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Abstract. The problem of finding duplicates in data is ubiquitous in
data mining. We cast the problem of finding duplicates in sequential data
into a poly-cut problem on a fully connected graph. The edge weights can
be identified with parameterized pairwise similarities between objects
that are optimized by structural support vector machines on labeled
training sets. Our approach adapts the similarity measure to the data and
is independent of the number of clusters. We present three large margin
approximations of learning the pairwise similarities: an integrated QP-
formulation, a sequential multi-class approach and a pairwise classifier.
We report on experimental results.

1 Introduction

The problem of identifying duplicates has applications ranging from recognizing
objects from different perspectives and angles to the identification of objects
that are intentionally altered to obfuscate their true identity, origin, or purpose.
This occurs, for instance, in the context of email spam and virus detection.

Spam and virus senders avoid mailing identical copies of their messages be-
cause it would be an easy giveaway. Identifying a batch of messages would allow
email service providers to hold back the entire batch, and to identify hijacked
servers that are being used to disseminate spam or viruses. Therefore, spam
senders generate messages according to templates. Table 1 shows an example
of two spam messages that have been generated with a spamming tool. Slots
of a common template are filled according to a grammar; the tool also applies
obfuscation techniques such as random insertions of spaces.

In the database community, the “database deduping problem” is another
popular instance of the duplicate identification problem. Other occurrences of
the problem include named entity resolution, and the grouping of images that
show, for instance, the same person.

A natural approach to identifying duplicates is to group similar objects to-
gether by a cluster algorithm. However, prominent algorithms like k-means or
Expectation Maximization require the number of clusters beforehand. Moreover,
given a problem at hand, it is often ambiguous to decide whether two objects
are similar or not.

Correlation clustering [3] meets our requirements by accounting for poten-
tially infinitely many clusters. Its solution is equivalent to a maximum poly-cut
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Hello,
This is Terry Hagan.We are accepting your mo rtgage application.
Our company confirms you are legible for a $250.000 loan
for a $380.00/month. Approval process will take 1 minute, so please
fill out the form on our website:
http://www.competentagent.com/application/
Best Regards, Terry Hagan;
Senior Account Director
Trades/Fin ance Department North Office

Dear Mr/Mrs,
This is Brenda Dunn.We are accepting your mortga ge application.
Our office confirms you can get a $228.000 lo an for a $371.00
per month payment. Follow the link to our website and submit
your contact information. Easy as 1,2,3.
http://www.competentagent.com/application/
Best Regards, Brenda Dunn;
Accounts Manager
Trades/Fin ance Department East Office

Table 1. Two spam mails from the same batch.

in a fully connected graph spanned by the objects and their pairwise similarities
[11].

We address the problem of learning a duplicate detection hypothesis from
labeled data. That is, we start from data in which all elements that are duplicates
of one another have been tagged as such. This allows us to learn the similarity
function that parameterizes the clustering model such that it correctly groups
the duplicates in the training data. The similarity measure can be learned by
structural SVMs in a discriminative way.

We firstly derive a loss augmented optimization problem that can be solved
directly. Due to a cubic number of variables, solving this initial problem is hardly
tractable for large data sets. Secondly, we present an approach that makes use
of the sequential nature of the objects and thirdly, we approximate the optimal
solution by a pairwise classifier. Experiments detail characteristics of all three
methods.

The rest of our paper is structured as follows. We report on related work in
Section 2 and introduce our problem setting together with the decoding strategy
in Section 3. We present support vector algorithms for identifying duplicates in
Section 4 and report on experimental results in Section 5. Section 6 concludes.

2 Related Work

The identification of duplicates has been studied with fixed similarity measures,
such as the fraction of matching words [9, 8] and sentences [6]. Other applications
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include the identification of duplicates in data bases [5], and in centralized [14]
and decentralized networks [23].

Correlation clustering on fully connected graphs is introduced in [2, 3]. A gen-
eralization to arbitrary graphs is presented in [7] and [11] shows the equivalence
to a poly-cut problem. Approximation strategies to the NP-complete decoding
are presented in [10, 17]. Finley and Joachims [13] investigated supervised clus-
tering with structural support vector machines.

