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Preface 
 

Mathematics education at the tertiary level is a practical concern in many institutions of 
higher education, and efforts are being made world-wide to improve its quality. A growing 
number of mathematicians and mathematics educators see the need for doing research and 
thoughtful development work in mathematics education not only at school level, but also at 
tertiary level. To give momentum to the establishment of a scientific community of mathe-
maticians and mathematics educators whose concern is the theoretical reflection, the re-
search-based empirical investigation of mathematics education at tertiary level, and the 
exchange of best- practice examples, the khdm (German Centre for Higher Mathematics 
Education, www.khdm.de) and the Volkswagen Foundation jointly organized a conference 
named “Didactics of Mathematics in Higher Education as a Scientific Discipline”, which was 
held from 1st to 4th December 2015 in Hannover, Germany, at Schloss Herrenhausen. We are 
delighted that about 100 experts from 16 different countries with scientific background in 
mathematics or mathematics education followed our invitation to present and to discuss 
research and innovative efforts for improving the teaching and learning of mathematics at 
tertiary level, as well as experiences from teaching practice and empirical and theoretical 
research approaches that aim at a better understanding students’ difficulties in learning 
mathematics and in learning to think mathematically. 

We are very grateful to the Volkswagen Foundation for providing full financial support for 
this event and for providing the conference venue Schloss Herrenhausen. Without the 
Volkswagen Foundation and the Stiftung Mercator the khdm would probably not exist. In 
2009, both foundations made a call for proposals for creating subject centers for university 
education. Fostering excellence also in university teaching and not only in university re-
search became a big issue in Germany since then. The call of the foundations piloted these 
developments. In this competition, the universities of Kassel and Paderborn were successful 
with their application for a center for higher mathematics education, the khdm. The universi-
ties Kassel and Paderborn are geographic neighbors and had good collaborations already in 
several domains and the fact that Rolf Biehler moved from Kassel University to Paderborn 
University in 2009 was also supportive. 

The idea of the two foundations was to provide funds for a starting phase of about three 
years. Afterwards the universities were supposed to take over the center and maintain it 
with own funds and with third party funds, in case it were successful. The idea was then to 
attract further researchers from inside and outside these universities to join the khdm with 
their own projects, their Ph.D. and post graduate students to make it grow. This happened to 
a large extent. The khdm is institutionalized as a joint scientific institute of the universities of 
Kassel, Paderborn and Lüneburg since 2012. Lüneburg joined in 2012 when Reinhard 
Hochmuth moved from Kassel to Lüneburg University. The next step is to extend the khdm 
to the University of Hannover, where Reinhard Hochmuth moved to in 2014. There are al-
ready several ongoing projects together with researchers from the University of Hannover. 

When the khdm started in the fall of 2010, the Mercator Stiftung and the Volkswagen Foun-
dation financed five full positions and the universities financed one scientific center manager 
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and half a secretary. The proposal was supported by a team of 15 professors from mathe-
matics, mathematics education, psychology and didactics of university education. Today, the 
khdm has more than 50 members, and among them there are about 15 Ph.D. students. 
About 30 khdm members were participants of this conference and presented their research. 

The original objective for creating the khdm was to build a center that will support commu-
nity building in university mathematics education and related educational research on a na-
tional and international level, that will design and perform research and development pro-
jects in university mathematics education and that will contribute to the emergence of “Di-
dactics of Mathematics in Higher Education as a Scientific Discipline”. This is the title we 
chose for this conference.  

Members of the khdm are presenting their research internationally e.g. at PME, CERME, RU-
ME, INDRUM and ICME conferences. In addition, we were able to convince the Volkswagen 
Foundation to provide additional “last” funds for supporting the international networking in 
a moment where the khdm has become adult and has to leave the nursery provided by the 
foundations. We are very grateful to the Volkswagen foundation that the khdm could pre-
sent its work to an international audience and that on the other hand the khdm was encour-
aged and supported to invite researchers from Europe and abroad for presenting their work 
for our mutual benefits, for refreshing scientific and personal relationships and for creating 
new ones.  

The scientific program of the conference was structured into nine working strands, which 
are specified below. Besides, on each of the four days of the conference there was a key-
note talk. Barbara Jaworski provides an overview of the study and development of teaching 
at university level, involving both research projects and projects largely of a developmental 
nature. Considering a range of theoretical perspectives underpinning research studies and 
studies, which focus on innovations in teaching, pointing particularly to the issues they raise 
for teachers and the wider community she concludes with a vision of developmental re-
search which enhances knowledge in practice as well as contributing to knowledge in the 
scientific community. Rolf Biehler and Reinhard Hochmuth use concepts from the Anthropo-
logical Theory of Didactics for a characterization of so-called mathematical bridging courses 
with view of the praxeologies they are supposed to prepare for or to bridge into. The char-
acterization takes into account the variety of study programs at the university and the di-
versity of goals and relations to previous school mathematics. Chris Rasmussen expands the 
constructs in Cobb and Yackel’s interpretive framework that allow for coordinating social 
and individual perspectives to contribute to the coordination of different analyses to devel-
op a more comprehensive account of teaching and learning. Finally, Aiso Heinze discusses 
theoretical conceptualizations and empirical studies of teachers’ mathematical content 
knowledge and suggests a conceptualization of the content knowledge needed for teaching 
secondary mathematics. 

Aside from the keynote talks, there were oral presentations of different length as well as 
poster presentations and time slots for comprehensive discussions. Each of these presenta-
tions was allocated to one of the nine working strands, although many presentations would 
match several strands. The present proceedings adopt this structure. The nine working 
strands are: 
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1. Mathematics as a subject in pre-service teacher education 
Educating future school mathematics teachers at university poses specific challenges with 
regard to the “mathematics for teaching” that is necessary from the perspective of their 
future profession and learnable by teacher students. Working on the “double discontinuity” 
(Felix Klein) is part of this challenge. 

2. Mathematics for math majors 
This working strand addresses the specific concerns regarding the teaching and learning of 
mathematics for math majors. Research on teaching and learning topics such as Analysis, 
Linear Algebra, Abstract Algebra and Differential Equations are part of this session as well as 
other topics from undergraduate and graduate education. Transition to advanced mathemat-
ics courses such as transition-to-proof courses or calculus courses with a perspective to 
analysis courses are part of this strand. 

3. Mathematics as a service subject (in engineering and economics) 
This working strand addresses the mathematics education of students within a non-math 
major, and focuses on engineering, economics, natural science, etc. It aims to exchange and 
discuss approaches for better connections between mathematics and the major subject, 
difficulties arising due to different meanings of mathematical concepts in (subject-specific) 
applications and in institutional practices. 

4. Tertiary level teaching (analyses, support and innovations) 
Studying the practice of teaching of professors, lecturers and teaching assistants is one fo-
cus of this strand, as are programs for supporting different kinds of university teachers. A 
second focus of this strand is concerned with innovative teaching methods such as e-
learning, blended learning, flipped classroom approaches lectures with cognitively activating 
elements etc.  

5. Motivation, beliefs and learning strategies of students 
This working strand focuses on students’ motivation, attitudes and learning strategies as an 
important condition for successful and deep learning. Studies that focus on studying the de-
velopment of student beliefs and working methods were welcome as well as studies that 
aim at influencing student engagement directly. 

6. Learning and teaching of specific mathematical concepts and methods 
This working strand focuses on the teaching and learning of specific mathematical concepts 
(e.g. convergence, derivative, groups) and on practices that are specific to mathematics (e.g. 
proving, reading and writing mathematical texts) which are known to be difficult for stu-
dents to understand and learn. Strand 6 provided a place for discussing theoretical ap-
proaches to analyzing the teaching and learning of such concepts and methods, and to an 
exchange of best-practice examples to overcome these difficulties. 
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7. Curriculum design including assessment  
This strand focuses on whole courses or large parts of them that are reflected and rede-
signed from the perspective of consciously considered competence goals. Strand 7 provided 
a venue to discuss innovative lectures designed to address students’ transition problems or, 
to introduce students to mathematical thinking and learning, as well as discussions of tradi-
tional courses that are restructured so that assessments are better aligned to the goals of 
the course (constructive alignment). Studies in the perspective of design-based research 
were particularly welcome. 

8. Theories and research methods  
This strand focuses on presentations and (critical) reflections of theories and research meth-
ods used for research in tertiary mathematics education. This comprises theoretical or me-
thodical frameworks (e.g. for data analysis), models of quantitative and qualitative research 
or considerations about phrasing and testing goals, competencies, personality traits. Theo-
ries may include institutional approaches (ATD), sociocultural approaches as well as cogni-
tive-epistemological theories of mathematics and its learning. 

