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Preface 
 
 
Mechanization of the human thought process is one of the key challenges of computer 
science. The neural network problem solving approach tries to meet with this challenge by 
simulating the biological mechanisms of the brain directly. To be more precise: The study of 
artificial neural networks borrows concepts and ideas from neurological research; it is 
inspired by our understanding of the brain. However, not all artificial neural networks models 
are developed to represent the electrochemical processes of their biological counterpart as 
accurate as possible. Neural networks have been applied in many other areas besides 
neurological research. They are used successfully in science, engineering and business – 
mainly for solving pattern recognition tasks. In those areas, the problem solving power of the 
network model used is much more important than its adherence to biological mechanisms. 
 
The aim of these lecture notes is to give a quick introduction into neural networks, its 
algorithms and applications. The notes are not intended as a replacement of a comprehensive 
textbook. The following subjects will be covered:  

• Problem situations where neural networks technology can successfully be applied. 
• Similarities and differences between artificial and biological neural networks. 
• Strengths and weaknesses of the neural network problem solving approach.  
• Basic problem solving algorithms of feed-forward networks. 
• Data preparation for neural networks.  
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1. The Neural-Network Paradigm 
 
Since their appearance, digital computers have been admired because of their outstanding 
ability to do complex calculations precisely and rapidly. This ability also reflects the origin of 
the name computer. Let’s think for example of the problem to calculate the trajectory of a 
rocket. Most computers do not have any difficulties to solve this problem, if they are provided 
with the right program (formulas). On the other hand it would be more than many human 
beings could cope with, even if they were given all formulas necessary. Does this make the 
computer more intelligent than us? As far as the ability of algorithmic inference – the ability 
to make use of formulas - is concerned, the answer might be yes. But computers are far from 
being able to create the necessary formulas and transform them into a program by themselves. 
This is still the domain of intelligent human beings. So the precondition for applying 
algorithmic inference is a precise quantitative understanding of system behaviour. 
 
In some cases an algorithmic solution may be too complex (think of a motor diagnosis) or 
inadequate (think of finding out the right objective of an advertisement campaign). In the 
1980s expert systems became popular. Expert systems try to copy the problem solving 
approach of human experts. Not formulas but rules are used to describe the system behaviour. 
For example, the two rules below could be part of a marketing expert system:  
 
IF         product is to be launched 
AND    product is an innovation 
THEN  marketing objective is to stimulate primary demand 
 
IF         marketing objective is to stimulate primary demand 
AND    there is no motivation to buy the product 
THEN  advertisement objective is to provide product information 
 
These rules allow to deduce the advertisement objective when the three conditions ‘product is 
to be launched’, ‘product is an innovation’, ‘there is no motivation to buy the product’ are 
met. Expert systems make use of deductive inference and can cope with problems where an 
algorithmic approach is not possible, not known or too complex. The precondition for 
applying deductive inference is the ability to make knowledge explicit in the form of rules. 
 
In many situations of everyday life, neither algorithmic nor deductive inference would be 
helpful. The admirable achievements of our brain cannot be restricted to our capability to use 
algorithms or to symbolic reasoning with complex rules. For example, how do we remember a 
face of a person, even if we have not seen that person for a long time? Why are we able to 
understand a person speaking English with an accent we have never heard before? How did 
we learn to write? Nobody has explained us to write the letter A with the help of rules or 
formulas. If so, this would have been a very complex task: Think of the many fonts which can 
be used. For example  
A, A, A, A, A  
represent the same letter. And then think of hand written characters which would make the 
rules and/or formulas even more complex - too complex of course to explain them to little 
children going to school. This example demonstrates that a new problem solving approach is 
required. As children learn to read and write by practising, by learning from examples, the 
new problem-solving paradigm should be based on inductive inference. Induction means 
generalization of examples, of special cases. By having learnt to recognize many different 
shapes of the letter A, it will be possible to recognise previously unseen examples of the letter 
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A, because they are of a ‘similar’ shape. There is no explicit knowledge describing the 
concept of similarity. The knowledge is in the examples; it has to be learned from the 
examples. Inductive inference is the problem solving paradigm most neural networks are 
based on. Fig. 1.1 illustrates the positioning of neural networks. 
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Fig. 1.1: Positioning of neural networks1

