
 

Computer-based Adaptive Speed Tests
Brefeld, Ulf; Bengs, Daniel

Published in:
The 7th International Conference on Educational Data Mining EDM 2014

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Brefeld, U., & Bengs, D. (2014). Computer-based Adaptive Speed Tests. In J. Stamper, Z. Pardos, M. Mavrikis,
& B. M. McLaren (Eds.), The 7th International Conference on Educational Data Mining EDM 2014: Proceedings
(pp. 221-224). http://educationaldatamining.org/EDM2014/uploads/procs2014/short%20papers/221_EDM-2014-
Short.pdf

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Juli. 2025

http://fox.leuphana.de/portal/en/publications/computerbased-adaptive-speed-tests(6b5f5ae4-1641-4a36-8faa-393b713f6c2c).html
http://fox.leuphana.de/portal/de/persons/ulf-brefeld(467a2ecd-1ea2-4ac4-a9c7-b778b4c3983a).html
http://fox.leuphana.de/portal/de/publications/computerbased-adaptive-speed-tests(6b5f5ae4-1641-4a36-8faa-393b713f6c2c).html
http://educationaldatamining.org/EDM2014/uploads/procs2014/short%20papers/221_EDM-2014-Short.pdf
http://educationaldatamining.org/EDM2014/uploads/procs2014/short%20papers/221_EDM-2014-Short.pdf


Computer-based Adaptive Speed Tests

Daniel Bengs†

†German Inst. for Intern. Educational Research
Information Center for Education

Frankfurt am Main, Germany
bengs@dipf.de

Ulf Brefeld†‡

‡Technische Universität Darmstadt
Department of Computer Science

Darmstadt, Germany
brefeld@kma.informatik.tu-darmstadt.de

ABSTRACT
The assessment of a person’s traits is a fundamental prob-
lem in human sciences. Compared to traditional paper &
pencil tests, computer based assessments not only facilitate
data acquisition and processing but also allow for adaptive
and personalized tests so that competency levels are assessed
with fewer items. We focus on speeded tests and propose
a mathematically sound framework in which latent compe-
tency skills are represented by belief distributions on com-
pact intervals. Our algorithm updates belief based on di-
rectional feedback; adaptation rate and difficulty of the task
at hand can be controlled by user-defined parameters. We
provide a rigorous theoretical analysis of our approach and
report on empirical results on simulated and real world data,
including concentration tests and the assessment of reading
skills.

1. INTRODUCTION
The assessment of a person’s traits such as ability is a fun-
damental problem in the human sciences. Perhaps the most
prominent examples are the triennial PISA studies launched
by the OECD in 1997. Traditionally, assessments have been
conducted with printed forms that had to be filled in by the
testees, so called paper & pencil tests. Nowadays, computers
and handhelds become more and more popular as platforms
for conducting studies in social sciences; electronic devices
not only facilitate data acquisition and processing, but also
allow for real-time adaptivity and personalization.

Psychological testing differentiates between two types of tests,
namely power and speeded tests [2]. The former uses items
with a wide range of difficulty levels, so that testees will al-
most surely be unable to solve all items, even when given
unlimited time. By contrast, speeded tests deploy homoge-
neous items that are easy to solve, and testees are discrimi-
nated by the time needed to solve the items. In this paper,
we focus on pure speed tests akin to [4] as well as tests where
response times are assessed together with item correctness,
e.g. to study the efficiency of cognitive processes [5].

We devise an algorithm using a data-driven approach for
steering the time limits of individual items actively. Items of
constant inherent difficulty are administered in a sequence
t = 1, 2, . . ., and a limit on response time τ̂t is adapted
based on testee performance. After the administration of
each item, the algorithm chooses the limit for the upcoming
item such that as much information as possible on testee’s
expected response time is collected. The uncertainty of an
estimate τ̂ is represented by a belief distribution over a finite
interval of admissible response times. When administering
item t, an estimate τ̂t is drawn, such that τ̂t divides the
belief mass in two parts whose areas have a predefined ratio
roughly corresponding to the odds that the testee responds
within the time limit. After the testee attempts solving the
item under the time limit τ̂t, the algorithm receives feedback
φt encoding three cases: (i) if τ̂t−τt < ε, the time limit τ̂t was
insufficient for the testee to answer in time and φt = 1, (ii) in
case τ̂t− τt > ε , the setting was more than sufficiently long,
and φt = −1, and (iii) τt ∈ [τ̂t − ε, τ̂t + ε] which corresponds
to a just right setting and φt = 0.

