
 

Sensor Measures of Affective Leaning
Martens, Thomas; Niemann, Moritz; Dick, Uwe

Published in:
Frontiers in Psychology

DOI:
10.3389/fpsyg.2020.00379

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Martens, T., Niemann, M., & Dick, U. (2020). Sensor Measures of Affective Leaning. Frontiers in Psychology, 11,
Article 379. https://doi.org/10.3389/fpsyg.2020.00379

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 04. Juli. 2025

https://doi.org/10.3389/fpsyg.2020.00379
http://fox.leuphana.de/portal/en/publications/sensor-measures-of-affective-leaning(cd50615f-5ebd-4d0b-828b-fd0186d1f496).html
http://fox.leuphana.de/portal/de/persons/uwe-dick(7f46c1ed-d73b-4869-805a-815d99581296).html
http://fox.leuphana.de/portal/de/publications/sensor-measures-of-affective-leaning(cd50615f-5ebd-4d0b-828b-fd0186d1f496).html
http://fox.leuphana.de/portal/de/journals/frontiers-in-psychology(834fa58e-2103-470c-9c57-afbe5e7d4abe)/publications.html
https://doi.org/10.3389/fpsyg.2020.00379


fpsyg-11-00379 April 28, 2020 Time: 17:31 # 1

ORIGINAL RESEARCH
published: 30 April 2020

doi: 10.3389/fpsyg.2020.00379

Edited by:
Andreas Gegenfurtner,

University of Passau, Germany

Reviewed by:
Giovanna Bubbico,

G. d’Annunzio University of Chieti
and Pescara, Italy

Leen Catrysse,
University of Antwerp, Belgium

*Correspondence:
Thomas Martens

thomas.martens@
medicalschool-hamburg.de

Specialty section:
This article was submitted to

Educational Psychology,
a section of the journal
Frontiers in Psychology

Received: 08 July 2019
Accepted: 18 February 2020

Published: 30 April 2020

Citation:
Martens T, Niemann M and Dick U

(2020) Sensor Measures of Affective
Leaning. Front. Psychol. 11:379.
doi: 10.3389/fpsyg.2020.00379

Sensor Measures of Affective
Leaning
Thomas Martens1* , Moritz Niemann1 and Uwe Dick2

1 Medical School Hamburg, Hamburg, Germany, 2 Institute of Information Systems, Leuphana University, Lüneburg, Germany

The aim of this study was to predict self-report data for self-regulated learning with
sensor data. In a longitudinal study multichannel data were collected: self-report
data with questionnaires and embedded experience samples as well as sensor data
like electrodermal activity (EDA) and electroencephalography (EEG). 100 students
from a private university in Germany performed a learning experiment followed by
final measures of intrinsic motivation, self-efficacy and gained knowledge. During the
learning experiment psychophysiological data like EEG were combined with embedded
experience sampling measuring motivational states like affect and interest every 270 s.
Results of machine learning models show that consumer grade wearables for EEG and
EDA failed to predict embedded experience sampling. EDA failed to predict outcome
measures as well. This gap can be explained by some major technical difficulties,
especially by lower quality of the electrodes. Nevertheless, an average activation of
all EEG bands at T7 (left-hemispheric, lateral) can predict lower intrinsic motivation
as outcome measure. This is in line with the personality system interactions (PSI)
theory of Julius Kuhl. With more advanced sensor measures it might be possible to
track affective learning in an unobtrusive way and support micro-adaptation in a digital
learning environment.

Keywords: sensor measures, process measures, affect, emotion, motivation, EEG, affective learning, self-
regulated learning

INTRODUCTION

That emotion and motivation play a crucial role for all kinds of learning processes is proven in
various empirical works, for example the impact of positive emotions (Estrada et al., 1994; Ashby
et al., 1999; Isen, 2000; Konradt et al., 2003; Efklides and Petkaki, 2005; Bye et al., 2007; Nadler
et al., 2010; Huang, 2011; Um et al., 2012; Plass et al., 2014; Pekrun, 2016). And it is quite difficult to
compare the various results because they are built on different theories and different measures. Of
course measures, underlying theories and even analytical methods are intertwined with each other
forming typical research paradigms. A very prominent research paradigm is self-regulated learning
(Pintrich and De Groot, 1990; Zimmerman, 1990; Winne and Hadwin, 1998).

