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Abstract

Learning algorithms from the fields of artificial neural networks and
machine learning, typically, do not take any costs into account or allow
only costs depending on the classes of the examples that are used for
learning. As an extension of class dependent costs, we consider costs
that are example, i.e. feature and class dependent. We derive a cost-
sensitive perceptron learning rule for non-separable classes, that can
be extended to multi-modal classes (DIPOL) and present a natural
cost-sensitive extension of the support vector machine (SVM). We
also derive an approach for including example dependent costs into an
arbitrary cost-insensitive learning algorithm by sampling according to
modified probability distributions.
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1 Introduction

The consideration of cost-sensitive learning has received growing attention
in the past years [14, 6, 10, 13]. The aim of the inductive construction of
classifiers from training sets is to find a hypothesis that minimizes the mean
predictive error. If costs are considered, each example not correctly classified
by the learned hypothesis may contribute differently to this error. One way
to incorporate such costs is the use of a cost matrix, which specifies the
misclassification costs in a class dependent manner (e.g. [14, 6]). Using a cost
matrix implies that the misclassification costs are the same for each example
of the respective class.

The idea we discuss in this paper is to let the cost depend on the single
example and not only on the class of the example. This leads to the notion
of example dependent costs (e.g. [11]). Besides costs for misclassification, we
consider costs for correct classification (gains are expressed as negative costs).
Because the individual cost values are obtained together with the training
sample, we allow the costs to be corrupted by noise.

One application for example dependent costs is the classification of credit
applicants in a bank as either being a “good customer” (the person will pay
back the credit) or a “bad customer” (the person will not pay back parts of
the credit loan).

The gain or the loss in a single case forms the (mis-) classification cost
for that example in a natural way. For a good customer, the cost for correct
classification is the negative gain of the bank. I.e. the cost for correct clas-
sification is not the same for all customers but depends on the amount of
money borrowed. Generally there are no costs to be expected (or a small loss
related to the handling expenses) if the customer is rejected, for he or she
is incorrectly classified as a bad customer. For a bad customer, the cost for
misclassification corresponds to the actual loss that has occured. The cost
of correct classification is zero (or small positive if one considers handling
expenses of the bank).

As opposed to the construction of a cost matrix that is often given by some
expert, we claim that using the example dependent costs directly is more
natural and will lead to more accurate classifiers. If the real costs are example
dependent as in the credit risk problem, learning with a cost matrix means
that in general only an approximation of the real costs is used. When using
the classifier based on the cost matrix in the real bank, the real costs as given
by the example dependent costs will occur, and not the costs specified by the
cost matrix. Therefore using example dependent costs is better than using
a cost matrix for theoretical reasons, provided that the learning algorithm
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used is able to use the example dependent costs in an appropriate manner1.
In this paper we consider single neuron perceptron learning and the al-

gorithm DIPOL introduced in [15, 17, 20] that brings together the high clas-
sification accuracy of neural networks and the interpretability gained from
using simple neural models (threshold units).

Another way of dealing with non-linearly separable, non-separable or
multi-modal data is the Support Vector Machine (SVM, [19]). We will demon-
strate how to extend the SVM with example dependent costs, and compare
its performance to the results obtained using DIPOL.

In order to use cost-insensitive learning algorithms together with exam-
ple dependent costs, we develop a new sampling strategy for generating an
appropriate cost-free training set from the one that contains the costs.

This article is structured as follows. In section 2 the Bayes rule in the
case of example dependent costs is discussed. In section 3, the learning rule
is derived for a cost-sensitive extension of a perceptron algorithm for non-
separable classes. In section 4 the extension of the learning algorithm DIPOL
for example dependent costs is described, and in section 5 the extension of
the SVM is presented. In section 6, we discuss the inclusion of costs by
resampling the dataset. Experiments on two artificial data sets, and on two
real world data sets can be found in section 7. The conclusion is presented
in section 8.

2 Example Dependent Costs

In the following we consider binary classification problems with classes −1
(negative class) and +1 (positive class). Let R denote the set of real numbers,
and d the dimension of the input vector. For an example x ∈ Rd of class
y ∈ {+1,−1}, let

• cy(x) denote the cost of misclassifying x belonging to class y

• and gy(x) the cost of classifying x correctly.

In our framework, gains are expressed as negative costs. I.e. gy(x) < 0 holds
if there is a gain for classifying x correctly into class y.

Let r : Rd −→ {+1,−1} be a classifier (decision rule) that assigns x to a
class. Let Xy = {x | r(x) = y} be the region where class y is decided by r.