9. Transition: research and innovative practice 
This strand focuses on theoretical analyses of the transition problem, as well as on ap-
proaches, courses, or support structures designed to overcome difficulties that students ex-
perience in transitioning from secondary to tertiary mathematics. This comprises mathemat-
ical bridging courses before the first semester or remedial course in the first semester as 
well as new elements in the teaching of first year university courses that take the transition 
problem into account, such as mathematics support centers. 

 

 

Kassel, Paderborn, Hannover, January 2017 

Robin Göller, Rolf Biehler, Reinhard Hochmuth, Hans-Georg Rück  



khdm-Report, Nr. 05, 2017 

5 

 

Contents 

 
KEYNOTE TALKS ........................................................................................................................ 13 

Relating different mathematical praxeologies as a challenge for designing 
mathematical content for bridging courses .............................................................................. 14 

Rolf Biehler, Reinhard Hochmuth14 
 

Teachers’ mathematical content knowledge in the field of tension between 
academic and school mathematics ............................................................................................. 21 

Aiso Heinze, Anke Lindmeier, Anika Dreher21 
 

Teaching mathematics at university level: how we think about teaching and 
its development ............................................................................................................................. 27 

Barbara Jaworski27 
 

Coordinating analyses of individual and collective mathematical progress ....................... 36 

Chris Rasmussen, Megan Wawro, Michelle Zandieh36 
 

1. MATHEMATICS AS A SUBJECT IN PRE-SERVICE TEACHER EDUCATION ................................... 42 

Transforming aspirations of future mathematics teachers into strategies in 
context ............................................................................................................................................. 43 

Irene Biza43 
 

How can primary teacher education students’ achievement in geometry be 
improved? Results from the KLIMAGS project .......................................................................... 48 

Werner Blum, Rolf Biehler, Reinhard Hochmuth, Peter Bender, Jana Kolter, 
Jürgen Haase, Kay Achmetli, Janina Krawitz, Stanislaw Schukajlow48 

 

Disagreements between mathematics at university level and school 
mathematics in secondary teacher education .......................................................................... 52 

Andreas Eichler, Viktor Isaev52 
 

Design research on inquiry-based multivariable calculus: focusing on students’ 
argumentation and instructional design .................................................................................... 60 

OhNam Kwon, YoungGon Bae, KukHwan Oh60 
 

Pre-service mathematics teachers solve problems in a digital game environment ......... 65 

Ariel Lifshitz, Michal Tabach65 
 

Standpoints on elementary mathematics ................................................................................. 70 

William McCallum70 
 



khdm-Report, Nr. 05, 2017 

6 

 

Exploring and overwriting mathematical stereotypes in the media, arts and 
popular culture: The visibility spectrum .................................................................................... 73 

Elena Nardi73 
 

How do pre-service teachers experience math didactics courses at university? .............. 82 

Johanna Ruge, Reinhard Hochmuth82 
 

Teaching undergraduate mathematics – reflections on Imre Leader’s observations ........ 86 

Tay Eng Guan, Ho Weng Kin86 
 

2. MATHEMATICS FOR MATH MAJORS ...................................................................................... 90 

How do undergraduates read mathematical texts? An eye-movement study .................. 91 

Lara Alcock, Tom Kilbey, Matthew Inglis91 
 

Undergraduates learning of programming for simulation and investigation of 
mathematics concepts and real-world modeling ..................................................................... 96 

Chantal Buteau96 
 

Duality between formalism and meaning in the learning of linear algebra .................... 101 

Jean-Luc Dorier101 
 

Use of letters in mathematics at university level teachers’ practices and 
students’ difficulties ................................................................................................................... 106 

Viviane Durand-Guerrier106 
 

When is a parabola not a parabola? ........................................................................................ 111 

Johann Engelbrecht, Harry Wiggins, Ansie Harding111 
 

Mathematics and programming: tentative findings from a design research 
project ........................................................................................................................................... 116 

Celia Hoyles, Richard Noss116 
 

A reading course on Galois Theory .......................................................................................... 120 

Hans-Georg Rück120 
 

Constructionist computer programming for the teaching and learning of 
mathematical ideas at university level .................................................................................. 124 

Ana Isabel Sacristán124 
 

Misunderstanding: a straight path to misconception? ......................................................... 132 

Maria Specovius-Neugebauer132 
 

 



khdm-Report, Nr. 05, 2017 

7 

 

3. MATHEMATICS AS A SERVICE SUBJECT (IN ENGINEERING AND ECONOMICS) ..................... 136 

Differences between the usage of mathematical concepts in engineering 
statics and engineering mathematics education .................................................................. 137 

Burkhard Alpers137 
 

Unpacking procedural knowledge in mathematics exams for first-year 
engineering students ................................................................................................................. 142 

Mike Altieri, Susanne Prediger142 
 

Motivating mathematics for biology students through modelling .................................... 147 

Simon Goodchild, Yuriy Rogovchenko, Olov Viirman147 
 

Links between engineering students’ and their teachers’ personal relationship 
with mathematics ....................................................................................................................... 152 

Gisela Hernandes-Gomes, Alejandro S. González-Martín152 
 

Conceptualizing students’ processes of solving a typical problem in the course 
“Principles of electrical engineering” requiring higher mathematical methods............. 161 

Jörg Kortemeyer, Rolf Biehler161 
 

Interactive tools in lectures with many participants ............................................................ 169 

Florian Leydecker169 
 

Applying an extended praxeological ATD-Model for analyzing different 
mathematical discourses in higher engineering courses .................................................... 172 

Jana Peters, Reinhard Hochmuth, Stephan Schreiber172 
 

The role of mathematics in engineering education .............................................................. 179 

Bettina Roesken-Winter, Malte Lehmann, Sven Schüler179 
 

Mathematics in economics study programmes in Germany: structures and 
challenges .................................................................................................................................... 184 

Rainer Vosskamp184 
 

Application-oriented tasks for first-year engineering students ........................................ 190 

Paul Wolf, Gudrun Oevel190 
 

4. TERTIARY LEVEL TEACHING (ANALYSES, SUPPORT AND INNOVATIONS) ............................ 193 

University students’ eye movements on text and picture when reading 
mathematical proofs .................................................................................................................. 194 

Jana T. Beitlich, Kristina Reiss194 
 

  



khdm-Report, Nr. 05, 2017 

8 

 

Geometry vs Doppelte Diskontinuität? ................................................................................... 200 

Christian Haase200 
 

Why linear algebra is difficult for many beginners .............................................................. 204 

Lisa Hefendehl-Hebeker204 
 

Online tests for evaluating learning success ......................................................................... 206 

Kerstin Hesse206 
 

Mathematics support for non-maths majors: A senior management perspective ......... 214 

Duncan Lawson, Harry Tolley, Helen Mackenzie, Tony Croft, Michael Grove214 
 

Proof-oriented tutoring: A small group culture utilising research strategies of 
mathematicians ........................................................................................................................... 218 

Angeliki Mali, Barbara Jaworski, Irene Biza218 
 

Pedagogical mathematics for student exploration of threshold concepts ...................... 223 

John Mason223 
 

Calculus I teaching: What can we learn from snapshots of lessons from 18 
successful institutions? .............................................................................................................. 231 

Vilma Mesa, Nina White, Sarah Sobek231 
 

Why different mathematics instructors teach students different lessons 
about mathematics in lectures ................................................................................................. 236 

Alon Pinto236 
 

An insight into mathematics tutorials ..................................................................................... 241 

Juliane Püschl241 
 

How lectures in advanced mathematics can be ineffective: Focusing on 
students’ interpretations of the lecture ................................................................................. 249 

Keith Weber, Tim Fukawa-Connelly, Juan Pablo Mejia-Ramos249 
 

5. MOTIVATION, BELIEFS AND LEARNING STRATEGIES OF STUDENTS ..................................... 254 

Beliefs on benefits from learning higher mathematics at university for future 
secondary school teacher .......................................................................................................... 255 

Silvia Becher, Rolf Biehler255 
 

To defy conventions? – University students’ demand of concrete examples 
and less mathematical formalizations .................................................................................... 260 

Rita Borromeo Ferri260 
 



khdm-Report, Nr. 05, 2017 

9 

 

A CAT’s glance towards abstraction ........................................................................................ 264 

Hans M. Dietz264 
 

Reducing math anxiety .............................................................................................................. 268 