Self-regulated learning emphasizes cognitive and metacognitive processes (e.g., Winne and
Hadwin, 1998; Winne, 2018). Even if affective and motivational processes are explicitly mentioned
they are reduced to a helping function for the primary cognitive and metacognitive processes
(Wolters, 2003; Schwinger et al., 2012). This might be caused by the dominant view of the
teacher on learning processes (teaching-learning short circuit – see Holzkamp, 1993; see also
Holzkamp, 2015). Moreover, most data gathering techniques are not able to cover affective
processes fully because they rely mostly on verbal (self-report) data (see also Veenman, 2011).
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Because of the holistic nature of emotional processes (Kuhl,
2000a) a verbal report is a simplified representation of emotions.

To lay out a brief theoretical foundation for the process
measures used in this study, three major aspects of learning are
emphasized here:

1. Learning is always a process over time.
2. Learning is always an internalization process with various

degrees. The learning subjects transform themselves for future
interaction with the (learning) environment.

3. Affect, emotions, and motivations play a crucial role for
learning as an internalization process over time. A higher degree
of internalization leads to a number of positive effects: e.g.,
less perceived effort, higher achievement, more effective use of
learning time (Metzger et al., 2012).

Internalization processes go along with positive affect as well
as with the dampening of negative affect. Positive affect fosters
intuitive learning processes that can be sustained over a long
time without any effort (Csikszentmihalyi, 1990). Dampened
negative affect supports connecting the inner self as well as self-
schemata with the learning topic (as provided by specific learning
environments including digital environments) (Kuhl, 2000a,b).

Negative affect as well as the dampening of positive affect stop
or at least pause internalization processes of learning. Negative
affect usually goes along with analyzing incongruent features
of the learning topic that might be threatening (Kuhl, 2000b).
Dampening of positive affect freezes the ongoing learning activity
and initiates a shift toward more reflective processes of learning
like thinking and problem solving (Kuhl, 2000b). So, according
to the personality system interactions (PSI) theory (Kuhl, 2000a;
Kuhl et al., 2015) it can be assumed that positive and negative
affect as well as the dampening of these two are associated
with specific processes of self-regulated learning. A sustained
negative affect should hinder processes of internalization that
could result in processes of intrinsic motivation. Derived from
magnetic resonance imaging (MRI) studies negative affect is
associated with activities of the left amygdala (Schneider et al.,
1995, 1997; Sanchez et al., 2015) and may also result in a higher
parietal left-hemispheric activation. There is also some evidence
that negative mood is associated with frontal left hemispheric
electroencephalographic activity (for an overview see Palmiero
and Piccardi, 2017), but empirical results are built on induced
emotions and not directly comparable to this study.

Internalization processes initiate processes of deep learning.
Especially, resulting knowledge is associated with self-schemata
(important aspects of the inner self). The interconnectedness
with important aspects of the inner self helps to prevent
knowledge from becoming inert (see Renkl et al., 1996). By
charging the gained knowledge with personal affect and emotions
the recall in various future situations will be much easier.
By increasing the chance for recall this will also foster long
term memorization, also because every recall in itself is a
new association.

Associated with these deep learning processes is the
development of a stable interest (e.g., Krapp, 2005). First, often
weak associations between learning topics and the inner self
could be described as new situated interested (Bernacki and
Walkington, 2018). And in the long run as the associations with

the inner self become stronger this might lead to stable interest
and in the end to an enduring individual interest (see also Hidi
and Renninger, 2006).

So far, affective and motivational states within the learning
process have been dominantly conceptualized on a meso level
time frame, like the postulated impact of positive affect on
internalization. Investigations on a micro level time frame like
Bosch and D’Mello (2017) will be much more common in the
future. Besides methodological challenges how to combine and
triangulate data sources from different time levels (see Järvelä
et al., 2019), theoretical problems arise. Especially, micro level
theories like the cognitive disequilibrium model (D’Mello and
Graesser, 2010) has to be interconnected and integrated into
higher level models of self-regulated learning (e.g., Winne and
Hadwin, 1998, 2008). It can be assumed that the positive effects
of affective learning, especially the internalization process cannot
be fully supported by digital learning environments. In person-
to-person learning situations the teaching person can react to the
emotions of the learning person and adapt the learning process
accordingly to personal needs. Typically, a person has two main
ways for providing affective learning support:

(1) Emotional support, e.g., by soothing someone.
(2) Adaptation of the learning situation, e.g., by providing

individualized feedback.
So far, direct emotional social support must be provided

by a human being. So we will explore how a digital learning
environment can be adapted to individual needs that change
during the learning process. Micro-Adaptation (for an overview
see Park and Lee, 2003) is working on the premise that
interactions between learner and learning environment lead to
adaptation. The learner provides a “signal” and the learning
environment reacts with a specific adaptation. Whereas the
actions of teachers might be intuitive and to some degree
undefined, the algorithms of a learning environments must be
exactly defined. At first, motivational or emotional states must
be measured and identified subsequently. Secondly, adaptive
reactions to these identified states must be defined.

