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Abstract

Based on a set of seven axioms, we develop an original approach to utility

under Knightian uncertainty that circumvents numerous conceptual problems

of existing approaches in the literature. We understand and conceptualize

Knightian uncertainty as income lotteries with known payoffs in each out-

come, but unknown probabilities. This distinguishes our approach from the

ambiguity approach where decision makers are assumed to have some sort of

probabilistic belief about outcomes. We provide a proof that there exists a

function H from the set of Knightian lotteries to the real numbers such that

lottery f is preferred to lottery g if and only if H(f) > H(g) and that H is

unique up to cardinal transformations. We propose and illustrate one possible

concrete function satisfying our axioms with a static sample decision problem

and compare it to other decision rules such as maximin, maximax, the Hurwicz

criterion, the minimum regret rule and the principle of insufficient reason. We

find that the overall ranking of the lotteries is different from these well-known

criteria, but the most preferred option is the same as with the maximin rule

and a pessimistic Hurwicz individual.

JEL Classification: D81, H30

Keywords: Knightian uncertainty, deep uncertainty, decision making, envirionmental

decisions, ambiguity, ambiguity aversion.

∗Corresponding author, Sustainability Economics Group, Leuphana University of Lüneburg, P.O. Box
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1 Introduction

In 1921, Frank Knight coined the distinction between situations of risk and situations

of uncertainty (Knight 1921). According to Knight, a situation of risk is one where we

know the possible outcomes and their respective probabilities, whereas in a situation of

uncertainty, we only know the outcomes but not their probabilities. While the case of risk

is well studied and established, at least from a theoretical modelling standpoint, since John

von Neumann’s and Oskar Morgenstern’s axiomatic foundation of utility under risk (von

Neumann and Morgenstern 1944), the situation is fuzzier when it comes to uncertainty:

The famous Ellsberg thought experiment (Ellsberg 1961) demonstrated that people tend

to prefer situations of risk (i.e. known probabilities) to situations of uncertainty (unknown

probabilities).1 This behavior has been termed ‘ambiguity aversion’ and there are many

theoretical contributions in this field which had and still continue to have a great impact on

the decision theory community (Gilboa and Schmeidler 1989, Schmeidler 1989, Klibanoff

et al. 2005, Maccheroni et al. 2006). Common to these approaches is their ansatz

to extend the von Neumann–Morgenstern utility framework known from risk towards

ambiguous situations by assuming that the decision making individual has some kind of

probabilistic subjective ‘belief’ about the likelihood of possible outcomes. The concept has

been proposed to model decision problems in climate change economics such as investing

in climate change abatement when different expert groups give differing probabilistic

estimates about temperature rise (e.g. Millner et al. 2010). However, there are a few

problems with this approach and its concepts. First and foremost, many papers rationalize

Ellsberg choices by incorporating an axiom of ‘ambiguity aversion’ into their framework.

Yet, it is doubtable whether Ellsberg choices are a desirable feature of any theory of

rational decision making. As Halevy (2007) has shown in his experimental re-examination

of Ellsberg’s findings, whether a test person expresses ambiguity aversion as revealed by

Ellsberg choices is correlated with that person’s failure to multiply probabilities. As

1Ellsberg’s anomaly or paradox refers to the following: Assume there is an urn that contains 120 balls
in total, 40 of which are blue (b) and the other 80 yellow (y) and red (r), but with unknown frequency
distribution. Experiment participants are offered the following two bets: f1 = ‘win 10$ if the ball drawn
from the urn is blue’ vs. f2 = ‘win 10$ if the ball drawn from the urn is red’ and f3 = ‘win 10$ if the
ball drawn from the urn is either blue or yellow’ vs. f4 = ‘win 10$ if the ball drawn from the urn is
either red or yellow’. Ellsberg’s finding was that the vast majority of participants preferred f1 to f2 and
f4 to f3 which would imply for a probability measure underlying these choices that P (b) > P (r) and
P (r) + P (y) > P (b) + P (y), a direct contradidiction.
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Al-Najjar and Weinstein (2009) summarize one of the key findings of Halevy’s study

”Of those subjects who understood basic probability enough to reduce ob-

jective compound lotteries, 96% were indifferent to ambiguity. On the other

hand, 95% of those subjects who could not multiply objective probabilities

expressed ambiguity aversion.”

Second, as pointed out by Al-Najjar and Weinstein (2009), the decision frameworks de-

veloped in this strand of literature that sees Ellberg choices as rational imply multiple

further anomalies such as aversion to information, updating of information based on taste

or sensitivity to sunk costs. Third, there is the problem of probabilistic quantification of

‘beliefs’ which refers to the probability distributions that the decision maker believes are

relevant. Which probability distribution over the expected outcomes – which themselves

might be hard to assess – should the decision maker include and which not? What if all

the best informed persons – the experts – on a particular issue sensibly disagree? Is any

probability better than no probability?

