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1 Introduction

Decision-making about economy-environment systems is often characterized by deep

uncertainties. Knightian uncertainty denotes income lotteries with known payoffs over

known states of nature, but unknown probabilities of these outcomes (Keynes 1921,

Knight 1921).1 It is a deeper form of not-knowing-the-future than risk (where probabil-

ities of outcomes are known) or ambiguity (where people have some, possibly differing,

beliefs about the likelihood of outcomes), but less deep than unawareness of payoffs (in

some or all states) or unawareness of potential states of nature.

There are compelling reasons to care about Knightian uncertainty. For, it may be

clear what are the potential outcomes of an action, but it may be outright impossible

to assign probabilities to these outcomes. For example, the system generating the out-

comes may be too complex2 and the time horizon too long to warrant any reasonable

probabilistic assessment. A relevant example is our planet’s climate where we do not

even fully understand every single part of the system yet, let alone all feedback loops

contained (Mehta et al. 2009). As a matter of fact, recent climate predictions have been

remarkably off (Fyfe, Gillett and Zwiers 2013). Moreover, the fundamental disagreement

of expert groups on a certain issue alone, for whatever reason, might invoke situations of

Knightian uncertainty (Feduzi and Runde 2011). In such cases, one might be tempted

to attach subjective probabilities (“beliefs”) to the scenarios, but there are catches: (1)

existence of such probabilities cannot be guaranteed (Ellsberg 1961,3 Halevy 2007), even

when experts are asked for their educated guesses (Millner et al. 2013), and (2) espe-

1John Maynard Keynes and Frank Knight simultaneously coined the distinction between situations
of risk and situations of uncertainty in 1921 (Keynes 1921, Knight 1921). The term ‘Knightian
uncertainty’ has prevailed in the literature, though.

2Here, ‘complex’ refers to the system consisting of many interacting parts that are interconnected via
multiple nonlinear feedback loops (cf. Sornette 2003).

3Ellsberg’s anomaly or paradox refers to the following: Assume there is an urn that contains 120 balls
in total, 40 of which are blue (b) and the other 80 yellow (y) and red (r), but with unknown color
frequency ratio. Experiment participants are offered the following two bets: f1 = ‘win 10$ if the ball
drawn from the urn is blue’ or f2 = ‘win 10$ if the ball drawn from the urn is red’ and f3 = ‘win 10$
if the ball drawn from the urn is either blue or yellow’ or f4 = ‘win 10$ if the ball drawn from the urn
is either red or yellow’. Ellsberg’s finding was that the vast majority of participants preferred f1 to f2
and f4 to f3 which would imply for a probability measure underlying these choices that P (b) > P (r)
and P (r) + P (y) > P (b) + P (y), a direct contradiction.
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cially experts tend to be overconfident regarding their results (Alpert and Raiffa 1982),

which introduces yet another intricacy. And, aside from all this, it seems also justified

to ask – at least from time to time – whether any probability is really better than no

probability.

A number of decision criteria have been suggested for situations of uncertainty,

non-probabilistic as well as probabilistic, and there are apparent problems with both.

First and foremost, the probabilistic ones like the “maxmin expected utility” approach

(Gilboa and Schmeidler 1989), the “smooth ambiguity’ ’ model (Klibanoff, Marinacci

and Mukerji 2005) or “variational preferences” model (Maccheroni, Marinacci and Rus-

ticchini 2006) require probabilistic information which – as we have just argued – may

be unavailable or unreliable. Second, these papers rationalize Ellsberg choices by incor-

porating an axiom of “ambiguity aversion” into their framework. Yet, it is doubtable

whether Ellsberg choices are a desirable feature of a theory of rational decision mak-

ing, because they imply things such as aversion to information, updating of information

based on taste or sensitivity to sunk costs (Al-Najjar and Weinstein 2009). Moreover,

as Halevy (2007) has shown in his experimental re-examination of Ellsberg’s findings,

whether a test person expresses ambiguity aversion is correlated with that person’s in-

capability to apply basic probability calculus. Hence, while these models are successful

from a descriptive point of view, they are normatively unsatisfactory. Non-probabilistic

models, which seem more in line with what Keynes and Knight had in mind, naturally

tend to be minimalistic in terms of what information they take into account. Clearly,

they do not rely on anything like probabilities. But often, they also do not use all avail-

able information on all possible states of the world. For example, the maximin criterion

(Wald 1949) only focuses on the worst outcome and evaluates actions accordingly, the

Hurwicz rule (Arrow and Hurwicz 1977) evaluates actions according to weighted aver-

age of worst and best possible outcome, clearly an unsatisfying limitation as Gravel,

Marchant and Sen (2012) have pointed out. Other rules like the principles of minimum

regret (Niehans 1948, Savage 1954) and insufficient reason (Laplace 1820) take all pos-

sible states of the world into account, but they lack a formal concept of “uncertainty

aversion” or, more fundamentally, a concept of “the degree of uncertainty”.
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In this paper, we propose and elaborate the fundamental idea that preferences over

Knightian lotteries can be represented by an entropy function (sensu Lieb and Yngvason

1999) of these lotteries. In the spirit of Knight (1921), we do not refer to any concept

of probability. Instead, we base our argument on Knightian income lotteries which

are distributions of monetary payoff over different possible outcomes with unknown

probabilities. Based on seven axioms on the preference relation over Knightian acts,

we show that there uniquely (up to linear-affine transformations) exists an additive and

extensive function (“entropy function”) from the set of Knightian lotteries to the real

numbers that represents uncertainty preferences. Unlike most approaches so far, we do

not relax the Sure Thing Principle (Savage 1954).4 Instead we show that a Knightian

version of it follows from the our basic axioms. We also show that convex preferences

are represented by a concave entropy function, which represents uncertainty aversion.

As an example of an entropic preference function under Knightian uncertainty, we

propose a one-parameter function based on Rényi’s (1961) generalized entropy. The

parameter in Rényi’s function can be interpreted as the relative weight at which the two

fundamental sources of uncertainty are taken into account in the aggregate measure of

uncertainty: (1) the pure number of potential states of nature, and (2) the heterogeneity

of the payoff-distribution over the given number of states of nature.

We illustrate our preference function with a simple decision problem and relate it

to existing decision rules under uncertainty (maximin, maximax, Hurwicz, risk-neutral

and risk-averse Laplacian expected utility, minimum regret).

The paper is organized as follows. In Section 3, we axiomatically characterize the

uncertainty preference relation and show that it can be represented by an entropic

preference function. In Section 4, we discuss this function in terms of uncertainty

aversion. In Section 5, we propose one particular function – based on Rényi’s (1961)

generalized entropy function – as a preference function, and we illustrate it with a

simple choice problem. In Section 6, we discuss our findings and relate them to other

approaches Knightian uncertainty in the literature: maximin, maximax, the Hurwicz

criterion, Laplace’s principle of insufficient reason and the principle of minimum regret.

4The Sure Thing Principle is sometimes also referred to as ‘independence of irrelevant alternatives’.
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Section 7 concludes. All proofs are contained in the Appendix.

2 Conceptual clarifications

We present some critical reflections on key concepts of decision theory and related lit-

erature in the following.

Risk, uncertainty and ambiguity. Zweifel and Eisen (2012) state that ‘the risk

of an activity is represented by the probability density p(x) defined over possible conse-

quences x’ where consequences may mean utility levels or monetary payoffs. p(x) may

be exogenously specified or scientifically calculable objective probabilities (cf. Machina

and Rothschild 2008). If we apply this definition to the Keynes-Knight definition of

uncertainty, Knightian uncertainty would then just amount to the non-existence of such

an objective probability density function (PDF), whereas ambiguity would imply that

there is at least incomplete knowledge concerning chances of outcomes or more than one

PDF, and the decision maker is not sure about the ‘true’ distribution. In other words, if

information concerning probabilities is partly missing or if there are several non-identical

PDFs over consequences, possibly even weighted by some subjective weighting factors

(2nd order probability distributions), then we face an ambiguous situation (cf. Gravel,

Marchant and Sen 2012). It is worth noting that even though ambiguity and Knightian

uncertainty are in principle very distinct concepts, they are often used interchangeably.

According to Machina and Rothschild (2008), there are two major theory strands

concerning choice under Knightian uncertainty: the state-preference approach (Debreu

1959, Arrow 1964, Hirshleifer 1965, Hirshleifer 1966, Yaari 1969) and the hypothesis of

probabilistic sophistication. The state-preference approach starts from a set of states

of the world S = {sa, . . . ,sn} and constructs a theory of choice with state-payoff bun-

dles (c1, . . . ,cn) as objects of choice. Individuals are assumed to have preferences over

state-payoff bundles just like regular commodity bundles. L.J. Savage’s 1954 contribu-

tion was to define an ‘act’ as a mapping from states to consequences and that there

exists a subjective belief, derived from preferences, which substitutes for objective prob-

abilities. Much later, this framework was fortified by the hypothesis of probabilistic
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sophistication (Machina and Schmeidler 1992) which clarified the notion of subjective

probabilities. It states that individuals entertain subjective probabilities which take the

form of additive subjective probability measures µ(·) over the state space S. Anscombe

and Aumann (1963) refined Savage’s framework by assuming consequences to be risky

lotteries rather than simple outcomes. Within this Anscombe-Aumann framework, Be-

wley (2002) introduced the assumption that individuals may assert that two alternatives

are incomparable and that they may only accept an alternative when it is actually pre-

ferred to their current status quo. Bewley thus assumes that Knightian preferences are

incomplete.

The literature strand that has spawned from the impact of the Ellsberg experiment

has been subsumed under the umbrella term ‘ambiguity aversion literature’ (Al-Najjar

and Weinstein 2009). Gilboa and Schmeidler (1989) and Schmeidler (1989) both ex-

panded the Anscombe-Aumann framework to accommodate Ellsberg-type behavior, i.e.

the preference of risk to uncertainty. Gilboa and Schmeidler (1989) provided an ax-

iomatic foundation of ‘maximin expected utility’ (MEU) with multiple priors over the

state space, so that the utility of an act is the minimal expected utility resulting from

the priors. Schmeidler (1989) introduced the mathematical concepts of capacities and

Choquet integration to model ambiguity aversion. Finally, Klibanoff, Marinacci and

Mukerji (2005) and Nau (2006) modeled ambiguity via second order probability distri-

butions and ambiguity aversion over the concavity of some second order utility function,

i.e. a utility of expected utilities. It is especially this approach that has been applied

frequently in climate change economics and related policy analyses (Millner, Dietz and

Heal 2010, Traeger 2011, Heal and Millner 2013).

Descriptive and normative decision theory. There is, it seems, a dichotomy of

approaches in decision theory. On the one hand, there are descriptive approaches that

try to incorporate behavioral findings into existing theories to ‘bring theory closer to

reality’ (Gilboa 2010: 4). Such approaches will be helpful whenever one is interested in

descriptive prediction of behavior under ambiguity or uncertainty. On the other hand,

the normative approaches treat behavioral peculiarities in conflict with some of their

axioms such as famously reported by Allais (1953) and Ellsberg (1961) as errors of human
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reasoning. The ultimate aim is thus to ‘bring reality closer to theory’ (ibid.) by pointing

out these errors of reasoning to decision makers to make better decisions possible in the

future. Such theories can help determining what ought to be done, given that the

decision maker agrees with the theory’s premises. Obviously, one can have problems

with the inherent paternalism of such theories. On the other hand, proponents usually

stress that only normative decision theories can help overcoming human thinking biases

that irrefutably exist.

Risk and probability. Closely related to the notions of risk and ambiguity are

issues of measurability of risk (‘riskiness’) and probability. These notions are ubiquitous

in economics, and yet it seems that their usage can be problematic. Consider the decision

of investing in asset A or asset B. The standard way of arguing here is that investment

A is said to be riskier than B if the standard deviation of its market price trajectory is

larger. This does not seem entirely convincing. As an illustrative example, assume that

the choice is between Microsoft stocks and Greek state bonds. Following the standard

argument would lead to the conclusion that Microsoft stocks are riskier than Greek state

bonds. From recent history, this statement seems questionable. The underlying issue

however is whether and to what extent risk can be quantified, possibly even objectively.