For the purpose of micro adaptation in a learning
environment it is important to gather information during
the learning process (Panadero et al., 2016). A simple way
for doing so is embedded experience sampling (Larson and
Csikszentmihalyi, 1983; Csikszentmihalyi and Larson, 1987;
Hektner et al., 2007). Embedded Experience sampling is usually
based on short questionnaires that will be presented in defined
time intervals or event related. Clearly, embedded experience
sampling is able to track the process character of learning. But
two pitfalls will remain: these are still self-reports who will only
reflect emotional and motivational states that can be verbally
expressed. In this way, rather unconscious processes cannot be
reported (at least for a part of people who cannot access their
feelings easily). In sum, embedded experience sampling can
only convey the verbally expressed motivations and emotions
which reflect cognitive thoughts rather than pure motivations
or emotions. The second pitfall is that embedded experience
sampling as a specific form of self-report will always disturb the
learning process. Therefore, additional measures are required
that can unobtrusively measure processes of affective learning.
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RESEARCH QUESTIONS

So, in this study we want to measure processes of affective
learning unobtrusively with physiological data. Two types of data
will be used for prediction: electrodermal activity (EDA) and
electroencephalography (EEG). Two types of predicted data will
be reported: online or process measures (experience sampling)
and outcome measures for self-regulated learning.

MATERIALS AND METHODS

Participants
Subjects participated in an 1-h long learning experiment.
Learning material was taken from a course in a higher semester.
Individuals who had already attended these courses were
excluded from participating in the study.

Data were gathered in two cohorts (see Table 1). The first
cohort consisted of 65 students of Psychology and was tested
between October 2016 and February 2017. One subject pulled
out of the study due to self-reported headache caused by the
EEG headset, reducing the number of participants in the first
cohort to 64 (n = 14 male). Subjects in the first cohort were
between 19 and 38 years of age (M = 22.59, SD = 3.23). The
second cohort consisted of 36 students of Psychology (n = 13
male). Here, data were collected in February and March of 2018
and age ranged between 18 and 32 (M = 22.14, SD = 3.66). The
experiment was identical in both cohorts. Cohorts only differed
in the wearable devices employed for data collection. In the first
cohort, 31 subjects used the Emotiv Insight EEG headset, and 32
the InterAxon Muse EEG headset. Data of the Muse headset had
to be discarded due to technical problems with data collection.
Data were collected on smartphones (companion devices) with
the use of Apps programmed specifically for the experiment.
Technical problems with the Muse headset were only observed
using a third generation Motorola Moto G running Android
6.0.1. There were no issues when using an alternative device (LG
Nexus 5× running Android 6.0.1), nor with the Emotiv Insight
and any companion device. The second cohort was scheduled
to compensate for the lost data. In the second cohort only the
Emotiv Insight headset was used. 24 complete EEG datasets exist
for the first cohort, and 30 for the second. In addition to the
headsets, the wrist-worn wearable device AngelSensor was used
in the first cohort. It was worn by the subjects on the dominant
hand (i.e., right hand for right-handed individuals). Data were
discarded due to problems with handling the device. In both
cohorts, subjects wore the Microsoft Band 2 (MSB2) on their
non-dominant hand (i.e., left hand for right-handed individuals).
47 complete MSB2 datasets exist for the first cohort, and 26 for

TABLE 1 | Sample sizes.

n EEG (Emotiv Insight) EDA (MSB2) EEG ∩ EDA

Cohort I 64 24 47 21

Cohort II 36 30 26 22

6 100 54 73 43

the second. Complete datasets for both EEG and MSB2 exist for
21 subjects in the first cohort, and 22 in the second.

Procedure
The experiment took place in a soundproof experimental booth.
Before the learning experiment, subjects were asked to put on the
wearables themselves. Good fit was ensured by the test supervisor.
They were then given the experimental instruction. After the
first set of questionnaires, the subjects were shown a demo item
of the parsimonious questionnaire to familiarize them with the
scales. The subjects were then handed the learning material and
the learning session started. During these 60 min of learning,
participants were interrupted every 4.5 min with a vibration
alarm, and asked to fill out the parsimonious questionnaire
concerning their motivational state on a smartphone. Sensor data
from the wearable devices were collected throughout the learning
session. The learning session was terminated after 60 min and
the subjects filled out the second set of questionnaires including
the Multiple-Choice-Test. Retrospective questionnaires were
presented before the Multiple Choice-Test.

Learning Material
Participants were given study material from a higher semester
of educational psychology. The material consisted of a nine-page
excerpt about intrinsic and extrinsic motivation from a German
textbook on pedagogical psychology (Schiefele and Köller, 1998),
as well as two case studies. Each case study describes a university
student with motivational struggles. Subjects were asked to
explain the problems using the theory provided in the textbook
excerpt, and to make recommendations regarding possible
courses of action.

