the input space by validity
functions.

To achieve an inversion, we develop an algorithm
which allows us to obtain the required model input ,
depending on the desired model output and the other
model inputs .

Fink and Toepfer [4] offer some strategies in their
analysis of the inversion of non-linear models:

Only one model of the non-linear function is
created and used for standard and inverse access.
The inverse access equals a numerical inversion
and requires the application of optimization
methods to determine the input for the requested
output.

ur

y
u

� Inverse access by numerical inversion
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(8)

Using the function defined in equation (8), it is now
possible to invert the local linear
model tree.

We apply the following algorithm to invert the model:

That is, calculate the LLMs with the available input
data until there only remains a linear equation depen-
ding on one input, e.g., . To be more
comprehensible, if and

is required, then , with
and .

The membership function of the LLMs is calculated
with the available input data to the extent possible.
Since the non-linear term depending on is omitted,
the membership function is a constant number. To be
more precise,

(9)

Then, the input is reconsidered in the final mem-
bership function and the following expression is
obtained,.

(10)

2.2. Algorithm for the Inversion of the LLM

1. Calculate the LLMs represented in equation (6), omit-
ting the required input variable .

2. Calculate the membership functions represented in
equation (7), omitting the required input variable .

3. Create the linear membership function for the required
input as from equation (8).
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Data driven generation of an inverse model

Analytical inversion of models

A model for inverse access is created in addition
to the model for standard access.

A direct inversion of the forward trained model is
applied. Hence, it is an advantage to use model
architectures, which allow the direct calculation
of the inverse model using its own parameters.

The developed algorithm applies an analytical/nume-
rical inversion of a given local linear model structure, and
is explained below. The following constraints are requi-
red to set up the algorithm:
1. An existing forward trained local linear model tree of

the process is available.
2. The expected model output is known.
3. There are existing input values for that inputs upon

which is dependent.

Consider the model output function , with local
linear model inputs

(6)

the validity function

and the membership function

(7)

A difficulty is that, due to the exponential quadratic
nonlinearity, the model is not invertible. Hence, it is
necessary to convert the functions into a linear type, as
shown in Fig. 4. The membership function is split into a
spline function that consists of the linear functions.

y

M
u u

y

y
2.1. The Validity Functions Issue

�
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Fig. 4. Left: Linear and non-linear validity function. Right: Linear functions on the intervals.



4
The input space of is partitioned into search in-
tervals, which are used in the later estimation of .
Every interval describes the validity of half of the
local linear model. Thus, the input space of every LLM
is divided into two intervals. This is necessary due to
the structure of the new linear membership functions,
because they consist of two linear functions as men-
tioned above. For every interval, a ”left function” and
a ”right function” are considered (Fig. 7). For the sake
of brevity, equation (8) is represented as the follo-
wing:

(11)

Determine which of membership functions
are valid for the currently considered in-

terval, by checking every spline. is valid if

is valid if

where indicates the ”and” logical function.

If there are no valid linear membership functions
for a local linear model, then the model will not be
considered for further actions.

Next, sum the output functions to create the mo-
del output:

Finally, equate the model output function to the
desired model output value, and solve the resul-
ting equation with respect to the variable :

. Partition the input space .

5. In the following loop, consider every interval for a pos-
sible solution of .
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,

Use the valid membership spline functions to cre-
ate validity functions for each local linear model.
Taking the previously calculated part of the mem-
bership function , as in (10), and sum it
with the valid linear spline membership function

, where represents a valid
spline membership function within the range of
functions. This yields:

and

Initially create the output function for every local
linear model by multiplying its validity function
with the local linear model function:
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Verify that the calculated is inside the currently
considered interval.
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If so, accept it as one possible solution. If not,
disregard it.

Due to the structure of the validity functions, an
inversion of the model is possible only within the input
space of the required variable. Beyond these borders, the
model input will drift to zero, which is comparable to the
normal LOLIMOT behaviour. That is, once a

is chosen, the inversion is possible within the input
domain. The worst case is if the working nominal point is
close to the border of the domain. If so, a more suitable
division of the input space is needed, as is described in
the next section.

With a continuous system, it is possible to accelerate
the algorithm's runtime behaviour by reducing the time
needed to select the validity functions during the inver-
sion. This makes it necessary to perform some off-line
calculations on the linear validity functions, which
otherwise remain unchanged during the execution of the
inversion. For every linear validity function, two points
are calculated and saved in a look-up table: the starting
point and the point where the function intersects
the input domain axis. This information is used at run-
time to pre-select the relevant validity functions; there-
fore, a region of interest (ROI) around the previously cal-
culated desired input value has to be defined as
an interval, e.g.,

,

where is a parameter describing the size of the region.
If the function crosses, starts, or ends in the ROI, the va-
lidity function should be considered.