If one worries about risk quantification, it entails thinking about probability quantifi-

cation as well. Many approaches in economic theory require at some point the existence

of probabilities that are objectively ‘true’. Philosophical details with the concept of

truth aside, such probabilities are unlikely to exist in most practical applications. And

even if data is abundant, de Finetti’s circularity critique5, which argued that in order to

define probabilities the classical or frequentist way, one needs to know the meaning of

‘equally probable’ first, seems valid (ibid.). De Finetti made these arguments in favor

of Bayesian statistics, which states that in principle ‘any uncertainty can and should

be quantified’ (cf. Gilboa 2010: 6). While this is arguably the predominant paradigm

in economics to date, there is a catch here as well: Bayesian reasoning requires priors,

which are highly subjective, leading to highly subjective results. As Feduzi and Runde

5“Therefore, these two ways of defining probability [. . . ] are airy-fairy, unless one states beforehand
what ‘equally probable’ means” (de Finetti 2008 [1979]: 4).
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(2011) have pointed out, the consequence might be to face a decision problem under

Knightian uncertainty.

3 Characterization and representation of preferences

Our formulation in this section makes use of what is known as the Lieb-Yngvason axiom-

atization of the second law of thermodynamics (Lieb and Yngvason 1999). They provide

an axiomatic characterization of ‘entropy’ for thermodynamic settings and derive some

properties of entropy. As they use a formal axiomatization and derivation of results that

is completely independent of the semantic meaning of the formalism, their framework

can be applied to other substantive contexts where the formal assumptions have a plau-

sible interpretation. We therefore employ parts of their formal framework, results and

proofs, with substantial adaptation and reinterpretation, to a setting of decision-making

under Knightian uncertainty.

First, we introduce our setting and notation, and provide some basic definitions in

Section 3.1. In Section 3.2, we state the assumptions on the set of Knightian lotteries

and the axioms on the preference relation that describe what exactly we mean by un-

certainty preferences. In Section 3.3, these axioms are be shown to uniquely constitute

a preference function under Knightian uncertainty. Furthermore, we derive and discuss

some properties of the function.

3.1 Setting, notation and basic definitions

A simple Knightian lottery maps states of nature to a vector y = (y1, . . . ,yn) of payoffs,

where n ∈ N with n ≥ 2 is the number of potential states of nature and yi ∈ R is the

payoff if state i is realized (with i = 1, . . . ,n). The payoff in each state is an amount

of some good which is the same good in all states. For example, this could be money,

some primary good, or the level of well-being. One can also think of a simple Knightian

lottery y as a discrete and finite payoff distribution over given states of nature. Y ⊆ Rn

denotes the set of potential simple Knightian lotteries (for short: simple-lottery set) from

which y is taken. We do not make any assumptions whatsoever about the objective or
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subjective probabilites, or anything like that, with which states of nature are realized.

The total payoff volume over all states for any lottery y ∈ Y is y =
∑n

i=1 yi. If payoff

in all states is non-negative (as in Section 5), syi = yi/y is the relative payoff share that

lottery y yields in state i with respect to the total payoff volume y. By construction,

0 ≤ syi ≤ 1 for all i = 1 . . . n and
∑n

i=1 s
y
i = 1 for any given y ∈ Y . Furthermore, denote

by S ⊆ [0,1]n the set containing all possible such distributions s over n states of the

world, with any particular element s = (s1, . . . ,sn) ∈ S.

We denote by 0 the n-vector (0, . . . ,0), that is, the lottery that yields zero payoff in

all states; and by 1 the n-vector (1, . . . ,1), that is, the lottery that yields unit payoff in

all states. Then, c1 with c ∈ R is a lottery which yields the same amount c of payoff in

each of the n potential states of the world. In other words, it yields a payoff of c that is

perfectly certain: while one does not know ex-ante which state of nature will actually

be realized, one does know ex-ante that – whatever state it will be – the payoff will be c.

For any lottery y ∈ Y , we denote by yc = (y/n)1 the corresponding lottery which yields

the same total payoff volume as y, but distributed perfectly evenly over all n potential

states of the world (for short: ‘pc-corresponding lottery’). That is, the lottery yc yields

a payoff of y/n for certain.

From simple Knightian lotteries one may obtain more complex ones through the

operations of scaling and compounding. These are defined as follows.

Definition 1 (scaled Knightian lottery)

For any simple Knightian lottery y ∈ Y with payoff distribution y = (y1, . . . ,yn) and

any λ > 0, the scaled Knightian lottery λy is the lottery with payoff distribution

(λy1, . . . ,λyn). It is an element of the set Y (λ) that contains all lotteries that are obtained

through scaling each simple lottery y ∈ Y with the factor λ.

By this definition, the λ-scaled lottery λy is obtained from the simple lottery y,

by multiplying the payoff in each state of nature by the scalar factor λ, which may be

greater or smaller than one. Hence, total payoff volume of the scaled lottery is the λ-fold

of that of the simple lottery, λy = λy, while it features the same relative distribution

of payoff shares, sλy = sy. From this definition, it also follows that µ(λy) = (µλ)y and
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(Y (λ))(µ) = Y (µλ) for all µ,λ > 0. We identify 1y = y and Y (1) = Y .

One of the work horses of decision theory under uncertainty is the concept of a

compound lottery. In standard expected-utility theory, a compound lottery is a lottery

that has as its potential outcomes again lotteries. Hence, a compound lottery is a multi-

stage lottery. For example, the first-stage lottery is flipping a coin, and the outcome

of that lottery (heads or tail) determines which out of two second-stage lotteries to

play, say, which one out of two urns to draw a colored ball from. Eventually, it is the

second-stage lottery actually played that yields a payoff. As the potential outcomes of

the first stage-lottery (heads or tail) are mutually exclusive, only one of them is realized

and, consequently, only one of the second-stage lotteries (drawing from different urns) is

played. As there is uncertainty in the first stage as well as in the second stage and payoff

emerges only in the second stage, which is conditional on the first stage, the outcome

space has a conjoint algebraic structure.

Here, we build on a very different notion of compounding, which is more similar to

the concept of ‘concatenation’ introduced by Luce (1972). Nevertheless, we will speak

of ‘compound lotteries’ and ‘compounding’ here.

Definition 2 (compound Knightian lottery)

For any two simple Knightian lotteries x,y ∈ Y , the compound Knightian lottery x ⊕

y ∈ Y × Y is the situation when both simple lotteries x and y are played for sure

and independently of each other, and one receives a payoff from both according to the

actually realized state in each of the two. If state i is actually realized in the x-lottery

and state j in the y-lottery, then payoff from the compound lottery is xi + yj (for all

i,j = 1,...,n).

The basic idea of compounding two simple lotteries, according to this definition, is

that both simple lotteries are played for sure and independently of each other, and one

receives a payoff from each of the simple lotteries. Payoff, thus, comes from both of the

two simple lotteries. Hence, the compound lottery x⊕y has nn different outcome states

(Table 1). Which one out of these is actually realized is determined by which one of

the n states of nature of the underlying simple x-lottery is actually realized and which
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Table 1: Potential outcomes of the compound lottery x⊕ y

y-state 1 . . . y-state j . . . y-state n

x-state 1 x1 + y1 . . . x1 + yj . . . x1 + yn
...

...
...

...
x-state i xi + y1 . . . xi + yj . . . xi + yn

...
...

...
...

x-state n xn + y1 . . . xn + yj . . . xn + yn

one of the n states of nature of the underlying simple y-lottery is actually realized. As

payoffs from the x-lottery and from the y-lottery are in units of the same good, and both

are received, the actually realized payoffs from both lotteries can simply be added.6

The total payoff volume of the compound lottery x⊕ y over all nn states is x⊕ y =

n(x+ y). This corresponds to an addition of the total payoff volumes of the underlying

simple lotteries, x and y, weighted by a factor of n for the multiplication of the number

of states due to compounding two lotteries defined over n states of nature. As for the

mean payoff per state, i.e. total payoff volume divided by number of states, we have

x⊕ y/nn = x/n+ y/n. This is just the sum of the two simple-lottery mean payoffs per

state, which is due to the essentially additive character of compounding.

By Definition 2, compounding is essentially an additive operation:7 the two simple

lotteries are not mutually exclusive (that is, only one of them pays out), but both of

them pay out so that two payoffs are received. The presupposition that both lotteries in

a compound pay out is a major substantive deviation from how we usually think about

compounding lotteries. Technically, this presupposition allows us to work without prob-

abilities, which do not exist in the setting studied here. Mathematically, the essentially

additive understanding of compounding induces an additive algebraic structure on the

outcome space. This leads – with the axioms on the preference relation that become

plausible with Definition 2 of compounding (see Section 3.2) – to the preference function

6One may construct a simple lottery that is rationally equivalent to the compound lottery x⊕ y: it is
defined over nn states and has a payoff vector (x1 +y1,...,x1 +yn,...,xn +y1,...,xn +yn). This rationally
equivalent lottery is neither an element of Y nor of Y × Y , though.

7But note: as both simple lotteries are played independently of each other, it may be that in each
of them a different state is actually realized. This makes the additive compounding considered here
nevertheless non-trivial and essentially different from ordinary addition of payoff-vectors.
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being additive (see Proposition 2).

Formally, a compound lottery x⊕y with x,y ∈ Y is an element (x,y) in the Cartesian

product Y ×Y . In general, the Cartesian product has as its elements ordered pairs and,

therefore, is neither commutative nor associative. Here, however, from the substantive

definition of compounding – the two simple lotteries are played independently of each

other, and one receives a separate payoff from both – it is obvious that the operation of

forming a compound lottery is a commutative and associative operation: when forming

multiple compounds of simple-lotteries, the order and the grouping is irrelevant. Thus,

we identify x ⊕ y = y ⊕ x, as well as (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) = x ⊕ y ⊕ z for all

simple lotteries x,y,z ∈ Y . As for scaling compound lotteries, from the two substantive

definitions it is obvious that λ(x ⊕ y) = (λx) ⊕ (λy) and (Y × Y )(λ) = Y (λ) × Y (λ) for

all simple lotteries x,y ∈ Y and all scaling factors λ > 0.

From the substantive definition of compounding it is also obvious that to compound

an uncertain lottery with a certain one is essentially the same as simply adding the payoff

vectors of the uncertain and the certain lottery: for any y,y′ ∈ Y , no decision-maker

could distinguish the two lotteries yc ⊕ y′ and yc + y′. As yc yields the payoff y/n for

certain, that is, in each potential state of nature, it does not add any uncertainty to the

compound but simply adds a certain payoff in each potential state. Uncertainty in the

compound is entirely due to which state is actually realized in the y′-lottery. Therefore,

yc ⊕ y′ and yc + y′ are equivalent.

By compounding N scaled copies of a simple lottery y ∈ Y with potentially different

scaling factors λ1,...,λN > 0 one can form a multiple scaled copy of y. It is an element

in the multiple scaled copy of Y .

Definition 3 (multiple scaled copy of Y )

A multiple scaled copy of Y is formed by compounding N scaled copies of the simple-

lottery set Y with λ1,...,λN > 0: Y (λ1) × ...× Y (λN ).

One particular, and degenerate, multiple scaled copy of Y is Y itself (N = 1, λ = 1).

We have now built up the universe of Knightian lotteries between which the preference

relation establishes relations. It is constituted by all multiple scaled copies of the simple-
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lottery set Y .

The core element of our analysis is a binary relation � on all multiple scaled copies

of the simple-lottery set Y . It describes for any two lotteries which one is preferred

over the other. We employ the following notation and interpretation for the preference

relation: for any two lotteries x and y from the universe of all Knightian lotteries, x � y

means ‘lottery x is (weakly) preferred over lottery y’. If x � y and y � x, we write

x ∼ y and say that ‘lottery x is as goods as lottery y’. If x � y and not y � x, we write

x � y and say that ‘lottery x is strictly preferred over lottery y’.8

3.2 Axioms and assumptions

The following three assumptions give structure to the set Y of simple Knightian lotteries

and to the universe of all Knightian lotteries. Although none of them is needed for the

existence of the preference function, they will allow us to derive some useful properties

of the preference function.

Assumption 1 (Convexity of Y )

For all x,y ∈ Y and 0 ≤ λ ≤ 1, λx+ (1− λ)y ∈ Y .

Convexity of the simple-lottery set Y means that for any two Knightian lotteries

from this set, any linear convex combination of the two is also an element of the set.