 
Neural network research has been started in the late 1940s already, whereas industrial usage 
began in the 1990s. Since then a huge amount of successful applications in science, 
technology and business – mainly in the area of pattern recognition – have been arisen. The 
three examples below shall give a first impression of possible applications in the business 
area: 

• Profit/loss prediction on the stock exchange (input: times series of stock prices; 
output: recommendation to buy or sell) 

• Credit scoring (input: balance sheets; output: insolvency risk) 
• Market segmentation (input: social and economical indicators like education and 

income; output: market segments) 
 
The positive impact of the inductive problem solving approach is that no prior knowledge of 
system behaviour is required. On the other hand neural networks will act as a black boxes. 
They can’t explain their results, because generalization is not made explicit. 
 
 
 
  
 

                                                 
1 adopted from Refenes, A.-P.: Introduction, in Refenes, A.-P. (ed.): Neural networks in the capital markets, 
Chichester, 1995, p.4 
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2. The Biological Inspiration 
 
In order to better understand the components of artificial neural networks, the list below 
summarizes basic - sometimes simplified - facts of neuro-biology. Additionally, the basic 
features of biological neurons are illustrated in fig 2.1: 
 

• The human brain is estimated to contain about 1011 neurons. 
• Each neuron is connected with 1000 to 10000 other neurons. 
• Each cell body (soma) has attached one axon. At the end, the axon forks into several 

branches. The axon is electrically active; it transports voltage pulses of about 10-1 
Volt. 

• At the end of the branches of an axon there are contacts – called synapses. A synapse 
couples the axon with the input channels – called dendrites – of other neurons. Neural 
systems have both excitatory and inhibitory connections. 

• When the voltage pulses arrive at the soma, and their combined effect exceeds a 
certain critical threshold, the neuron will be activated. This means that the neuron will 
transmit a new voltage pulse along its axon. 

 

cell nucleus

cell body

axon

synapse dendrite

 
 
Fig. 2.1: The basic features of biological neurons2

 
Biological neurons are rather slow devices. The time to produce a voltage pulse is in the range 
of milliseconds, and voltage pulses are transferred with a speed of about 100 m/sec. Therefore 
standard personal computers with a frequency of 1 GHz are about 1 million times faster and 

                                                 
2 adopted from Spektrum der Wissenschaft, Spezial 1, Gehirn und Geist, Spektrum Akademischer Verlag, 
Heidelberg, p. 24 
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signals are transmitted about 3 million times faster. The slowness as well as the relatively 
simple structure of individual neurons seem to be incompatible with the ability of our brain to 
accomplish complex tasks. A possible solution to this contradiction (at least partly) is the 
observation that our brain makes use of massively parallel processing. Parallel distributed 
processing of many neurons and not sequential processing steps of only a few neurons 
characterize thought processes. This aspect of neural network research is expressed more 
carefully (not suggesting to model all biological mechanisms exactly) by the terms parallel 
distributed processing or connectionism. As the contribution of a few individual neurons to 
the solution will not be too influential, neural network systems are regarded as fault tolerant 
systems. Damage to small parts of the system is not expected to disrupt its performance 
completely. Moreover, due to their inductive problem solving approach (generalization of 
examples), neural networks are also tolerant to corrupted versions of the original input 
patterns. 
 
The above-mentioned biological facts lead us to a simplified model of a biological neuron 
which is depicted in fig. 2.2: 

 

sum transfer-
function

4
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cell body

axon
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axons

0.5

 
Fig. 2.2: A simplified model of a biological neuron 
 

• The interconnection of two neurons via several dendrites is reduced to only one 
connection.  