Prior information about the cluster structure of a data set allows for en-
hancements to classical clustering algorithms such as k-means. E.g., Wagstaff
et al. [21] incorporate the background knowledge as must-link and cannot-link
constraints into the clustering process, while [4, 22] learn a metric over the data
space that incorporates the prior knowledge.

Several discriminative algorithms have been studied that utilize joint spaces
of input and output variables; these include max-margin Markov models [18],
kernel conditional random fields [15], hidden Markov support vector machines
[1], and support vector machines for structured output spaces [20]. These meth-
ods utilize kernels to compute the inner product in input output space. This
approach allows to capture arbitrary dependencies between inputs and outputs.
An application-specific learning method is constructed by defining appropri-
ate features, and choosing a decoding procedure that efficiently calculates the
argmax, exploiting the dependency structure of the features.

3 Preliminaries

The task is to find a model f such that given a set of instances x the true
partitioning y given as an adjacency matrix yields the highest score

y = argmax
ȳ∈Y

f(x, ȳ). (1)

We measure the quality of f by an appropriate, symmetric, nonnegative loss
function ∆ : Y ×Y → R+

0 that details the distance between the true partition y
and the prediction ŷ = argmaxȳ f(x, ȳ). A natural measure for two clusterings
is the Rand index [16]. The corresponding loss function ∆Rand is given by

∆Rand(y, ŷ) = 1−QRand(y, ŷ)

= 1−
∑

j,k<j [[yjk = ŷjk]]
|y|

=
∑

j,k<j

[[yjk 6= ŷjk]]
|y| ,

where [[σ]] is the indicator function which yields 1 if the proposition σ is true
and 0 otherwise. We can restate the optimization problem as finding a function
f that minimizes the expected risk

R(f) =
∫

X×Y
∆Rand(y, argmaxȳ f(x, ȳ))dP (x,y) (2)
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where P (x,y) is the (unknown) distribution of sets of objects and their cluster-
ings. As in the classical setting we address this problem by searching a minimizer
of the empirical risk given by

RS(f) =
1
n

n∑

i=1

∆Rand(y(i), argmaxȳ f(x, ȳ)), (3)

regularized by ‖f‖2.
Correlation clustering [3] maintains a symmetric similarity matrix whose el-

ements denote pairwise similarities between objects. This representation allows
to recast the problem as a poly-cut problem in a fully connected graph, where
objects are identified with nodes and edges are weighted with the respective pair-
wise similarities. The optimal partitioning can either be found by minimizing
the edge weights between clusters of objects or by maximizing the edge weights
within clusters of objects. Following the latter leads to the integer optimization
problem

ŷ = argmax
y∈Y

f(x,y) = argmax
y∈Y

|x|∑

j=1

j−1∑

k=1

yjksim(xj , xk) (4)

where yjk indicates wether xj and xk belong to the same cluster. The set Y
contains all equivalence relations over x given as an adjacency matrix, that is,
all y which satisfy the triangle inequality (1− yjk) + (1− ykl) ≥ (1− yjl) where
yjk ∈ {0, 1}. The maximum is attained by the partitioning y that maximizes
the within-cluster similarities. We follow [13] and use a parameterized similarity
measure between two objects xj and xk given by

sim(xj , xk) =
T∑

t=1

wtφt(xj , xk) = w>Φ(xj , xk), (5)

where Φ(xj , xk) = (..., φt(xj , xk), ...)> is the similarity vector of xj and xk; e.g.,
in our running example φ234(xj , xk) might be an indicator function that equals
1 if both mails are of the same mime-type. Substituting 5 into 4 shows that we
can rewrite f as a generalized linear model in joint input output space

f(x,y) =
|x|∑

j=1

j−1∑

k=1

yjksim(xj , xk) (6)

=
|x|∑

j=1

j−1∑

k=1

yjkw>Φ(xj , xk) (7)

= w>



|x|∑

j=1

j−1∑

k=1

yjkΦ(xj , xk)




︸ ︷︷ ︸
=:Ψ(x,y)

(8)

= w>Ψ(x,y). (9)
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In the following we will refer to a sample S of n input output pairs
(x(1),y(1)), . . . , (x(n),y(n)), drawn i.i.d. according to P (x,y). The i-th pair con-
tains |x(i)| = mi instances x

(i)
1 , . . . , x

(i)
mi with adjacency matrix y(i) such that

y
(i)
jk = 1 if x

(i)
j and x

(i)
k are in the same partition. We denote the set of all

adjacency matrices of possible partitionings of the i-th set by Y(i).