The contribution of this paper is to address these points by providing a conceptually

original approach to decision making under Knightian uncertainty that does not make

use of the concept of probability whatsoever. Instead, we focus on Knightian income

lotteries which are distributions of monetary payoffs over different possible outcomes with

completely unknown probabilities. We make a set of seven main assumptions – our base

axioms – about the preference relation � over Knightian income lotteries, and prove that

there exists a real-valued function H such that Knightian income lottery f is preferred to

g if and only if H(f) > H(g). This function – which we suggest to call uncertainty utility

– is unique up to cardinal transformations and contains a positive real-valued parameter

which we interpret as the decision maker’s degree of uncertainty aversion. Conceptually,

this implies that uncertainty aversion is a measure of how strong an individual dislikes

spreads, i.e. unevenness, in monetary payoffs. We do not assume that individuals are

uncertainty averse, but much rather, it turns out, is a very cautious attitude towards

Knightian uncertainty a natural consequence of our axiomatization. Moreover, we do not

relax the Sure Thing Principle, instead we show that it follows from the set of our base

axioms.
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The rest of this paper is organized as follows: In Section 2.1, we explain setting and

notation. In Section 2.2, we state the seven base axioms and develop the main result from

that, which is Proposition 1 on the existence and uniqueness of an uncertainty utility

index. In Section 2.3, we propose a particular function – Rényi’s generalized entropy

(Rényi 1961) – as one possible functional representation of the preference relation � on

Knightian income lotteries before we illustrate this utility index in Section 2.4 with a

choice problem between three Knightian income lotteries. We also compare the result

with other decision rules that have been proposed in the context of Knightian uncertainty

(cf. Polasky et al. 2011): maximin, maximax, the Hurwicz criterion, Laplace’s principle

of insufficient reason and the principle of minimum regret. Section 3 concludes.

2 Ranking Acts under Knightian Uncertainty

In this section, we provide a brief clarification of our setting and notation before we

state a set of seven base axioms that can be shown to constitute an axiomatic founda-

tion of utility under Knightian uncertainty. We subsequently introduce a one-parameter

real-valued function as one possible concrete functional representation of Knightian un-

certainty preferences. In the last part of this section, we illustrate the behavior of the

proposed Knightian utility index with a stylized sample decision problem between un-

certain income lotteries and compare it to other decision criteria such as the maximin,

maximax, minimum regret rules and the Laplace Principle.

2.1 Setting and Notation

Denote by X ⊂ Rn the set of possible states of nature and by Y ⊂ Rn the set of real-

valued discrete distributions over X. By the term ‘act’, we mean a function f : X → Y

from the set of all such acts F . Without loss of generality, each y ∈ Y can be thought

of as a vector containing the monetary payoffs that occur in each component i of x ∈ X.

Hence, we understand an act as a function that assigns a particular payoff structure y

to a particular state of the world x ∈ X, the same setting that is used in Gilboa and
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Schmeidler (1989)2. Denote by yf = (yf1 , . . . ,y
f
n) ∈ Rn the observed distribution resulting

from a specific act f and let yf =
∑n

i=1 y
f
i be the total payoff volume associated with

f . Then, sfi = yfi /y
f is the payoff share of component xi of world state x with respect

to the total payoff volume yf so that
∑

i s
f
i = 1 for any arbitrary f , by construction.

Furthermore, denote by Sn the set containing all possible such distributions s over X,

with any particular element s ∈ Sn ⊂ Rn. If we denote by 1n the vector (1, . . . ,1) ∈ Rn,

then 1
n
1n is the uniform distribution over X. Situations of risk are then characterized by

the possibility to assign probabilities to every entry of a specific element s ∈ Sn. If no

such assignment is possible, then we have a situation of uncertainty (Knight 1921).

In this paper, we deal with decision problems under Knightian uncertainty. Precisely,

in our setting, an act f is equivalent to a Knightian income lottery since a state of the

world x is assigned a payoff structure y via f where the probabilities pi of the payments yi

are unknown. We may thus use the words ‘act’ and ‘(Knightian) lottery’ interchangeably

although they are technically not quite the same. Unknown probabilities may occur in

cases where the information available to the decision maker is either too vague or even

conflicting to justify probabilistic ‘beliefs’ of any sort. Another famous argument by de

Finetti (1974) is that an objectively ‘true’ probability distribution that any subjective

belief could match or fail to match does simply not exist. In this paper, we will therefore

construct a decision framework not relying on probabilities at all from a few, normatively

desirable axioms and assumptions. We shall introduce these in the next section.

Before we get to the axioms of the preference relation ‘�’, we specify further the set

of problems relevant to our framework with the help of the following two definitions.

Definition 1 (Statewise dominance). Consider two arbitrary acts f, g ∈ F that create the

payoff profiles yf = (yf1 , . . . ,y
f
n) and yg = (yg1 , . . . ,y

g
n). f is said to be statewise dominant

over g if

∃i ∈ {1 . . . n} : yfi > ygi ∧ ∀j ∈ {1 . . . n} \ {i} : yfj ≥ ygj

In words, act f is statewise dominant over act g if f creates a better outcome than g

in at least one possible component and at least as good an outcome else. The notion of

2However, unlike Gilboa and Schmeidler (1989), we obviously make no assumption about measurability
of acts.
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statewise dominance is employed here because it is a concept that does not require any

knowledge of probabilities whereas one of the key results in risk theory, the Rothschild-

Stiglitz Theorem (Rothschild and Stiglitz 1970), makes use of the more common concept

of stochastic dominance which presupposes knowledge of probabilities.

Definition 2 (Nontriviality). Denote the decision problem between two arbitrary acts f,

g ∈ F by (f,g). Then (f,g) is said to be a nontrivial decision problem – not necessarily

Knightian – if neither act dominates statewise.

We assume that any decision problem considered in this paper is nontrivial in the

sense of Definition 2.

The intuition behind Definition 2 is as follows: if an act f leads to a payoff profile of

which any element yfi is at least as good as any element ygi and for at least one component

xi of x, it holds that yfi > ygi , then f � g trivially because, no matter what happens

after choosing f , the result will be at least as good as with g. For further illustration,

consider the decision between ‘having 5$ for sure’, formally a : {5$, 5$}, and b : {5$, 15$}.
Although we do not know the probabilities associated with the states of the world that

lead to the payoffs in g, it is safe to say that nobody would prefer the sure payment of

5$ to the lottery g. According to our definition, the specific decision problem (a,b) is a

trivial one because no matter which state of the world actually occurs, b will always make

us at least as well off as a and thus leaves no decision to scratch one’s head over. Next,

we introduce another important notion: degeneracy.