This assumption is needed to show that the preference function is concave on Y .

Assumption 2 (Symmetry of Y )

For all y ∈ Y and every permutation matrix P , Py ∈ Y .

Symmetry of the simple-lottery set Y means that for any Knightian lottery from

this set, all lotteries that can be formed from it through permutation of the statewise

payoffs are also elements of the set. For example, if y = (y1,y2,y3) is a simple Knightian

lottery form the set Y , then (y1,y3,y2), (y2,y1,y3), (y2,y3,y1), (y3,y1,y2) and (y3,y2,y1)

must also be elements of the set. This assumption is needed to show that the preference

function is symmetric on Y .

8We will also use x � y as synonymous with y � x, and x ≺ y as synonymous with y � x.
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Assumption 3 (Disjointness of the universe)

Any two sets of lotteries in the universe of all multiple scaled copies of Y are disjoint

sets, that is, every lottery in the universe belongs to exactly one set.

We impose the following nine axioms on the preference relation � on all multiple

scaled copies of the simple-lottery set Y . We explain and illustrate axioms where we

deviate from what can safely be regarded as standard in economic theory (cf. e.g. Savage

1954, Anscombe and Aumann 1963, Gilboa and Schmeidler 1989).

Axiom 1 (Reflexivity)

For all y ∈ Y , y ∼ y.

Axiom 2 (Transitivity)

For all x,y,z ∈ Y , x � y and y � z implies x � z.

Axiom 3 (Completeness)

For all x,y from any multiple scaled copy of Y , either x � y or y � x or both.

Completeness is, as usually, a strong assumption. Here, it is even more so as com-

parability of any two lotteries should not only hold among all simple lotteries from the

set Y , but is should hold beyond that in each multiple scaled copy of Y .9

Axioms 1 to 3 are fairly standard to any binary relation that provides a consistent

and complete ranking. They do not yet contain any specific substantive content of

preferences under uncertainty. Starting with the next axiom, we get more specifically

to the meaning of uncertainty preferences.

Axiom 4 (Compounding consistency)

For all x,x′,y,y′ ∈ Y , x � x′ and y � y′ implies x⊕ y � x′ ⊕ y′.

The compounding-consistency property means that the preference ordering between

simple lotteries carries over to their respective compounds. That is, if some lottery

9Here, we take completeness as a basic axiom. Lieb and Yngvason (1999: Sections 3 and 4) show that
completeness can be derived as an implication of eight more elementary axioms. As these are more
plausible in the thermodynamic context studied by Lieb and Yngvason (1999) than in the decision-
under-uncertainty context studied here, we take completeness as an elementary axiom.
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x is preferred over x′ and another lottery y is preferred over y′, then the compound

lottery x ⊕ y is preferred over the compound lottery x′ ⊕ y′. Hence, the compound

lottery obtained from two simple lotteries each of which is preferred over another lottery

will also be preferred over the compound lottery of these two other lotteries. With

compounding as an essentially additive operation (according to Definition 2), this seems

highly plausible.

Axiom 5 (Scaling invariance)

For all x,y ∈ Y and all λ > 0, x � y implies λx � λy.

While the compounding-consistency property (Axiom 4) refers to consistency in

terms of compound lotteries, the scaling-invariance property refers to invariance of the

ranking under scaling. This is to say that a statewise proportional change in payoff

levels and, hence, total payoff volumes does not alter the preference ordering. Scaling

invariance rules out, for example, that at a low level of overall payoff volume a certain

lotteries is preferred over an uncertain one (uncertainty aversion), while at a high level of

overall payoff volume the scaled-up version of the uncertain lottery is preferred over the

scaled-up version of the certain lottery (uncertainty love). It is a strong property of the

preference relation, and it induces – together with the other axioms – a strong property

on the preference function: the preference function will be homogenous of degree one

(‘extensive’).

Axiom 6 (Splitting and recombination)

For all y ∈ Y and all 0 < λ < 1, y ∼ λy ⊕ (1− λ)y.

The splitting-and-recombination property means that it does not matter for the

preference ranking whether one faces some simple lottery y or the compound lottery

consisting of some scaled-down versions of y where the scaling factors add up to one.

One should be indifferent between the two. With scaling invariance (Axiom 5) and,

again, compounding as an essentially additive operation (according to Definition 2),

this seems highly plausible, too. It is an independent axiom, though, in that it is the

only axiom (among those which establish unique existence of the preference function)
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that relates a simple lottery and a compound lottery. It is this axiom that establishes,

at bottom, how simple lotteries can be compared to compound lotteries.

Axiom 7 (Continuity)

For all x,y,z0,z1 ∈ Y and a sequence εk with lim
k→∞

εk = 0, x⊕ εkz0 � y⊕ εkz1 for k →∞

implies x � y.

The continuity property means that the compounding of each of two lotteries with

small-scale perturbations tending to zero does not affect the preference ordering between

these two lotteries. This technical property guarantees that there are no discontinuities

in the preference relation, and that the preference function is continuous.

A notable point of our axiomatic framework is that we do not assume the Knightian

analogue of what is commonly referred to as the ‘Independence Axiom’ or the ‘Sure

Thing Principle’ (Savage 1954) in expected-utility theory. This property (more exactly:

its Knightian analogue) follows from the other axioms in our framework.

Lemma 1 (Independence)

It follows from Axioms 1, 2 and 4 through 7 that for all x,y,z ∈ Y , x⊕z � y⊕z implies

x � y.

Proof. See Appendix A.1.

Lemma 1 states that all axioms introduced so far – with the exception of complete-

ness – imply independence. In other words, the axioms employed here are stronger than

the independence assumption alone. The property in Lemma 1 can be interpreted as

follows: events occurring anyway do not affect the preference ordering between lotter-

ies. This property is generally considered an important feature of theories of rational

choice.10 One must bear in mind, though, that in our framework compounding has a

different definition than usual (Definition 2) and, therefore, the substantive meaning of

10However, it has been pointed out by Al-Najjar and Weinstein (2009) to pose a problem to the
ambiguity aversion literature as a normative theory, since ambiguity averse agents can be shown to
violate this principle. On the descriptive level, people have been shown to systematically violate this
principle under sonme conditions which is known as Allais paradox (Allais 1953).
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the independence property differs from the usual one.11

The two following axioms on the preference relation are not necessary for the unique

existence of a preference function. Yet, they are necessary for the preference function to

have additional properties that allow its interpretation in terms of uncertainty aversion.

Axiom 8 (Symmetry)

For all y ∈ Y where Y is symmetric and every permutation matrix P , y ∼ P y.

The symmetry property states that if in the payoff distribution for a given Knigh-

tian lottery the payoffs are permutated over states of nature, then the resulting payoff

distribution is as good as the original one. For example, one should be indifferent be-

tween the lottery (1$,3$,5$) and the permutated lottery (5$,3$,1$). That means, the

sequence in which states of nature are numbered is irrelevant for the preference ranking

of Knightian lotteries. This property excludes state-dependent utility, where the utility

of a payoff depends on the exact state in which it is paid out.

Axiom 9 (Convexity)

For all x,y ∈ Y where Y is convex and 0 ≤ λ ≤ 1, λx+ (1− λ)y � λx⊕ (1− λ)y.

Here, the left-hand side is an ordinary convex linear combination of two lotteries

from the convex set Y . It is, therefore, again an element of this set Y . The right-

hand side is a compound lottery. It is an element of Y (λ) × Y (1−λ). Hence, the axiom

states that an ordinary convex linear combination of two simple lotteries is preferred

over a convex compound of these lotteries. This axiom of convexity of the preference

relation is different from the normal convexity-of-preferences axiom, which is: a convex

linear combination of two lotteries, among which one is indifferent, is preferred over the

underlying extreme lotteries. The axiom used here is stronger: it implies (given the other

axioms), but is not implied by, the normal convexity property (proof in Appendix A.2).

11The usual von-Neumann-Morgenstern axioms on the preference relation (reflexivity/transitivity, com-
pleteness and independence) imply that a preference function exists which has an expected-utility
form. Here, although we also have reflexivity/transitivity, completeness and independence, we do not
have a preference function which has an expected-utility form. The reason is that our concept is in
a Knightian setting without probabilities and with an essentially additive compounding operation.
Hence, our independence property means and implies something different than the independence
property in an expected-utility setting.
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But, just like the normal convexity property, it implies (for a convex set Y of lotteries)

that a lottery where payoff is distributed more evenly over states of nature is preferred

to any other lottery with the same total payoff volume where payoff is distributed more

unevenly over states. This property is at the core of our notion of uncertainty aversion

(to be elaborated in Section 4).

3.3 Existence and properties of the preference function

We have now gathered all building blocks necessary to demonstrate the existence of a

preference function that represents the preference relation � on Y . For this, we proceed

in two steps. First, we demonstrate that with Axioms 1–7 on the preference relation,

a preference function uniquely exists that represents the preference relation (Proposi-

tion 1). We also discuss the basic properties of this function (Proposition 2). Second,

employing in addition Assumptions 1– 3 as well as Axioms 8 and 9, the preferences

function has two more properties (Proposition 3), which make it represent uncertainty

aversion (Section 4).

Proposition 1 (Existence and uniqueness of a preference function)

Let Y be a set of simple Knightian lotteries and � a binary relation on the multiple

scaled copies of Y . Then, the following two statements are equivalent:

1. The relation � satisfies Axioms 1–7.

2. There exists a continuous function H : Y → R that represents the relation � in

the following sense. For all N ≥ 1, M ≥ 1, all x1, . . . , xN , y1, . . . , yM ∈ Y and all

µi ≥ 0 and λj ≥ 0 with µ1 + . . .+ µN = λ1 + . . .+ λM , it holds that

µ1x
1 ⊕ . . .⊕ µNxN � λ1y

1 ⊕ . . .⊕ λMyM (1)

if and only if
N∑
i=1

µiH(xi) ≥
M∑
j=1

λjH(yj) . (2)

The function H is uniquely defined on Y up to a linear-affine transformation. That is,

if H characterizes the relation � on Y , then also any other function Ĥ : Y → R with
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Ĥ(y) = aH(y) + b where a, b ∈ R and a > 0.

Proof. See Appendix A.3.

The imposition of Axioms 1 through 7 on the preference relation � implies the

existence of a function that maps from the set Y of simple Knightian lotteries to the

real numbers such that a more preferred Knightian lottery is assigned a greater real

number than a less preferred lottery. Thus, the function H : Y → R is a preference

function on the set Y . As this function is unique up to linear-affine transformations,

it is a cardinal preference index. Note that neither Assumptions 1 (convexity of Y ), 2

(symmetry of Y ) or 3 (disjointness of the universe) on the sets of Knightian lotteries

nor Axioms 8 (symmetry) or 9 (convexity) on the preference relation � are needed for

existence and uniqueness of the preference function.

The representation statement in Proposition 1, which is about ranking compound

lotteries, is more general than the usual representation statement, which is about ranking

simple lotteries. Simple-lottery representation is, of course, just a particular case of the

more general representation statement in Proposition 1.

Corollary 1 (Simple-lottery representation)

For any function H sensu Proposition 1 and all x,y ∈ Y it holds that x � y if and only

if H(x) ≥ H(y).

Proof. See Appendix A.4.

Hence, function H represents the preference relation � also in the normal sense,

that is, with respect to simple lotteries. In the following, we state two basic properties

of the function H.

Proposition 2 (Properties of preference function)

Suppose a preference function H exists (sensu Proposition 1). If the universe of all

multiple scaled copies of the simple-lottery set Y fulfills Assumption 3, the function H

has the following properties for all x,y ∈ Y and all λ > 0:12

12To keep notation simple, we denote with the letter H both functions – the preference function
H : Y → R on the set Y of simple lotteries and the preference function H : Y × Y → R on the set
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1. Additivity: H(x⊕ y) = H(x) +H(y) .

2. Extensivity: H(λy) = λH(y) .

Proof. See Appendix A.5.