Our learning algorithm is around the following strategy:
Once we observe that τ̂ is too small to allow for solving
the item, it is highly probable that all time limits τ̃ > τ̂
would also be too small, and belief in their correctness can
be updated. A similar argument holds vice versa for time
limits more than sufficiently long. The feedback is therefore
used as a directional signal that triggers the update process.
In this paper we develop the mathematical framework for
computer-based adaptive speed tests and devise an efficient
algorithm. We provide a theoretical analysis and report on
empirical results using artificial and real-world data.

2. RELATED WORK
Missura & Gärtner [3] consider the problem of dynamic dif-
ficulty adjustment as a game between a master and a player
that is played in rounds t = 1, 2, · · · , where the master pre-
dicts the difficulty setting for the next round based on the
player feedback. The authors introduce an algorithm that
represents the set of admissible difficulty settings as a finite
discrete set K endowed with a partial ordering. For each of
the difficulty levels k ∈ K, the algorithm maintains a posi-
tive number representing belief in k being just right. At each
round, the prediction allows to update the maximal amount
of belief after feedback has been received. In contrast to
[3], we use a continuous framework and do not rely on a
predefined discrete set admissible settings, but instead find
appropriate settings adaptively on the fly.
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Csáji and Weyer [1] investigate the problem of estimating
a constant based on noisy measurements of a binary sen-
sor with adjustable threshold. That is, of a constant θ∗ ∈ R
disturbed by additive, i.i.d. noise Nt, only measurements in-
dicating whether the θ∗+Nt exceeds an adjustable threshold
θt are available for t = 1, 2, · · · . Under mild assumptions on
the distribution of Nt, a strongly consistent estimator is de-
rived, i.e. a method for choosing the thresholds θt such that
θt → θ∗ almost surely for any starting value θ0. In contrast
to [1], we do not make any assumptions on the distribution
of the value to be estimated or on its stationarity.

In the field of psychometrics, only a few adaptive speed tests
have been designed. For the assessment of concentration
ability, Goldhammer & Moosbrugger [4] propose the Frank-
furt Adaptive Concentration Test II (FACT-II), which con-
ceptualizes concentration as the ability to respond to stimuli
in the presence of distractors. After administration of item
t, exposure time of the item t+ 1 is adjusted until a liminal
exposure time is reached that just allows the testee to solve
the task. Starting with a fixed initial exposure time θ1, up-
dating is performed multiplicatively depending on whether
a correct response is given in time or not. Tests using both
accuracy and response times are used to assess efficiency of
cognitive processes for instance in the measurement of com-
ponents of reading abilities [5].

3. CAT-FRAMEWORK FOR SPEED TESTS
We consider a computerised adaptive test where a sequence
of items of homogeneous difficulty is presented to the tes-
tee and response times are recorded. This scenario encom-
passes adaptive speeded tests such as FACT2 [4] as well as
tests targetting efficiency of congitive processes (e.g. [5]).
In the former, response times are limited by an adaptation
mechanism and relate directly to the trait being assessed.
In the latter case, response times are merely observed and
used to analyse testee efficiency. Here, testees might take a
long time to think and then score perfectly, leading to un-
desirable ceiling effects, as observed by [5]. Imposing a time
limit may increase testing efficiency and also increase vari-
ation in item correctness, leading to a higher data quality.
We additionally show that our algorithm can be configured
to realize a user-defined probability for a timely response.