• The coupling strength of a synapse is modelled by a weight factor. Inhibiting synapses 
are modelled by negative weights, while positive weights model synapses which 
excite the dendrite they are connected to. 

• All incoming signals are combined by a so-called propagation function - usually the 
sum of the inputs. 

• The strength of the output signal is calculated by a transfer function. The transfer 
function is sometimes also called activation function. Sometimes, however, the 
activation function only determines how strongly the neuron is activated, and a 
separate output function determines the strength of the output signal due to the 
activation. Fig. 2.3 shows three typical (non-continuous, continuous, and 
differentiable) transfer functions representing a neuron with a threshold value 2. 
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logistic (sigmoid) function: 
f(x) = 1/(1 + e-(x-2)) 
 
 
 
 
 

Fig. 2.3: Typical transfer functions 
 
Normally the task of the network designer is to choose  

• an appropriate topology of the network,  
• suitable propagation and transfer functions,  
• suitable training examples, as well as  
• a suitable learning procedure.  

The learning procedure will be used to fix the remaining free parameters of the network with 
the help of the training examples:  

• the weights for each interconnection between two neurons, and  
• the threshold of each neuron. 

 
Both, supervised and unsupervised learning algorithms have been developed. Supervised 
learning algorithms require training examples with known outputs. The errors between actual 
and desired outputs are used to adjust the weights. Unsupervised learning algorithms make 
use of regularities of input data. Observed output variable values are not required. In the 
following we will discuss supervised learning only.  
 
As already mentioned, most artificial neural networks differ from their biological 
counterparts. Usually artificial neural networks  

• contain only a small number of neurons (typically 100 to 1000), 
• do not model time dependency (e.g. the frequency of voltage pulses), and 
• use learning procedures which are mathematically and not biologically motivated. 
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3. Feed-forward Neural Networks 
 
Feed-forward networks can be arranged in layers so that connections only go from one layer – 
starting from input neurons - to a later layer until the output neurons are reached. Fig. 3.1 
shows a simple feed-forward network with an input layer consisting of two neurons connected 
to an output layer consisting of one neuron. We call this a single-layer network (although it 
actually has two layers of nodes), because there is only one layer of trainable weights and one 
layer of neurons (in our example this layer consists of one output neuron) with adaptable 
threshold values. The input neurons will propagate the input signals unchanged. Fig. 3.1 
shows a trained network, where both weights have value 1 and the output neuron has a 
threshold value 0.5. 
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Fig. 3.1: Perceptron with two input units and one output unit 
 
Single-layer networks with stair-step threshold transfer functions are also called perceptrons, 
because they were applied to problems of visual perception, in which the inputs were binary 
images of characters or simple shapes. However, perceptrons are not restricted to problems of 
visual perception. In our example, input x could be a measure of the annual income of a 
borrower (high values representing a low amount), input y could be a measure of the credit 
amount (high values representing a high amount), and the output could be a credit risk 
indicator. The output neuron will “fire” (i.e. produce the output value 1) and indicate a high 
credit risk, if the weighted sum of the inputs is greater than or equal 0.5, otherwise it will 
produce the output 0 and indicate a low credit risk.  
 
Exercise: Give a mathematical description of the input-output relationship of the network 
depicted in fig. 3.1 and draw the region (decision region) within the two-dimensional input 
space representing all input values which will lead to the output value 1.  
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Perceptrons have limited capabilities. They allow only for straight lines as decision 
boundaries. Multi-layer perceptrons can overcome this limitation. Fig. 3.2 shows a two-layer 
perceptron.  
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Fig. 3.2: Two-layer perceptron with two input units, three hidden units, and one output unit  
 
The layer in between the input layer and the output layer is called hidden layer. Layered 
networks have one ore more successive hidden layers, and there are only connections from 
every unit in one layer to every unit in the next layer. The term multi-layer perceptron is also 
used for multi-layered feed-forward networks with transfer-functions other than the stair-step 
function. General feed-forward networks allow for connections from one layer to any later 
layer, not necessarily the next layer. 
 