Definition 3 (degenerate Knightian lottery). We call Knightian lotteries degenerate if

one out of the two following statements is true:

1. there are equal payoffs in every outcome

2. one outcome has a positive payoff while all other payoffs are zero.

We have now gathered the ingredients to define the notion of uncertainty aversion in

our framework.

Definition 4 (uncertainty aversion). A decision maker is said to be uncertainty averse if

she – given nontriviality – always prefers a degenerate Knightian lottery with equal payoffs
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in every outcome to a non-degenerate Knightian lottery.

Definition 4 is to say that an uncertainty averse decision maker would always be

willing to pay some positive amount of money in exchange for certainty since a certain

payment leaves her at least as well off as the uncertain Knightian lottery, in complete

analogy to the case of risk. The cases of uncertainty neutrality and an uncertainty loving

attitude can then be defined in a similar manner.

Having clarified the setting and core notions of the paper, we now have all necessary

ingredients to establish our main result in the following section.

2.2 Axiomatic Foundation of Utility under Knightian Uncer-

tainty

In this entire subsection, we make use of what is known as the Lieb-Yngvason formulation

of thermodynamics (Lieb and Yngvason 1999). We shall demonstrate how their results

can be used to form the axiomatic basis of a new framework for rational decision making

under Knightian uncertainty. In the following, we state the axioms that we impose on

the preference relation ‘�’ existing on the set of acts F where f , g, h0 and h1 are all acts

∈ F . A ‘rational’ decision maker is therefore someone who agrees on these seven axioms.

Axiom 1 (Reflexivity). f ∼ f

Axiom 2 (Transitivity). f � g and g � h implies f � h

Axiom 3 (Consistency). f � f ′ and g � g′ implies f + g � f ′ + g′

Axiom 4 (Scaling invariance/Nonsaturation). If f � g, then αf � αg ∀ α > 0

Axiom 5 (Splitting and recombination). For 0 < α < 1

f ∼ αf + (1− α)f

Axiom 6 (Stability). If, for some pair of acts, f and g ∈ F , and for a sequence of ε’s

tending to zero and for some arbitrary states h0 and h1 ∈ F , it holds that

f + εh0 � g + εh1 =⇒ f � g
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Axiom 7 (Completeness/weak order). Any two acts f , g ∈ F are comparable, i.e. either

f � g or f � g, or both.

For proper understanding of these assumptions on �, we have to clarify what a mix-

ture of lotteries or acts – as stated in Axiom 5 – means within our particular setting as

it cannot mean the same as the standard compounding of lotteries which is ultimately

relying on the concept of probabilities, be it objective, subjective or both. Since we do not

include any probabilities in our decision framework, the compound lottery αf + (1− α)g

with α ∈ [0,1] has a different interpretation than in the case of risk. Take for example

Axiom 4, the scaling invariance. It means that if the Knightian lottery {1$,2$} is at least

as good as {0.50$,2.50$} to an individual, then, taking α = 50, the very same individual

should also think that {50$,100$} � {25$,125$}. Axiom 5 then tells us that any decision

maker is assumed to be indifferent between the choice of lottery f and a combination of

any two scaled versions of f . For example, assuming f = {1$,2$} and setting α = 0.4,

the decision maker would be indifferent between the lottery f and the ‘lottery packet’

{0.40$,0.80$} and {0.60$,1.20$} where ‘packet’ means she would get to play both gam-

bles once. This indirectly reflects a very cautious attitude towards uncertainty because,

in order to be indifferent between these to situations, it means that the decision maker

tacitly assumes that the – unknown – odds are generally unfavorable although the actual

situation might actually be the exact opposite. When choosing between lotteries as above,

the very cautious decision maker who tacitly assumes unfavorable odds will reckon that

she ends up having 1$ in either case and hence will be indifferent. At first glance, this

seems to be in line with what Ellsberg’s experiment suggested. Yet, our setting differs

from Ellsberg’s in that we do not assume that there is a choice between uncertainty and

risk but between uncertainty and uncertainty. The consistency assumption (Axiom 3)

then means that a weak preference of f to f ′ and g to g′ implies that the lottery packet

f + g is also weakly preferred to the packet f ′ + g′. The stability assumption (Axiom 6)

guarantees that there are no discontinuities in the preference relation which means that

the presence of ‘perturbatory lotteries’ with small scales (in the sense of Axiom 4) tending

to zero does not induce a spontaneous preference reversal. On the other hand, the axioms

reflexivity, transitivity and completeness are very much standard assumptions in decision

theory. Another notable point is that we do not assume the ‘Sure Thing Principle’ (Sav-

age 1972) which means that preferences should be independent of irrelevant alternatives.
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Although this is a normatively desirable feature of the uncertainty preference relation �,

we stress that we do not need it as a separate axiom because it can be shown to follow

from the above axioms:

Lemma 1 (Independence of irrelevant alternatives/weak certainty independence). Let f ,

g, h ∈ F . Then Axioms 1 through 6 imply that

f + h � g + h implies f � g

Proof. See Appendix A.1

The independence property is thus a consequence of Axioms 1 through 6 rather than an

axiom on its own right. It reflects that alternatives that occur anyway should not matter

for decision making. This is a very important feature that seems to pose a problem to

the ambiguity aversion literature (Al-Najjar and Weinstein 2009).