These two properties make the function H a special preference function. It is ad-

ditive and extensive: the preference index of a compound lottery is exactly the sum

of the preference indices of the simple lotteries (additivity), and if payoff is increased

λ-fold in each potential state of nature, the preference index also is increased λ-fold

(extensivity). These two properties of the preference function are due to the essentially

additive understanding of compounding (Definition 2) and Axioms 4, 5 and 6 on scaling

and compounding. With these, there is no loss or gain in terms of preferences from the

process of compounding itself.13

In thermodynamics, a function that represents a relation with the properties stated

in Axioms 1–7 and which has the properties stated in Propositions 1, is called an entropy

function (Lieb and Yngvason 1999: 24). If it has in addition the property of additivity

(Proposition 2), it is called an additive entropy function. The preference function H

is, thus, an (additive) entropy function. We therefore speak of ‘entropic uncertainty

preferences’, to distinguish our preference concept from other preference concepts under

Knightian uncertainty.

Additivity and extensivity of the preference function imply that the preference func-

tion is monotonic in some sense. That is, it represents non-satiation of the preference

relation: more payoff is strictly preferred over less payoff. The exact meaning of ‘more

payoff’ is specified in the following corollary to Proposition 2.

Corollary 2 (Monotonicity)

Suppose a preference function H exists (sensu Propositions 1 and 2) which is, in par-

ticular, additive and extensive. Then it holds for all y ∈ Y , all λ > 1 and all c > 0

Y ×Y of all compound lotteries. There should not be any confusion, as it is obvious in every instance
from the argument of H which of the two functions we mean.

13Luce et al. (2008) have used an entropy-based modelling approach to account for the utility drawn
from the process of compounding itself (which they refer to as gambling), but their approach takes
place within an expected utility framework.
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that

1. H(λy) > H(y) or, equivalently, λy � y,

and

2. H(y + c1) > H(y) or, equivalently, y + c1 � y.

Proof. See Appendix A.6.

Here, monotonicity comes in two kinds. First, if one scales up payoff in each state

of nature by the same factor λ > 1, one obtains a lottery that is strictly preferred over

the original one (scaling-monotonicity). Second, if one adds the same strictly positive

amount c > 0 of payoff in each state of nature, one obtains a lottery that is strictly

preferred over the original one (adding-monotonicity). This kind of monotonicity of

the preference relation is already implied by Axioms A1–A7, which are necessary and

sufficient for the existence of the preference function. It does not need to be assumed

separately in our framework. Rather, it is an inherent property of any entropic preference

function.

With two more properties, symmetry and concavity, which are routinely assumed

in statistical physics and information theory, the entropy function becomes a statistical

measure of the homogeneity of a distribution: a more even distribution is character-

ized by a higher entropy than a more uneven distribution. In the context of payoff

distributions over potential states of nature, this makes the entropy/preference function

to represent uncertainty aversion. We now introduce these two properties, before then

discussing uncertainty aversion in Section 4.

Proposition 3 (Symmetry and concavity of the preference function)

Let Y be a set of simple Knightian lotteries and � a binary relation on the multiple

scaled copies of Y , and suppose � satisfies Axioms 1–7 such that a preference function

H exists (sensu Proposition 1).

(1) If Y fulfills Assumption 2 (symmetry) and � satisfies Axiom 8 (symmetry),

then H is a symmetric function on Y : H(y) = H(Py) for every permutation matrix P .

Conversely, if H is a symmetric function, then Axiom 8 holds a fortiori.

(2) If Y fulfills Assumption 1 (convexity) and � satisfies Axiom 9 (convexity), then
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H is a concave function on Y : H(λx+ (1−λy)) ≥ λH(x) + (1−λ)H(y) for all x,y ∈ Y

and 0 ≤ λ ≤ 1. Conversely, if H is a concave function, then Axiom 9 holds a fortiori.

Proof. See Appendix A.7

4 Uncertainty aversion

We now clarify the notion of aversion against Knightian uncertainty (Section 4.1), and

demonstrate that the entropic preference function H represents uncertainty aversion if

it is symmetric and concave (Section 4.2). We then discuss how to measure the degree of

uncertainty aversion, and how to characterize a preference relation in terms of its degree

of uncertainty aversion (Section 4.3). Throughout this section, we follow the standard

program of expected-utility theory under probabilistic risk, and in each step develop

concepts for Kinghtian uncertainty in analogy.

4.1 Defining uncertainty aversion

To start with, we introduce the concept of ‘uncertainty dominance’ as a relation between

two Knightian lotteries in terms of which one is more uncertain.

Definition 4 (uncertainty dominance14)

For any two simple Knightian lotteries x,y ∈ Y , y is said to uncertainty-dominate x (or:

x is uncertainty-dominated by y) if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i for k = 1,...,n− 1 (3)

and x = y , (4)

where x↓ and y↓ are the payoff vectors that are obtained from x and y, respectively, by

rearranging their components in descending order, such that x↓1 ≥ x↓2 ≥ ... ≥ x↓n and

y↓1 ≥ y↓2 ≥ ... ≥ y↓n. Uncertainty dominance is said to hold strictly if (3) holds with strict

14What we call ‘uncertainty dominance’ here is normally called ‘majorization’ in mathematics ever
since the term and formal definition have been introduced by Hardy et al. (1934/1952).
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inequality for at least one k ∈ {1,...,n− 1}.

The idea behind this definition is that a Knightian lottery y is said to uncertainty-

dominate another lottery x if both lotteries have the same total payoff volume (Condi-

tion 4) and state-wise payoffs are more unequal under y than under x (Condition 3).

In other words, the same total payoff volume y = x is distributed more unequally over

all potential states of nature under lottery y than under lottery x. For example, the

lottery y = (1$,4$) uncertainty dominates the lottery x = (2$,3$). Whenever we speak

of ‘less uncertain’ or ‘more uncertain’ lotteries, we mean it in the sense of uncertainty

dominance (Definition 4): a lottery y is said to be ‘more uncertain’ than another lottery

x and, conversely, x is ‘less uncertain’ than y, if y uncertainty-dominates x.

Uncertainty dominance does not establish a complete order on the set Y of simple

Knightian lotteries. It only allows comparison between two Knightian lotteries with

the same payoff volume.15 Therefore, there may exist Knightian lotteries x,y ∈ Y

both of which are uncertain and which cannot be compared in terms of uncertainty-

dominance. For example, with x = (2$,3$) and y′ = (1$,5$) it holds neither that y′

uncertainty-dominates x nor that x uncertainty-dominates y′ according to Definition 4,

simply because x 6= y′ so that Condition (4) cannot be met. While one may intuitively

be tempted to say that ‘payoff from y′ is more uncertain than payoff from x’ (because

y = (1$,4$) is more uncertain than x = (2$,3$), and y′ has even more unequal state-wise

payoffs than y), it is also true that lottery y′ pays out more overall than lottery x (y′ = 6

and x = 5). Hence, if one compares their pc-corresponding lotteries, xc = (2.50$, 2.50$)

and y′c = (3$,3$), y′c would be strictly preferred over xc because of its higher payoff level

(due to monotonicity of the preference relation �). To clearly distinguish uncertainty

aversion from non-satiation, we keep uncertainty-dominance restricted to subsets of

simple Knightian lotteries with the same total payoff volume.

One can give further plausibility to the interpretation of uncertainty-dominance as

a criterion of the unevenness of a payoff distribution over states of nature. For, a lottery

15Strictly speaking, uncertainty dominance is not even a partial order but a preorder, since ‘y
uncertainty-dominates x’ and ‘x uncertainty-dominates y’ does not imply x = y (Marshall et al.
2011: 18-19).
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y uncertainty-dominates another lottery x if and only if the latter can be obtained from

the former by redistributing – in the spirit of Pigou (1912: 24) and Dalton (1920: 351)

– payoff from states with relatively high payoff to states with relatively low payoff.

Lemma 2 (uncertainty dominance through Pigou-Dalton-transfers)

For any two simple Knightian lotteries x,y ∈ Y , x is strictly uncertainty-dominated by

y if and only if x can be obtained from y through a finite sequence of transfers of the

following kind: take two states j and k with j,k ∈ {1,...,n}, j 6= k and yj < yk and make

a payoff transfer δ with 0 < δ < yk − yj from the high-payoff state k to the low-payoff

state j, so that xj = yj + δ, xk = yk − δ and xl = yl for all l ∈ {1,...,n} \ {j,k}.

Proof. This lemma is Theorem 2.1 in Arnold (1987: 14) and is proven there.

A Pigou-Dalton-transfer redistributes some amount of payoff from a state of nature

with relatively high payoff to a state with relatively low payoff such that the order

of states in terms of higher-or-lower-payoff remains the same. It, thus, preserves the

total payoff volume over all states of nature, and distributes payoff more evenly over

states of nature. For example, consider x = (2$,3$,4$) and y = (1$,3$,5$). The payoff

distribution x is more even than y because the former emerges from the latter through

a Pigou-Dalton transfer of 1$ from state 3 to state 1 which leaves the payoff in state 2

unaltered and also preserves the rank-ordering of states in terms of payoff. As a result,

the payoff in the lowest-payoff state (state 1) is not as low as before the transfer, and the

payoff in the highest-payoff state (state 3) is not as high as before the transfer. Hence,

payoff is more evenly distributed over all potential states of nature. By the same token,

payoff from lottery x is more certain than payoff from lottery y. Hence, the reverse of

a Pigou-Dalton transfer could be termed a ‘total-payoff-volume-preserving spread of a

Knightian lottery’,16 as it leads to a more uncertain lottery.

Compared to the given Knightian lottery y, any other lottery obtained from y

through a sequence of Pigou-Dalton transfers is less uncertain: it features the same

total payoff volume but with more even distribution over the states of nature. In the

16This is in analogy to using the ‘mean-preserving spread of a probability distribution’ to identify a
‘more risky’ probability distribution (Rothschild and Stiglitz 1970).
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extreme, one may obtain from any Knightian lottery y ∈ Y through a finite sequence

of Pigou-Dalton transfers the pc-corresponding lottery yc. It is not only less uncertain

than y, but it is perfectly certain: from yc no less uncertain lottery can be obtained

through a Pigou-Dalton transfer, because payoff is distributed perfectly evenly over

states, i.e. the payoff vector has the same payoff in each state of nature. At the other

end of the uncertainty-domination chain for the given Knightian lottery y is the lottery

(y/n,0,...,0), or any permutation of it. This lottery strictly uncertainty-dominates all

other lotteries with the same total payoff volume y (and which are not simply permu-

tations of it). In this sense, it is the most uncertain lottery with total payoff volume

y.

With this understanding of more and less uncertain lotteries, we can now define

uncertainty aversion. The idea is simply that a decision-maker who prefers all less

uncertain lotteries over any given uncertain lottery is said to be uncertainty averse.

Definition 5 (uncertainty aversion)

A decision-maker with preference relation � on the simple-lottery set Y is said to be

uncertainty averse (neutral, loving) if and only if for all x,y ∈ Y where y strictly

uncertainty-dominates x, x � (∼ , ≺) y.

One straight implication of this definition of uncertainty aversion is that an uncer-

tainty averse decision-maker, who has a choice between some uncertain lottery y and

the pc-corresponding lottery yc – that is, a lottery with the same total payoff volume

but distributed evenly over all potential states of nature, so that payoff y/n is certain

– prefers the pc-corresponding lottery. Likewise, a risk-loving decision-maker rejects

the pc-corresponding lottery, and an uncertainty neutral decision-maker is indifferent

between the two.

Lemma 3 (uncertainty aversion implies strict preference for pc-corresponding lottery)

Consider a decision-maker with preference relation � on Y . If she is uncertainty averse

(neutral, loving), then yc � (∼,≺) y for all y ∈ Y with y 6= yc.

Proof. See Appendix A.8
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For example, if n = 2 and y = 10$, an uncertainty averse decision-maker would

always prefer the pc-corresponding lottery yc = (5$,5$) to any other lottery y where

y = 10$ is distributed unevenly over the two potential states of nature, such as (3$,7$)

or (1$,9$).

In risk theory, it is normally taken as an elementary definition of risk aversion that

a decision maker for all lotteries prefers the expected payoff from the lottery over the

risky lottery. In terms of Knightian uncertainty, this would be analogous to saying that

the decision maker for any Knightian lottery y prefers the pc-corresponding lottery yc

over the uncertain lottery y. In our approach, this is not the elementary definition

of uncertainty aversion, but it is implied by our Definition 5 of uncertainty aversion

(Lemma 3). This shows that our definition of uncertainty aversion (Definition 5) is

stronger, by demanding that the decision-maker prefers all less uncertain lotteries over

a given lottery, and not just the least uncertain lottery, namely the pc-corresponding

one.