Exercise: Draw the decision region within the two-dimensional input space representing all 
input values which will lead to the output value 1. Use fig. 3.3 to decompose the task into 
several steps.
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Fig. 3.3: Components of the network depicted in fig. 3.2 
 
In general, networks with two layers of trainable weights generate decision regions which are 
convex (i.e. a straight line connecting any two points within the region does not cross the 
boundary of the region). Three-layer networks can generate more complex decision regions 
which may be non-convex and disconnected, as illustrated in fig. 3.4 (the blue region consists 
of two parts, and its bigger part is non-convex). 
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Fig. 3.4: Output regions of a three-layer preceptron 
 
Exercise: Put in appropriate values for the weights and thresholds of the network shown in 
fig. 3.4 which will generate the red decision region. What will have to be changed to obtain 
the blue decision region? 
 
Several researchers have investigated the question which input-output relationships can be 
represented by neural networks, and several variants of universal approximation theorems 
could be proven3. These theorems state that an arbitrary function of a certain type (e.g. a 
continuous function) can be approximated with arbitrary accuracy. For example, it can be 
shown that any continuous function can be approximated (uniformly on compacta) to 
arbitrary accuracy by a network with one hidden layer of sigmoid neurons and an output layer 
of (unthresholded) linear neurons4. However, this interesting result (as well as all other results 
concerning the universal approximation capability of neural networks) is of limited practical 
value, because it does not tell us the number of neurons required5. Moreover, the result does 
not say anything about the efficiency of the approximator. Perhaps a network with more than 
one layer of hidden neurons could achieve the same approximation result for a given problem 
more efficiently, i.e. with less neurons altogether. 

                                                 
3 Tikk, D., Kóczy, L. T., Gedeon, T. G.: A survey on universal approximation and its limits in soft computing 
techniques, Research Working Paper RWP-IT-012001, School of Information Technology, Murdoch University, 
Perth, W.A., 2001, p. 20, see http://www.mft.hu/publications/tikk/Univ_appr.pdf  
4 Bishop, C. M: Neural Networks for Pattern Recognition, New York, 1995, pp. 130 – 132 
5 There are also some results on the number of neurons required to achieve a specified accuracy of 
approximation, but these results do not advise us to choose the ‘right’ number of neurons in any practical 
problem. 
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4. Backpropagation Learning Algorithm 
 
The (biologically motivated) Hebbian learning rule says that the connection strength 
between two neurons will be increased, when the pre- and post-synaptic neurons are activated 
simultaneously. This rule can be expressed by the following formula: 
 
∆wij = η·oi·oj  
 
where η is a positive constant called the learning rate, oi (oj) is the output generated by 
neuron i (j), and ∆wij denotes the increase of the weight wij connecting neuron i and j (cf. fig. 
4.1). 
 

 

wiji j

 
 

 
 
 
 
 
 

Fig. 4.1: Pre-synaptic neuron i and post-synaptic neuron j are activated simultaneously 
 
 
One problem associated with this learning rule is that it doesn’t take into account, how much 
the generated output deviates from the target output. The formula below removes this 
problem: 
 
∆wij = η·oi·(tj - oj) 
 
where tj denotes the target output of neuron j. This learning rule is called delta rule or 
Widrow-Hoff rule. It is mathematically motivated: the smaller the training error (i.e. the 
difference tj - oj) is, the smaller the weight changes will be. The delta rule can only be applied, 
if the target outputs of all training patterns are known. However, target outputs can only be 
known (if it all) for output neurons. Therefore this rule is not applicable to multi-layer 
networks like the one illustrated in fig. 4.2.  
 