On a technical remark, we could at first assume completeness instead of presupposing

it in a separate axiom as we have done here. But in that case, as Lieb and Yngvason (1999)

have pointed out, we would need a total of 15 axioms to guarantee the existence of a unique

‘uncertainty utility index’ representing the uncertainty preferences of any rational (in the

sense of Axioms 1 through 7) decision maker that we state in the following.

Proposition 1 (Existence and uniqueness of an uncertainty utility index). Let � be a

binary relation on F . Then the following statements are equivalent:

1. � satisfies Axioms 1 – 7.

2. � represents entropic preferences.

3. There exists a function H : Sn → R such that

H(sf ) ≥ H(sg) ⇐⇒ f � g

H is unique up to cardinal transformations H ′(s) = aH(s) + b where a, b ∈ R and

a > 0.
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Proof. Proof by analogy to Lieb and Yngvason (1999), see Appendix A.2

Hence, the imposition of Axioms 1 through 7 on the preference relation � on F im-

plies the existence of a unique function from the set of Knightian lotteries Sn to the real

numbers that reflects the preferences over Knightian lotteries (uncertainty preferences)

by assigning the greatest real number to the Knightian lottery that the DM values most.

We shall call this function H(s) the uncertainty utility index of an individual DM with

respect to a situation of Knightian uncertainty described by the payoff structure s. From

Proposition 1, it follows that this function is of the von Neumann-Morgenstern type of

utility functions. That is, being unique up to cardinal transformations, differences in util-

ities are meaningful for each individual, but not interpersonally comparable (cf. Roemer

1996). Moreover, the axioms that we have stated here to define rational decision making

under Knightian uncertainty hold true particularly for any entropy function. Therefore,

we may call any preference relation satisfying Axioms 1 through 7 an entropic preference

relation. That being said, we have the following observation:

Proposition 2. Each entropic preference is uncertainty averse.

This is to say that aversion to Knightian uncertainty manifests itself in an aversion to

unevenness in payoff structures. Intuitively, a more even payoff structure is equivalent to

more certainty up to the point of absolute certainty when the payoff distribution over the

possible states of the world is perfectly even. A numerical equivalent for a distribution’s

degree of (un-)evenness is exactly what an information entropy function yields. Therefore,

we will investigate in the following subsection one possible such measure that contains

a real-valued positive parameter capturing the decision maker’s degree of uncertainty

aversion.

2.3 Rényi’s Generalized Entropy as a Numerical Equivalent of

Uncertainty Averse Preferences

In this section, we propose a generalized one-parameter entropy measure known from in-

formation theory to represent the decision maker’s uncertainty preferences. The measure

contains a positive, real-valued parameter which reflects the individual’s degree of uncer-
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tainty aversion. We start by technically introducing the function – Rényi’s generalized

entropy (Rényi 1961) – before we elaborate on its interpretation in the context of deciding

between Knightian lotteries.

Definition 5 (Rényi’s generalized entropy). For n ∈ N, s ∈ Sn and α > 0, the following

function Hn
α : Sn → R is called entropy of order α, or equivalently Rényi’s generalized

entropy:

Hn
α(s) =


1

1−α ln (
∑n

i=1 s
α
i ) : α > 0, α 6= 1

−∑n
i=1 si ln si : α = 1

(1)

Obviously, the case α = 1 is a special case of the general expression in the upper row

of the definition. Since limα→1H
n
α(s) is of the structure that allows to employ l’Hôpital’s

rule, the expression for Hn
1 (s) which is also known as Shannon’s entropy follows from that.

Proposition 3 (Properties of Rényi’s generalized entropy). Rényi’s generalized entropy

(Equation 1) has the following properties for every α > 0, n,m ∈ N, s ∈ Sn and r ∈ Sm:

1. Continuity: Hn
α(s) is a continuous function of s.

2. Symmetry: Hn
α(s) = Hn

α(Ps) for every permutation matrix P .

3. Maximality: Hn( 1
n
1n) > Hn(s) for every s ∈ Sn\

{
1
n
1n
}

.

4. Minimality: Hn
α(s) = 0 if s = (1,0, . . . ,0).

5. Additivity: Hmn
α (r ◦ s) = Hm

α (r) + Hn
α(s) where r ◦ s is the product distribution

consisting of shares ri ◦ sj, i = 1 . . .m, j = 1 . . . n.

Proof. See Appendix A.3

The symmetry property states that the sequence of the payoff shares that result from

an act does not affect the value of Hn
α so that it does not matter in what sequence these

shares are numbered. The maximality property tells us that Hn
α reaches its unique maxi-

mum for a completely uniform distribution. From our proof, it follows that this maximum

value is equal to lnn and hence independent of α. Conversely, the minimality property

states that Hn
α becomes minimal for a situation where one substate of the world has max-

imum market share and this minimal value is zero. Additivity states it does not change
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the value of Hn
α if one divides the payoff structure into subparts and calculates the entropy

as sum of these subparts.

Proposition 4 (Influence of the degree of uncertainty aversion α on the utility index

Hn
α(s)). For any arbitrary non-degenerate Knightian lottery s, a higher degree of uncer-

tainty aversion implies ceteris paribus a lower level of uncertainty utility. Conversely, a

lower degree of uncertainty aversion implies ceteris paribus a higher level of uncertainty

utility. Formally,
∂Hn

α(s)

∂α
< 0 (2)

for any non-degenerate s.

Proof. See Appendix A.4.