1As every classification problem our problem can be restated as a cost prediction, i.e.
regression problem with e.g. a quadratic error function. But there is some evidence that
classification is easier than regression [4]. In the cost-free case, DIPOL performed better
than e.g. Backpropagation on several classification problems, see [15, 20].
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The risk of r with respect to the probability density function p of (x, y) is
given with p(x, y) = p(x|y)P (y) as

R(r)=
∑

y1,y2∈{+1,−1}

y1 6=y2

[
∫

Xy1

gy1(x)p(x|y1)P (y1)dx +

∫

Xy1

cy2(x)p(x|y2)P (y2)dx

]

(1)

(see also [19]). P (y) is the prior probability of class y, and p(x|y) is the class
conditional density of class y. The first integral expresses the cost for correct
classification, whereas the second integral expresses the cost for misclassifi-
cation. We assume that the integrals defining R do exist. This is the case if
the cost functions are integrable and bounded.

In order to minimize the risk R(r), an example x is assigned to class +1,
if

0 ≤ (c+1(x) − g+1(x))p(x|+1)P (+1) − (c−1(x) − g−1(x))p(x|−1)P (−1) (2)

holds. We assume cy(x)−gy(x) ≥ 0 for every example x, i.e. there is a benefit
for classifying x correctly.

From (2) it follows that the classification of examples depends on the
differences of the costs for misclassification and correct classification, not
on their actual values. Therefore we will assume gy(x) = 0 and cy(x) > 0
without loss of generality. This means for the credit risk problem that for good
customers the cost of correct classification is set to zero. The misclassification
cost of good customers is defined as the gain that is lost in this case.

The Bayes classifier (see e.g. [5]) for this simplified problem can be stated
as

r∗(x) = sign[c+1(x)p(x|+1)P (+1) − c−1(x)p(x|−1)P (−1)]. (3)

We define sign(0) = +1 though the assignment of the class is arbitrary for
the case c+1(x)p(x|+1)P (+1) − c−1(x)p(x|−1)P (−1) = 0.

Given a training sample (x(1), y(1), c(1)), . . . , (x(l), y(l), c(l)) with c(i) =
cy(i)(x(i)), the empirical risk is defined by

Remp(r) =
1

l

∑

Q(x(i), y(i), r).

If the example is misclassified, it holds that Q(x(i), y(i), r) = c(i); otherwise,
it holds Q(x(i), y(i), r) = 0. In our case, Remp corresponds to the mean
misclassification costs defined using the example dependent costs.
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Proposition 2.1 ([19]) If both cost functions are bounded by a constant B,
then it holds with a probability of at least 1 − η

R(r) ≤ Remp(r) + B

√

h(ln2l
h
+1) − lnη

4

l
,

where h is the VC-dimension of the hypothesis space of r.

This result from [19] (p. 80) holds in our case, since the only assumption
Vapnik made on the loss function is its non-negativity and boundedness.

Let c̄+1 and c̄−1 be the mean misclassification costs for the given distri-
butions. Let r+ be the Bayes optimal decision rule with respect to the class
dependent costs c̄+1 and c̄−1. Then it is easy to see that R(r∗) ≤ R(r+),
where R(r∗) (defined in (3)) and R(r+) are both evaluated with respect to
the example dependent costs. This means that because the example depen-
dent costs can be considered to be the real costs occuring, their usage can
lead to decreased misclassification costs. Of course this is only possible if the
learning algorithm is able to incorporate example dependent costs.

2.1 Noisy Costs

If the cost values are obtained together with the training sample, they may
be corrupted due to measurement errors. This means that the cost values are
prone to noise. A probabilistic noise model for the costs can be included into
the definition of the risk (1) by considering a common distribution of (x, y, c)
where c is the cost. In the case of a continuous random variable c, equation
(1) can be reformulated (with gy = 0) to

R(r) =
∑

y1 6=y2

∫

Xy1

[

∫

R

c p(c|x, y2)p(x|y2)P (y2)dc]dx ,

where p(c|x, y) is the probability density function of the cost given x and y.
It is easy to see that the cost functions cy can be obtained as the expected

value of the costs, i.e.

cy(x) := E[c |x, y] =

∫

R

c p(c|x, y)dc (4)

where we assume that the expected value exists. In the learning algorithms
presented in the next sections, it is not necessary to compute (4) or estimate
it before learning starts, because the necessary averaging is done by the
learning algorithms.
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3 Perceptrons

Now we assume, that a training sample (x(1), y(1), c(1)), . . . , (x(l), y(l), c(l))
is given with example dependent cost values c(i). We allow the cost values
to be noisy, but for the moment, we will require them to be positive. In
the following we derive a cost-sensitive perceptron learning rule for linearly
non-separable classes, that is based on a non-differentiable error function. A
perceptron (e.g. [5]) can be seen as representing a parameterized function
defined by a vector w = (w1, . . . , wn)T of weights and a threshold θ. The
vector w̄ = (w1, . . . , wn,−θ)T is called the extended weight vector, whereas
x̄ = (x1, . . . , xn, 1)T is called the extended input vector. We denote their
scalar product as w̄ · x̄. The output function y : Rd −→ {−1, 1} of the per-
ceptron is defined by y(x) = sign(w̄ · x̄).