 

 
 
 
 
 
 
 
 
 

 

j i wij wjk k

Fig. 4.2: Weight changes of weight wij can’t be calculated with the delta rule 
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The (mathematically motivated) backpropagation algorithm (also known as the generalized 
delta rule) removes this problem. It is based on the iterative gradient descent technique 
which can be used to find local minima of differentiable functions of several variables. The 
error observed at each output neuron can be regarded as a function of several variables – the 
weights of all neurons which are connected to the output neuron. It can be easily shown that 
the threshold of an arbitrary transfer function of neuron n can be represented by an additional 
input neuron (the so called bias unit) which is connected to neuron n and has a permanent 
output value of 1. Therefore the task to find the right threshold of neuron n can be treated as 
the task to find the weight of the connected bias unit.  
 
The error Ek = tk - ok (tk denotes the target value, ok denotes the calculated output value of 
neuron k) in fig. 4.2 can be expressed as a function of weight-variables easily: 
 
(1) ok = fk(Σj wjk·oj)  
 
where fk denotes the transfer function of neuron k. The summation index j denotes all neurons 
(including the bias unit) which are connected to neuron k. The output oj of the hidden neuron j 
is given by    
 
(2) oj = fj(Σj wij·oi)  
 
where fj denotes the transfer function of neuron j. The summation index i denotes all neurons 
(including the bias unit) which are connected to neuron j. Combining (1) and (2), we obtain 
the formula  
 
Ek = tk - ok  =  tk - fk(Σj wjk·fj(Σj wij·oi)).  
 
If index i denotes hidden neurons, the outputs oi can be expressed as a function of weight-
variables with a formula analogous to (2). Otherwise oi denotes the strength of the input 
signal.  
 
The overall error Ep for one training pattern p has to take into account all output neurons k. 
Usually it is calculated by summing up the squared errors Ek

2 , because these errors can’t 
become negative:  
 
Ep =  ½ Σk Ek

2. 
 
The factor ½ is introduced, because it will be eliminated by differentiating the squared errors. 
The total error E for all training patterns is calculated by 
 
E =  Σp Ep

2.  
 
If the network consists of one input and one output neuron only, E is a function of two 
weight-variables and can be represented graphically (cf. fig. 4.3 and 4.4). In this example 
there are two training patterns: (1, 0) and (0, 1), i.e. input x = 1 shall result in output o2 = 0, 
and input x = 0 shall result in output o2 = 1. The transfer function used is the sigmoid function 
f2(x) = 1/(1 + e-x). 
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Fig. 4.4: Two-dimensional error surface E(w02, w12)  
 
Starting with a randomly chosen point on the error surface (i.e. with randomly chosen 
weights), the negative gradient vector 
 
-(∂/∂w02 E(w02, w12), ∂/∂w12 E(w02, w12)) 
 
shows into the direction of the steepest descent. In fig. 4.5 the gradient vector field of E is 
visualized by drawing errors representing the vectors.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.5: Gradient vector field corresponding to fig. 4.4 (w02 drawn on the horizontal axis).  
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Each arrow points into the direction of the steepest descent at its base point, and its length is 
proportional to the gradient.  
 
Exercise: Calculate the negative gradient: 
-(∂/∂w02 E(w02, w12), ∂/∂w12 E(w02, w12))  =  
  
 
The backpropagation algorithm implements the gradient descent technique. It tries to find the 
minimum of the error function by following the path of the steepest descent on the error 
surface. The vector of the weight changes after each training epoch (one training epoch 
incorporates the presentation of the complete set of training patterns to the network) is 
proportional to the negative gradient of the overall error function E. More precisely, this is 
called the offline or batch version of the backpropagation algorithm. The online version – 
also called vanilla backpropagation – calculates the weight changes after the presentation of 
each individual training pattern p (i.e. the vector of the weight changes is proportional to the 
negative gradient of the error function Ep). If the patterns are chosen randomly from the 
training set, it is called the stochastic version. The online as well as the stochastic version are 
only approximations to true gradient descent. Nevertheless they frequently used, because 
there are some advantages associated with weight updates after each pattern presentation (see 
below). In this case, the learning rule is given by 
 
∆wij = η·oi·δj
 
where 
 
δj =  fj’(netj) ·(tj – oj), if neuron j is an output neuron (f’ denotes the first derivative of f),  
 
δj =  fj’(netj)·Σk wjk· δk, if neuron j is a hidden neuron, and  
 
netj = Σi wij·oi denotes the net-input to neuron j.  
 