Proposition 4 implies that the degree of aversion to Knightian uncertainty α deter-

mines how much the distribution’s evenness is weighted. In general, the act creating the

more uneven payoff distribution will ceteris paribus provide the smaller utility Hn
α to the

DM. And the evaluation of an act in terms of utility depends on α. Hence, we have as a

general rule for any distribution s ∈ Sn\
{

1
n
1n
}

Hn
α1

(s) > Hn
α2

(s) > Hn
α3

(s) > . . . > Hn
α∞(s) where α1 < α2 < α3 < . . . < α∞

We illustrate this behavior in Figure 1.

In general, two acts to be compared need not live in the same dimension. For exam-

ple, it might happen that f : Rn → Rn while g : Rm → Rm and n 6= m. We know from

the maximality property of Rényi’s generalized entropy that the maximum possible index

value is Ĥn = Hn( 1
n
1n) = lnn. One way of establishing general comparability is thus a

normalization.

Definition 6 (Normalized Rényi’s generalized entropy). For any act f : Rn → Rn, we

define

H̃α(sf ) :=
Hn
α(sf )

lnn
(3)

12



so that H̃α ∈ [0,1] and

H̃α(sf ) = 1 ⇐⇒ sf =
1

n
1n.

Thus, for the hypothetical situation of certainty, we have H̃α( 1
n
1n) = 1. As long as

the decision problem fulfills Definition 2, certainty is thus the state most desirable to the

uncertainty averse individual. On the other hand, maximum uncertainty in the sense that

one particular state of the world gets a payoff share of one is the least desirable state,

and, by the Minimum principle from Proposition 3, Hn
α(s) = H̃n

α(s) = 0. And because of

Proposition 1, we know that it is then possible to assign specific utility numbers to any

arbitrary payoff distribution s which reflect its desirability to the individual.

In Figure 1, we plot the utility index for the case of just two possible outcomes which

means

H2
α(s) =

1

1− α ln [sα + (1− s)α] ; α > 0 6= 1 (4)

since knowing one share s1 = s determines the other share s2 = 1 − s. Apart from the

behavior that is clear already from Proposition 3 that we have just discussed, Figure 1

illustrates that the numerical utility that a DM attaches to a Knightian lottery critically

depends on her attitude towards uncertainty α. For small α between 0 and 1, the DM

attaches a relatively high utility even to very small shares. Greater values of s imply higher

levels of utility but at an ever smaller positive marginal utility. While being uncertainty

averse – the best situation in terms of utility is still the situation of certainty at s = 0.5

– the utility gain from an additional marginal unit of s is very small for greater s closer

to s = 0.5 compared to smaller s closer to s = 0. We have H ′α(s) > 0 and H ′′α(s) < 0.

On the other hand, for α > 1, we observe that H ′α(s) > 0 and H ′′α(s) > 0 for s < s∗

and H ′α(s) > 0 and H ′′α(s) < 0 for s > s∗. That is, we observe that the curvature of the

curve changes at some point s∗ depending on α and that the locus of s∗ moves towards

s = 0.5 with increasing α. Hence, the more uncertainty averse the individual, the higher

the level of s up to which she enjoys an over proportionally high marginal utility from an

additional marginal unit of s. Moreover, for the case α > 1, the DM attaches very low

utility values to small shares s with small positive marginal utility compared to the case

of low degrees of uncertainty aversion 0 < α < 1.

Clearly, an individual’s current wealth level should matter in a decision framework
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that deals with Knightian uncertainty. After all, it does make a difference in terms of our

well-being whether we face a potential loss of, say, 20000 $ from a current wealth level

of 100000 $ or from a mere 25000 $. This is incorporated in our formalization. Consider

the numbers that we have just stated from the viewpoint of outcomes and shares: in

the first situation, we face the Knightian lottery f = {100000$, 80000$}, whereas in the

second case, we look at g = {25000$, 5000$}, so that we have sf = (5
9
,4
9
) and sg = (5

6
,1
6
)

in terms of shares. If the individual accepts our axioms about preferences over Knightian

lotteries and if we assume her numerical preference is of the form given in Equation 4

with α = 5, it means that in the wealthier situation, her utility level is H2
5 (sf ) = 0.664

(H̃2
5 (sf ) = 0.958) compared to H2

5 (sg) = 0.228 (H̃2
5 (sf ) = 0.329) in the situation with

much less initial wealth resulting in the Knightian lottery g.

0.0 0.1 0.2 0.3 0.4 0.5
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

H
2 α
(s

)

α = 0.25

α = 0.5

α = 0.75

α = 2

α = 5

α = 10

α = 50

Figure 1: Numerical representation of uncertainty averse preferences as given by Rényi’s gen-
eralized entropy for various degrees of uncertainty aversion and only two possible outcomes such
that s1 = s and s2 = 1 − s. In such a world where n = 2, the maximum possible H value is
Hn
α(0.5) = ln 2 ≈ 0.69.

2.4 Illustration: Comparison of Decision Rules

This section illustrates our proposed preference ordering index decision problems within

the formal scope of Definition 2 with a concrete example. We compare our decision

criterion to other decision criteria proposed in the literature to deal with Knightian un-
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certainty. These criteria include the maximin rule and its optimistic counterpart, the

maximax rule, Laplace’s principle of insufficient reason, the rule of minimum regret and

the Hurwicz criterion which is a linear combination of maximin and maximax (Polasky et

al. 2011) which weights possible maximum and minimum payoffs in each state according

to the decision maker’s optimism.