A weight vector having zero costs can be found in the linearly separable
case, where a class separating hyperplane exists, by choosing an initial weight
vector, and adding or subtracting examples that are not correctly classified
(for details see e.g. [5]).

Because in many practical cases as the credit risk problem the classes are
not linearly separable, we are interested in the behaviour of the algorithm for
linearly non-separable classes. If the classes are linearly non-separable, they
can either be non-separable at all (i.e. overlapping), or they are separable
but not linearly separable.

3.1 The Criterion Function

In the following we will present the approach of Unger and Wysotzki for the
linearly non-separable case [18] extended to the usage of individual costs.
Other perceptron algorithms for the linearly non-separable case are discussed
in [21, 5].

Let the step function σ be defined by σ(u) = 1 for u ≥ 0, and σ(u) = 0
if u < 0. In the following, σ will be used as a function that indicates a
classification error.

Let S+1 contain all examples from class +1 together with their cost value.
S−1 is defined accordingly. For the derivation of the learning algorithm, we
consider the criterion function

Iε(w̄) =
1

l




∑

(x,c)∈S+1

c (−w̄ · x̄ + ε)σ(−w̄ · x̄ + ε)

+
∑

(x,c)∈S−1

c (w̄ · x̄ + ε)σ(w̄ · x̄ + ε)



 (5)
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that is to be minimized. The parameter ε > 0 denotes a margin for classifi-
cation. Each correctly classified example must have a geometrical distance of
at least ε

|w|
to the hyperplane. The margin is introduced in order to exclude

the zero weight vector as a minimizer of (5), see [18, 5].
The situation of the criterion function is depicted in fig. 1. In addition to

the original hyperplane H : w̄ · x̄ = 0, there exist two margin hyperplanes
H+1 : w̄ · x̄ − ε = 0 and H−1 : −w̄ · x̄ − ε = 0. The hyperplane H+1 is
now responsible for the classification of the class +1 examples, whereas H−1

is responsible for class −1 ones. Because H+1 is shifted into the class +1
region, it causes at least as many errors for class +1 as H does. For class −1
the corresponding holds.

It is relatively easy to see that Iε is a convex function by considering the
convex function h(z) := k zσ(z) (where k is some constant), and the sum
and composition of convex functions. From the convexity of Iε it follows that
there exists a unique minimum value.

It can be shown that the choice of an ε > 0 is not critical, because the
hyperplanes minimizing the criterion function are identical with respect to
the empirical risk for every ε > 0, see also [7].

3.2 The Learning Rule

By differentiating the criterion function Iε, we derive the learning rule. The
gradient of Iε is given by

∇w̄Iε(w̄) =
1

l




∑

(x,c)∈S+1

−c x̄σ(−w̄ · x̄ + ε) +
∑

(x,c)∈S−1

c x̄σ(w̄ · x̄ + ε)



 (6)

To handle the points, in which Iε cannot be differentiated, in [18] the gradient
in (6) is considered to be a subgradient. For a subgradient a in a point w̄, the
condition Iε(w̄

′) ≥ Iε(w̄)+a · (w̄′−w̄) for all w̄′ is required. The subgradient
is defined for convex functions, and can be used for incremental learning and
stochastic approximation (see [18, 2, 16]).

Considering the gradient for a single example, the following incremental
rule can be derived. For learning, we start with an arbitrary initialisation
w̄(0). The following weight update rule is used when encountering an example

8



(x, y) with cost c at time (learning step) t:

w̄(t + 1) =







w̄(t) + γtc x̄ if y = +1 and
w̄(t) · x̄ − ε ≤ 0

w̄(t) − γtc x̄ if y = −1 and
w̄(t) · x̄ + ε ≥ 0

w̄(t) else

(7)

We assume either a randomized or a cyclic presentation of the training ex-
amples.

In order to guarantee convergence to a minimum and to prevent oscilla-
tions, for the factors γt the following conditions for stochastic approximation
are imposed: limt→∞ γt = 0,

∑∞
t=0 γt = ∞,

∑∞
t=0 γ2

t < ∞. A possible choice
is γt = 1

t
. The convergence to an optimum in the separable and the non-

separable case follows from the results in [16].
If the cost value c is negative due to noise in the data, the example could

just be ignored. This corresponds to modifying the density p(x, y, c) which is
in general not desirable. Alternatively, the learning rule (7) must be modified
in order to misclassify the current example. This can be achieved by using the
modified update conditions sign(c)w̄(t) · x̄− ε ≤ 0 and sign(c)w̄(t) · x̄+ ε ≥ 0
in (7). This means that an example with negative cost is treated as if it
belongs to the other class.