3.1 Methodology
We consider admissable response times in an interval T =
[a, b]. We assume that at each position of the testing se-
quence, there exists a lower bound on the testee’s response
time which we consider the just right setting τt ∈ T . This is
the minimum sustainable response time enabling the testee
to solve the item; we assume that it relates to an underly-
ing trait but is independent of the actual item, as the item
bank consists of items of constant difficulty. The goal of
the adaptation is to iteratively adjust the time limit until
the just right setting is reached. To this end, the algorithm
maintains a belief distribution Bt : [a, b]→ (0,∞) on T that
is used for accumulating knowledge about the correctness of
previously estimated time limits. Correctness of the predic-
tions is assessed after administering each item by feedback
φt, which is based on the relation of the testee’s response
time τt and the predicted time limit τ̂t: We have φt = −1
if τ̂t < τt, that is, the item is solved within the time limit,

φt = 1 if the testee runs out of time (τ̂t > τt), and φt = 0 if
the item is solved (exactly) at the time limit (τ̂t = τt ± ε).

Here, ε > 0 is used to decide whether the τt is close enough
to τ̂t to consider τ̂t a correct prediction. This is necessary be-
cause response times underly random fluctuations and thus
the just right time limit remains hidden to the algorithm.
Adaptation and prediction is done using the belief function
and two preassigned parameters β ∈ (0, 1) and δ ∈ (0, 1) as
follows: Belief is initialized to be a strictly positive constant
on T .∗ The time limit for administering item t is computed
as the value τ̂t that splits the area under Bt in two parts

Pt(τ̂t) :=
∫ τ̂t
a
Bt(x)dx and Qt(τ̂t) :=

∫ b
τ̂t
Bt(x)dx, such that

Pt : Qt = δ : 1− δ. Assuming normalized belief, this can be
achieved by determining τ̂t that satisfies Pt = δ.

It is easy to see that Bt being non-negative by assumption,
the mapping τ̂t 7→ Pt(τ̂t) is strictly increasing and thus bi-

jective, so τ̂t is uniquely determined if only
∫ b
a
Bt(x)dx 6= 0,

which because as B1 6= 0 and β 6= 0, all Bt 6= 0 due to the
updating formula given below. After the testee attempts
to solve the item given time limit τ̂t, the algorithm receives
feedback φt indicating whether the time limit was (i) too
long and φt = −1, or (ii) too short and φt = +1. Because
of transitivity, the algorithm may infer that (i) the time
was more than sufficiently long or (ii) any shorter time limit
would also have been insufficient for the testee. If the testee
responded ε-close to the time limit and φt = 0, no update
is necessary because current belief produced a correct pre-
diction. Otherwise, the belief in all settings (i) longer or (ii)
shorter, respectively, is lowered by the updating step, which
is carried out by multiplying the respective belief values by
the learning rate β:

Bt+1(x) =

{
βBt(x), if (i) and x ≥ τ̂T or (ii) and x ≤ τ̂t
Bt(x), else.

The parameter β thus controls how much weight is given
to information from the current observation; the closer β is
to zero, the faster the adaptation. If β is close to 1, the
predictions will show less variation. Thus assumptions on
the rate of change of the true time limit and the length of
the item sequence can be used to guide the choice of β. We
give a theoretical analysis yielding bounds on the difference
of successive predictions by our algorithm in Theorem 1.

3.2 Computational Aspects
Each feedback step leads to the updating of either the inter-
val [a, τ̂t] or the interval [τ̂t, b] by multiplying the values of
Bt by β. Consequently, for all t, the function Bt belongs to
the space of non-negative step functions on [a, b]. This al-
lows for efficient storage, manipulation and prediction based
on an interval subdivision scheme. Starting with T = [a, b],
we divide the interval containing the current prediction τ̂t
at τ̂t and update the belief values to the left or right of τ̂t
depending on the feedback φt by multiplying with β ∈ (0, 1).
Formally, we write Bt as a sum

Bt =

Nt∑
i=1

y
(t)
i χ

I
(t)
i

∗The initial belief function B1 can also be tailored to incor-
porate prior knowledge about where to expect τ1.
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for some N ∈ N, where y
(t)
i ≥ 0 is the value Bt takes on the

ith interval given by I
(t)
i = [x

(t)
i−1, x

(t)
i ) for i = 1, · · · , Nt − 1

and I
(t)
Nt

= [xNt−1, xNt ]. The interval endpoints are defined
by a partition

a = x
(t)
0 < x

(t)
1 < x

(t)
2 < · · · < x

(t)
Nt

= b

of [a, b]. By i∗t we denote the index of the interval containing
τ̂t. If φt = 1, we set