Process Measures (Experience
Sampling)
To assess subjects’ affective states during the learning task, a
parsimonious questionnaire was devised and implemented (see
Figure 1). It was presented on a smartphone, and subjects used
their fingers as input on the touchscreen to complete it. Subjects
were alerted to fill out the questionnaire every 270 s (4.5 min) via
a vibration alarm lasting 1 s, for a total of 13 experience samples.
To our knowledge, no recommendations exist for determining
the frequency of such a high-frequency experience sampling.
The 270 s were therefore determined in informal pre-tests to be
the minimum amount of time before the experience sampling
was perceived as annoying and intrusive. The instruction asked
participants to state how they were feeling prior to being
interrupted by the vibration alarm. Answers had to be given
within 60 s to be processed as valid data The questionnaire was
designed to be completed in as little time as possible. Responding
time averaged 16.36 s (SD = 7.36, Median = 14.64), meaning
participants spent about 4 min of the 60-min learning session
answering the questionnaire (6%).

The questionnaire consists of five bipolar sliding scales
(sliders) ranging between two endpoints marked with affective
words (end items). Sliding scales differ from rating scales
(e.g., Likert scales) in that subjects are free to choose any
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FIGURE 1 | Experience sampling with a parsimonious questionnaire.

value between the arbitrarily set end values of −4000 to
+4000. The scales are marked with eight tick marks to
provide orientation to the subjects, visually mimicking an
eight-point Likert scale. Sliders have been shown to yield
comparable results to ordinary categorical response formats
in online surveys (Roster et al., 2015). The five bipolar
sliding scales used are interest, energy, valence, focus, and
tension. They range between the end items bored – interested
[gelangweilt – interessiert] (interest), without energy – full of
energy [energielos – voller Energie] (energy), unpleasant –
pleasant [unangenehm – angenehm] (valence), focused – not
focused [unkonzentriert – konzentriert] (concentration), and
relaxed – tense [entspannt – angespannt] (tension). Similar
or identical items have been used in the past to assess
affective states in other longitudinal designs (Triemer and
Rau, 2001; Wilhelm and Schoebi, 2007). Items were chosen
to ensure a short response time (resulting in 16 s response
time in average). Intervals between measurements are typically
measured in hours, while in our current study we used a
much higher measurement frequency of only minutes (high-
frequency experience sampling). Order and polarity of the scales
were fully randomized, but kept consistent for each subject.
On each experience sample, the indicators on the sliders were
hidden until subjects first interacted with the scale. Subjects were
therefore not able to see which point on the continuum they had
previously selected.

Outcome Measures
Prior to the learning session, subjects gave their demographic
data. At the end of the learning session, learning outcome
was measured with a multiple choice test, and subjects gave
retrospective self-reports regarding their motivational and

affective states across the whole learning session. Subjects
filled out part I and II of Dundee Stress State Questionnaire
(DSSQ Matthews et al., 1999). Part I is the Mood and Affect
portion and is equivalent to the UWIST Mood Adjective
Checklist (Matthews et al., 1990). It consists of 29 affective
adjectives on the four subscales Energetic Arousal, Tense
Arousal, Hedonic Tone, and Anger/Frustration. Subjects are
asked to state to which degree they felt the given affective state
over the course of the learning session. Part II of the DSSQ
concerns motivation and consists of the Intrinsic Motivation
and Workload subscales, the latter of which is the NASA-TLX
questionnaire in modified form (Hart and Staveland, 1988).
In addition, we presented a more finely grained measure
of retrospective regulation derived from Self-Determination
Theory (Ryan and Decy, 2000). It distinguishes between
Amotivation, External Motivation, Introjected Motivation,
Identified Motivation, Intrinsic Motivation, and Interest (Prenzel
and Drechsel, 1996). Additional questionnaires that measure the
Integrated Model of Learning and Action (Martens, 2012) will
not be reported in this article.

Electrodermal Activity
Microsoft Band 2 (MSB2) was used to collect Skin Resistance
measurements at the wrist of the subjects’ off-hand. Galvanic
Skin Resistance (GSR) is the inverse of Skin Conductance and
a measure of EDA. The MSB2 samples GSR at 5 Hz. Electrode
contact was ensured by tightening the strap of the MSB2 around
the subjects’ wrists. No gel was used.