4 Multiple and Disjunctive Classes

In order to deal with multi-class/multimodal problems (e.g. XOR), we have
extended the learning system DIPOL [15, 17, 20] in order to handle example
dependent costs.

The aim of the STATLOG project (see [15]) was the comparison of several
algorithms from the fields of machine learning, statistical classification and
neural networks (excluding SVMs). DIPOL turned out to be one of the most
successful learning algorithms – it performed best on average on all datasets
(see [20] for more details).

DIPOL can be seen as an extension of the perceptron approach to multiple
classes and multi-modal distributions. A learning problem with two classes,
where both classes have a bimodal distribution (i.e. there exist two clusters),
is shown in fig. 2 (together with the hyperplanes learned by DIPOL). If a
class possesses a multi-modal distribution (disjunctive classes), the clusters
are determined by DIPOL in a preprocessing step using a minimum-variance
clustering algorithm (see [17, 5]) for every class.
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In the case of N ≥ 2 classes, each example is described by an N -place
cost vector describing the N −1 possibilities of misclassification and the cost
for correct classification.

After the (optional) clustering of the classes, a separating hyperplane is
constructed for each pair of classes or clusters if they belong to different
classes. When creating a hyperplane for a pair of classes or clusters, respec-
tively, all examples belonging to other classes/clusters are not taken into
account. Of course, for clusters originating from the same class in the train-
ing set, no hyperplane has to be constructed.

The construction of a hyperplane for a pair of clusters or classes has
two phases. In the weight initialization phase, a least squares problem is
solved using standard regression techniques. To one of the classes, the target
value +1 is assigned, whereas the other class has the target value −1. The
weights of the regression hyperplane are used as initial values for the second
phase in which a gradient descent is performed. In contrast to the approach
described in section 3.2, DIPOL uses a sequence of γt that tends to zero in
an exponential manner, yielding a much faster convergence and also good
learning results because of the in general good initialization of the weights
by the regression step.

After the construction of the hyperplanes, the whole feature space is di-
vided into decision regions each belonging to a single class, or cluster respec-
tively. For classification of a new example x, it is determined in which region
of the feature space it lies, i.e. a region belonging to a cluster of a class y.
The class y of the respective region defined by a subset of the hyperplanes is
the classification result for x.

DIPOL can be trained using the criterion function Iε or using a quadratic
error function, e.g. [15, 17, 20]. It incorporates incremental gradient descent
(sect. 3.2) as well as a modified batch mode procedure, where the learning
rate decays exponentially.

In the new version of DIPOL, example dependent costs can be included
in every step:

• In the clustering step, the costs can be used as an additional attribute,
possibly yielding a finer clustering of the data.

• In the regression step, the costs are used as target values. For the class,
that is considered to be the −1-class, the costs are multiplied by −1. In
the case of N > 2 classes, the appropriate entries of the cost vector are
considered.

• In the gradient descent phase, the costs are incorporated as described
in section 3.2.
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In the next section, an alternative approach for the cost-sensitive construction
of linear hyperplanes is considered.

5 Support Vector Machines

5.1 SVMs with Example Dependent Costs

DIPOL constructs a classifier by dividing the given input space into regions
belonging to different classes. The classes are separated by hyperplanes com-
puted with the algorithm in sect. 3. In the SVM approach, hyperplanes are
not computed by gradient descent but by directly solving an optimization
problem, see below. More complex classifiers are formed by an implicit trans-
formation of the given input space into a so called feature space by using
kernel functions.

Given a training sample (x(1), y(1), c(1)), . . . , (x(l), y(l), c(l)), the optimiza-
tion problem of a standard soft margin support vector machine (SVM) [19, 3]
can be stated as

min
w,b,ξξξ

1

2
|w|2 + C

l∑

i=1

ξk
i

s.t.
y(i)

(
w · x(i) + b

)
≥ 1 − ξi

ξi ≥ 0,

(8)

where the regularization constant C > 0 determines the trade-off between
the complexity term 1

2
|w|2 and the sum. It holds that b = −θ. The sum

takes all examples into account for which the corresponding pattern x(i) has
a geometrical margin of less than 1

|w|
, and a functional margin of less than 1.

For such an example, the slack variable ξi > 0 denotes the difference to the
required functional margin. Different values of k lead to different versions of
the soft margin SVM, see e.g. [3].

For k=1, the sum of the ξi can be seen as an upper bound of the empirical
risk. Hence we can extend the optimization problem (8) in a natural way by
weighting the slack variables ξi with the corresponding costs c(i). This leads
for k = 1 to the cost-sensitive optimization problem2

min
w,b,ξξξ

1

2
|w|2 + C

l∑

i=1

c(i) ξi

s.t.
y(i)

(
w · x(i) + b

)
≥ 1 − ξi

ξi ≥ 0.