4 Discriminative Identification of Duplicates

In this section we present three discriminative approaches to the identification
of duplicates: an integrated QP-formulation, a sequential multi-class approach,
and a pairwise classifier.

4.1 Integrated Optimization Problem

Bansal et al. [3] show that exact inference is NP-complete. However, the optimal
solution can be approximated by substituting real valued edge weights zjk ∈
[0, 1] for the integer valued edge weights yjk ∈ {0, 1}. The decoding problem in
Equation 4 can be solved approximately by the following decoding strategy.

Decoding Strategy 1 Given m instances x1, . . . , xm ∈ X and a similar-
ity measure simw : X × X → R. Over all values z ∈ Rm maximize∑m

j=1

∑j−1
k=1 zjksim(xj , xk) subject to the constraints ∀j,k,l (1− zjk)+ (1− zkl) ≥

(1− zjl) and ∀j,k 0 ≤ zjk ≤ 1.

The substitution of the approximate labels, gives rise to the loss function
∆Rand(y, z) =

∑
j,k<j(|yjk − zjk|)/|y|. The optimization problem of the struc-

tural support vector machine in terms of approximate labels z can be stated as
follows.

Optimization Problem 1 Given n labeled clusterings, loss function ∆Rand,
C > 0; over all w and ξi minimize ||w||2 + C

∑n
i=1 ξi subject to the con-

straints ∀n
i=1w

>Ψ(x(i),y(i)) + ξi ≥ maxz∈Z(i)

[
w>Ψ(x(i), z) + ∆Rand(y(i), z)

]

and ∀n
i=1ξi ≥ 0, where Z(i) consists of all possible approximate labelings of x(i)

which satisfy the triangle inequality.

Similar to [19] the loss can be integrated into the decoding of the top scoring
clustering. This gives us

max
zi

d(i) +
∑

j,k<j

zi,jk(w>Φ(x(i)
j , x

(i)
k )− e

(i)
jk )

s.t. ∀j,k,l (1− zi,jk) + (1− zi,kl) ≥ (1− zi,jl),
∀j, k 0 ≤ zi,jk ≤ 1,

where d(i) =
P

j,k<j y
(i)
jk

|y(i)| and e
(i)
jk =

2y
(i)
jk−1

|y(i)| . Integrating the constraint into the
objective function leads to the corresponding Lagrangian

L(zi, λi, νi, κi) = d(i) + ν>i 1 + λ>i 1 +
h
w>Φ(x(i))− e(i) −A(i)λ>i − νi + κi

i>
zi
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where the coefficient matrix A(i) is defined as

A
(i)
jkl,j′k′ :=





+1 : if (j′ = j ∧ k′ = k) ∨ (j′ = k ∧ k′ = l)
−1 : if j′ = j ∧ k′ = l

0 : otherwise

The substitution of the derivatives with respect to zi into the Lagrangian and
elimination of κi removes its dependence on the primal variables and we resolve
the corresponding dual that is given by

min
λi,νi

d(i) + ν>i 1 + λ>i 1

s.t. w>Φ(x(i))− e(i) −A(i)λi − νi ≤ 0

λi, νi ≥ 0.

Strong duality holds and the minimization over λ and ν can be combined with
the minimization over w. The reintegration into optimization problem 1 leads
to the integrated Optimization Problem 2 that can be solved directly.

Optimization Problem 2 Given n labeled clusterings, C > 0; over all w, ξi,
λi, and νi, minimize ||w||2 + C

∑n
i=1 ξi subject to the constraints 10-12.

∀n
i=1 w>Ψ(x(i),y(i)) + ξi ≥ d(i) + ν>i 1 + λ>i 1, (10)
∀n

i=1 w>Φ(x(i))− e(i) ≤ A(i)λi + νi, (11)
∀n

i=1 λi, νi ≥ 0, (12)

The number of Lagrange multipliers λi in Optimization Problem 2 is cubic in
the number of instances mi; i.e., its solution becomes intractable for large data
sets. In the following two sections we present two approaches that overcome this
drawback.

4.2 Sequential Clustering

Our second approach accounts for the sequential nature of the data. In the server-
sided batch detection scenario incoming mails have to be classified immediately
upon arrival. In our running example each incoming email is either grouped to
an existing batch or it becomes its own singelton batch.