While terms such as maximin and maximax are self-explanatory, this is less true for

the other three decision rules mentioned. Pierre-Simon Laplace’s principle of insufficient

reason states that there is no reason to assume that one specific state of the world is

more probable than another one when probabilities are unknown (Laplace 1820). Hence,

they should all be given equal weight so that Laplace’s principle amounts to choosing

the alternative that generates the highest average payoff. The rule of minimum regret

is based on the idea to minimize the maximally possible ‘regret’: for each possible state

of the world, the act that leads to the highest payoff is set as reference point relative to

which the ‘regret’ is calculated as possible payoff foregone given that the respective state

of the world is realized. The alternative that minimizes the maximum possible regret

is considered the best choice in this decision framework. Eventually, the Hurwicz rule

generalizes the maximin and maximax criteria: for each alternative k ∈ F , the score

Φ(yk) = λmax
i

(yki ) + (1− λ) min
i

(yki )

is calculated and compared to the alternatives’s scores. The associated decision rule is

maxk Φ(yk). λ thus reflects the individual’s optimism as a greater λ gives more weight

to the maximum payoff of the lottery and hence less to the minimum. In consequence,

λ = 1 corresponds to the maximax rule while λ = 0 leads to the maximin criterion.

As exemplary decision problem, we borrow the following example, slightly altered,

from Dörsam (2003): an individual has to take a decision between three acts – f , g and h

– where x ∈ R4. The acts are known to generate the following payoff profiles (in monetary

units)

f : {60, 30, 50, 60}

g : {10, 10, 10, 140}

h : {5, 100, 120, 130}
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It is easy to verify that these Knightian income lotteries fulfill Definitions 1 and 2. f is

very even but does neither have an especially large maximum payoff nor a particularly

low minimum possible payoff. In fact, it guarantees the maximal minimum payoff out

of the three alternatives. Hence, the maximin criterion would select lottery f . Lottery

g offers the potentially highest possible win out of all three uncertain prospects but it

only does so in one out of four possible states of the world whereas in the other three

states, we end up having only 10 monetary units. Obviously, the maximax criterion would

rate g highest and f lowest. Lottery h features the smallest minimum but otherwise it

offers three potentially large payoffs as compared to f and g. Hence, Laplace’s principle

of insufficient reason ranks h highest, likewise does the rule of minimum regret. The

advice that the Hurwicz criterion gives us critically depends on the choice of λ. A rather

pessimistic individual (λ = 0.1) would choose lottery f while for any λ ≥ 0.2, lottery g

would be preferred. We give the complete rankings of acts in Table 1.

Table 1: Orderings over the Knightian lotteries f , g and h that result from different decision
rules.

decision criterion choice ordering

maximin f � g � h

maximax g � h � f

Laplace principle h � f � g

minimum regret h � f � g

Hurwicz λ = 0.1: f � g � h

λ = 0.8: g � h � f

In Table 2, we illustrate how the H4
α scores of the three Knightian lotteries f , g and

h change as the parameter of uncertainty aversion α is increased. In our framework, a

comparison of differences in utility is meaningful for the same individual due to Proposi-

tion 1 (uniqueness up to cardinal transformations). We see that, although the preference

over the lotteries always remains f � h � g, the impact of bad outcomes drastically

changes with α: at a very low level of uncertainty aversion (α = 0.1), the normed utilities

H̃ provided by the three uncertain prospects are within a range of 0.056 from lottery f

(best) to lottery g (worst), whereas at high levels of uncertainty aversion, the range is

0.773. Thus, an individual relatively uncaring towards Knightian uncertainty would gain

relatively little in terms of utility when swapping from prospect g to prospect f . On the
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other hand, the very same swap would mean an over six times higher level of utility to a

highly uncertainty averse decision maker.

Table 2: H4
α scores of the three Knightian lotteries f , g and h for different degrees of uncertainty

aversion α. Also given are the normalized scores as defined in Definition 6. The resulting
preference ordering is f � h � g.

uncertainty aversion uncertainty utility

α H4
α(f) H̃α(f) H4

α(g) H̃α(g) H4
α(h) H̃α(h)

0.1 1.383 0.998 1.306 0.942 1.338 0.965

0.5 1.369 0.986 0.983 0.709 1.215 0.876

1 1.354 0.977 0.660 0.476 1.151 0.830

3 1.309 0.944 0.291 0.210 1.103 0.796

5 1.283 0.925 0.243 0.175 1.090 0.786

10 1.252 0.903 0.216 0.156 1.070 0.772

20 1.230 0.887 0.204 0.147 1.048 0.756

50 1.214 0.876 0.198 0.143 1.025 0.739

3 Conclusion

In this paper, we have provided a new representation of preferences over Knightian income

lotteries, which we have defined as income lotteries with unknown probabilities. Specif-

ically, we have given an axiomatic foundation of a utility index that maps Knightian

lotteries to the positive reals resting on seven base axioms. Two features of our axiom-

atization are especially desirable: (1) We do not relax the Sure Thing Principle which

cures the problem of sensitivity to irrelevant sunk costs that many approaches from the

ambiguity aversion strand of literature have and which was pointed out by Al-Najjar and

Weinstein (2009); (2) we do not assume uncertainty aversion from the beginning, instead

a very cautious attitude towards spreads in Knightian income lotteries follows as a nat-

ural consequence of our axiomatization. We have demonstrated that this utility index is

unique up to cardinal transformations, paralleling the seminal approach to utility under

risk by von Neumann and Morgenstern (1944). We have suggested to use a function

known from physics – Rényi’s generalized entropy Rényi (1961) – as a possible functional

representation of preferences over Knightian lotteries. This representation has the ap-
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peal of containing a positive, real-valued parameter that captures the individual’s dislike

of spreads in Knightian income lotteries. We have suggested an interpretation of this

parameter as the individual’s degree of uncertainty aversion which is conceptually origi-

nal and quite different from the concepts of ‘ambiguity aversion’ in the literature which

predominantly rely on probabilistic conceptualizations of prior ‘beliefs’. With these new

concepts of uncertainty aversion and utility under Knightian uncertainty, we circumvent

several conceptual issues in existing modelling approaches such as aversion to information