(9)

2A similar approach is taken in [9] for modeling concept drift. There, the weights
correspond to the recency of the examples.
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Introducing non-negative Lagrangian multipliers αi, µi ≥ 0, i = 1, . . . , l, we
can rewrite the optimization problem (9), and obtain the following primal
Lagrangian

LP (w, b, ξξξ,ααα,µµµ) =
1

2
|w|2 + C

l∑

i=1

c(i) ξi

−
l∑

i=1

αi

[
y(i)

(
w · x(i) + b

)
−1 + ξi

]
−

l∑

i=1

µi ξi.

Substituting the derivatives with respect to w, b and ξξξ into the primal, we
obtain the dual Langragian that has to be maximized with respect to the αi,

LD(ααα) =

l∑

i=1

αi −
1

2

l∑

i,j=1

αi αj y(i)y(j)x(i) · x(j). (10)

Equation (10) defines the 1-norm soft margin SVM. Note that the example
dependent costs do not occur in LD, but restrict the αi by the so called box
constraints

∀i 0 ≤ αi ≤ c(i) C

that depend on the cost value for the respective example and therefore limit
its possible influence. The box constraints can be derived from the optimiza-
tion problem, see e.g. [3].

If the optimal decision function is not a linear function of the data, we
map the input data to some other Euclidean Space H (possibly of infinite
dimension), the feature space, by means of a mapping φφφ : Rd → H. Sub-
stituting the mapped data into the optimization problem leads to the dual
Lagrangian

LD(ααα) =
l∑

i=1

αi −
1

2

l∑

i,j=1

αi αj y(i)y(j)φφφ(x(i)) ·φφφ(x(j)). (11)

By means of kernel functions K : Rd×Rd → R, with the property K(x,x′) =
φφφ(x) ·φφφ(x′), we are able to evaluate the inner product in H without explicitly
knowing φφφ.

For k = 2 (the 2-norm soft margin SVM) analogous results can be ob-
tained where the dual Lagrangian depends directly on the individual costs:

LD(α) =

l∑

i=1

αi −
1

2

l∑

i,j=1

αiαjyiyj K(x(i),x(j)) −
1

2

l∑

i=1

α2
i

c(i)C
.
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5.2 Relation to perceptron learning

In order to show the relationship between the criterion function Iε in (5)
and the learning problem of the SVM consider the case k = 1. In the limit
C → ∞ the sum of the ξi of the objective function is minimized. By means
of the non-negativity function (·)+, with (u)+ = u if u > 0 and (u)+ = 0
otherwise, both constraints can be integrated into the single inequality

ξi ≥
(
1 − y(i)

[
w · x(i) + b

])

+
(12)

=
(
1 − y(i)

[
w · x(i) + b

])
σ

(
1 − y(i)

[
w · x(i) + b

])
, (13)

where we used (u)+ = u σ(u) in order to indicate classification errors. Note
that equality in (12) holds for all patterns. Substituting (13) into the term

l∑

i=1

c(i) ξi of the objective function leads to the minimization problem

min
w,b

l∑

i=1

c(i)
(
1 − y(i)

[
w · x(i) + b

])
σ

(
1 − y(i)

[
w · x(i) + b

])
. (14)

Using the sets S±1 and the extended vectors w̄ and x̄ equation (14) becomes

min
w,b

∑

(x,c)∈S+1

c (−w̄ · x̄ + 1)σ (−w̄ · x̄ + 1) +
∑

(x,c)∈S−1

c (w̄ · x̄ + 1)σ (w̄ · x̄ + 1) ,

which is equivalent to the Iε criterion function in (5) with ε = 1.

5.3 Convergence

Lin showed in [12] that the 2-norm SVM approximates the Bayes rule in the
limit l → ∞. For that purpose he treats the SVM optimization problem as
the following regularization problem in a reproducing kernel Hilbert space
(RKHS) HK

min
h,b,ξ

1

l

l∑

i=1

ξ2
i + λ|h|2HK

s.t. ξi ≥ 1 − y(i)f(x(i))
ξi ≥ 0,

with f(x) = h(x)+b and an appropriate trade-off λ = 1
2lC

. The corresponding
regularization problem with example dependent costs can be stated as

min
h,b,ξ

1

l

l∑

i=1

c(i) (1 − y(i)f(x(i))
︸ ︷︷ ︸

≡ξi

)2
+ + λ‖h‖2

HK
, (15)
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where we integrated the constraints by means of the non-negativity function
(·)+ into a single inequality which is substituted into the objective function.