Therefore, it suffices to maintain a window that contains the last m incoming
mails. As soon as a new mail arrives it is substituted for the oldest mail in the
window and a new clustering is computed. The latter step can be approximated
by finding a cluster or opening a new batch only for the latest mail, respectively.
Algorithm 1 details this approach.

The adjacency matrix y can be obtained from the clustering C by yjk(C) =
[[∃c ∈ C : xj ∈ c∧xk ∈ c]]. Given a fixed clustering of x1, . . . , xm−1, the decoding
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Algorithm 1 Sequential Clustering
1 C ← {}
2 for j = 1 . . . |x|
3 cj = argmaxc∈C

P
xk∈c w>Φ(xk, xj)

4 if
P

xk∈cj
w>Φ(xk, xj) < 0

5 C ← C ∪ {{xj}}
6 else
7 C ← C \ {cj} ∪ {cj ∪ {xj}}
8 endif
9 endfor
10 return C

problem in 4 reduces to

max
y∈Y

m∑

j=1

j−1∑

k=1

yjksimw(xj , xk) = (13)

max
y∈Y

m−1∑

j=1

j−1∑

k=1

yjksimw(xj , xk) +
m−1∑

k=1

ymksimw(xm, xk). (14)

The first summand of Equation 14 is constant; thus finding a cluster for xm

reduces to the Decoding Strategy 2, where the additional cluster c̄ accounts for
xm being dissimilar to its predecessors in the window.

Decoding Strategy 2 Given m instances x1, . . . , xm ∈ X , similarity measure
simw : X ×X → R, and a clustering C of instances x1, . . . , xm−1; over all values
c ∈ {C⋃

c̄} maximize
∑

xk∈c simw(xm, xk).

If we denote the set of all possible clusterings in which xj is reassigned to any
cluster by Cj we derive the following minimization problem.

Optimization Problem 3 Given n labeled clusterings, C > 0; over all w and
ξij, minimize 1

2‖w‖2 + C
∑

i,j ξij subject to the constraints ∀N
i=1, ∀mi

j=1, ∀Ĉ ∈
C(i)

j w>Ψ(x(i),y(i)) + ξij ≥ [w>Ψ(x(i),y(Ĉ)) + ∆(y(i),y(Ĉ))]
Since the number of clusters is upper bounded by the window size, |C| ≤ m,
Optimization Problem 3 has at most n ·∑n

i=1 m2
i constraints and can be solved

by standard techniques. This approach is equivalent to single-vector multi-class
classification [12]. Also note that the obtained solution for the weight vector w
is independent of the used decoding strategy, and can thus be used with every
other approximation of correlation clustering as well.

4.3 Pairwise Classification

The multi-class approach can be further approximated by a binary classifier that
outputs class +1 if two instances are similar and class −1 otherwise. Therefore,



20 Peter Haider, Ulf Brefeld, and Tobias Scheffer

we use all pairs of instances (x(i)
j , x

(i)
k ) within the training tuple (x(i),y(i)) as

inputs and define the labels υ
(i)
jk = +1 if y

(i)
jk = 1, and υ

(i)
jk = −1 if y

(i)
jk = 0.

This leads us to the standard formulation of a binary support vector machine in
Optimization Problem 4.

Optimization Problem 4 Given n labeled clusterings, C > 0; over all
w and ξijk, minimize 1

2‖w‖2 + C
∑

i,j,k ξijk subject to the constraints

∀N
i=1, ∀mi

j=1, ∀j−1
k=1υ

(i)
jk (w>Φ(x(i)

j , x
(i)
k ) + b) ≥ 1− ξijk.

The weight vector w can directly be used as parameter of the similarity mea-
sure, i.e. the decision function of the binary classifier is equivalent to the pairwise
similarity function. Analogously to the sequential clustering, the pairwise clas-
sification allows the use of any decoding strategy.

However, this approach suffers several drawbacks compared to the two pre-
viously devised solutions. Firstly, an application-specific loss function cannot be
incorporated into the learning problem that implicitly minimizes the 0/1 error.
Secondly, transitive dependencies within the training tuples are ignored, that is
the training instances are not i.i.d.