Willi Dörfler268 
 

How can Peer Instruction help the students’ learning progress? ...................................... 272 

Axel Hoppenbrock272 
 

Connections: mathematical, interdisciplinary, personal, and electronic .......................... 277 

Deborah Hughes Hallett277 
 

Problem solving opportunities in frontal classes: Inquiry in teaching 
practices and learning strategies ............................................................................................. 281 

Boris Koichu, Eman Atrash, Ofer Marmur281 
 

Perceived competence and incompetence in the first year of mathematics 
studies: forms and situations ................................................................................................... 286 

Michael Liebendörfer, Reinhard Hochmuth286 
 

Interest and self-concept concerning two characters of mathematics: 
All the same, or different effects? ........................................................................................... 294 

Stefanie Rach, Timo Kosiol, Stefan Ufer294 
 

6. LEARNING AND TEACHING OF SPECIFIC MATHEMATICAL CONCEPTS AND METHODS ......... 299 

Understanding and advancing undergraduate mathematics instructors’ 
mathematical and pedagogical content knowledge ............................................................ 300 

Marilyn P. Carlson, Stacy Musgrave300 
 

Linking elementary notions of limit concepts ....................................................................... 305 

José Antonio Fernández-Plaza, Adrian Simpson305 
 

What level of understanding of the derivative do students of economics have 
when entering university? – Results of a pretest covering important aspects of 
the derivative .............................................................................................................................. 310 

Frank Feudel310 
 

Inquiry oriented instruction in abstract algebra .................................................................... 319 

Sean Larsen319 
 

Modern algebra as an integrating perspective on school mathematics –  
an interactive genetic and visual approach ........................................................................... 323 

Timo Leuders323 
 



khdm-Report, Nr. 05, 2017 

10 

 

A guided reinvention workshop for the concept of convergence ..................................... 329 

Laura Ostsieker329 
 

Undergraduates' attempts at reasoning by equivalence in elementary algebra ........... 334 

Chris Sangwin334 
 

A comparison of proof comprehension, proof construction, proof validation 
and proof evaluation .................................................................................................................. 339 

Annie Selden, John Selden339 
 

Proof construction perspectives: structure, sequences of actions, and local 
memory ........................................................................................................................................ 346 

John Selden, Annie Selden346 
 

A coherent approach to the fundamental theorem of calculus using differentials ........ 354 

Patrick W. Thompson, Tommy Dreyfus354 
 

7. CURRICULUM DESIGN INCLUDING ASSESSMENT ................................................................. 359 

Building and measuring mathematical sophistication in pre-service 
mathematics teachers ................................................................................................................ 360 

Thomas Bauer, Eric W. Kuennen360 
 

Courses in math education as bridge from school to university mathematics ................ 365 

Christine Bessenrodt, Reinhard Hochmuth, Natalie Gentner365 
 

Designing examinations for first year students .................................................................... 370 

Oliver Deiser370 
 

Students’ perceptions of and conclusions from their first assessment 
experience at university............................................................................................................ 373 

Robin Göller373 
 

Fit for the job – The expertise of high school teachers and how they develop 
relevant competences in mathematical seminars ................................................................ 379 

Joachim Hilgert, Anja Panse379 
 

Mathematics students’ perceptions of summative assessment: the role of 
epistemic beliefs ......................................................................................................................... 383 

Paola Iannone383 
 

Pre-service teachers’ abilities in constructing different kinds of proofs ......................... 387 

Leander Kempen387 
 



khdm-Report, Nr. 05, 2017 

11 

 

Relating content knowledge and pedagogical content knowledge in the 
mathematics teacher education ............................................................................................... 392 

Jürg Kramer392 
 

Oral examinations in first year analysis: between tradition and innovation .................. 397 

Carl Winsløw397 
 

8. THEORIES AND RESEARCH METHODS .................................................................................. 404 

Theoretical approaches of institutional transitions: the affordances of the 
Anthropological Theory of Didactics........................................................................................ 405 

Michèle Artigue405 
 

Study and research paths in university mathematics teaching and in teacher 
education: open issues at the edge between epistemology and didactics ..................... 413 

Marianna Bosch, Ignasi Florensa, Josep Gascón413 
 

When praxeologies move from an institution to another: an epistemological 
approach to boundary crossing ................................................................................................ 418 

Corine Castela418 
 

The theory of banquets: epistemology and didactics for the learning and 
teaching of abstract algebra ..................................................................................................... 426 

Thomas Hausberger426 
 

Towards the reconstruction of reasoning patterns in the application of 
mathematics in signal theory ................................................................................................... 431 

Reinhard Hochmuth, Stephan Schreiber431 
 

In-depth interviews as a tool in didactics of mathematics ................................................. 436 

Walther Paravicini, Jörn Schnieder436 
 

From high school to university mathematics: The change of norms ................................. 444 

Kristina Reiss, Kathrin Nagel444 
 

Interpretations of equations and solutions in an introductory linear algebra 
course ............................................................................................................................................ 448 

Michelle Zandieh, Christine Andrews-Larson448 
 

9. TRANSITION: RESEARCH AND INNOVATIVE PRACTICE ........................................................ 453 

Studying mathematics at university – Views of first year engineering students ........... 454 

Christer Bergsten, Eva Jablonka454 
 



khdm-Report, Nr. 05, 2017 

12 

 

Studifinder: Developing e-learning materials for the transition from 
secondary school to university ................................................................................................ 462 

Christoph Colberg, Tobias Mai, Dorothea Wilms, Rolf Biehler462 
 

Didactic contract and secondary-tertiary transition: a focus on resources 
and their use ................................................................................................................................ 466 

Ghislaine Gueudet, Birgit Pepin466 
 

Integrated course and teaching concepts at the MINT-Kolleg Baden- 
Württemberg ............................................................................................................................... 473 

Daniel Haase473 
 

Project mamdim – Learning mathematics with digital media ............................................. 477 

Mathias Hattermann, Alexander Salle, Stefanie Schumacher477 
 

Design, conception and realization of an interactive manual for e-learning 
materials in a mathematical domain ....................................................................................... 481 

Tobias Mai, Rolf Biehler481 
 

Didactics of mathematics in higher education, a service to science or a science 
in itself? Experiences made with tree-structured online exercises .................................. 486 

Robert Ivo Mei, Johanna Heitzer486 
 

The use of digital technology in university mathematics education ................................. 493 

Jürgen Richter-Gebert493 
 

Rethinking refresher courses in mathematics ....................................................................... 497 

Katherine Roegner497 
 

Innovative education in mathematics for engineers. Some ideas, possibilities 
and challenges ............................................................................................................................. 499 

Frode Rønning499 
 

The role of mathematics in the design of engineering programs – a case study 
of two Scandinavian universities ............................................................................................. 503 

Olov Viirman503 
 

 

 



khdm-Report, Nr. 05, 2017 

13 

 

 
KEYNOTE TALKS 

 



khdm-Report, Nr. 05, 2017 

14 

 

Relating different mathematical praxeologies as a challenge 
for designing mathematical content for bridging courses∗  

Rolf Biehler1, Reinhard Hochmuth2  
1Universität Paderborn, 2Leibniz Universität Hannover & Leuphana Universität 

Lüneburg 
(Germany) 

This contribution applies concepts from the Anthropological Theory of Didactics (ATD) to an ideal-
typical characterization of so-called bridging courses in view of their primary goals. Our considera-
tions are illustrated by discussing mathematical content for bridging courses.  We are convinced that 
such a systematization might be helpful for designing and optimizing specific mathematical content 
that relates to the different mathematical praxeologies represented in the variety of study programs 
at the university. 