Bt+1 =

i∗t−1∑
i=1

βyiχI(t)i

+ βyi∗t χ[xi∗t −1,τ̂t)

+ yi∗t χ[τ̂t,xi∗t
) +

Nt∑
i=i∗t+1

yiχI(t)i

,

(1)

if φt = −1, belief at t+1 is defined analogously, that is, nodes

x
(t+1)
· are as above, but the weights with indexes greater or

equal than i∗t are multiplied by β. Finally, if φt = 0 no up-
date is necessary and Bt+1 = Bt. The belief function can
be stored and updated efficiently by storing the endpoints

x
(t)
1 , · · · , x(t)Nt−1 and function values y1, · · · , yN . Theorem 1

bounds the minimal and maximal difference between succes-
sive estimates of the algorithm.

Theorem 1. Let (τ̂t)
N
t=1 be a sequence of estimations of

the CAST algorithm with parameters β and δ. Then for
t = 1, · · · , N − 1 it holds that

δ(1− δ)(1− β)

maxx∈[a,b]Bt(x)
B ≤ |τ̂t+1 − τ̂t| ≤

δ(1− δ)(1− β)

minx∈[a,b]Bt(x)
B,

where B =
∫ b
a
Bt(x)dx.

Note that the bounds are invariant under rescaling of the be-
lief function, but depend on the parameter β that controls
learning rate: If β is small, then new experience is given
more weight and the lower bound on step size is greater
than its analogue for β ≈ 1 which gives less weight to new
information. The dependance on δ can be interpreted as
follows: The more δ deviates from 0.5, the more will inital
time limits be biased towards a or b resp. and also adapta-
tion to the observed time limit will be slower. Therefore, δ
can be regarded a parameter controlling difficulty bias. Our
experiments demonstrate that by varying δ, a wide range of
difficulty settings can be realized. We verify this claim in
the next Section.

4. EMPIRICAL RESULTS
4.1 Artificial Data
To showcase the adaptivity of our approach, we simulate
near-realistic scenarios to create settings that reflect be-
haviour observed in adaptive psychological speed tests or
computer games. We compare the empirical performance of
CAST to state-of-the-art baselines POSM [3], Csáji-Weyer-
Iteration (CWI) [1], and the algorithm used by FACT-II [4].

Throughout this suite of experiments, we use T = [0, 1].
To allow for a fair comparison, the set of difficulty settings
for POSM consists of N equidistantly sampled points in T ,
where n is the number of time steps used. This choice guar-
antees that the number of subdivisions made by CAST is less
than or equal to the number of settings available to POSM.

Figure 1: Top: Artificial response times. Bottom:
Results for constant (left) and drift (right) scenarios.

Thus, all approaches have access to the same amount of re-
sources. We use optimal parameters for CAST and POSM
chosen by model selection.

We study the behavior of the algorithms in constant and
dynamic scenarios: In the first setting, the ground-truth τ
remains constant. We sample the constants from a uniform
distribution on T . In the second setting, we simulate learn-
ing and tiredness effects of testees. The true parameter τ
thus underlies drifts and the resulting distribution is not
stationary. In both settings, simulated response times are
additionally disturbed by white noise. Figure 1 (top row)
shows sample observations for the two scenarios. We report
on average deviations of 1,000 repetitions with randomly
generated τ .

Figure 1 (bottom, left) shows the results for the constant
setting. All algorithms need some time to adapt to the noisy
τ with FACT showing severe problems in the estimation
process and finally oscillating between two estimations that
are both far away from the simulated ground-truth. The
best adaptation is achieved by CAST in terms of speed as
well as overall performance. CWI converges to a comparable
estimator at the end of the sequence but the adaptation
process is not as fast. POSM performs only slightly worse
than CAST. The visual differences are reflected in Table 1
that summarizes the results.