Electroencephalography
Wireless, wearable Headsets were used to collect EEG
measures. Approximately half of the first cohort tested
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FIGURE 2 | The asymmetric Emotiv Insight Headset. Reproduced with
permission.

donned the Emotiv Insight (see Figure 2) and the other
half the InterAxon Muse EEG Headsets. Data of the
Muse Headset had to be discarded due to problems
with data collection. We opted to test a second cohort
using the Emotiv Insight to systematically increase the
sample size.

The Emotiv Insight uses five dry electrodes to measure EEG
on the scalp. The electrode positions are roughly equivalent
to the standardized electrode positions AF3, AF4, T7, T8,
and Pz according to the modified combinatorial nomenclature
(MCN). The Emotiv Insight is an asymmetrical headset with
the electronics, battery, and reference electrodes on the left
side of the device. It is fixated over and behind the left ear,
where the T7 electrode and two reference electrodes make
firm contact with the head. The Emotiv Insight uses two
common mode sense (CMS)/driven right leg (DRL) reference
electrodes on left mastoid process. The remaining electrodes
are attached to non-adjustable plastic arms that wrap around
the skull. The headset sits tight on the head, although
positions of the remaining four electrodes vary somewhat from
subject to subject.

The Emotiv Insight does not expose the raw EEG data
stream out-of-the-box, although licensing options exist. By
default, the Emotiv Insight returns precomputed power values
for the theta (4–8 Hz), alpha (8–12 Hz), lower beta (12–
16 Hz), upper beta (16–25 Hz), and gamma (25–45 Hz)
bands for each of the five electrode positions. According
to the FAQ1, the Insight samples at 2048 Hz, which is
then downsampled to 128 Hz. Documentation about probable
additional filtering is non-existent. Band power data are
computed via Fast-Fourier-Transformation and returned at
8 Hz, employing a 2 s Hanning window with a step size of
125 samples.

1https://www.emotiv.com/knowledge-base/what-is-the-sampling-rate-for-the-
emotiv-insight-and-why-has-it-been-designed-this-way/

Data Analysis
Complete datasets for EEG and EDA combined existed for 45
subjects, we therefore opted to attempt prediction using EDA
and EEG data separately. This maximizes predictive power for
each sensor measure, while disallowing direct comparisons of
predictive power between the sensor measures.

Reports of statistical analysis and results are split in two.
First, we attempt to predict all 13 experience samples on each
of the 5 scales employed. Here, data from the 270 s preceding
each experience sample were used. From this time interval,
physiological data where subjects were busy answering the
parsimonious questionnaire were removed. With this procedure
approximately 6% of the data were discarded. The resulting
time varies from person to person and from sample to sample,
the metrics we computed and explained below are therefore
based on varying amounts of data. Secondly, we attempt to
predict the data gathered from retrospective questionnaires. For
this, we used sensor data gathered across the whole learning
session, minus times when subjects were busy answering the
parsimonious questionnaire.

We estimate predictive potential of measured sensor data
by using and evaluating two machine learning regression
algorithms. All complete datasets were included in the analysis.

Preparation of Physiological Data
Each sensor outputs a sequence of sensor data for proband i
during an experiment. In order to predict questionnaire values,
the raw data measured by each sensor are transformed to a
set of features that describe the sensor data sequence. Features
for the machine learning process are generated by splitting
sensor data into 13 segments corresponding to the intervals for
experience sampling. The following features were generated for
EDA: mean, median, standard deviation, maximum, minimum,
difference between maximum and minimum value, difference
between medians of first 30 s and last 30 s (denoted tendency
in the evaluation). The same features as for EDA were calculated
for the EEG for each electrode position and precomputed power
band (theta, alpha, low beta, high beta, gamma). In addition, we
computed several indices of brain activity: low beta divided by
alpha for all sites (denoted BLA), beta divided by the sum of theta
and alpha (denoted NASA). Furthermore, anterior and temporal
laterality indices were used comparing activity at left hemispheric
sites across all bands with activity at right hemispheric sites across
all bands. Lateral T is computed as the difference between T7
and T8 for all frequency bands and Lateral AF as the difference
between AF3 and AF4.

Machine Learning
Two different machine learning models were employed to
evaluate predictive potential of sensor data, one linear (Ridge
Regression) and one non-linear model (Gradient Boosting with
the XGBoost algorithm). Training the respective models is
done by a model-specific training procedure that adjusts the
parameters of the model to training data and an evaluation
procedure that predicts target values for a set of features. The
machine learning models learn functions that map sets of features
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xi to questionnaire values yi by minimizing a loss function
that depends on the machine learning model. The models
are trained on training data that consist of feature-label pairs
(xi, yi) of probands.