(cf. Al-Najjar and Weinstein 2009), introduction of probability as one more parameter

with possibly large quantification uncertainties and the sensitivity to irrelevant sunk costs

mentioned before. We have illustrated our uncertainty utility index with a set of three

sample Knightian income lotteries and compared the resulting rankings to five well-known

approaches to decision under Knightian uncertainty which are the maximin and maximax

rules, the Hurwicz criterion, Laplace’s principle of insufficient reason and the rule of min-

imum regret. From this illustration, we learn that our uncertainty utility index produces

a ranking of the sample Knightian income lotteries different from the other five decision

rules. However, the most preferred lottery coincides with the one preferred by an individ-

ual with maximin preferences and with the choice a very pessimistic Hurwicz individual

would make.

A Appendix: Proofs

This Appendix provides the detailed proofs of the propositions and lemmata that we have

omitted in the main body of the text for better readability.

A.1 Proof of Lemma 1

Assume without loss of generality that f � g. Let furthermore ε = 1
n

where n ∈ N. Then,

we have by Axioms 1 and 5

f + εh ∼ (1− ε)f + εf + εh
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By Axiom 4, if f � g, then also εf � εg. Moreover, we know that

f − εf + εh ∼ (1− ε)f + εh

Combining the last equation with the assumed relation of acts f and g, we have by Axiom

3

f + εh � (1− ε)f + εg + εh

∼ (1− 2ε)f + εf + εg + εh

From here, by the same argument as above, we arrive at

f + εh � (1− 2ε)f + 2εg + εh

Repeating this n times yields

f + εh � g + εh

And from here, we may conclude by Axiom 6 that f � g indeed.

�

A.2 Proof of Proposition 1

The original proof is due to Lieb and Yngvason (1999). Here, we will transfer it to our

framework of preferences over Knightian lotteries and establish the result in our context.

The proof will be carried out in four steps, each of which will be formulated in a sepa-

rate lemma. First, we show in Lemma 2 that for any f ∈ F there exists a number HF(f)

on the space of Knightian lotteries F that is well-defined and bounded above. In Lemma

3, we demonstrate the equivalence of � on F and ≤ on R. Third, we show in Lemma

4 that HF(f) is unique and in the last step, Lemma 5 establishes that this uniqueness

holds up to cardinal transformations.
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Lemma 2. Suppose that f0 and f1 ∈ F with f0 ≺ f1 and define for λ ∈ R

Hλ = {f ∈ F : (1− λ)f0 + λf1 � f}

Then

1. ∀f ∈ F , there is a λ ∈ R such that f ∈ Sλ

2. ∀f ∈ F , sup {λ : f ∈ Sλ} <∞

In words, (1) for every Knightian lottery, or equivalently act f , there exists a real

number such that f ∈ Hλ and (2) this real number is bounded above.

Proof. 1. If f0 � f ⇒ f ∈ S0 by Axiom 2. For general f , we claim for some α ≥ 0

(1 + α)f0 � αf1 + f (5)

and hence

(1− λ)f0 + λf1 � f with α = −λ

If Equation 5 were not true, then αf1 + f � (1 + α)f0 ∀α > 0 and so, by Axioms

4 and 5

f1 +
1

α
f � f0 +

1

α
f0

By Axiom 6, this would imply f0 � f1, in contradiction to the assumption

2. This is essentially the same argument, i.e. proof by contradiction: If sup {λ : f ∈ Sλ} =

∞, then we would have for some sequence of λ’s tending to ∞

(1− λ)f0 + λf1 � f

which would imply by Axioms 3 and 5 that

f0 + λf1 � f + λf0

and by Axiom 4
1

λ
f + f1 �

1

λ
f + f0
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which would imply by the stability axiom that f1 � f0.

In the next step, we assume Knightian lotteries f0, f1 ∈ F with f0 � f1 and define

for arbitrary f ∈ F
HF(f) := sup {λ : (1− λ)f0 + λf1 � f} (6)

the canonical utility on F with reference points f0 and f1 in the space of lotteries F .

Then Lemma 2 guarantees that HF(f) is well-defined and bounded above.

Lemma 3 (Equivalence of � and ≤). Assume f0 � f1 as before and a0, a1, a
′
0, a
′
1 ∈ R

with a0 + a1 = a′0 + a′1. Then the following are equivalent

1. a0f0 + a1f1 � a′0f0 + a′1f1

2. a1 ≤ a′1 (and hence a0 ≥ a′0)

Furthermore, ∼ holds in 1. if and only if a1 = a′1 and a0 = a′0.

Proof. Assume that a0 + a1 = a′0 + a′1 = 1 and that all a’s are strictly positive.

1. ⇒ 2.: We write λ = a1 and λ′ = a′1. We deliberately assume that λ > λ′ which violates

2. above to show that this assumption leads to a contradiction. If indeed λ > λ′, then we

have

(1− λ)f0 + λf1 � (1− λ′)f0 + λ′f1

and by Axioms 3 and 5, we get

(1− λ)f0 + λ′f1 + (λ− λ′)f1 � (1− λ)f0 + (λ− λ′)f0 + λ′f1

From this, applying Axioms 3 and 5 again, we arrive at (λ − λ′)f1 � (λ − λ′)f0 which

yields by Axiom 4 that f1 � f0 which is the contradiction we were looking for.