The problem of bridging: From where and into what? 
Our contribution aims at a more systematic and theoretical description of so-called bridging 
courses by making use of basic concepts from the Anthropological Theory of Didactics (ATD). 
ATD has been already used by the second author of this paper for analyzing several problem 
domains in university mathematics education (Hochmuth & Schreiber 2015a, b; Hochmuth 
2016). This genuinely joint paper – expressed by the alphabetic order of the authors – ex-
tends this approach for the first time to bridging courses, where the two authors build on 
many joint discussions and collaborative material development experiences as co-leaders of 
the VEMINT-project where blended learning bridging courses have been designed, evaluated 
and improved since 2003 (see e.g. Biehler, Fischer, Hochmuth & Wassong, 2012). By bridg-
ing courses we understand courses that are offered to future students who have just fin-
ished school. At least in Germany, bridging courses have been established at all universities 
during the past years. They represent one answer beside others to the well-known transi-
tion problems from school to university concerning in particular mathematical knowledge 
and competences. Often universities offer a variety of bridging courses adapted to different 
study programs, for example courses for mathematics majors, for future secondary teach-
ers, mathematics courses for economic or engineering studies, and their different mathe-
matical knowledge requirements. Bausch et al. (2014) offer an overview of current courses 
and their different rationales. Most of these courses are offered before the first semester 
starts and last 2 to 6 weeks but there is a growing number of courses within the first se-
mester that follow the idea of bridging between school mathematics and university mathe-
matics, for instance the course “introduction into the culture of mathematics” (Biehler & 
Kempen, 2015; Kempen & Biehler, 2015). The situation of bridging is more complex with 
regard to students who intend to become teachers (see also Bessenrodt et al., 2015): the 
school mathematics culture should not just be replaced by the university mathematics cul-
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ture, as the teachers will re-enter the school culture again after their studies so that a sec-
ond bridge might be necessary. This is a well-known problem for which Felix Klein (1933) 
coined the famous notion of the “double discontinuity” in the studies of teacher students. 
We consider Klein’s book(s) also as a “bridging course”, however a bridging course placed at 
the end of a study program for future mathematics teachers, where students are already 
acquainted with the university mathematics culture. 

In the VEMINT project, we have developed three versions of bridging courses, one for math-
ematics majors including future Gymnasium teachers, one for engineering studies, and one 
for primary and lower secondary (middle school) mathematics teachers. The differences of 
these courses primarily reflect the differences of the cultures they are supposed to bridge 
into and not so much assumptions about differences with regard to mathematical compe-
tencies of the three different student populations. Everybody will agree that the mathemati-
cal practices in courses for mathematics majors will differ from those of mathematics for 
engineers, although a clear theoretical analysis of the differences has not been done so far. 
We think that ATD offers an adequate theoretical framework for doing this. At least in Ger-
many, we can also observe a third mathematical culture for primary and lower secondary 
teacher students that is again different. We have specific series of books and lecture notes 
for these students (often developed by researchers in mathematics education who are re-
sponsible for these courses), where this culture in general is “closer” to the school mathe-
matics culture: more visual representations, more application, more motivations and explicit 
relations to school mathematics, intuitive kinds of reasoning, reflective elements, more 
mathematics as a process than mathematics as a ready-made product etc. These differences 
are differences as compared to the culture of mathematics for mathematics majors. On the 
other hand these courses also differ from school mathematics in various aspects, such as the 
preciseness of concept definitions, the role of proof and systematic theory development. In 
a sense this culture can be reinterpreted as a bridging culture itself between school and the 
university mathematics for mathematics majors. That is why we built on this culture when 
we were designing bridging course materials in the VEMINT project for ALL students. 

A good case in point for such books are Kirsch (2004) and Müller, Steinbring & Wittmann, 
2004). Last but not least, the culture of school mathematics is also not homogeneous, most 
federal states in Germany distinguish basic from advanced level in their university bound 
school courses, and there is evidence that the relative importance of techniques, technology 
and theory in the sense of ATD is different and not just the quantity of content.According to 
those different groups of studies bridging courses follow up different goals representing a 
different understanding about a helpful bridge between school and university mathematics. 
We will try to make distinctions after we have introduced some notions from ATD. 

Some notions from ATD 
ATD (Chevallard, 1992, 1999; Winslow, Barquero, Vleeschouwer & Hardy 2014) aims at a 
precise description of knowledge and its epistemic constitution. Its concepts allow explicat-
ing institutional specificities of knowledge and related practices. Behind this approach is the 
conviction that cognitive-oriented accesses tend to misinterpret contextual or institutional 
aspects of practices as personal dispositions. A basic concept of ATD are praxeologies, which 
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are represented in so called “4𝑇-models (𝑇, 𝜏, 𝜃, 𝛩)” consisting of a practical and a theoreti-
cal block. The practical block (know how, “doing math“) includes the type of task (𝑇) and 
the relevant solving techniques (𝜏). The theoretical block (knowledge block, discourse nec-
essary for interpreting and justifying the practical block, “spoken surround“) covers the 
technology (𝜃) explaining and justifying the used technique and the theory (𝛩) justifying 
the underlying technology. Praxeologies give descriptions of mathematics by reference 
models that are activity oriented (techniques, technologies). The interconnectedness of 
knowledge is modelled by ATD by means of local and regional mathematical organizations 
that allow contrasting and integrating practical and epistemological aspects in view of dif-
ferent institutional contexts. Therefore ATD is in particular helpful in analyzing mathematical 
knowledge and its different institutional realizations within different learning contexts.  

Towards a Praxeological Characterization of Different Bridging Courses 
We will concentrate on bridging courses that take place between finishing school and begin-
ning university courses and aim at bridging the praxeologies at school and university level. It 
is clear that the mathematical competences of students after school are not the same but 
rather heterogeneous. Therefore bridging courses have to offer materials and learning situa-
tions that fit to very different competence prerequisites. In the following we blind out such 
variations and related questions concerning didactical processes and consider “simply” 
knowledge in the institutional perspective of school and university studies formulating ab-
stract reference models in the sense of ATD. Of course, designing courses requires taking 
into account further ideas that blend with ATD, for example the subject scientific approach 
as discussed in Hochmuth & Schreiber (2015). This also means that the existing bridging 
courses show much more variance than reflected in our abstract distinctions.  

Following Winslow & Grønbæk (2013) we refer to the notion 𝑅𝐼(𝑥, 𝑜) introduced by Cheval-
lard, (1991) to indicate the relation of a position 𝑥 (roles of persons such as teachers and 
students) within an institution 𝐼 to a praxeology 𝑜. We will consider in the following three 
institutions: school (𝑆), university (𝑈) and the transition from school to university that is in 
the following represented by an arrow as well as by the diagrams as such. Within the insti-
tution school the position 𝑥 is given by the school student 𝑠 and within university by the 
student 𝜎. In ATD-terms the transition from school to university can then be noted by 

 𝑅𝑠(𝑠, 𝑜) → 𝑅𝑈(𝜎, 𝜔), 
 

where 𝑜 represents a praxeology within school and 𝜔 some praxeology within university. 

The mathematical praxeologies 𝜔 of different study programs are different as such but also 
with regard to what components of school mathematical praxeologies are relevant for their 
own praxeologies. Techniques 𝜏(𝑜), technologies 𝜃(𝑜) or theories 𝛩(𝑜) can be differently 
relevant. For instance, maths in engineering courses will require routine skills in techniques 
for calculating derivatives and integrals, and may direct a bridging course to make sure that 
these skills are active knowledge of their beginning students, some new tasks and corre-
sponding techniques 𝜏(𝑜) maybe added that are needed in engineering classes. They could 
have been part of the school curriculum but have been deleted in recent curriculum reforms 
(for instance logarithms as a function). Math major bridging courses may wish to point out 
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the gaps and problems with the theoretical foundation in school mathematics as regard to 
the concept of differentiability or the need for a precise limit concept for defining deriva-
tives. But engineering courses may also wish to make the technologies 𝜃(𝑜) to a topic, as 
the requirements in engineering math contexts may include a more profound knowledge 
with regard to the application conditions of techniques that are used.  

Ideal types of bridging courses 

Type A: Improving skills in applying techniques steming from current or past school 
mathematics 
We can symbolize the bridging process as 𝑅𝑆(𝑠, 𝑜) →𝑖 𝑅𝑈(𝜎, 𝜔[𝜏(𝑜)]). 

Examples include techniques for solving quadratic and exponential equations, for manipulat-
ing terms with fractions, roots and trigonometric expressions. The course can go beyond 
school mathematics in adding new tasks and new techniques that are relevant for the future 
university courses. We know that school mathematics is split into many different local or 
regional mathematical organizations. The bridging course can aim at relating these organiza-
tions and systematize them. For instance, a course can have a chapter on „Solving equa-
tions“, where the different types of equations of 12 years schooling are systematically re-
lated to each other. This systematization may touch the level of technologies. But in general, 
these courses do not profoundly change the technology and the theory level. In this precise 
sense they remain completely on the level of school mathematical praxeology, although 
they may extend and add tasks and techniques. 

Type B: Improving technical skills and technological competences in school math-
ematical contexts  
The transition we mean can be symbolized as  𝑅𝑆(𝑠, 𝑜) → 𝑅𝑈(𝜎, 𝜔[𝜃(𝑜)]). 