4.2 Uncertainty aversion in entropic preferences

Having a clear idea of uncertainty aversion, we now move on to demonstrating that

the function H (introduced by Proposition 1) represents uncertainty aversion if it is

symmetric and concave. The basic idea of uncertainty aversion according to Definition 5

is that the decision-maker always strictly prefers all less uncertain (that is: uncertainty-

dominated) lotteries over a given uncertain lottery. In mathematics, functions that

preserve the ordering of majorization (here: ‘uncertainty-dominance’) are called Schur-

concave, or S-concave, after Schur (1923).

Definition 6 (Schur-concavity)

A function f : A→ R with A ⊂ Rn is said to be Schur-concave (Schur-convex ) on A if

for all x,y ∈ A

y majorizes x ⇒ f(x) ≥ (≤) f(y) .

If equality holds only when x is a permutation of y, then f is said to be strictly Schur-

concave (strictly Schur-convex) on A.

26



By this definition, if a Knightian lottery y ∈ Y uncertainty-dominates another lot-

tery x ∈ Y , a Schur-concave function would assign a higher value to x, which is the

less uncertain lottery, than to y. With this property, a more fitting term for the func-

tion would actually be ‘uncertainty-decreasing’, or ‘decreasing in uncertainty’, as the

higher the uncertainty, the smaller the function value. Likewise, Schur-convex functions

are ‘uncertainty-increasing’ in that they assign a higher function value to more uncer-

tain lotteries. That the function is not called Schur-increasing/decreasing but Schur

concave/convex is due to the fact that Schur-concavity/convexity is closely linked to

concavity/convexity, which will become obvious later (in Lemma 5). At this point, it

is obvious that Schur-concavity of the preference function is the property that makes it

represent uncertainty aversion in the sense of uncertainty-dominance (Definition 5).

Lemma 4 (A Schur-concave preference function represents uncertainty aversion)

Suppose a preference function H exists that represents the preference relation � on Y

(sensu Proposition 1). If H is strictly Schur-concave (Schur-convex) on Y , it represents

the preferences of a decision-maker who is uncertainty averse (loving): for all x,y ∈ Y

such that y strictly uncertainty-dominates x, H(x) > (<) H(y).

Proof. Follows directly from Definitions 5 and 6.

The crucial question now is: what are sufficient conditions for a function to be Schur-

concave? For, it is under these conditions that the preference function H represents

uncertainty aversion. The answer is well-known in the theory of convex functions.

Lemma 5 (Symmetry and concavity imply Schur-concavity)

Let f : A→ R where A ⊂ Rn is symmetric. If f is symmetric and (strictly) concave on

A, then it is (strictly) Schur-concave on A.

Proof. This lemma is Proposition C.2 (C2c for ‘strict’) in Marshall et al. (2011: 97) and

is proven there.

Symmetry and concavity are jointly a sufficient condition for Schur-concavity. But

they are not necessary in general. That is, a Schur-concave function does not need to

be concave. A weaker sufficient, yet also not necessary, condition for Schur-concavity is
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that the function f is quasi-concave and symmetric (Marshall et al. 2011: 98, Theorem

C.3). We can now state under which (sufficient) conditions on the preference relation,

the decision-maker is uncertainty averse.

Proposition 4 (Uncertainty aversion in entropic preferences)

Consider a decision-maker with preference relation � on Y , and suppose a preference

function H exists that represents the preference relation (sensu Proposition 1). If Y

satisfies Assumptions 1 (convexity) and 2 (symmetry), and � satisfies Axioms 8 (sym-

metry) and 9 (convexity), the decision-maker is uncertainty averse.

Proof. See Appendix A.9

By this proposition, for the preference relation to describe uncertainty aversion, we

build on two more assumptions on the simple-lottery set Y (Assumption 1: convexity,

Assumption 2: symmetry) and two more axioms on the preference relation � (Axiom 8:

symmetry, Axiom 9: convexity) than for mere existence and uniqueness of the preference

function H (cf. Proposition 1). The decision-maker is uncertainty averse if the conditions

of Proposition 4 hold, but not only if these conditions hold. As already noted above,

convexity of the preference relation (equivalently: concavity of the preference function)

is stronger than needed for uncertainty aversion. Schur-concavity of the preference

function suffices (Lemma 4).

4.3 Measuring uncertainty aversion

We now want to measure a decision-maker’s degree of uncertainty aversion. To this end,

we introduce the concept of the certainty equivalent of a Knightian lottery.

Definition 7 (Certainty equivalent)

Consider a decision-maker with preference relation � on the simple-lottery set Y . For

any Knightian lottery y ∈ Y , the certainty equivalent C ∈ R of y is defined through

C(y)1 ∼ y . (5)
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In words, the certainty equivalent of a Knightian lottery y is the amount C of payoff

that leaves the decision-maker indifferent between playing the uncertain lottery y and

receiving the payoff C for certain. In Definition 7 we again formally identify a certain

payoff with a payoff vector where this amount of payoff is obtained in each state of

nature.17

An important question at this point is: does a certainty equivalent – as defined

through Condition (5) – exist, and is it unique, for all preference relations and for all

Knightian lotteries? To answer this question, we look at the definition of the certainty

equivalent again, but now with a preference function.

Lemma 6

Suppose a preference function H exists that represents the preference relation � (sensu

Proposition 1) and that is extensive (sensu Proposition 2). For any Knightian lottery

y ∈ Y , the certainty equivalent C of y uniquely exists and is given by

C(y) =
H(y)

H(1)
. (6)

Proof. See Appendix A.10.

Equation (6) shows that for an entropic preference function which is extensive, the

certainty equivalent of any Knightian lottery can explicitly be calculated from H. It

also states that for given extensive preference function H, that is, if Y satisfies Assump-

tions 1–3 and � satisfies Axioms 1–7 (Propositions 1 and 2), for any Knightian lottery

the certainty equivalent uniquely exists.

The denominator on the right-hand-side of Equation (6) is a normalization. Re-

member (from Proposition 1) that H is unique only up to linear-affine transformations.

Therefore, one is free to set H(1) – by choice of the additive constant in a linear-affine

transformation of H – to any arbitrary real value. In fact, the concrete function that

we will introduce in Section 5 is such that H(1) = 1, which seems a natural choice for

17Here, the certainty equivalent C(y) of an uncertain lottery is analogous to the equally distributed
equivalent income introduced by Atkinson (1970: 250) to characterize an income distribution over
members of society in terms of its inequality.
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the normalization. With this, Lemma 6 reveals a remarkable property of the entropic

preference function H: the entropic preference function H – with suitable normaliza-

tion – yields as a preference index for any Knightian lottery y exactly the certainty

equivalent C of this lottery. This means that the certainty equivalent is a sure-payoff

metric measure of utility. It also implies that the entropic preference function H ranks

all Knightian lotteries y ∈ Y by their respective certainty equivalent C(y). Hence, in

an optimization problem under Knightian uncertainty, to find the lottery y ∈ Y that

maximizes H(y) is equivalent to finding the lottery y ∈ Y that maximizes C(y) – a

result that is in full analogy to expected-utility theory under risk (Chavas 2004: 35).

For given preference relation � and given lottery y, the certainty equivalent C(y)

(Definition 7) of lottery y may be greater than, equal to, or smaller than the certain

payoff from the pc-corresponding lottery yc, which is the total payoff-volume of lottery y

divided by the number of states, y/n. The difference between the two is the uncertainty

premium of the lottery.

Definition 8 (Uncertainty premium)

Consider a decision-maker with preference relation � on the simple-lottery set Y , and

suppose the certainty equivalent uniquely exists for all y ∈ Y . For any Knightian lottery

y ∈ Y , the uncertainty premium P ∈ R of y is

P (y) =
y

n
− C(y) . (7)

From Equations (5) and (7) one obtains:18

(
y

n
− P (y)

)
1 ∼ y . (8)

This means that the uncertainty premium P (y) of a Knightian lottery y is the sure

amount of payoff that the decision-maker is willing to forego at maximum to reach

a situation of certainty: it makes the decision-maker indifferent between playing the

18Alternatively, Equation (8) could be taken as the definition of the uncertainty premium P of lottery
y. Then, Equation (7) would be an implication.
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uncertain lottery y or receiving for certain its total payoff per state, y/n, minus the

uncertainty premium P . It can thus be interpreted as the decision-maker’s shadow

costs of bearing uncertainty.

It is obvious from the defining Equation (7) that the uncertainty premium P (y)

uniquely exists whenever the certainty equivalent C(y) uniquely exists. If a preference

function H exists, it follows from Equations (6) and (7) that the uncertainty premium

of any Knightian lottery y ∈ Y can be calculated as follows:

P (y) =
y

n
− H(y)

H(1)
. (9)

The two concepts of the certainty equivalent and the uncertainty premium of a

Knightian lottery can be used to indicate whether a decision-maker is uncertainty avers,

uncertainty neutral, or uncertainty loving.

Proposition 5 (Characterization of uncertainty aversion)

Consider a decision-maker with preference relation � on the simple-lottery set Y , and

suppose the certainty equivalent uniquely exists for all y ∈ Y . The following three

statements are equivalent:

1. The decision-maker is uncertainty averse (neutral, loving).

2. For all y ∈ Y , C(y) < (= , >) y/n.

3. For all y ∈ Y , P (y) > (= , <) 0.

Proof. to be completed

This means, uncertainty aversion of a decision maker is characterized by a strictly

positive uncertainty premium for all Knightian lotteries: the decision maker would be

willing to forego a positive amount of sure payoff for getting into a position of certainty

where she receives for sure the mean payoff per state from the lottery minus the uncer-

tainty premium. Equivalently, the certainty equivalent of the lottery, which makes the

decision-maker indifferent between receiving this amount of payoff for certain or playing

the uncertain lottery, is strictly smaller than the mean payoff per state. Both indicators

express that the decision-maker is willing to forego something in order to gain certainty.
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The two concepts of the certainty equivalent and the uncertainty premium of a

Knightian lottery can also be used to compare the uncertainty attitudes of two different

decision-makers. We want to know, who of the two is more uncertainty averse in the

following sense.

Definition 9 (More uncertainty averse)

Consider two individuals A and B with preference relations �A and �B, respectively,

on the set Y of simple Knightian lotteries. A is said to be at least as uncertainty averse

as B if and only if for all y ∈ Y and all c ∈ R with y �A c1, y �B c1.

This means, A is said to be at least as uncertainty averse as B, if any time A prefers

the uncertain lottery y over the certain payoff c, so does B. With this understanding of

which decision-maker is more uncertainty averse, again, the certainty premium and the

risk premium characterize who is more uncertainty averse.

Proposition 6 (Characterization of more uncertainty averse)

Consider two individuals A and B with preference relations �A and �B, respectively, on

the set Y of simple Knightian lotteries, and suppose the certainty equivalent uniquely

exists for all y ∈ Y for both preference relations. A is at least as uncertainty averse as

B if and only if for all y ∈ Y , CA(y) < CB(y) or, equivalently, PA(y) > PB(y).

Proof. to be completed

This means that if and only if A is at last as uncertainty averse than B, then for

all Knightian lotteries A’s certainty equivalent is smaller than B’s, and A’s uncertainty

premium is greater than B’s. With this proposition, one can use the certainty equivalent

or the risk premium to also characterize the degree of uncertainty aversion of a single

decision-maker. If and only if the certainty equivalent is lower, and risk premium is

higher, for all Knightian lotteries, then this indicates a higher degree of uncertainty

aversion.

With this, we can, for example, address the question: How does the degree of

uncertainty aversion change with the sure wealth level at which uncertain lotteries are

played? Suppose the decision-maker disposes of a wealth level of w ∈ R for certain
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and, on top of that, plays a lottery y ∈ Y . The resulting lottery is w1 ⊕ y, which is

equivalent to w1 + y because wealth w is certain. If for all Knightian lotteries y ∈ Y ,

the uncertainty premium of w1 + y decreases (does not change, increases) with w, the

decision-maker is said to show decreasing (constant, increasing) uncertainty aversion.