A precondition for the application of the gradient descent technique is (of course) that all 
transfer functions fj are differentiable. In order to calculate the error component δj, one has to 
start with the output layer and then to go backwards until the first layer of the network is 
reached. The error component δj is back propagated from the output of the network to its 
input.  
 
Online and stochastic backpropagation are more efficient in dealing with redundant data than 
the batch approach. If the training set contains many duplicate or near duplicate patterns, the 
average over a small portion of the patterns will provide a good approximation to the 
complete set. Therefore vanilla and stochastic backpropagation will descend approximately 
the same way down the error surface after having processed this small portion of the patterns 
as the batch version will descend after having processed the complete pattern set.  
 
Another potential advantage of the online and stochastic version is the belief that they are 
superior in avoiding local minima. One problem of the backpropagation learning algorithm is 
that it does not guarantee to find the best set of weights. It’s true that except in pathological 
cases, the path of the steepest descent always leads to at least a local minimum on the surface, 
but the minimum will not necessarily be a global one. The online as well as the  stochastic 
algorithm alleviate this problem, because sequential weight-updates descend different error 
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surfaces (one for each training pattern) with different local minima. Therefore it will be less 
likely to end up in any one of them.  
 
Another means to avoid local minima is to add a momentum term to the gradient descent 
formula: 
 
∆wij(s+1) = η·oi·δj + α·∆wij(s)   
 
where s denotes the number of the update step, and α is a positive constant specifying the 
strength of the momentum. The momentum term adds inertia to the motion on the error 
surface. It tends to keep the motion on the error surface in the same direction from one update 
step to the next, and therefore can help to jump over small local minima in the error surface. 
Moreover, it will speed up convergence towards the minimum by gradually increasing the 
weight-changes in regions, where the direction of the downward movement is unchanging 
(successive ∆wij(s) have the same sign). This is especially important in flat regions where the 
gradient is close to zero. 
 
Iterative procedures like the backpropagation algorithm need a starting point as well as a 
stopping rule. Usually the starting point consists of randomly chosen weights. However, the 
weights should not become too large (see next chapter). The starting point may have 
considerable impact on the number of training steps required (think of starting in a flat region 
far away from the minimum vs. starting in a steep region close to the minimum). Therefore it 
is common practice to train a network several times using different starting points. 
 
Several stop-training rules have been proposed. Possible choices are: 

• Stop after a given number of training steps.  
• Stop when the error drops below a given level.  
• Stop when the relative change in the error drops below a given value over a given 

number of steps. 
Of course, the error-based stopping rules seem more satisfying than the first rule. However, 
the problem with the second rule is that the given error value may never be reached (e.g. if the 
number of hidden units is too small, so that the universal approximation capability is not 
given). The problem with the third rule is that it may lead to premature termination (e.g. in 
large flat areas).  
 