Type A courses often focus on sets of skills that in principle can be performed by computer 
algebra systems.  However, also the mathematical practice of engineers requires a deeper 
knowledge about the technology of the techniques used: What are the conditions where 
techniques can be applied? What are the limitations of techniques? What is the efficiency of 
a certain technique? Declarative technological knowledge has to be strengthened. For in-
stance, what type of technique can be used with a certain type of equation (simple algebraic 
manipulations, solution formulas, numerical or graphical solutions). Moreover, these courses 
may be also based on a didactical assumption, namely that learning techniques by heart 
without understanding the underlying technology is often not a sustainable investment of 
time. For instance, a bridging course may raise the question why or in which sense the rule 
for adding fractions is “true” and which arguments can be out forward against the “simpler” 
rule 

    
𝑎
𝑏
 + 𝑐

𝑑
 = 𝑎+𝑐

𝑏+𝑑
 . Or, students may have to become aware that the rule 

𝑎
𝑏
 + 

𝑐
𝑑

 = 
𝑎𝑑+𝑏𝑐

𝑏𝑑
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was explicitly introduced at school level for natural numbers 𝑎, 𝑏, 𝑐, 𝑑, whereas it has to be 
used in university mathematics for all real numbers 𝑎, 𝑏, 𝑐, 𝑑, which can be expressions with 
roots and fractions itself. It is a real didactical challenge to “justify” this general use of the 
latter formula. We know of no school or university book that makes this a big topic, but it 
may become part of the technological knowledge communicated in a bridging course.  

Type C: Introducing theoretical and technological aspects of university mathemati-
cal practice within topics from school mathematics 
An example topic in such a course can be the function concept or the divisibility of natural 
numbers. The notion of function that students bring with them to the university does not 
pay much attention to domain and codomain, it is often bound to representations of function 
rules by simple formulas that must contain a variable 𝑥. Properties of functions such as in-
tervals of monotonic growth are “seen” in “the” graph etc. Bridging courses as the math 
major version of VEMINT introduce university definitions and new tasks and techniques re-
lated to domain, codomain, injectivity and bijectivity etc. Simple proofs and theorems are 
formulated according to the university mathematics culture. However, much more time and 
explanation is provided as compared to a standard university lecture. 

Another topic can be divisibility of numbers, where the course can start with developing 
general proofs for seemingly simple statements such as that the sum of three consecutive 
natural numbers is always divisible by three (the course Kempen & Biehler (2015) refer to) 
up to a little theory of rules for divisibility and their justification (Hilgert & Hilgert, 2012). 
Gueudet (2008) also suggested such topics as domain for activities on the level of the new 
university mathematics culture. Grieser (2013) follows this approach on similar topics and 
concepts of school mathematics but in a sense that emphasizes mathematics as process of 
problem solving and proving in the sense of Polya. A symbolization for this type of bridging 
course could be 𝑅𝑆(𝑠, 𝑜) →𝑖 𝑅𝑈(𝜎, 𝜔[𝛩(𝑜)]), meaning that a theory and technology on the 
level of university mathematical practice is provided for familiar objects of school mathe-
matics, however the tasks and techniques related to these objects are largely transformed.  

Type D: Reflecting relations between school and university mathematics  
Type C courses may help students coping with the transition because such courses reduce 
„cognitive load“ and can enhance self-efficacy and confidence in coping with the new cul-
ture. The new culture is introduced at a reduced speed for familiar objects. However, from 
the perspectives of future Gymnasium teachers this may not be enough. Reflective ele-
ments seem to be necessary that explain the reasons for the new culture and make the dif-
ferences much more explicit than the reflective elements of a usual type C course can do in 
limited time. 

This would be something that Felix Klein had in mind when he wrote his book. But let us rely 
on a metaphor. We can regard a type C course as a compact language course where not 
much reflection between the old language and the foreign language can be done, but the 
new language is practiced under favorable conditions before giving access to the foreign 
language culture where the students have to survive themselves. A profound reflection on 
the difference and relation between both cultures will be better possible after one has be-
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come a part of the new culture. Therefore a second type of bridging course might be placed 
at the end of a study program for teachers. Such courses may contain „interface tasks“ in 
the sense of Thomas Bauer (2013) or may be part of courses on didactics of mathematics, 
such as Danckwerts & Vogel (2006) on teaching and learning calculus, which, among others 
should make the reflection between the different cultures a topic of their curriculum.  
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The question as to what content knowledge mathematics teachers need is highly relevant for the 
design of education programs for mathematics teachers. Hence, scholars have been trying to find 
answers to this question for a long time. Corresponding theoretical conceptualizations and empirical 
studies of teachers’ mathematical content knowledge diverge widely, however. – This is particularly 
valid with respect to whether the construct is oriented more towards school mathematics or towards 
academic mathematics. In this presentation, we will discuss different theoretical as well as empirical 
approaches and suggest a conceptualization of the content knowledge needed for teaching second-
ary mathematics. Furthermore, results of an empirical study with 505 pre-service teachers will be 
presented. 

Introduction and Theoretical Background  
Empirical findings indicate that professional knowledge of mathematics teachers contributes 
to instructional quality and to student learning (e.g., Krauss et al., 2008; Hill, Schilling, & Ball, 
2005; Hill et al., 2008). Consequently, there is a consensus that professional knowledge is a 
key goal of teacher education. Models of teachers‘ professional knowledge consider content 
knowledge (CK) and pedagogical content knowledge (PCK) as important components (Shul-
man, 1986; Baumert et al., 2010). Though CK and PCK are directly addressed in courses of 
teacher education programs at university, the development of teachers’ professional 
knowledge is still not comprehensively understood. In particular, there is a lack of longitudi-
nal studies that analyze how CK and PCK integrate to domain-specific teacher knowledge. 

One of the main challenges for research on teacher education lies in an adequate modeling 
and assessment of domain-specific knowledge. For the subject mathematics, some stand-
ardized tests of teachers’ CK and PCK already exist. However, these existing approaches 
differ widely in the way they operationalize CK and PCK. In particular, in the case of CK the 
existing tests range from mathematical knowledge as it is taught in school to knowledge as 
it is considered in first semester courses in teacher education programs. In our study KiL 
(Measuring the professional knowledge of pre-service mathematics and science teachers, 
Kleickmann et al., 2013), we also developed instruments for the assessment of mathematics 
teachers’ professional knowledge and focused especially the component CK. We started our 
consideration from the question which type of mathematical knowledge teachers need for 
teaching mathematics. In Germany, the mathematics program for pre-service teachers for 
the upper secondary level is similar to that of undergraduate students majoring in mathe-
matics. Accordingly, we analyzed how CK acquired in undergraduate courses on scientific 
mathematics can become effective in a school context and how this kind of CK can be as-
sessed.  
                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 

http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121


khdm-Report, Nr. 05, 2017 

22 

 

In the following, we (1) review the state of research on (pre-service) teachers‘ CK and PCK, 
(2) argue for the need of distinguishing content knowledge (CK) from school-related content 
knowledge (SRCK) and describe tests for CK, SRCK, and PCK, and finally (3) present empirical 
results on the structure of teachers’ domain-specific knowledge.  

The Constructs CK and PCK in Recent Research  
Following the idea of Shulman (1986), the constructs CK and PCK were operationalized in 
several empirical studies investigating mathematics teachers. Although studies were able to 
show the importance of the assessed knowledge components for teaching quality and stu-
dent learning (e.g., Baumert et al., 2010), they could not answer the important questions 
concerning the structure of mathematics teachers‘ knowledge. In particular, the relation be-
tween CK and PCK is still unclear: though these components are clearly separable from a 
theoretical point of view, most studies found that CK and PCK are highly correlated and 
sometimes even hard to separate (Hill et al., 2004, 2005; Krauss et al., 2008; Blömeke, Kai-
ser, & Lehmann, 2008). However, it is not clear if this strong correlation is caused by the 
underlying conceptualizations, the different operationalizations or if it mirrors the nature of 
the investigated cognitive structures. Although CK is often described as knowledge on scien-
tific mathematics acquired through formal teacher education, most operationalizations are 
predominantly focused on mathematical school content. This means in particular that the 
corresponding tests are not appropriate to measure learning progress in pre-service teacher 
education. Similarly, PCK is described as a kind of knowledge specific for teaching mathe-
matics but existing test items are often solvable by analytical mathematical competences so 
that the delineation is difficult (Buchholtz, Kaiser, & Blömeke, 2014).  