Proposition 7 (Constant uncertainty aversion)

Consider a decision-maker with preference relation � on the simple-lottery set Y , such

that the preference relation satisfies Axioms 1–7, and suppose that the uncertainty pre-

mium uniquely exists for all y ∈ Y . Then, for any Knightian lottery y ∈ Y and for all

wealth levels w ∈ R,

P (w1 + y) = P (y) . (10)

That is, a decision-maker with entropic preferences has constant uncertainty aversion.

Proof. See Appendix A.11

Constant uncertainty aversion is another consequence of the preferences being ad-

ditively and extensively entropic. Proposition 7 is obtained without any assumption

of convexity or concavity of the preference relation. It therefore holds for uncertainty

aversion (positive uncertainty premium P > 0) as well as for uncertainty love (negative

uncertainty premium P < 0).

5 A one-parameter function

We now propose a one-parameter real-valued preference function satisfying Axioms 1–9,

which is based on Rényi’s (1961) generalized entropy. The positive, real-valued parame-

ter can be interpreted as the degree of uncertainty aversion. We subsequently illustrate

the behavior of the preference function with a stylized decision problem between simple

Knightian lotteries.

In this section, we let Y = Rn
0+ so that the set of simple Knightian lotteries comprises

all n-vectors with non-negative payoffs yi ≥ 0. With this setting, the universe of all

Knightian lotteries naturally satisfies Assumptions 1–3.
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Definition 10 (Rényi-entropic preference function)

The Rényi-entropic preference function on the set of all simple Knightian lotteries H :

Y → R is given by

H(y) :=
y

n

hα(sy)

hmax
, (11)

where hmax := maxs∈S hα(s), and hα : S → R for all α ≥ 0 is the Rényi entropy of order

α with

hα(s) :=


1

1−α ln

(
n∑
i=1

sαi

)
: α 6= 1

−
n∑
i=1

si ln si : α = 1

. (12)

For compound lotteries, the preference function is extended to H : Y × Y → R with19

H(x⊕ y) :=
1

nhmax
(xhα(sx) + yhα(sy)) . (13)

Here, h is Rényi’s (1961) generalized entropy function, which is well known from

statistical physics and information theory. The expression for h1(s) is the continu-

ous extension of the general expression of hα for the limit α → 1. It has been pro-

posed independently by Shannon (1948) and Wiener (1948). It is sometimes referred to

as Shannon-Weaver-entropy because it has been popularized by Shannon and Weaver

(1949).20 Other notable special cases are h0(s) = lnn, the Hartley entropy (Hartley

1928), and h∞(s) = mini{− ln si} = − ln (maxi{si}), which is also known as min-

entropy.

The following lemma connects Rényi’s generalized entropy function to the context

of Knightian uncertainty.

Proposition 8 (Functional representation of preference relation)

The function H as defined in Definition 10 fulfills Axioms 1–8 for all α ≥ 0, and Axiom 9

19Again, we denote with the letter H both functions – the preference function on the set Y of simple
lotteries (Equation 11) and the preference function on the set of all compound lotteries (Equation 13).
There should not be any confusion, as it should be obvious in every instance from the argument of
H which of the two functions we mean.

20The base of the logarithm used to calculate the entropies can be arbitrarily chosen. Rényi (1961)
introduced his generalized entropy using the ld function, i.e. log2. Naturally, the choice of a particular
base does not affect any result as long as the same base is used consistently.
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for 0 < α < 1. Hence, it uniquely (up to linear-affine transfomrations) represents the

preference relation �.

Proof. See Appendix A.12.

Thus, because Rényi’s entropy fulfills Axioms 1–9, we can interpret it as one possible

representation of the prefrence relation. Being one particular such function, it has all

the properties that additive entropy functions have in general: continuity, monotonicity,

additivity, extensivity and maximality (Proposition 1 and Corollary 1). The next lemma

states some specific properties of Rényi’s generalized entropy.

Proposition 9 (Properties of the Rényi-entropic preference function)

The Rényi-entropic preference function Hα (Definition 10) has the following properties

for all x,y ∈ Y and all α ≥ 0:

1. Symmetry: Hα(y) = Hα(Py) for every permutation matrix P .

2. Maximality: Hα

(
y
n
1
)

= y
n
> Hα(y′) for all y′ ∈ Y \

{
y
n
1
}

.

3. Minimality: Hα(P (y,0, . . . ,0)) = 0 < Hα(y′) for all y′ ∈ Y \ {P (y,0, . . . ,0)} and

every permutation matrix P .

4. Additivity: Hα(x⊕ y) = Hα(x) +Hα(y).

5. Extensivity: Hα(λy) = λHα(y) for all λ > 0.

6. Concavity: Hα(s) is concave over Y for 0 ≤ α ≤ 1 and strictly so for 0 < α ≤ 1.

For α > 1 it is neither concave nor convex in general but it is strictly quasi-concave.

It is Schur-concave over Y for all α ≥ 0 and strictly so for α > 0

7. Dependence on α: d
dα

Hα(y) < 0.

Proof. See Appendix A.13

The formal properties of Rényi’s generalized entropy stated in Lemma ?? can be

interpreted in terms of the preference relation. The symmetry property states that the

sequence of the payoff shares that result from an act does not affect the value of hα so

that it does not matter in what sequence these shares are numbered. With regard to

decision theory, this is a central assumption with regard to the decision maker’s pref-

erences, which will be discussed in greater detail in Section 6. For now, we just note

35



that it implies that the Rényi individual is probabilistically sophisticated (Machina and

Schmeidler 1992) with uniform subjective beliefs, i.e. the decision maker implicitly ap-

plies the Laplacian Principle of Insufficient Reason (Laplace 1820). The maximality

property tells us that Hα reaches its unique maximum for a completely uniform distri-

bution. This maximum value is equal to lnn and hence independent of α. As discussed

in the context of Proposition 2 in Section 3.2, maximality means that the most pre-

ferred lottery is one with a completely uniform distribution of payoff over states. Any

non-uniform distribution of payoffs over states will lead to a lower level of preference

satisfaction than the uniform distribution. Conversely, lotteries where the total pay-

off volume is concentrated in just one state are generally least preferred (minimality).

Any less extreme distribution gives a higher level of preference satisfaction. The last

property, dependence on α, means that, for all any given lottery y ∈ Y , it holds that

h0(s
y) > h1(s

y) > . . . > h∞(sy). That is, for given lottery and, the greater the parameter

α in the function, the smaller the resulting value of the preference index.

Corollary 3 (The Rényi-entropic preference function represents uncertainty aversion)

The Rényi-entropic preference function Hα (Definition 10) represents uncertainty aver-

sion for α > 0 and uncertainty neutrality for α = 0.

Proof. See Appendix A.14

The last property, dependence on α, is directly relevant for modelling uncertainty

aversion. It means that, for any given act f ∈ G(y) of arbitrary dimension n, it holds

that hn0 (sf ) > hn1 (sf ) > . . . > hn∞(sf ). That is, for given act and, thus, uncertainty, the

greater the parameter α in the utility function, the smaller the resulting value of the

utility function. This leads to the following statement.

With a Rényi-entropic preference function H(y) (Definition 10) and Definition 7 of

the certainty equivalent, for any Knightian y ∈ Y the certainty equivalent is given by

H(C(y)1) = H(y) (14)

C(y) =
y

n

hα(sy)

hmax
=

y

n lnn
hα(sy) ≤ y

n
, (15)
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where Proposition 9 (Maximality) has been used for H(C(y)1) = C(y). Result (15)

shows that the certainty equivalent of any lottery y is smaller than its total payoff

volume divided by the number of states, y/n, depending on the unevenness at which

payoff is distributed over states. The latter is captured by the factor hα(sy)/hmax, which

varies between one for sy = (1/n,...,1/n) (perfect evenness, that is, perfect certainty)

and zero for sy = P (1,0,...,0) (maximum unevenness, that is, maximum uncertainty).

With this, the certainty equivalent is maximal (for given y) if payoff is perfectly certain,

and it vanishes for maximum uncertainty of payoff.

In passing we note that, obviously, for any Rényi-entropic preference function H(y),

for any Knightian lottery y ∈ Y the certainty equivalent C(y) uniquely exists.

We now turn to the interpretation of the parameter α in the Rényi-entropic prefer-

ence function H(y) (Definition 10). This parameter captures the decision-maker’s degree

of uncertainty aversion.

Proposition 10 (α parameterizes the degree of uncertainty aversion)

Consider two individuals A and B whose preference relations �A and �B on the set Y

of simple Knightian lotteries are represented by preference functions HA and HB (given

by Equation 11) with parameters αA and αB, respectively. A is more (less) uncertainty

averse than B (sensu Definition 9) if and only if αA > (<)αB.

Proof. See Appendix A.15

Illustration

As exemplary decision problem, we look at the following textbook example: an indi-

vidual has to take a decision between three acts, f , g and h. The acts are known to

generate the following payoffs (in monetary units):

x = (300, 150, 250, 300) ,

y = (60, 60, 60, 820) ,

z = (15, 280, 340, 365) .
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Lottery x is very even but does neither have an especially large maximum payoff nor a

particularly low minimum possible payoff. In fact, it guarantees the maximal minimum

payoff out of the three alternatives. Hence, the maximin criterion would select lottery x.

Lottery y offers the potentially highest possible win out of all three uncertain prospects

but it only does so in one out of four possible states of the world whereas in the other

three states, we end up having only 60 monetary units. Obviously, the maximax crite-

rion would rate y highest and x lowest. Lottery z features the smallest minimum but

otherwise it offers three potentially large payoffs as compared to x and y.

In Table 2, we illustrate our proposed index H4
α(sk) for the three Knightian lotteries

x, y and z for different parameter values of uncertainty aversion α. In our framework,

a comparison of differences in the uncertainty utility index is meaningful for the same

individual due to Proposition 1 (uniqueness up to linear-affine transformations). We see

that, although the preference over the acts always remains x � z � y, the overall level

of well-being attached to a single act drastically depends on the degree of uncertainty

aversion α. For example, an individual with a very low level of uncertainty aversion

(α = 0.1), the respective index values of H provided by the three uncertain prospects

are within a range of 0.077 from act f (best) to act g (worst), whereas at high levels of

uncertainty aversion (e.g. α = 50), the difference is 1.016. Thus, an individual relatively

uncaring towards Knightian uncertainty would gain relatively little in terms of preference

satisfaction when switching from lottery g to lottery f . On the other hand, the very

same switch would mean an over six times higher level of preference satisfaction to a

highly uncertainty averse decision maker.

Comparison of decision rules

We now review well-established decision criteria under uncertainty from the literature

and compare these to our framework using a stylized and static sample decision problem.

The criteria from the literature include the maximin rule (Wald 1949) and its optimistic

counterpart, the maximax rule, Laplace’s principle of insufficient reason (Laplace 1820),

the rule of minimum regret (Niehans 1948, Savage 1951) and the Hurwicz criterion
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Table 2: H4
α scores of the three Knightian lotteries x, y and z for different degrees of

uncertainty aversion α. The resulting preference ordering is x � z � y.

uncertainty aversion uncertainty utility

α H4
α(sx) H4

α(sy) H4
α(sz)

0.1 1.383 1.306 1.338

0.5 1.369 0.983 1.215

1 1.354 0.660 1.151

3 1.309 0.291 1.103

5 1.283 0.243 1.090

10 1.252 0.216 1.070

20 1.230 0.204 1.048

50 1.214 0.198 1.025

(Arrow and Hurwicz 1977) which is a linear combination of maximin and maximax

which weighs possible maximum and minimum payoffs in each state according to the

decision maker’s optimism. The latter rule is sometimes also called α-maximin. Concise

overviews can be found in Luce and Raiffa (1989) and Heal and Millner (2013).