5 Empirical Evaluation

We investigate our approaches by applying them to an email batch identification
task. We compare the presented training methods with the iterative learning
procedure for support vector machines with structured outputs by Finley and
Joachims [13]. We explore the benefit of each approach and perform an error
analysis.

In our experiments we use a slightly modified variant of the loss function
based on the Rand index. Instead of normalizing over the number of all mails as
in Equation 2 we use the number of emails in the current batch as normalization.
That is, each wrong edge is weighted by the inverse size of its batch. The loss
function 15 is linear in z and independent of the size of the batches, and thus
better reflects the intuition about the quality of a batch detection method.

∆N (y∗,y, j) =
∑

k 6=j

[[ [[y∗j = y∗k]] 6= [[yj = yk]] ]]∑
k′ 6=j [[y

∗
k′ = y∗k]]

. (15)

The feature functions are simple pairwise indicators or measures, such as equality
of sender or mimetype, difference of message length, edit-distance of the subject
lines, cosine distance of TFIDF-vectors, or differences in letter-bigram-counts.
Each wrong edge gets weighted by the inverse of the number of members of its
corresponding batch, to even out the influences of large and small batches.

We evaluate our proposed methods on a set of 3000 emails, consisting of
2000 spam mails collected by an email service provider, 1000 non-spam mails
from the public Enron corpus, and 500 newsletters. These mails were manually
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grouped into batches, resulting in 136 batches with at average 17.7 emails and
598 remaining single mails. Our results are obtained through a cross validation
procedure, where each test set contains a non-singular batch and is filled up with
randomly drawn emails to a total size of 100 emails. The training data consist
of nine sets of 100 emails each, sampled randomly from the remaining emails.

Each of the obtained models is applied to the test sets, using either the ap-
proximative clustering based on the linear program, the sequential clustering
algorithm, or the greedy clustering algorithm by [13]. Figure 1 shows the experi-
mental results of three of the training methods. The integrated learning problem
is not tractable for this amount of training data.

In a second experiment, we split each training and each test set in two halves,
resulting in 18 sets of 50 emails each for training. That is, the total number of
training emails remains the same but the integrated learning problem becomes
tractable. Figure 2 shows the results for this setting.

In both experiments, the LP-decoding strategy and the greedy clustering
algorithm perform equally well. By contrast, the sequential clustering performs
significantly worse in most of the cases according to a paired t-Test on a 5%
confidence level. However, this loss in performance comes with a gain in execution
time that is linear in the number of examples (see Table 2).
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Fig. 1. Average loss and standard errors for m = 100.

Figure 3 details which fraction of the error is caused by the decoding and
which by the learning algorithm. The dashed area indicates the error caused by
the training method. We quantify this error by counting the number of different
edges in the true and the predicted similarity matrix, respectively. The additional
error of the subsequent decoding is indicated for all three decoding strategies.
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Fig. 2. Average loss and standard errors for m = 50.

Except for the sequential decoding, the multi-class optimization leads to cor-
rect clusterings that fulfill the transitivity constraints between triples of nodes.
On the contrary, the solution of the pairwise optimization has the lowest error
but fails to satisfy these transitivity constraints. Neither decoding strategy can
compensate the errors.

Table 2. Execution time of the decoding strategies in seconds.

Window size m 25 50 100 200

LP-Clustering 2.3 · 10−1 6.4 · 100 4.0 · 102

Greedy Clustering 6.4 · 10−4 2.5 · 10−3 9.9 · 10−3 4.0 · 10−2

Sequential Clustering 1.5 · 10−5 2.9 · 10−5 5.6 · 10−5 1.1 · 10−4

6 Conclusion

We devised three large margin approaches to supervised clustering of sequen-
tial data. The integrated approach has at least cubic execution time and can be
solved directly for small training sets. Treating the problem as multi-class clas-
sification allowed us to use larger data sets. The pairwise classification approach
is a rough but fast approximation of the original problem.

Experimental results were carried out on all combinations of learning algo-
rithms and decoding strategies in our discourse area. The results showed that
the LP-decoding performs equally well as the greedy algorithm presented in [13].
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Fig. 3. Fraction of the loss induced by the learning algorithm (similarity matrix) and
the decoding.

However, both methods are computationally expensive. The sequential decoding
makes use of the sequential nature of the data and leads to slightly increased
losses.
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