Figure 1 (bottom, right) shows the results for the dynamic
scenario containing drift. Again FACT is significantly out-
performed by the competitors. CWI describes a U-shaped
curve and proves not appropriate for dynamic scenarios due
to the strict assumptions on the data generating distribu-
tion. By contrast, CAST converges quickly to the initial
plateau after about 20 responses and looses accuracy when
the drift begins to dominate the scenario. POSM takes again
more time to adapt to the data but shows a slightly im-
proved performance for intermediate items which also leads
to the smallest difference in Table 1. However, note that
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Table 1: Sum of squared deviations of Figure 1

CAST POSM FACT CWI

constant 1.8752 2.0427 14.5896 2.9801
drift 2.6661 2.4396 24.5116 3.4407

we tailored the discrete POSM to the continuous scenario
to obtain a fair comparison in terms of computational re-
sources. In real world settings, the optimal discretization of
POSM is not obvious and often intractable. CAST can thus
be seen as the best off-the-shelf approach although POSM
achieved slightly better scores in the dynamic scenario.

4.2 Reading Skills
In this section we evaluate our algorithm in an experiment
using real world data from a computerized test of phonolog-
ical representation by Richter et al. [5]. Testees listen to an
auditorial reference stimulus in form of a pseudo word. The
presentation is immediately followed by a displayed pseudo
word on the screen. The testee’s task is to decide whether
the displayed word is phonologically identical to the audi-
tory one. No time limit is enforced.

The data consists of response times of 528 children, between
five and 11 years old, assessed during a test comprising of
n = 64 items. We simulate the effects of incorporating a
time limit by our algorithm as follows: After preprocessing
by removing extreme response times (>2500ms) and com-
pensating the strong linear relationship between number of
syllables and mean response time (R2 = .83) to level item
difficulty, the linearly transformed response times are be-
tween -932.34 and 2267 ms. We use our algorithm to predict
expected response time for each participant on the interval
[−1000, 2500].

Note that without time limits, ceiling effects in accuracy may
be observed [5] while too tight limits on response time can
easily lead to frustrated participants. We focus on the pro-
portion of items each participant would not have answered
in time for different values of β and δ. The goal is to pre-
dict for each participant time limits on each item, such that
a non-zero chance of solving the respective item is realized.
We compute predictions τ̂i; i = 1, · · · , 64 for each participant
and analyse the proportion P of items not solved within the
predicted time limit and compare the results with the pro-
portion achieved by using percentiles of the testee’s response
times. We use ε = 10ms.

Figure 2 (top, left) shows the distributions of P across par-
ticipants for β = 0.65 and 0.05 ≤ δ ≤ 0.95. The figure
indicates that proportions P between 20% and 65% can be
robustly realized by using different values of difficulty bias δ.
By contrast, the proportions realized by a percentile-based
approach in Figure 2 (top, right) span a broader range but
contain much variance across the participants, showing that
our adaptive approach leads to a more homogeneous experi-
ence across testees. For our algorithm, dispersion measured
by range is at roughly 20 percentage points across all δ while
for percentiles, ranges between 20 and 70 percentage points
are observed.

Figure 2: Results for the reading skill experiment.

Figure 2 (bottom) shows mean proportions P of testees not
responding in time on the z-axis while the color corresponds
to the standard deviation at every point. The figure shows
that a low dispersion and a wide range of proportions can be
set with our algorithm also when the β parameter is varied;
mean proportions are stable for all but extreme values of
both parameters. In sum, our algorithm effectively controls
the adaptation in both difficulty bias and adaptation rate.

5. CONCLUSION
We introduced a novel technique for computer-based adap-
tive speed tests. In contrast to existing methods, our ap-
proach is devised from a mathematically sound framework
and maintains belief distributions on compact intervals to
represent estimates of the unknown parameter. In addition,
our approach is purely data-driven and does not rely on
assumptions on the distribution of the true parameter. Em-
pirically, we showed the effectiveness of our adaptive speed
test on artificial and real world scenarios.
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