In the following, we take a closer look at these rules. While terms such as maximin

(‘maximize the minimum over all possible acts’) and maximax (‘maximize the maximum

over all possible acts’) are self-explanatory, this is less true for the other three decision

rules mentioned. Pierre-Simon Laplace’s 1820 principle of insufficient reason21 states

that there is no reason to assume that one specific state of the world is more probable

than another one when probabilities are unknown. Hence, they should all be given equal

probability weight. Strictly speaking, Laplace’s principle is thus a rule for assigning

probabilities to outcomes and not a decision rule in itself. However, the wording ‘Laplace

principle’ is often used synonymously with ‘Laplacian expected utility’, which refers

to an expected utility maximizer applying the Laplace principle to calculate expected

utility. The rule of minimum regret is based on the idea to minimize the maximum

possible ‘regret’: for each possible state of the world, the act that leads to the highest

21The principle was renamed ‘the principle of indifference’ by Keynes (1921).
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payoff is set as reference point relative to which the ‘regret’ is calculated as possible payoff

that would potentially be foregone if the respective state of the world materialized. So,

in the optimal case regret is zero. The alternative that minimizes possible regret over

all states of the world is considered the best choice in this decision framework. Thus,

‘regret’ is quite similar to the concept of opportunity cost, but unlike its well-known

sibling, it can attain a value of zero. Moreover, focusing on minimizing a negative

quantity rather than maximizing a positive one, the rule expresses a very cautious, if

not pessimistic attitude of the decision maker towards uncertainty. Mathematically, the

rule of minimum regret – sometimes also referred to as ‘Savage-Niehans rule’ – is to

choose the act k from G(y) which minimizes possible ‘regret’, i.e. which minimizes the

expression
n∑
i=1

[
(max

k
u(yki ))− u(yki )

]
. (16)

Eventually, the Hurwicz rule generalizes the maximin and maximax criteria: for each

alternative k, the function

Φ(yk) = λmax
i
{u(yki )}+ (1− λ) min

i
{u(yki )}, 0 ≤ λ ≤ 1 (17)

is evaluated and compared to the function values of the alternatives. The associated

decision rule is maxk Φ(yk). λ thus reflects the individual’s optimism as a greater λ

gives more weight to the maximum payoff of one particular act k and hence less weight

to the minimum. Similarly, Heal and Millner (2013) give an interpretation of 1 − λ

as representing ‘aversion to a lack of knowledge’. Hence, with λ = 1, we recover the

maximax rule while λ = 0 leads again to the maximin criterion.

As exemplary decision problem, we look at the following textbook example: an

individual has to take a decision between three acts, f , g and h. The acts are known to
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generate the following payoffs (in monetary units):

x = (300, 150, 250, 300) ,

y = (60, 60, 60, 820) ,

z = (15, 280, 340, 365) .

Lottery x is very even but does neither have an especially large maximum payoff nor

a particularly low minimum possible payoff. In fact, it guarantees the maximal min-

imum payoff out of the three alternatives. Hence, the maximin criterion would select

lottery x. Lottery y offers the potentially highest possible win out of all three uncertain

prospects but it only does so in one out of four possible states of the world whereas

in the other three states, we end up having only 60 monetary units. Obviously, the

maximax criterion would rate y highest and x lowest. Lottery z features the smallest

minimum but otherwise it offers three potentially large payoffs as compared to x and

y. A risk-neutral Laplace individual would be indifferent between the three lotteries,

while a risk-averse one would prefer x. The rule of minimum regret would lead to the

choice of x while z and y would be tied. The advice that the Hurwicz criterion gives us

critically depends on the choice of λ. A rather pessimistic individual (λ = 0.1) would

choose lottery x while for any λ ≥ 9
61

, lottery y would be preferred. This choice is made

by any sufficiently optimistic individual – i.e. λ ≥ 9
61

– and as λ is further increased, we

can observe a change of the second most preferred lottery from y to z. The complete

rankings of acts are given in Table 3.

In summary, combining the results from Tables 3 and 2, we find that the overall

ranking of lotteries from our method is different from the other criteria. However, the

most preferred option is the same as with the maximin rule and a pessimistic Hurwicz

individual. That being said, a risk-averse Laplacian individual would arrive at the very

same ranking as our Rényi individual, but this comes with the above disclaimer.
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Table 3: Orderings over the Knightian lotteries x, y and z that result from different
decision rules from the literature.

decision criterion choice ordering

maximin x � y � z

maximax y � z � x

risk-neutral Laplace EU x ∼ y ∼ z

risk-averse Laplace EU x � z � y

minimum regret x � y ∼ z

Hurwicz, λ = 0.1 x � y � z

λ = 0.2 y � x � z

λ = 0.8 y � z � x

6 Discussion

We now discuss some key features of our approach, and relate it to other approaches in

the literature.

Summary. Based on a set of seven axioms on the preference relation over Knightian

acts, we have provided a proof that there exists a real-valued, unique (up to linear-affine

transformations), additive and extensive representation of this preference relation on

the set of all Knightian acts. Moreover, we have shown that this function may represent

uncertainty aversion.

We have illustrated our approach with a suitable one-parameter function from infor-

mation theory fulfilling all axioms of certainty measurement – Rényi’s (1961) general-

ized entropy. The parameter can be interpreted as the relative weight at which the two

fundamental sources of uncertainty are taken into account in the aggregate measure of

uncertainty: (1) the pure number of potential states of nature, and (2) the heterogeneity

of the payoff-distribution over the given number of states of nature.

Finally, we have compared our approach in a simple decision problem to other

methods from the literature. We have found that our certainty measure produces a

ranking different from the other decision rules under Knightian uncertainty. However,

the most certain act coincides with the one preferred by an individual with maximin
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preferences and with the choice a very pessimistic Hurwicz individual would make.

Comparison to the vNM-approach to expected utility. From seven axioms

we obtain a preference function. In vNM, with three axioms one has an expected-utility

form of the preference function. But to have a preference function fully specified, one

needs – in addition – a Bernoulli utility function. Some of the properties of the preference

function derive from the properties of the Bernoulli utility fcn (e.g. non-satiation or risk-

aversion). In our approach, we obtain the full preference function from a set of seven to

nine basic axioms.

Our axioms, which establish unique existence of preference function, imply indepen-

dence (which does not need to be assumed)

They also imply two properties, additivity and extensivity, as well as monotonicity,

which in the vNM-approach needs to be assumed separately.

(In-)Completeness of preferences. The arguably strongest assumption required

to bring our framework to life is Axiom 3. It assumes completeness only on the subset

G(y) of all simple acts Y . Thus, we do not assume that any two arbitrary Knightian

acts from Y can be ranked in terms of certainty, i.e. they may be incomparable. Rather,

we require the certainty relation to be complete only on the subset of Knightian acts

with the same total payoff volume y, G(y) over all states. Indeed, we think that this

kind of completeness on a subset is in fact normatively much more compelling than

assuming completeness on the full set of all acts Y , even more so in the case of Knightian

uncertainty. In fact, the implications of the completeness assumption for economic

theory have been vividly discussed from the outset. Von Neumann and Morgenstern

(1944) themselves considered it ‘very dubious whether the idealization which treats this

postulate as a valid one, is appropriate or even convenient’ (ibid.: p. 630). Others

like Luce and Raiffa (1957) criticized the possibility of intransitivities if individuals

exacted decisions between alternatives that might be ‘inherently incomparable’. In

the same vein, R.J. Aumann (1962, 1964) doubted the normative appeal of an an a-

priori exclusion of the possibility of an individual to be unwilling or unable to arrive at

preference statements for at least some acts. In our view, Aumann’s point was that the

inability to state one’s preferences regarding a decision might be the result of rational
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thinking and judgment, so there is no reason to make completeness of preferences a

standard of any rational choice theory, an argument ultimately very similar to Putnam

(1986). Despite all this, the only other contribution we know of that discusses and uses

incompleteness of preferences in the context of Knightian uncertainty is Bewley (2002).

He replaces completeness with an inertia assumption, which states that an alternative

is only accepted if preferred to the status quo. Moreover, an individual may assert that

two alternatives are incomparable. The main difference to our approach however is that

Bewley works within the Anscombe-Aumann framework, which relies on subjective and

objective probabilities, a concept we have deliberately avoided here for reasons laid out

earlier in this paper.

The role of y and its intuitive appeal. The sum of payoffs y over all possible

states of the world plays a central role in our theory. One might wonder about desirabil-

ity and intuitive appeal of this feature. First and foremost, the issue is closely related

to the above question of whether or not to assume (in)completeness of the certainty re-

lation. We argue in favor of incompleteness here, but it is clear that it naturally comes

at a price. From a technical point of view, the problem with an incomplete realtion

is that one cannot have a complete representation either, so one might run into issues

with dominance. On the other hand, for each y > 0, G(y) is the largest possible set of

acts which cannot possibly dominate each other, so it seems natural to build a theory

around this. As to intuition, consider the possibility that you are promised a slice of

your favorite pie tomorrow, but the size of the slice will depend, for some reason, on (1)

what you do today, and (2) what state of the world materializes tomorrow. Even before

you worry about your options to act and single outcomes, the most natural question

seems ‘How large is that pie anyway?’. Only as a second step will you probably think

about what is best to do given the possible – fundamentally uncertain – states of the

world.

Probabilistic sophistication. A central feature of the Rényi preference represen-

tation from Section 5 is the symmetry of H(s) (cf. Lemma ??), which implies that the

sequence in which the given states of nature are numbered does not matter for mea-

suring (un)certainty. The only thing that matters is the distribution of payoffs over all
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states, not the exact states of the world in which particular payoffs are obtained. This

property has been termed ‘event exchangeability’ (Chew and Sagi 2006: 771), and it

interestingly implies the individual to be probabilistically sophisticated (Machina and

Schmeidler 1992) with uniform subjective beliefs. That is, because any two outcomes of

any act are exchangeable for a Rényi individual, the concrete choice of the Rényi func-

tion implies that the decision maker follows Laplace’s principle of insufficient reason in a

non-expected utility framework. In that respect, our result might be one step towards a

result that parallels the contribution of Gravel, Marchant and Sen (2012), who provided

a complete axiomatic foundation of Laplace’s principle in the expected utility setting.

Connection to Laplacian expected utility. In the following, we compare the

standard expected utility (EU) framework to our approach. Starting from expected

utility with concrete utility function u(y) = ln y, and assuming that we have an indi-

vidual that applies Laplace’s principle, we can generally say that the ranking of acts

will coincide with a ranking done by our Rényi individual. We make this explicit in

Appendix A.16. In that particular case, the connection between Laplacian EU and our

framework can be established, because a strictly increasing monotonous transformation

from the EU functional to the Rényi functional can always be constructed. The situa-

tion is however not clear for general utility functions u(y) or representations of H other

than the one presented here, so a general correspondence between these two frameworks

cannot be established here, and its existence seems questionable to us. However, the

positive message to be learned from this observation is that the theory developed here is

not completely detached from other theories, but much rather shares a boundary point

with them.

(Non-) Additive entropies in economics. We have seen that our axiomatic

foundation of certainty measurement allows for the existence of an additive certainty

representation, and that such functions are called additive entropies in physics and

information theory. For completeness, we should say that entropies have been used

before in economic theory. Luce, Ng and Marley (2008) have proposed to use entropies

to model the utility which individuals derive from the process of gambling itself. This

approach seems interesting, because it departs from the typical consequentialist setting
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in economics, in that it matters to the decision maker how an outcome is obtained rather

than just caring about what outcome is obtained. However, this is quite a different use

of the concept of entropy, and unrelated to our concept presented here. Second, there are

also non-additive entropies, such as the Tsallis entropy (Tsallis 1988). Non-additivity

is interesting from the point of view of ranking and valuing compound acts. With

additivity, any compound act is just as certain as the sum of numerical certainty values

obtained from its constituent acts (cf. Proposition 2). Non-additivity would enable us

to model situations where compound acts are more or less certain than just the sum

of their constituents. While such non-additive certainty relations, represented by non-

additive entropy functions, would be an interesting object of study, we do not know of

a formal axiomatization of that.

7 Conclusion and Outlook

In a nutshell, we have shown how a parsimonious set of nine axioms on the preference

relation over Knightian lotteries establishes the existence and uniqueness of a preference

function which is additive and extensive, and we have provided a one-parameter function

as an example. From here, several research fields open up.

First, turning to preferences over lotteries under Knightian uncertainty, there is

the problem field of how to conceptualize and represent such preferences, and how to

measure a decision-maker’s type and degree uncertainty aversion, theoretically as well

as experimentally. Theoretically, one could think of a transfer of concepts from general

relativity (Einstein, Minkowski), where measuring curvature that is invariant under

certain coordinate transformations in multi-dimensional spaces is formalized, so that a

stronger “curvature” of the preference function leads to a higher degree of uncertainty

aversion. Experimentally, it would be interesting to assess uncertainty attitudes in

different settings and contexts.