A logic validity function (LVF) can be defined as
follows:

, (12)

where ” ” and ” ” indicate the ”or” and the ”and” logical
functions, respectively. If the variable LVF assumes a va-
lue equal to 1, then the validity function should be con-
sidered; if the variable LVF assumes a value equal to 0,
then the validity function should be not considered. The
proposed boosting algorithm is similar to the algorithms
used to solve clipping problems in computer graphics, in
which the ROI states the camera field of view.

work nominal
point

2.3. Boosting

( 1)

( ) [ ·
· ]
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( )
( > < )
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3. Analysis of the algorithm

The algorithm is mostly stable; however, due to the
limited character of the linear validity functions, it is pos-
sible that no solution will be found in the border regions
of the model.

In that case, there are two possible solutions:
The first solution is to use a more complex appro-
ximation of the validity function, e.g., a linear
spline consisting of line segments. This will in-
crease the computational effort. In fact, each line
segment represents a single interval, which must
be considered to solve the inversion problem. Sin-
ce the validity function is symmetric, the effort is
increased by a factor of two. Applying the propo-
sed boosting method will reduce the complexity.

Another solution is to adjust the zeros of the linear
approximation function so that the function will
cover a larger region of the input domain. This will
reduce the accuracy of the estimated input value,
but it keeps the computational costs low.

Since the algorithm solves a squared equation, it is
possible to obtain two solutions for each of the intervals
if the solutions are valid. In the worst case this results in

solutions. Therefore, we introduce a decision cri-
terion to select the correct input value.

If the system is continuous, as it is in most real appli-
cations, this decision criterion could be based on the pre-
vious input value . Other criteria could also be
used.

The accuracy of the inversion is mainly influenced
by the linear validity function. Therefore, a linear/linear

3.1. Stability

3.2. Ambiguities

3.3. Accuracy

�

�

n

q

q

u k

2 *

( 1)r �

spline validity function will lead to more accurate results
compared with the simplest linear function. As mentioned
above, this will increase the computational complexity, so
the best compromise between speed and accuracy has to
be found.

Boosting can be used to reduce these negative effects.
By using the simplest validity functions, with one linear
spline per side, a difference of 10-15 percent between the
predicted input value and the real input value can occur in
the worst case. However, the result can be improved by
applying a numerical optimization process.

The training data was obtained using measurements
obtained from an experimental setup.

We examined the manifold of the throttle angle using
a network consisting of three neurons. We set up the in-
version problem to depend on four inputs (Fig. 5): the in-
put voltage , the ambient air pressure in mbar ,
the manifold air-mass pressure in mbar , and the am-
bient temperature in Celsius . Normally the model
output would be the manifold air mass flow in kg/h, but
here we used the throttle angle as output to correspond
with the model presented in equations (1), (2) and (3).
The model is trained with a k sigma equal to 0.33. In this
example, the inversion is tested by the throttle angle,
depending on the desired angular trajectory (Fig. 5). The
scheme of Fig. 5 shows two possible simulations corres-
ponding to the control schemes represented in Fig. 6 and
7. Fig. 8 shows a phase of acceleration and deceleration
using a control scheme with the inversion defined in
equation (4), and using a proportional integral derivative
(PID) control in feedback configuration. Fig. 9 shows
a simulation using a control scheme with an Inverse mo-
del from the proposed neural network, and using a PID
control in feedback configuration. Both cases are tested
with the same PID controller parameters. The input para-
meters for , and are chosen as static values.

4. A real application: The Throttle Valve
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Fig. 5. Simulink-block scheme of the used model.



Fig. 9. Desired and obtained angular position with noise in
superposition using the control scheme as in Fig. 7.
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5. Conclusions and Outlook
This paper describes a powerful algorithm for the in-

version of local linear model trees at runtime, and we
apply the method to an automotive throttle valve control
problem as an attractive example. The algorithm was ana-
lysed in terms of stability and accuracy. The results de-
monstrated that the inverse local linear model tree based
upon Takagi-Sugeno models can be integrated into a con-
trol loop, and we obtained very good noise reduction per-
formances. To extend this work, possible future efforts
should focus on error detection and diagnostics, espe-
cially model-based system diagnostics.

Fig. 6. Control scheme with inversion defined in (4) and
using a PID control in feedback configuration.

Fig. 7. Control scheme with inverse model from the pro-
posed neural network and using a PID control in feedback
configuration.

Fig. 8. Desired and obtained angular position with noise in
superposition using the control scheme as in Fig. 6.
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