Regarding the conceptualization of PCK, we follow the suggestions of the COACTIV study 
and consider three components: knowledge of instructional strategies for a certain topic, 
knowledge about student cognitions, and knowledge about the learning potential of math-
ematical tasks (Baumert et al., 2010). Following Shulman we understand PCK as the 
knowledge “which goes beyond knowledge of subject matter per se to the dimension of 
subject matter knowledge for teaching” (Shulman, 1986, p. 9, emphasis in original) and sug-
gest a rigorous operationalization in this sense. This means in particular that test items do 
not have a predominant mathematical demand and cannot be solved by mathematical 
means (e.g. a mathematical argumentation; cf. Buchholtz, Kaiser, & Blömeke, 2013). 

In our study, CK was conceptualized as academic mathematical knowledge, as it is presented 
in mathematics courses in formal teacher education. In this conceptualization CK is of a simi-
lar type as the type students majoring in a mathematics program are acquiring. Hence, it is 
clearly beyond school mathematics and our conceptualization of CK is not restricted to ele-
mentary mathematics from a higher viewpoint (Klein, 1908). Instead, we follow the original 
idea of Shulman (1986) who wrote that “subject matter understanding of the teacher [to] 
be at least equal to that of his or her lay colleagues, the mere subject matter major” (p. 9). It 
is clear that the programs for pre-service secondary teachers and students majoring in 
mathematics differ in the number of mathematics courses and also in the specialization of 
the content. Accordingly, we restricted the expected CK of pre-service teachers to the 
courses in a bachelor mathematics program. This encompasses the introductory courses 
(e.g. analysis, linear algebra) as well as specific topics of advanced courses (e.g., classical 
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and modern algebra) which provide a deeper understanding of the mathematical content in 
school. 

School-related content knowledge as applied content knowledge for teaching  
If we conceptualize CK and PCK as presented in the previous section, then specific aspects of 
mathematical knowledge for teaching are missing. Both conceptualizations do not encom-
pass knowledge about school mathematics and curricular knowledge (aspects which are 
considered as important by Shulman, 1986, or Hill et al., 2005). Moreover, beyond the con-
tent and its sequencing, teachers are faced with two additional mathematical challenges 
which influence their instruction and which originate from the non-trivial relation between 
school mathematics and academic mathematics. First, teachers must be able to reduce and 
simplify academic mathematical content so that it is accessible for students on a certain age 
level (cf. “unpacking mathematics”, Ball & Bass, 2003). For example, in German schools in 
grade 9 rational numbers are extended to real numbers. Teachers should be aware that a 
construction of real numbers via Cauchy sequences or Dedekind cuts is not accessible for 
grade 9 students. In contrast, the idea of approximating irrational numbers with the help of 
nested intervals is feasible. Second, teachers must know how topics of school mathematics 
are rooted in academic mathematics. For example, to understand the (non-trivial) validity of 
0.999… = 1 which occurs in grade 6 in German schools, teachers must be able to understand 
0.999… as a geometric series which converges. The understanding that a limit process plays 
a significant role in this case leads the teachers to possible obstacles for students learning 
and helps her/him to analyze students arguments for or against the identity 0.999… = 1. 

Summarizing the previous information, it becomes clear that there is a need for a construct 
related to teachers’ mathematical knowledge which is not CK or PCK (as conceptualized in 
the previous section). This construct encompasses a specific type of mathematical content 
knowledge, namely a type of content knowledge applied in a school context for the teach-
ing purpose. We denote it as school-related content knowledge (SRCK). The idea that teach-
ers’ CK must be more than academic content knowledge and has to be complemented by a 
kind of applied knowledge was already discussed decades ago. Due to space limitations we 
just mention the reflections on the profession of mathematics teachers and on the relation 
between academic mathematics and school contents from the 1970s and 1980s (cf. meta-
mathematics, e.g. Fletcher, 1975, Dörfler & McLone, 1986; cf. mathematical background 
theory, e.g. Vollrath, 1988).  

Investigating CK, SRCK and PCK of Pre-service Mathematics Teachers  
Following the idea of three dimensions of domain-specific teacher knowledge (CK, SRCK, 
and PCK), we developed a test instrument (see Figure 1 for sample items). For the item de-
velopment, we conducted a curricular analysis of teacher education programs of different 
universities and curricula for school mathematics (both for secondary level, i.e. grades 5-13, 
in Germany). In total, we obtained 118 items (PCK: 31, SRCK: 34, CK: 54) that showed ade-
quate psychometric properties in a pilot study. The items were bundled in two test booklets, 
one test booklet for pre-service mathematics teachers for the academic track, the other for 
pre-service mathematics teachers for the non-academic track. The booklets had a consider-
able overlap of 81 items in order to allow a linking of the data on a common scale using IRT. 
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The tests covered topics from arithmetics/algebra, analysis, geometry, stochastics, and nu-
merics with a strong focus on arithmetics/algebra. According to the curricular analysis the 
test items cover the characteristics of university-based teacher education sufficiently. The 
testing time was 120 minutes for each booklet. The items were scored according to a scor-
ing rubric with partly dichotomous, partly partial scores (0, 0.5, 1). The 34 open answer 
items were scored by two independent raters and the interrater-reliability was considered 
as sufficient since Cohen‘s Kappa was above 𝜅 =.73 for all items.  
 

 

Figure 1: Sample items for PCK, SRCK and CK. 

Sample and Methods  
The sample of the study comprised N = 505 pre-service mathematics teachers from differ-
ent German universities. On average, the students were 23.3 (SD = 2.9) years old and in 
their 5.9 semester (SD = 2.64). About 64% of the students aimed to teach in academic track 
schools (German Gymnasium). The data was modeled by a multidimensional random coeffi-
cients multinomial logit model (MRCML; Adams, Wilson & Wang, 1997) in order to examine 
the structure of pre-service teachers’ knowledge. In total, 98 items satisfied the required 
cutoffs for item quality indicators and were included in the model.  
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Results  
To examine the separability of the constructs CK, SRCK and PCK, we contrast a three-
dimensional model against a one-dimensional model (g-factor model). Moreover, since 
SRCK can be considered as knowledge related to CK as well as to PCK, we also include two 
two-dimensional models combining SRCK with CK and with PCK respectively (see Table 1). 
We used the Bayesian information criterion (BIC) to compare the fit of the different models. 
Here, smaller values indicate a better model fit and a difference greater than ten is consid-
ered as very strong evidence for the model with the lower value (Raftery, 1995, p. 141).  

A comparison of the model fit indices given in Table 1 indicates that the three-dimensional 
model fits the data best, whereas the one-dimensional model shows the worst model fit. 
The EAP/PV reliabilities of the three scales are good or satisfying (CK: .83 with 41 items, 
SRCK: .80 with 31 items, PCK: .69 with 26 items). The latent correlation between PCK and CK 
was estimated as r(PCK,CK) = .54, indicating a good separability of the constructs. At the 
same time, SRCK correlated highly with both the CK (r(SRCK,CK) = .83) and the PCK 
(r(SRCK,PCK) = .85) dimension on the latent level. Hence, the construct SRCK cannot be con-
sidered as identical to CK or PCK.  
 

Model  Description  n  df  BIC  

3D between model  CK – SRCK – PCK  112  44023.82  44720.97  

2D between model A  CK/SRCK – PCK  109  44159.14  44837.62  

2D between model B  CK – SRCK/PCK  109  44069.37  44747.85  

1D general factor model  CK/SRCK/PCK  107  44312.97  44979.00  

n = total number of estimated parameters, df = final deviance  
 

Table 1: Comparison of alternate models 

Discussion and Outlook  
The empirical results provide evidence for a three-dimensional structure of pre-service 
mathematics teachers‘ domain-specific knowledge. In particular, school-related content 
knowledge (SRCK), conceptualized as applying academic mathematical knowledge in the 
context of school mathematics for teaching purposes, turned out to be separable from CK as 
academic knowledge although it seems to be deeply rooted in CK. It was also found to be 
distinguishable from PCK. However, it is an open question whether SRCK as a kind of applied 
knowledge can be directly taught in teacher education programs on its own or whether it 
needs academic CK as a consistent and structured foundation. A first step to answer this 
question is to investigate the longitudinal development of pre-service teachers’ mathemati-
cal SRCK and to identify the role of CK as influencing factor. In this contribution, we focused 
SRCK in its relation to CK as academic content knowledge. We want to mention that the pre-
sented results can also be interpreted in a way that considers SRCK as a link between CK and 
PCK (Loch, Lindmeier and Heinze, 2015). 
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Teaching mathematics at university level: 
how we think about teaching and its development  

Barbara Jaworski  

Loughborough University 
(United Kingdom) 

This paper focuses on the study and development of teaching at university level, involving both re-
search projects and projects largely of a developmental nature. It points to the research and profes-
sional literature to acknowledge the existing (and growing) literature base and to contrast studies of 
different types. It considers a range of theoretical perspectives underpinning research studies and 
goes on to look at studies which focus on innovations in teaching, pointing particularly to the issues 
they raise for teachers and the wider community. It concludes with a vision of developmental re-
search which enhances knowledge in practice as well as contributing to knowledge in the scientific 
community. 