Second, based on our concept of uncertainty preferences and uncertainty aversion

one may think of insurance against Knightian uncertainty as an institution that reduces

the uncertainty for all acts. Likewise, one may generalize the concepts of self-insurance
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and self-protection (Ehrlich and Becker 1972) to situations of Knightian uncertainty.

Such generalized insurance would be not based on probabilities, but – given preferences

under Knightian uncertainty, or at least some measure of uncertainty aversion – could

still be valued in monetary terms, so that it can be brought into the market-context.

Third, as our approach to measuring (un)certainty is centrally build on entropy,

and entropy generally measures the heterogeneity/homogeneity of a distribution, our

axiomatic framework of measuring (un)certainty, as well as the example of the Rényi-

function, may be directly transferred to measuring the heterogeneity/homogeneity of

other kinds of distributions of economic relevance – e.g. income (in)equality, product

diversity, technological diversity, or institutional diversity.
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Appendix

A.1 Proof of Lemma 1

Lemma 1 is identical – up to the re-naming of concepts and a change in notation – to

Theorem 2.1 in Lieb and Yngvason (1999: 22). Their proof (Lieb and Yngvason 1999:

22) therefore also proves our lemma.

A.2 Axiom 9 implies normal convexity of �

Assume x ∼ y. By Axiom 5, λx ∼ λy and (1 − λ)x ∼ (1 − λ)y. Then, by Lemma 1,

λx ⊕ (1 − λ)y ∼ λx ⊕ (1 − λ)x and λx ⊕ (1 − λ)y ∼ λy ⊕ (1 − λ)y. By Axiom 6,
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λx⊕ (1−λ)x ∼ x and λy⊕ (1−λ)y ∼ y. Hence, λx⊕ (1−λ)y ∼ λx⊕ (1−λ)x ∼ x and

λx⊕ (1− λ)y ∼ λy ⊕ (1− λ)y ∼ y. With that, λx + (1− λ)y � λx⊕ (1− λ)y implies

λx+ (1− λ)y � x and λx+ (1− λ)y � y.

A.3 Proof of Proposition 1

Proposition 1 is identical – up to the re-naming of concepts and a change in notation

– to Theorem 2.2 in Lieb and Yngvason (1999: 24). Their proof (Lieb and Yngvason

1999: 24–29) therefore also proves our proposition.

A.4 Proof of Corollary 1

Follows directly from Proposition 1 by setting N = M = 1 and µ1 = λ1.

A.5 Proof of Proposition 2

Our proposition 2 is included – with re-naming of concepts and a change in notation – in

Theorem 2.5 in Lieb and Yngvason (1999: 30). Their proposition is much more general,

though, as they consider several simple-lottery sets (in our language) and the relation

among them. In contrast, we only consider a single simple-lottery set Y . With this

simplification, requirements (i) and (ii) in their Theorem 2.5 are captured by our As-

sumption 3, and their requirement (iii) is included in our Axiom 3 (completeness). Also,

their distinction between a simple-lottery-set-specific entropy function and a universal

entropy function, which is formed from the former by suitable calibration of the con-

stants a and b, is irrelevant for our proposition. While in the Lieb-Yngvason treatment,

additivity and extensivity only hold as a property of the suitably calibrated universal

entropy function, in our setting they hold immediately for the entropy function on Y

as introduced by Proposition 1. Their proof of their Theorem 2.5 (Lieb and Yngvason

1999: 30–31) directly proves our proposition.
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A.6 Proof of Corollary 2

(1) Scaling-monotonicity. With λ > 1 one has (from Extensivity, Proposition 2)

H(λy) = λH(y) > H(y), or λy � y.

(2) Adding-monotonicity. With the compounding property y + c1 ∼ y ⊕ c1 one has

(due to Additivity and Extensivity of H, Proposition 2)

H(y + c1) = H(y ⊕ c1) = H(y) +H(c1) = H(y) + cH(1) . (A.1)

As H is unique only up to linear-affine transformations (Proposition 1), one is free to

set H(1) – by choice of the additive constant in a linear-affine transformation of H –

to any arbitrary real value. Here, we set H(1) > 0. Then, as c > 0 as well, one has

cH(1) > 0 and Equation (A.1) implies H(y + c1) > H(y), or y + c1 � y.

A.7 Proof of Proposition 3

(1) Symmetry : Both operations, scaling (Definition 1) and compounding (Definition 2,

are not affected by permutating the underlying payoff vectors. Also, none of the Ax-

ioms 1–7 and 9 is affected by permutating the underlying payoff vectors. Assuming

symmetry of the relation � (Axiom 8), therefore, does not affect any other result, such

as e.g. Propositions 1 or 2. It comes in addition and its effect can be studied on top of

everything else. With that, Axiom 8 (symmetry of �) and symmetry of the function H

are obviously equivalent.

(2) Concavity : Proposition 3 is identical – up to the re-naming of concepts and a

change in notation – to Theorem 2.8 in Lieb and Yngvason (1999: 34). Their proof (Lieb

and Yngvason 1999: 35) therefore also proves our proposition.

A.8 Proof of Lemma 3

Any simple Knightian lottery y ∈ Y uncertainty-dominates its pc-corresponding lottery

yc, and strictly so if and only if y 6= yc (by definition of yc). If the decision-maker

is uncertainty averse (sensu Definition 5), she strictly prefers to any y ∈ Y all those
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lotteries that are strictly uncertainty-dominated by y. As yc is strictly uncertainty-

dominated by y (for y 6= yc), she strictly prefers yc to y. Likewise, if the decision-maker

is uncertainty loving (neutral), the preference direction is reversed (indifferent).

A.9 Proof of Proposition 4

If Y satisfies Assumption 2 and � satisfies Axiom 8, then H is symmetric on Y (Propo-

sition 3(1)). Further, if Y satisfies Assumption 1 and � satisfies Axiom 9, then H is

symmetric on Y (Proposition 3(2)). Any function that is symmetric and concave is

Schur-concave (Lemma 5). Hence, H is Schur-concave if Y satisfies Assumptions 1 and

2, and � satisfies Axioms 8 and 9. By Lemma 4, a preference function that is Schur-

concave represents uncertainty aversion. Hence, H represents uncertainty aversion under

these conditions.

A.10 Proof of Lemma 6

Condition (5), which defines the certainty equivalent of y, can be stated equivalently

in terms of H as H(C(y)1) = H(y). By extensivity of H (Proposition 2), this can be

restated as C(y)H(1) = H(y), which can be rearranged into Equation (6). Obviously,

for given preference function H this yields a result for any y ∈ Y (existence), and exactly

one result (uniqueness).

A.11 Proof of Proposition 7

The uncertainty premium P of lottery w1 + y is defined through Relation (8):

(
w1 + y

n
− P (w1 + y)

)
1 ∼ w1 + y . (A.2)

Here, w1 + y = nw + y such that

(
w1 + y

n
− P (w1 + y)

)
=

(
w +

y

n
− P (w1 + y)

)
. (A.3)
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With this, Relation (A.2) becomes

(
w +

y

n
− P (w1 + y)

)
1 ∼ w1 + y (A.4)

w1 +

(
y

n
− P (w1 + y)

)
1 ∼ w1 + y (A.5)

w1⊕
(
y

n
− P (w1 + y)

)
1 ∼ w1⊕ y (A.6)(

y

n
− P (w1 + y)

)
1 ∼ y , (A.7)

where Relations (A.4) and (A.5) are equivalent because of normal vector algebra, Rela-

tions (A.5) and (A.6) are equivalent because of the compounding property y⊕xc ∼ y+xc,

and Relations (A.6) and (A.7) are equivalent because the preference relation � satisfies

Independence (Lemma 1) with respect to the ‘sure thing’ w1. From Relation (A.6) and

Relation (8), one has (because of Transitivity of �, Axiom 2)

(
y

n
− P (w1 + y)

)
1 ∼

(
y

n
− P (y)

)
1 . (A.8)

This is equivalent, because of scaling-monotonicity of � (Corollary 2, Statement 1), to

P (w1 + y) = P (y).

A.12 Proof of Proposition 8

We take the Rényi-entropic preference function from Definition 10 and suppose it rep-

resents the preference relation �, such that H(x) ≥ H(y) is equivalent to x � y for all

x,y ∈ Y . We then show that each of the Axioms 1–9, as expressed through H, makes a

true statement. Knowing that the function H from Definition 10 fulfills all axioms, and

knowing (from Proposition 1) that the representing preference function is unique up to

linear-affine transformations, we then also know that the function H from Definition 10

is – up to linear-affine transformations – the only function that represents �.

Axiom 1

to be completed
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A.13 Proof of Proposition 9

Rényi’s generalized entropy function hα : S → R (Equation 12) is known, or can easily

be shown, to have the following properties for all s ∈ S and all α ≥ 0:

1. Symmetry: hα(s) = hα(Ps) for every permutation matrix P (follows directly from

symmetry of the summation).

2. Intensivity: hα(sy) = hα(sλy) for all λ > 0 (follows directly from sλy = λy).

3. Maximality: hα
(
1
n
1
)

= lnn > hα(s) for all s ∈ S\
{

1
n
1
}

(Rao 1984: 70).

4. Minimality: hα(P (1,0, . . . ,0)) = 0 < hα(s) for all s ∈ S\ {P (1,0, . . . ,0)} and every

permutation matrix P (Rao 1984: 70).

5. Concavity: hα(s) is concave over S for 0 ≤ α ≤ 1 and strictly so for 0 < α ≤ 1

(Rao 1984: 70, He et al. 2003). For α > 1 it is neither concave nor convex in

general but it is strictly quasi-concave. Hence, hα(s) is Schur-concave over S for

all α ≥ 0 and strictly so for α > 0 (Marshall et al. 2011, Pliam 2013).

6. Dependence on α: d
dα
hα(s) < 0 (Beck and Schlögl 1993).

With these properties of hα, the properties of H are demonstrated as follows.

A.14 Proof of Corrolary 3

For all α > 0, H(y) is strictly Schur concave on Y (Proposition 9, Statement 6). With

Proposition ???, this means that H represents uncertainty aversion.

In contrast, for α = 0 one has hα(y) → lnn = hmax and, hence, H(y) → y/n.

In this case, H(y) is not strictly concave on Y , but it is both concave and convex.

For any y ∈ Y only the total payoff volume y matters for the preference ranking, and

the relative (un)evenness of the payoff distribution sy is irrelevant. This represents

uncertainty neutrality.

A.15 Proof of Proposition 10

With a Rényi-entropic preference function H(y) (Definition 10), for any y ∈ Y the

certainty equivalent of lottery y is given by Equation (15). In the expression on the right-

hand side, the factor ξ := y/(n lnn) is greater than zero (as n ≥ 2) and independent of
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α. Hence,
d

dα
C(y) = ξ

d

dα
hα(sy) < 0 for all y ∈ Y ,

because of dhα/dα < 0 (Appendix A.13, Property 6 of Rényi’s entropy). This is equiv-

alent to

CA(y) < (>)CB(y) for all y ∈ Y if and only if αA > (<)αB .

With Proposition 6 (Statement 1), this establishes the proposition.

A.16 Connection to expected utility

If u(y) = ln y, then there is a direct correspondence between a Laplace-EU individual

and a Rényi individual. To see this, consider a two-state act with one good outcome,

yH and one bad outcome yL. The Rényi functional then reads

H =
1

1− α
ln

[(
yL

yL + yH

)α
+

(
yH

yL + yH

)α]
(A.9)

while the Laplacian expected utility reads

EU =
1

n
(ln yL + ln yH) =

1

n
ln(yL · yH) (A.10)

For the relative ranking of any two acts, the ln functions matter. The question is thus,

whether there exists a strictly monotonous, i.e. order preserving, transformation

T : yL · yH 7→
(

yL
yL + yH

)α
+

(
yH

yL + yH

)α
(A.11)

At least one such transformation exists:

T : x 7→
( x
yH

)α + ( x
yL

)α

( x
yL

+ x
yH

)α
(A.12)

It holds that T ′(x) > 0 for all α > 0 and such a transformation can be constructed for

all n > 2 as can be seen by complete induction. It is however unclear whether such a
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transformation can be found for any u(y) and any H.
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