Ridge Regression (Hoerl and Kennard, 1970) is a l2-
regularized linear regression model. The regularization
parameter penalizes large weights of the model. Gradient
Boosting (Friedman, 2001) is a more complex non-linear model
that has shown impressive results on a large variety of regression
and classification problems (Chen and Guestrin, 2016). The
model uses several hyperparameters to control the complexity
of the learned model. In our experiments we use the XGBoost
algorithm of Chen and Guestrin (2016).

The data structure determines the validation procedure. For
the purpose of cross-validation one data point is systematically
left out. For predicting a single outcome measure the leave-on-
out (LOO) cross-validation method was used. For predicting the
13 data points nested within an individual during the learning
experiment the leave-one-proband-out (LOPO) cross-validation
method was used. Both forms of cross-validation are very similar
and iteratively assign a part of the data set to be validation data
that cannot be used for training, but they differ in regard to the
underlying data structure. Especially, the subsequent analytical
steps are similar for both procedures.

The LOPO cross-validation simulates a prediction based on
observed sensor data of previously unseen probands. To this
end, let Xi = {(xi

1, yi
1), . . . , (xi

13, yi
13)} be a set of 13 feature-

label pairs of process outcomes of proband i. Let D = {X1, X2,
. . . , Xn} be the set of all those feature-label sets of probands
I = {1, 2, . . . , n}. We iteratively choose proband i = 1, . . . , n
and remove its data subset Xi from the pool of training data
D. The resulting data set D−i is used to train the machine
learning regressor which is then evaluated on the remaining
set Xi using any of the error functions of the last paragraph.
The final outcome of LOPO-CV is computed by averaging over
all probands.

The LOO cross-validation instead only removes a single
feature-label pair. Let D = {(x1, y1), (x2, y2), . . . , (xn,
yn)} be the set of all feature-label pairs corresponding to
probands I = {1, 2, . . . , n}. We iteratively choose proband
i = 1, . . . , n and remove its feature-label pair (xi, yi) from
the pool of training data D. The resulting data set D−i is
again used to train the machine learning regressor which
is then evaluated on the remaining pair (xi, yi) using any
of the error functions of the last paragraph. Both Ridge
Regression and XGBoost use hyperparameters that help to
avoid overfitting by adjusting the complexity of the learned
model. Parameters are tuned on each LOPO or LOO training
set D−i separately. The hyperopt-library (Bergstra et al., 2013)
was used to perform parameter tuning with a threefold cross-
validation on D−i.

Features were selected on each LOPO or LOO training
set D−i separately, whenever stated. The recursive feature
elimination with cross-validation (RFECV) algorithm (Guyon
et al., 2002) was used.

For evaluating predictions two error functions were used,
namely root mean square error (RMSE) and mean absolute error

(MAE). Additionally, Pearson correlation coefficients between
predictions and real values were computed.

The baseline method for questionnaires predicts the
questionnaire values of proband i to be the mean value
of questionnaire values of all other probands. That is,
ŷbl

i = mean(
{

y1, . . . , yn
}
\{yi}) where \ denotes the relative

complement of sets. This baseline does not take into
account any sensor data but serves as a sensibility check
for results achieved by the machine learning models.
Analogously, the baseline method for experience sampling
predicts the values for each sample as ŷbl,1

i = ŷbl,2
i = . . . =

ŷbl,13
i = mean(

{
y1

1, y2
1, . . . , y13

1 , y1
2, . . . , y13

n
}
\{y1

i , . . . , y13
i }).

Meaningful predictions have to be better than the baseline
method. In this way, general trends over time that are shared
by all probands cannot be predicted significantly by the
machine learning model.

RESULTS

Prediction results are presented compared to the corresponding
baseline measure. Evaluation errors are compared to the baseline
for significance using student’s t-tests.

Prediction of Experience Sampling Using
Electrodermal Activity (EDA)
No machine learning model was able to predict process measures
from experience sampling significantly above baseline using
median EDA (see Table 2).

TABLE 2 | Results for predicting experience sampling using
electrodermal activity (EDA).

RMSE MAE r p d

Interest

Ridge 1645.2 1324.3+ 0.003

Boosting 1600.3+∗ 1291.2+∗ 0.171 0.092 0.20

Baseline 1636.9 1327.4 −0.813

Energy

Ridge 1590.0+ 1292.4+ 0.046

Boosting 1586.9+ 1299.6+ 0.061

Baseline 1596.0 1302.3 −0.815

Focus

Ridge 1630.0+ 1339.4+ 0.032

Boosting 1610.8+ 1320.3+ 0.132 0.143 0.17

Baseline 1633.6 1347.5 −0.747

Valence

Ridge 1573.8 1280.3 −0.828

Boosting 1577.6 1284.5 −0.146

Baseline 1573.7 1280.3 −0.828

Tension

Ridge 1660.8 1372.6 −0.527

Boosting 1659.5 1370.6 −0.675

Baseline 1654.7 1367.2 −0.791

+ improved performance over baseline. ∗denotes significant improvement.
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TABLE 3 | Results for predicting experience sampling using
electroencephalography (EEG).