Introduction 
Mathematics has a very long history. So does mathematics teaching. From sitting at the feet 
(metaphorically or literally) of the master, to working with the wizziest technology, there 
are expectations that learners gain from being taught and recognition that teaching can take 
a wide range of forms. I talk, here, mainly about teaching at the university level, where, it is 
clear, there are certain traditions of teaching and many current practices, some of which use 
the most up to date digital affordances. 

In this presentation I intend to address what it means to teach for all those practitioners and 
researchers for whom the question is important: this includes mathematicians, mathematics 
educators and mathematics education researchers and of course the students whose task is 
to learn and make sense of mathematics. I draw on a growing literature which includes re-
search studies and teachers’ personal accounts relating to the nature of teaching. I will or-
ganise the talk under four headings as follows: 

• Traditions and practices  

• Theoretical perspectives and constructs  

• Pedagogy and Innovation  

• Development and research  

1. Traditions and practices 
In the UK, in a report for the Institute of Mathematics and its Applications (IMA), Hawkes and 
Savage (2000 p. ii). wrote about “The Mathematics Problem”: 

Evidence is presented of a serious decline in students’ mastery of basic mathematical 
skills and level of preparation for mathematics-based degree courses. This decline is 
well established and affects students at all levels. As a result, acute problems now 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 

http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121
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confront those teaching mathematics and mathematics-based modules across the full 
range of universities 

Without going into details of the skills and level of preparation expected, this statement 
suggests a challenge to those teaching mathematics at this level to find ways to help stu-
dents who are ill-prepared for university-level study in mathematics. In this section, I draw 
attention to a number of themes, all relating to ways in which mathematics teaching is con-
ceptualised and conducted, with the learning or understanding of mathematics by students 
as the motivating factor. 

a) Traditional approaches to university teaching: the predominance of the lecture (e.g., 
Pritchard, 2010; 2015) 

b) Professional, or pedagogic literature in which university teachers of mathematics ex-
pound their own perspectives on organising and teaching a particular topic (e.g., 
Uhlig, 2003) or offer an approach to a mathematics topic based on a well-defined 
pedagogic approach (e.g., Burn, 1982; Mahavier, 1999) 

c) Research studies which are based in some theoretical perspective (e.g., cognitive or 
sociocultural theories) or which adopt or develop theoretical constructs to explain 
the research approach and its findings (e.g., Nardi, Jaworski & Hegedus, 2005). 

d) Research studies which seek to illuminate mathematics teaching as it is seen in 
Higher Education currently (e.g. Hemmi, 2010; Treffert-Thomas, 2015; Weber, 
2004); and, in contrast, those which seek to explore innovative approaches to teach-
ing, for example inquiry-based teaching (e.g., Chang, 2010; Jaworski and Matthews, 
2011) 

e) Research studies which contrast the teaching of mathematics to mathematics stu-
dents with the teaching of mathematics to students in other disciplines such as engi-
neering. What differences do we, or would we expect to see (e.g., Alpers 2007; Her-
nandez-Martinez & Harth, 2015; Mokhtar & Rohani, 2010). 

A longer paper would delve into the details of these various areas of literature; in this re-
spect see Treffert-Thomas & Jaworski, 2015; Abdulwahed, Jaworski & Crawford, 2012. 

2. Theoretical perspectives and constructs 
It seems fair to say that theoretical work in relation to teaching mathematics in Higher Edu-
cation is in its infancy. Partly we see theories being adopted and extended from research 
into teaching and learning at school level. For example, cognitive theories such as construc-
tivism can be found explicitly or implicitly in accounts from research, or from assumptions of 
those writing about a study: examples include studies which seek to promote students’ 
mathematical constructions (e.g., Mokhtar & Rohani, 2010), or describe teaching approaches 
as being ‘constructivist’ in style (e.g., O’Callaghan, 1998). Such studies may bring with them 
constructs developed at school level within a constructivist base; for example, socio-
mathematical norms developed by Yackel and Cobb, (1996) are used at undergraduate level 
by Rasmussen and Kwon (2007). Sociocultural studies can be seen similarly to reflect ap-
proaches at school level; for example Jaworski & Potari (2009) characterised mathematics 
teaching using models from Activity Theory which is used similarly by Jaworski et al, (2012) 
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to characterise teaching mathematics to undergraduate engineering students. Again con-
structs used to characterise teaching at school level are employed with adaptation in Higher 
Education, for example, the Teaching Triad, developed by Potari & Jaworski (2002) was used 
by Jaworski (2002) to analyse tutorial teaching at university level.  

The fundamental difference between constructivist and sociocultural theories lies in the ori-
gins of coming to know. Constructivism focuses centrally on the learning/coming-to-know 
of the individual: whether this be based within a cognitivist study of the individual making 
sense of some concepts in mathematics or within a social setting in which the individual 
responds to communication from others around. In a sociocultural frame, the focus is on 
how knowledge grows within the social setting and is framed by social factors and issues in 
the local and wider environments which impose on learning. It is within such social perspec-
tives that the cases described below are situated and we see how the social setting imping-
es on the ways in which learning is conceived (Lerman 1996; Jaworski 2015). 

3. Pedagogy and Innovation 
Regarding pedagogy in university mathematics teaching, there is considerable agreement 
that lecturing is the most common traditional mode of teaching. However, we see disa-
greement on the nature of lecturing. For example, Wu (1999) speaks enthusiastically in fa-
vour of lecturing, whereas Millet (2001) decries Wu’s arguments and suggests that lecturing 
is at the root of students’ lack of mathematical understanding. Pritchard, who writes very 
positively about the value of lecturing, nevertheless acknowledges: 

[L]ectures are regarded in many disciplines as outdated and ineffective … the funda-
mental objection is that lectures are essentially transmissive: they are simply a medi-
eval technology for equipping students with slightly inaccurate versions of the lectur-
er’s own notes (Pritchard, 2015, p. 58). 

Perhaps as a consequence of such views, there is a growing literature related to innovation 
in mathematics teaching at university level addressing ways in which teachers have attend-
ed to and thought about the learning of their students and devised innovative approaches to 
teaching. See for example, Abdulwahed, Jaworski & Crawford (2012) and Treffert-Thomas & 
Jaworski (2015) which provide examples of new approaches to teaching, promoting learning 
and experimentation around the ideas on which they are based.  

Here, I provide three examples from recent research and development at my own universi-
ty.  

3.1 Engineering students understanding mathematics (ESUM) 
This study was conducted within the national HE STEM1 programme with the aim of support-
ing first year engineering students’ more conceptual understandings of mathematics. It had 
been noticed that many of these students arrived from their school A-level courses2 with 

                                                 
1 HE STEM is a nation-wide programme in Higher Education (in England and Wales) focusing on extending 
knowledge and practice in Science, Technology, Engineering and Mathematics. http://www.hestem.ac.uk/ 
2 ‘A level’ is a high-stakes national assessment in the final years of secondary schooling (in England and Wales) 
preparing students for study in higher education. 

http://www.hestem.ac.uk/
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very procedural understandings, of concepts in basic calculus (functions for example) which 
were seen as central to their higher level studies in engineering mathematics. A team of 
three experienced teacher-researchers and one research assistant designed an innovation 
(to promote more conceptual understandings) involving an inquiry-based approach to the 
teaching, including four elements: inquiry-based questions and tasks, a GeoGebra environ-
ment for graphical exploration, small group inquiry in mathematics and an assessed small-
group project. The innovation was implemented in the first semester of a two-semester first 
year module with provision of 2 lectures and 1 tutorial per week for 2x13 weeks. The group 
project was assessed as part of the first semester’s activity and the whole module was as-
sessed by traditional examination at the end.  

The inquiry-based nature of the innovation included the design and use of mathematical 
tasks that should draw students into mathematical inquiry and a deeper engagement with 
mathematics than had been the case previously. It was implemented in tutorials such that 
students in a small group (n = 4) worked together on given tasks using GeoGebra to provide 
the dynamic graphical environment that the tasks required. For example, students were 
asked to explore a quadratic function as shown in a part of the task in Figure 1 below. Here 
task design envisaged students using the graphical environment to find out relationships 
between lines and curves and to see functions as mathematical objects with a range of 
properties. 