In the limit l → ∞ the upper bound of the empirical risk in (15) converges
to the expectation

EX,Y

[
cY (X)(1 − Y f(X))2

+

]
, (16)

where we introduced random variables X and Y . Minimizing EY [·] of the
equivalent expression

EX

[
EY [cY (X)(1 − Y f(X))2

+|X]
]

for every fixed X = x leads to the minimization of

g = c−1(x)(1 + f(x))2
+ p(−1|x) + c+1(x)(1 − f(x))2

+ p(+1|x), (17)

with cy′(x(i)) = c(i) if y′ = y(i) and 0 otherwise.
It can be shown that the range of the optimal function lies in the interval

f opt(x) ∈ [−1, +1]. Therefore (17) remains non-negative for all x and we
can drop the non-negativity function (·)+. By setting z := f(x) and solving
∂g

∂z
= 0, we derive the optimal decision function

f opt(x) =
c+1(x)p(+1|x) − c−1(x)p(−1|x)

c+1(x)p(+1|x) + c−1(x)p(−1|x)
.

Proposition 5.1 In the case k = 2, sign(f opt(x)) is a minimizer of R, and
it minimizes (16). Moreover it holds

sign(f opt) ≡ r∗.

where r∗ is defined in eq. (3).

Therefore we conjecture from proposition 5.1 that SVM learning approxi-
mates the Bayes rule for large training sets. For k = 1 the corresponding
cannot be shown.

6 Re-Sampling

Example dependent costs can be included into a cost-insensitive learning
algorithm by re-sampling the given training set. First we define the mean
costs for each class by

c̄y =

∫

Rd

cy(x)p(x|y)dx . (18)
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We define the global mean cost b = c̄+1P (+1) + c̄−1P (−1). From the cost-
sensitive definition of the risk in (1) it follows that

R(r)

b
=

∫

X+1

c−1(x)p(x|−1)

c̄−1

c̄−1P (−1)

b
dx

+

∫

X−1

c+1(x)p(x|+1)

c̄+1

c̄+1P (+1)

b
dx.

This means that we now consider the new class conditional densities

p′(x|y) =
1

c̄y

cy(x)p(x|y)

derived from the compound density

p′(x, y) = p′(x|y)P ′(y) =
cy(x)

b
p(x, y). (19)

and the new priors

P ′(y) = P (y)
c̄y

c̄+1P (+1) + c̄−1P (−1)
.

It is easy to see that
∫

p′(x|y)dx = 1 holds, as well as P ′(+1) + P ′(−1) = 1.
Because b is a constant, minimizing the cost-sensitive risk R(r) is equiv-

alent to minimizing the cost-free risk

R(r)

b
= R′(r) =

∫

X+1

p′(x|−1)P ′(−1)dx

+

∫

X−1

p′(x|+1)P ′(+1)dx.

In order to minimize R′, we have to draw a new training sample from the
given training sample. Assume that a training sample (x(1), y(1), c(1)), . . . ,

(x(l), y(l), c(l)) of size l is given. Let Cy be the total cost for class y in the
sample. Based on the given sample, we form a second sample of size lN by
random sampling from the given training set, where N > 0 is a fixed real
number.

Because of (19), in each of the blNc independent sampling steps, the
probability of including example i in this step into the new sample should be
determined by

c(i)

C+1 + C−1
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i.e. an example is chosen according to its contribution to the total cost of the
fixed training set. Note that C+1+C−1

l
≈ b holds. Because of R(r) = bR′(r),

it holds Remp(r) ≈ b R′
emp(r), where Remp is evaluated with respect to the

given sample, and R′
emp(r) is evaluated with respect to the generated cost-

free sample. This means that a learning algorithm that tries to minimize the
expected cost-free risk by minimizing the mean cost-free risk will minimize
the expected cost for the original problem. From the new training set, a
classifier for the cost-sensitive problem can be learned with a cost-insensitive
learning algorithm.

Our approach is related to the resampling approach for class dependent
costs described e.g. in [1], and to the extension of the METACOST-approach
for example dependent costs [22]. We will compare their performances in
future experiments.

7 Experiments

7.1 The uni-modal case

If the classes are linearly separable, each separating hyperplane also mini-
mizes the cost-sensitive criterion function Iε. We therefore do not present
results for the linearly separable case here. In our first experiment, we used
the perceptron algorithm for the linearly non-separable case (sect. 3.2), that
is part of DIPOL, and for the extended SVM with a radial basis function
kernel.

We have constructed an artificial data set with two attributes x1 and
x2. For each class, 1000 randomly chosen examples were generated using
a modified Gaussian distribution with mean (0.0,±1.0)T . The covariance
matrix for both classes is the unit matrix.