RMSE MAE r

Interest

Ridge 1867.9 1529.1 −0.355

Boosting 1779.2 1427.8+ −0.061

Baseline 1761.9 1438.2 −0.835

Energy

Ridge 1852.2 1545.0 −0.498

Boosting 1774.6 1469.8 −0.201

Baseline 1715.7 1433.8 −0.831

Focus

Ridge 1818.0 1485.0 −0.018

Boosting 1850.3 1527.9 −0.166

Baseline 1783.9 1469.7 −0.791

Valence

Ridge 1736.9 1401.5 −0.215

Boosting 1689.7 1365.3 −0.131

Baseline 1654.1 1340.2 −0.786

Tension

Ridge 1738.5 1379.4 0.039

Boosting 1715.1 1389.9 −0.080

Baseline 1650.3 1341.6 −0.791

+: improved performance over baseline.

Prediction of Experience Sampling Using
Electroencephalography (EEG)
The machine learning model was not able to predict process
measures from experience sampling significantly above baseline
using features of the Emotiv Insight (see Table 3).

Prediction of Outcome Measures Using
Electroencephalography (EEG)
Out of the 12 outcome measures we employed, we were able
to predict Intrinsic Motivation as measured by the DSSQ
significantly above baseline using sensor data from the Emotiv
Insight (see Table 4).

Table 4 shows the average prediction results with LOO
cross-validation for outcome measures based on EEG sensor
features. We compare predictive performance of ridge regression,
XGBoost and the baseline method using RMSE and MAE as well
as label-prediction correlation (LPC). As addional information
we added the Reliability (REL) of the scales estimated with
Cronbach’s Alpha. Both ridge regressions as well as XGBoost
significantly outperform the baseline method using a student’s
t-test with p-values of 0.004 and 0.069. The effect sizes are d = 0.58
and d = 0.35, resp. Label-prediction correlation is also visualized
by Figure 3 that plots real values of intrinsic motivation for
all probands (x-axis) in comparison to the predicted values of
XGBoost (y-axis).

In Table 5 we show the features with highest average weights
as learned by XGBoost and averaged over all cross-validation
iterations. We like to note that the prediction performance can
be a misleading quantity as XGBoost is a non-linear regression
method that predicts based on non-linear combinations of

TABLE 4 | Predicting outcome measures with EEG using leave-one-out cross
validation (LOO-CV).

REL RMSE MAE r p d

Amotivation 0,68

Ridge 0.535+ 0.400+ −0.076

Boosting 0.557 0.412 −0.099

Baseline 0.538 0.408 −1.000

External motivation 0,61

Ridge 0.509 0.425 −0.066

Boosting 0.529 0.408 −0.515

Baseline 0.491 0.382 −1.000

Introjected motivation 0,38

Ridge 0.869 0.756 −0.207

Boosting 0.789 0.649 −0.414

Baseline 0.737 0.618 −1.000

Identified motivation 0,60

Ridge 0.960 0.757 −0.406

Boosting 0.863 0.693 −0.468

Baseline 0.801 0.642 −1.000

Intrinsic motivation 0,69

Ridge 0.804 0.653 −0.376

Boosting 0.734+ 0.609+ −0.119

Baseline 0.739 0.610 −1.000

Interest 0,80

Ridge 0.985 0.857 −0.223

Boosting 0.940 0.816 −0.409

Baseline 0.838 0.701 −1.000

DSSQ II intrinsic motivation 0,81

Ridge 1.079+∗ 0.815+∗ 0.685 0.004 0.58

Boosting 1.406+∗ 1.115+∗ 0.335 0.069 0.35

Baseline 1.516 1.310 −1.000

DSSQ II workload 0,37

Ridge 1.236 0.990 −0.665

Boosting 1.151 + 0.937+ 0.290

Baseline 1.231 0.979 −1.000

DSSQ I tense arousal 0,89

Ridge 0.623 0.517 −0.519

Boosting 0.644 0.549 −0.318

Baseline 0.621 0.512 −1.000

DSSQ I anger/frustration 0,87

Ridge 0.611 0.498 −0.591

Boosting 0.591+ 0.468+ 0.144

Baseline 0.610 0.492 −1.000

DSSQ I energetic arousal 0,90

Ridge 0.808 0.695 −0.252

Boosting 0.753 0.628+ 0.033

Baseline 0.729 0.639 −1.000

DSSQ I hedonic tone 0,88

Ridge 0.597+ 0.489 −0.366

Boosting 0.611 0.492 0.133

Baseline 0.598 0.486 −1.000

+ improved performance over baseline. ∗denotes significant improvement.

features. Consequently, a high importance of a feature does not
entail that the feature has large predictive power on its own. For
comparison, the highest Pearson correlation coefficients between
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FIGURE 3 | Plot of real values for Intrinsic Motivation (x-axis) vs. predicted
values via LOO procedure (y-axis).