Moreover, it is not always advisable to train the network until the smallest error possible has 
been reached. Usually we are not really interested to minimize the error on the training set, 
but we want to have small errors when new cases are submitted to the network. We are 
interested in the generalization performance of the network. Over-learning (over-fitting) 
may result in memorization of the training examples. The weights are tuned to fit every 
detail of each training example, including noise or inconsistent data (i.e. details or complete 
examples which are not representative of the general distribution of the data). One approach 
to overcome this problem is to split the available data into a training set and validation set. 
The training will be stopped when the error over the validation set (which consists of unseen 
examples) starts to increase. Because both, the training set and the validation set are used to 
fit the weights, neither the training set error nor on the validation set error will give an 
unbiased estimate of the generalization error. For this purpose, some part of the available data 
which must not be used in any way during training has to be reserved as a test set (hold-out 
set).  
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Sometimes sample data is rare. Splitting the few examples into two or even three sets may 
become a problem, because over-learning is most severe for small training sets. In these cases 
a cross-validation approach can be used. For instance, if there are n examples available, we 
can partition them into k disjoint subsets, each of size n/k approximately. Each of these 
subsets will become a validation set with the union of the remaining subsets building the 
training set. In this way we obtain k pairs of training and validation sets and can perform the 
training procedure k times. Each training will determine its own number of steps s and its own 
validation error. The mean of these estimates for s can be used as the stopping value in a final 
training on all n examples. The mean validation error will give an estimate for the 
generalization performance of the final network.  
 
Memorization of training examples may not only be caused by too many training cycles. The 
size of the network has also a significant impact on its generalization performance. The 
danger of over-fitting increases, if we have too many adjustable parameters to train the 
network. Therefore large networks with a large number of hidden neurons and connections 
should be avoided. There are basically two approaches to find the ‘right’ number of 
neurons/connections: pruning algorithms and growing algorithms. Pruning algorithms start 
with a relatively large network and remove those connections or neurons, which have the 
lowest relevance to the performance of the network. Growing algorithms follow the opposite 
strategy. They start with a relatively small network and allow new connections or neurons to 
be added as long as these connections or neurons improve the performance of the network.
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5. Data Preparation 
 
Neural networks can only process numeric input and will produce numeric output. It is 
obvious that data preparation has to be performed, in order do deal with non-numeric input 
and output variables. But even if all data is numeric, some data preparation may be necessary. 
Typical transfer functions like the sigmoid function accept numeric input in any range, but 
they are sensitive to changes of the input only in a fairly limited range around the threshold 
value. Far away from this value there is a saturation effect so that changes of the input will 
result in (almost) no change of the output. This means that learning will become very slow. In 
order to avoid this effect input values are normally scaled into a sufficiently small range. For 
the same reason the initial values of the weights (see previous chapter) should be chosen out 
of a limited interval. Output variables may also have to be scaled in order to adjust them to the 
transfer functions of the output neurons. For example, the sigmoid function can only 
approximate output variables in the range of 0 to 1, and the boundary values 0 and 1 will 
never be produced exactly. Therefore target values outside the open interval (0, 1) should be 
avoided. If the training examples contain outliers (i.e. examples with extreme values of the 
input-output variables), scaling has to be performed carefully. Linear scaling using the 
extreme values as upper or lower bounds would force the variable values of the majority of 
the examples into very small ranges.  
 
In case of non-numeric variables, raw data has to be encoded appropriately. For example, 
many-state nominal variables like direction of movement (left, right, straight, up, or down) 
could be encoded by assigning numbers to each state, e.g. left  1, right  2 etc. However, 
this might induce some ordering (more or less, better or worse) into the variable. Therefore 
one-of-N encoding might be a better choice. This encoding transforms the many-state variable 
into several binary variables (one for each state). In our example, the variable “direction of 
movement” would be replaced by 5 binary variables, and the state “right” would be 
transformed to the values 0, 1, 0, 0, 0 (assuming that the state “right” is assigned to the second 
variable). Unfortunately, one-of-N encoding increases the number of input neurons and 
therefore the network size. This may become a severe problem if the number of possible 
states is large and the number of the training examples is small. 
 
Occasionally there are missing values for some of the features of the training examples. It is 
not always adequate to eliminate those examples from the training set, because this may lead 
to very small and/or biased training sets. In some cases it is appropriate to replace the missing 
values by ‘typical’ values, e.g. the average over observed values (excluding extreme values) 
in case of numerical variables and the most frequently observed value in case of nominal 
variables6. In other cases, the fact that data is missing may be informative in itself (e.g. a 
refusal to answer an awkward question or a missing output signal of an overloaded sensor), 
and a better choice would be to code the missing value as a specific value of the feature than 
to take the average of the available data.  