The individual costs of class +1 are defined using the function
c+1(x1, x2) = 2 1

1+e−x1
. The costs of the class −1 examples were defined in a

similar way by the function c−1(x1, x2) = 2 1
1+ex1

. This means that for x1 > 0
the +1-examples have larger misclassification costs, whereas for x1 < 0 the
−1-examples have larger costs. The cost functions are shown in fig. 3 (left).
The dataset together with the resulting hyperplane for ε = 0.1 is depicted in
fig. 4 (left, bold line). Other ε-values produced similar results. Without costs,
a line close to the x1-axis was produced (fig. 4, left, dashed line). With only
class dependent misclassification costs, lines are produced that are almost
parallel to the x1 axis and that are shifted into the class region of the less
dangerous class (not displayed in fig. 4). For the case of example dependent
costs, analogous results are achieved by the extended SVM (fig. 4, right).
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Our selection of the individual cost functions caused a rotation of the
class boundary, see fig. 4. This effect cannot be reached using cost matrices
alone. Our approach is therefore a genuine extension of previous approaches
for including costs, which rely on class dependent costs or cost matrices.

7.2 The multi-modal case

For the multi-modal case, we have created the artificial dataset that is shown
in fig. 5. Each class consists of two modes, each defined by a Gaussian dis-
tribution.

For class +1, we have chosen a constant cost c+1(x1, x2) = 1.0. For class
−1 we have chosen a variable cost, that depends only on the x1-value, namely
c−1(x1, x2) = 2 1

1+e−x1
. This means, that the examples of the left cluster of

class −1 (with x1 < 0) have smaller costs compared to the class +1 examples,
and the examples of the right cluster (with x1 > 0) have larger costs. The
cost functions are shown in fig. 3 (right).

For learning, the augmented version of DIPOL was provided with the
2000 training examples together with their individual costs. The result of the
learning algorithm is displayed in fig. 5. For reasons of symmetry, the sep-
arating hyperplanes that would be generated without individual costs must
coincide with one of the bisecting lines of the coordinate system. It is obvi-
ous in fig. 5, that this is not the case for the hyperplanes that DIPOL has
produced for the dataset with the individual costs: The left region of class
−1 is a little bit smaller, the right region is a little bit larger compared to
learning without costs. Both results are according to the intuition.

The solution of the extended SVM with a radial basis function kernel
results in the same shift of the class regions. Due to a higher sensitivity to
outliers the decision boundary is curved in contrast to the piecewise linear
hyperplanes generated by DIPOL.

7.3 German Credit Data Set

In order to apply our approach to a real world domain, we also conducted
experiments on the German Credit Data Set ([15], chapter 9) from the STAT-
LOG project (the dataset can be downloaded from the UCI repository). The
data set has 700 examples of class “good customer” (class +1) and 300 ex-
amples of class ”bad customer” (class −1). Each example is described by
24 attributes. Because the data set does not come with example dependent
costs, we assumed the following cost model: If a good customer is incorrectly

classified as a bad customer, we assumed the cost of 0.1duration
12

· amount,
where duration is the duration of the credit in months, and amount is the
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credit amount. We assumed an effective yearly interest rate of 0.1 = 10% for
every credit, because the actual interest rates are not given in the data set. If
a bad customer is incorrectly classified as a good customer, we assumed that
75% of the whole credit amount is lost (normally a customer will pay back
at least part of the money). In the following, we will consider these costs as
the real costs of the single cases.

In our experiments we wanted to compare the results using example de-
pendent costs with the results when a cost matrix is used. We constructed

the cost matrix

(
0 6.27
29.51 0

)

, where 6.27 is the average cost for the class

+1 examples, and 29.51 is the average cost for the class −1 examples (the
credit amounts were normalized to lie in the interval [0,100]).

In our experiment we used cross validation to find the optimal parameter
settings (cluster numbers) for DIPOL, i.e. the optimal cluster numbers, and
to estimate the mean predictive cost Remp using the 10%-test sets. When
using the individual costs, the estimated mean predictive cost was 3.67 (the
default cost is 4.38).

In a second cross validation experiment, we determined the optimal clus-
ter numbers when using the cost matrix for learning and for evaluation. For
these optimal cluster numbers, we performed a second cross validation run,
where the classifier is constructed using the cost matrix for the respective
training set, but evaluated on the respective test set using the example de-
pendent costs. Remember, that we assumed the example dependent costs
as described above to be the real costs for each case. This second experi-
ment leads to an estimated mean predictive cost of 3.98. Using the matrix
for learning and the individual costs for model selection produced somewhat
better results.

This means that in the case of the German Credit Dataset, we achieved
a 7.8% reduction in cost using example dependent costs instead of a cost
matrix. The classifiers constructed using the cost matrix alone performed
worse than the classifiers constructed using the example dependent costs.