TABLE 5 | Most important features according to the average weights of XGBoost.

Feature Weight

T7 Nasa max 0.20

T7 BETA_LOW median 0.10

Pz BETA_HIGH tendency 0.10

T Lateral ALPHA maxmin 0.09

T7 BLA min 0.09

T8 BETA_LOW max 0.06

Pz GAMMA tendency 0.05

T8 BETA_HIGH mean 0.05

AF Lateral ALPHA min 0.03

T7 BETA_LOW mean 0.03

T7 THETA min 0.03

features and intrinsic motivation are listed in Table 6. If we only
consider medians, Table 7 shows the features predicting intrinsic
motivation with highest correlations.

DISCUSSION

The effect that an average activation of all EEG bands at T7
(left-hemispheric, lateral) can predict lower intrinsic motivation
as outcome measure after the learning effect is in line with
assumptions of the PSI theory (Kuhl, 2000b, 2001). Kuhl (2000a,
2001) predicts that activating left hemispheric macro systems –
especially object recognition – will inhibit right hemispheric
macro systems – especially the extension memory. It can be
derived that processes of intrinsic motivation need active right
hemispheric activation. The extension memory is the bridge to all
self-experiences and self-schemata and therefore a key system for
internalization processes proposed by self-determination theory

TABLE 6 | Features with highest absolute Pearson correlation coefficients with
intrinsic motivation.

Feature Weight

T7 Nasa max −0.53

T7 GAMMA median −0.44

T7 BETA_HIGH median −0.42

T7 THETA median −0.38

T7 Nasa maxmin −0.37

T Lateral THETA tendency −0.36

T7 ALPHA median −0.35

T8 BETA_LOW std −0.35

T7 BETA_LOW std −0.35

T7 BETA_LOW median −0.34

TABLE 7 | Features with highest correlation with Intrinsic Motivation
considering medians.

Feature Weight

T7_GAMMA_median −0.44

T7_BETA_HIGH_median −0.42

T7_THETA_median −0.38

T7_ALPHA_median −0.35

T7_BETA_LOW_median −0.34

nasa_AF4_median −0.26

T8_GAMMA_median −0.26

lateral_T_BETA_HIGH_median −0.25

AF4_BETA_HIGH_median −0.24

T8_BETA_HIGH_median −0.24

(Ryan and Decy, 2000). Nevertheless, the data presented here
must be interpreted very carefully. The direct measurement
of right hemispheric activation could not be achieved in this
study. This might be due asymmetric design of the head set: the
delicate placing of the right electrode opposed to the tight grip
of left electrode.

In this work consumer grade wearables for EEG and EDA with
the selected features failed to predict emotions measured with
short questionnaires (embedded experience sampling) that were
repeatedly presented during the learning experiment. This gap
can be explained by some major technical difficulties:

1. The grip of the consumer grade EEG is asymmetrical and
not as tight as a professional EEG set. In addition, no
liquids were used in the experiment to foster the electric
flow. This argument can be repeated for the consumer
grade measurement of EDA. The wrist band guarantees
no tight pressure to the skin and was not supported by
additional liquids.

2. Internal programs of the consumer grade electronics were
not fully disclosed, so compression algorithms may have
spoiled the data to some extent.

3. The general setting of this natural learning experiment
might not invoke enough measurable arousal and
especially not galvanic skin response. The learning
situation used in this experiment was intentionally quite
common for university student.
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4. It cannot be fully excluded that embedded experience
sampling might not measure the same processes as the
EEG or the EDA. Experience sampling is still a form of
verbal expression that reflects emotions. But of course,
this expression might be distorted by the very same self-
reflecting processes.

The fourth argument can – to some degree – be defused by the
fact that this work can predict self-report data for the outcome
variable intrinsic motivation.

OUTLOOK

Some of the major flaws in this study will be healed in
the following study by using professional equipment for
EDA and EEG. Furthermore, emotions will be measured by
facial expressions. The authors still believe that unobtrusive
measures of affective learning are very important for
understanding learning processes. Subsequently, a theoretical
and methodological coevolution will be needed that covers
learning processes on micro as well as meso level and integrates
affective and motivational regulation processes more deeply into
theories of self-regulated learning. This will hopefully be the basis
for successfully adapting digital learning environments.
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