2. ⇒ 1.:

(1− λ)f0 + λf1
A3/A5∼ (1− λ′)f0 + (λ′ − λ)f0λf1
A3/A4

� (1− λ′)f0 + (λ′ − λ)f1 + λf1

A3/A5∼ (1− λ′)f0 + λ′f1 (7)
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which only holds for λ′ > λ.

Lemma 4. (Uniqueness of canonical utility HF) Let HF denote the canonical utility from

Equation 6 on F with respect to the reference lotteries f0 � f1. If f ∈ F , then

λ = HF(f)

is equivalent to

f ∼ (1− λ)f0 + λf1

Proof. First, if λ = HF(f), then by definition of the supremum, there is a sequence

ε1 ≥ ε2 ≥ . . . ≥ 0 converging to zero such that

(1− (λ− εn))f0 + (λ− εn)f1 � f ∀n

By Axiom 5

(1− λ)f0 + λf1 + εnf0 ∼ (1− λ+ εn)f0 + (λ− εn)f1 + εn

� f + εnf1 (8)

By Axiom 6, we get

(1− λ)f0 + λf1 � f

On the other hand, since λ is the supremum we have by Axiom 7

f � (1− (λ+ ε))f0 + (λ+ ε)f1 ε > 0

which means

f + εf0 � (1− λ)f0 + λf1 + εf1

and so, by Axiom 6 again

f � (1− λ)f0 + λf1 ⇒ f ∼ (1− λ)f0 + λf1 when λ = HF(f)
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If, conversely, λ′ ∈ [0,1] is such that

f ∼ (1− λ′)f0 + λ′f1

then by Axiom 2

(1− λ)f0 + λf1 ∼ (1− λ′)f0 + λ′f1

and thus λ = λ′ by Lemma 3.

Hence, for every f ∈ F , there is a unique λ ∈ R, namely λ = HF(f), such that

f ∼ (1− λ)f + λf ∼ (1− λ)f0 + λf1 (9)

Put differently, any Knightian lottery f is always representable by a linear mixture of two

arbitrary, non-identical lotteries from F with mixture parameter λ.

In the following last Lemma, we demonstrate that HF is unique up to cardinal trans-

formations.

Lemma 5 (Cardinality of HF). If H∗F is a function on F satisfying

(1− λ)f + λg � (1− λ)f ′ + λg′

if and only if

(1− λ)H∗F(f) + λH∗F(g) ≤ (1− λ)H∗F(f ′) + λH∗F(g′) ∀f,g,f ′,g′ ∈ F

then H∗F(f) = aHF(f) + b with a = H∗F(f1) − H∗F(f0) > 0 and b = H∗F(f0). HF is the

canonical utility on F with reference lotteries f0 and f1.

Proof. From Equation 9, we have by hypothesis on H∗F and λ = HF

H∗F(f) = (1− λ)H∗F(f0) + λH∗F(f1)

= (1−HF(f))H∗F(f0) +HF(f)H∗F(f1)

= [H∗F(f1)−H∗F(f0)]HF(f) +H∗F(f0) (10)
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The last line implies that a = H∗F(f1) − H∗F(f0) > 0 since f0 � f1 by assumption. This

establishes cardinality of the Knightian utility index HF on the lottery space F and thus

completes the proof.

A.3 Proof of Proposition 3

Continuity, symmetry and additivity simply carry over from the underlying functions, ln

and the summation. The maximality statement follows from directly solving the associ-

ated optimization problem. Explicitly, we have

1. The natural logarithm is a continuous mapping from the positive reals into the

positive reals, ln : R+ → R+

2. The ln and sum functions are both commutative

3. Solving the optimization problem

maxHn
α(s) subject to

n∑
i=1

si = 1

leads to a maximum for s1 = s2 = . . . = sn = 1
n

and this maximum value depends

only on the number of possible states of the world because of Hn
α( 1

n
1n) = lnn.

Hence, the codomain of Hn
α is {0 ≤ Hn

α(s) ≤ lnn}

4. α > 0, α 6= 1: proof by insertion.

α = 1: define 0 ln 0 := 0, then proof by insertion.

5. This is a consequence of ln(ab) = ln a+ ln b, ∀a,b ∈ R.

�

A.4 Proof of Proposition 4

By direct calculation, we obtain

∂

∂α
Hn
α(s) =

ln
∑

i s
α
i

(1− α)2︸ ︷︷ ︸
I

+
1

1− α

∑
i s
α
i ln si∑
i s
α
i︸ ︷︷ ︸

II
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Case-by-case analysis shows that the terms I and II behave in opposite directions for

0 < α < 1 and α > 1, respectively. When α > 1, term I is negative for any s due to∑
i s
α
i < 1 whereas term II is positive since it is a product of two negative numbers. On

the other hand, in the case 0 < α < 1, we find that I>0 while II<0. The overall behavior

of ∂
∂α
Hn
α(s) is thus not evident from these considerations. Without loss of generality, we

consider the special case n = 2, so that

∂αH
2
α(s) =

ln(sα + (1− s)α)

(1− α)2
+

1

1− α
sα ln s+ (1− s)α ln(1− s)

sα + (1− s)α

From Figure 2, we see that for every non-degenerate lottery, i.e. s 6= 0,1, ∂αH(s) is
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Figure 2: The behavior of ∂αH
2
α(s) for different shares s1 = s so that s2 = 1 − s. The curve

remains in the negative codomain for any valid s.

negative. A numerical investigation of the case s = 0.5 reveals that ∂αH(s) comes very

close to zero from below but without touching it. The proof for n > 2 goes accordingly.

�
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