                                                 
6 sometimes more elaborated procedures will be needed, see e.g.: Bishop, C. M: Neural Networks for Pattern 
Recognition, New York, 1995, pp. 301 - 302 
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6. Exercises 
 
1. Show that the threshold qj of an arbitrary transfer function fj(Si wij·oi - qj) of neuron j can be 
represented by an additional input neuron (the so called bias unit) which is connected to 
neuron j and has an output value of 1.  
(oi denotes the signal strength at the output of neuron i, wij denotes the weight of the 
connection between neurons i and j.) 
 
2. Consider a neural net with stair-step threshold functions.  
a. Suppose that you multiply all weights and thresholds by a constant. Will the behaviour 
change? 
b. Suppose that you add a constant to all weights and thresholds. Will the behaviour change? 
 
3. Describe the input-output relationship of the following net as a function F: R4  R3, where 
R denotes the set of real numbers; i.e.: Express the output (y1, y2, y3)  = F(x1, x2, x3, x4) with 
the help of the transfer functions of the hidden layer and the output layer as well as with the 
weights connecting the layers. Use the following notation: 
fi

h: transfer function of the ith hidden neuron;  
fi

o : transfer function of the ith output neuron; 
wij

h : weight connecting the ith input unit to the jth hidden unit; 
wij

o : weight connecting the ith hidden unit to the jth output unit. 

  
4. Give a rigorous proof of the XOR-problem: Show that the XOR-function can't be expressed 
by a perceptron without a hidden layer. 
 
5. Consider the sigmoid transfer function f(x) = 1/(1 + e-x+q).  
a. Show how f’(x) (f’(x) denotes the first derivative of f(x)) can be calculated as an expression 
of f(x) and 1– f(x).  
b. What does a. mean for the backpropagation algorithm? 
 
6. Does it make any difference whether a) the network is trained completely with the input-
output vectors of one class and then switching to another class or b) the input-output vectors 
are selected randomly from the training set? 
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7. Why do backpropagation nets produce similar outputs for similar inputs? How do the 
weights influence this behaviour? 
 
8. Consider the following real valued function f: [-1, 1] → [0, 1].  

f(x) = 0.1; x § -0.8 
f(x) = x + 0.9; -0.8 § x § 0 
f(x) = 0.9; 0 < x § 0.4 
f(x) = -2·x + 1.7; 0.4 < x § 0.8 
f(x) = 0.1; x > 0.8 

a. Define a suitable training set containing 13 examples for a neural net which shall learn to 
approximate the function f.  
b. Design a suitable topology of a feed-forward net for function f.   
 
9. Suggest a reasonable input-output coding for a neural net for character recognition where 
the raw data consists of images with a size of 256*256 pixels. 
 
10. The data set below contains 17 training examples - one example per line. Each example 
consists of five data items with the following meaning (read from left to right): weather 
outlook, temperature (F), humidity (%), windy, recommendation whether to play tennis or 
not. The question mark ‘?’ denotes a missing value. 
 
sunny,85,85,FALSE,no 
sunny,80,90,TRUE,no 
overcast,83,86,FALSE,yes 
rainy,70,96,FALSE,yes 
rainy,68,80,FALSE,yes 
rainy,65,70,TRUE,no 
overcast,64,65,TRUE,yes 
sunny,72,95,FALSE,no 
sunny,69,70,FALSE,yes 
rainy,75,80,FALSE,yes 
sunny,75,70,TRUE,yes 
overcast,72,90,TRUE,yes 
overcast,81,75,FALSE,yes 
rainy,71,91,TRUE,no 
rainy,70,90,TRUE,no 
?, ?, 90, TRUE, no 
 
The training data shall be presented to a feed-forward neural network. Transform the data 
appropriately and define a suitable network topology.  
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