We also compared the performance of the cost-sensitive extension of
DIPOL to the performance of DIPOL on a dataset obtained from resam-
pling. In each cross validation run, we replaced the training set of that run
with a resampled cost-free version of the same size (900 examples). The mean
predictive costs averaged over 10 cross validation runs were 3.72 for the op-
timal parameter setting. This means that there is no significant decrease in
performance compared to 3.67 in the case of example dependent costs. When
using oversampled training sets with 9000 examples, the costs are 3.61, i.e.
even slightly better.

The extended SVM generated similar results for the usage of the cost
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matrix and the example dependent costs respectively, i.e. we found no sub-
stantially increased performance. The reason is presumably that the results
for DIPOL, the SVM, and other learning algorithms are not much better
than the default rule, see [15], though DIPOL and SVM perform comparably
well.

7.4 The KDD-98 dataset

The KDD-98 dataset [8] contains informations on persons that were mailed
during a campaign with requests to donate to a charity. In the dataset there
are two classes. The first class consists of persons that received a mail but
did not give some money (non-donators). The second class consists of those
persons that received a mail and spent some money (donators). The learned
classifier is intended to be used to decide whom to send a request in a future
campaign.

For a non-donator, the misclassification cost corresponds to the cost of
the mail that is estimated as $0.68. The cost for correct classification is zero
which captures the case of deciding not to send a letter. For donators, the cost
for misclassification is also set to zero, because in this case no letter would
have been sent. The costs (i.e. gain) for correct classification is the donation
amount minus the cost for the mail. This value varies between $−0.32 and
$−199.32.

For learning with the training set that contains 95413 examples, we used
a normalized version of the dataset, as described in section 2 (zero cost for
correct classification). For testing we used the validation dataset containing
96386 examples and the original cost functions giving the estimated total
gain of the future mailing campaign. The default gain when mailing to every
person is $10560.

Using DIPOL together with example dependent costs, the gain was
$12163 while the extended 2-norm SVM with a radial basis function kernel
reaches $12374. We also created resampled data from the original dataset.
Using this dataset, we achieved an increased gain of $12883 with a ”vanilla”
SVM in contrast to $14045 with DIPOL (averaged over 10 resampled
datasets). Note that the latter result is only slightly worse than the win-
ner of the KDD-98 competition ($14712).

In [23] slightly better results are reported for a modified sampling strat-
egy3 that is combined with averaging classifiers (“costing”). We assume that
our results can be improved too by using a multi-classifier approach. Obvi-
ously, the inclusion of duplicates that can occur during resampling does not

3The strategy in [23] was developed independently from ours.
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play a negative role for DIPOL.
We conjecture that for DIPOL the increase in gain is due to the fact that

in the resampled dataset, the two classes are rather balanced in contrast to
the original dataset. Seemingly, this makes learning easier for DIPOL. First
investigations have shown that in the case of the resampled data set, the
regression step already produces very accurate hyperplanes. For the original
dataset, this is not always the case.

A general advantage of DIPOL over the resampling strategy is the treat-
ment of more than two classes. While DIPOL can be applied in this case
without problems, there is no straightforward way to extend the resampling
strategy.

8 Conclusion

In this article we discussed a natural cost-sensitive extension of perceptron
learning with example dependent costs for correct classification and misclas-
sification. We stated an appropriate criterion function and derived a cost-
sensitive learning rule for linearly non-separable classes from it, that is a
natural extension of the cost-insensitive perceptron learning rule for separa-
ble classes.

We showed that the Bayes rule only depends on differences between costs
for correct classification and for misclassification. This allows us to define a
simplified learning problem where the costs for correct classification are as-
sumed to be zero. In addition to costs for correct and incorrect classification,
it would be possible to consider example dependent costs for rejection, too.

The usage of example dependent costs instead of class dependent costs
leads to a decreased misclassification cost in practical applications, e.g. credit
risk assignment.

Experiments with the extended SVM approach verified the results of per-
ceptron learning. Its main advantage lies in a lower error at the expense
of non-interpretable decision boundaries. The piecewise linear classifier of
DIPOL can easily be transformed to disjunctive rules with linear inequali-
ties.

With respect to the resampling strategy presented in this paper, we have
shown that it performs well and may even lead to an increased performance.
The theoretical properties of the approach have to be investigated in future
work. For example there is the possibility of including duplicates of single
examples that lead to a bias.
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Figure 3: Cost functions in the non-separable case (left), and the multi-modal
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Figure 4: Results for the non-separable case. The two classes +1 and −1 are
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by DIPOL (left), and the class boundary for the extended SVM (right). The
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Figure 5: Results for the multi-modal non-separable case. Bold lines visualize
the learned hyperplanes by DIPOL (left) and the extended SVM (right).
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