Figure 1: A typical inquiry-based task 
 
The study was conducted from a sociocultural perspective in which the wider setting and its 
influences on learning and teaching were significant to analyses of data. Data were collected 
from observations of lectures and tutorials, lecturer oral and written reflections, delibera-
tions of the teaching team; surveys of student factors and perspectives, and post-teaching 
focus-group interviews with students. While scores on a traditional style exam were on av-
erage 10% higher than for previous cohorts, students’ focus-group views on the module 
indicated that though they understood the purposes of the intervention they nevertheless 
would have preferred a more traditional approach to the module. Analyses drew attention 
to ways in which cultural and systemic factors (e.g. student cultures; university systems) 
dealt in complex ways with student cognition in making sense of mathematics within the 
inquiry-based approach. An activity theory analysis enabled us to make sense of these find-
ings (Jaworski & Matthews, 2011; Jaworski, Robinson, Matthews & Croft, 2012). 

Task 1 
1b)  If we have the function 𝑓(𝑥)  =  𝑎𝑥2  +  𝑏𝑥 +  𝑐. 
 What can you say about lines which intersect this function twice? 
1c)  Write down equations for three straight lines and draw them in GeoGebra 

Find a (quadratic) function such that the graph of the function cuts one of your lines 
twice, one of them only once, and the third not at all and show the result in  
GeoGebra. 

 Repeat for three different lines (what does it mean to be different?)  



khdm-Report, Nr. 05, 2017 

31 

 

The study was based socioculturally, using as a 
framework for analysis Cultural-Historical Activi-
ty Theory (CHAT), which draws attention to the 
complexity of (social) factors mediating human 
activity, in this case collaborative learning in a 
mathematical modelling task. Modelling tasks 
were designed to address mathematical topics 
within the module, such as ordinary differential 
equations, and used in tutorials with groups of 
students. Data from observations of the stu- 
dents’ activity were transcribed and analysed 
 

3.2 Group work in mathematical modelling 
This study also involved teaching mathematics to engineering students, this time in a one-
semester second year module in which the innovation involved activity of students in small 
groups (4 to 5), using mathematical modelling tasks, as a complement to traditional style 
lectures. The research question guiding analysis was: How do social interactions in a small 
group collaborative work influence the students’ mathematical sense making and the out-
come of the activity? (Hernandez-Martinez & Harth, 2015). 

 

Figure 2: The CHAT framework 
 

using the CHAT frame with close attention to interactions between the students in a group. 
Here, students in their groups were the subject of the activity with the object of engaging 
together with mathematics to promote their learning. Mediating artefacts included the mod-
elling tasks with which they worked. The authors write: 

The composition of the community (with their members’ individual histories 
of previous and present engagement with mathematics), the rules (explicit and im-
plicit) and the division of labour (which influences whose ideas are valuable or not) 
shape in unique ways the social interactions that occur in a group activity. These in-
teractions determine the tools that are available to the group, which in turn mediate 
the sense making process and influence the outcome of the activity. (Hernandez-
Martinez & Harth, 2015, p. 3.63) 

 

Analyses showed that students had difficulties with engaging in meaningful mathematical 
conversation and thinking within a group related to the wider social context of university 
mathematics teaching. It raises issues for teaching related to preparing students for the 
needs and expectations of group work that is designed for their deeper mathematical un-
derstandings. 

3.3 Second year mathematics beyond lectures (SYMBoL) + peer support 
The SYMBoL project was again funded by HE STEM. It was a curriculum development project 
in which 4 interns (mathematics students at the end of their second year) worked with lec-
turers to provide resources for students in two second year mathematics modules “vector 
spaces” and complex variables”. The two modules were found ‘hard’ by students taking 
them, and the aim was to get students’ perspectives on what might be provided to help. 

Over 6 weeks in the summer, in consultation with the module lecturers, the interns worked 
on their contribution of resources, with, every day, a discussion over tea with as many of 
the mathematics staff (mathematicians and mathematics educators) as were around to dis-
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cuss with them. These discussions were rich in mathematics – the interns brought examples 
from their preparation of resources and these were discussed with and between members 
of staff. As a result modifications were made to the resources and interns became more 
confident in sharing their activity with staff. Staff felt they learned much about student per-
spectives through this engagement. Thus, students and staff felt the mutual understandings 
that developed were important to staff-student relations in the department. In the following 
academic year, each module was taught using the materials the students had designed. 

An important outcome from the project was the creation of a peer support system in which 
third year students (having been ‘trained’ by staff in the Mathematics Education Centre and 
University Teaching Centre to enact a student-centred pedagogy) held (voluntary) tutorials 
each week with the second year students taking the two modules,. Research demonstrated 
that the second year students who participated in these tutorials had a higher achievement 
in their final examinations, even after controlling for their lecture attendance and prior at-
tainment (Duah, Croft & Inglis, 2013). A thesis documenting this study is forthcoming (Duah, 
in press). 

Key learning outcomes from these studies 
The three examples provided above have a number of aspects in common (beyond their 
common university base). All are research and development projects. The first two are overt 
in their use of small-group activity to promote student involvement and engagement with 
mathematics. Both show that pedagogic theory is not sufficient in and of itself to ensure 
students learning through (well designed) pedagogy. Both involve teaching mathematics to 
engineering students and this raises questions about the needs of engineering students in 
contrast with students studying mainstream mathematics. The third project was conducted 
with mathematics students engaging with more traditionally taught mathematics. Here, it 
was the students themselves who were bringing the more innovative pedagogy to the 
modules. 

The sociocultural nature of all three projects means that analyses are conducted with atten-
tion to the wider social influences on (innovative) teaching-learning processes. They reveal 
characteristics of the university (mathematics) cultures which impinge on students’ attitudes 
and approaches to their learning. So, we cannot focus only on the mathematics and on stu-
dents’ mathematical cognition if we want to explore and develop teaching approaches to 
improve student success. These studies are starting to point to issues in teaching and learn-
ing of which university teachers need to be aware, particularly since students entering uni-
versity are increasingly less well prepared for university mathematics study. 

Development and research 
Developmental research is research which both studies the developmental process and con-
tributes to development (Jaworski, 2003). Contribution to development might be either im-
plicit or explicit. In Jaworski, Mali & Petropoulou (in review), we point to a number of studies 
of university mathematics teaching in which development was largely implicit, and (largely) 
not a focus of the research. In other words, as researchers we are aware of development 
that came along with the project, but is not documented through analyses and findings. In 
the first and second examples above, development was an important part of the research 
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design since the teacher in each case was a member of the team conducting the research, 
and had the overt intention to learn from the research process and to develop teaching. 
Such learning is both dynamic in being fed back to the ongoing teaching as teaching pro-
gresses from year to year (enhancing knowledge in practice), and potentially influential in 
being communicated through research reporting at both professional and scientific levels 
(enhancing knowledge in the wider community). 

In the third project, the teachers were established research mathematicians, both working in 
recognisably traditional lecturing modes. It is undoubted that they learned during the active 
search for new resources for their module, as did many of their colleagues who were a part 
of the tea-time discussions in the project. What is documented is the activity of the interns, 
the resources they designed, and perspectives of the teaching staff (Duah, in press). We are 
not able to report on whether or how the subsequent teaching of the two modules devel-
oped from this activity. However, as mentioned above, the peer support activity had im-
portant outcomes for students’ learning of mathematics in the two modules. The student-
centred pedagogy developed with the peer leaders was an important outcome of the entire 
project. A bi-product of this project was a positive development in relations between math-
ematics educators leading the project and mathematicians participating in it. Such joint pro-
jects have an important role to play in bringing these two groups closer in understanding 
issues in teaching and pedagogy. 

In the above, I have sought to demonstrate the issues arising when mathematics education 
researchers study aspects of learning and teaching mathematics at university level, the 
learning derived from such research and the need for more of it. The contrasting of different 
forms of pedagogy provides insights into ways in which pedagogy relates particularly to the 
learning of mathematics. Sociocultural frames allow a relating of students’ learning of math-
ematics and the teaching they experience with the cultural and systemic issues affecting 
what is possible in university teaching settings. Research in these areas is still in its infancy. 
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Coordinating analyses of individual and collective 
mathematical progress  

Chris Rasmussen1, Megan Wawro2, Michelle Zandieh3  

1San Diego State University, 2Virginia Tech, 3Arizona State University 
(United States of America) 

A challenge in mathematics education research is to coordinate different analyses to develop a more 
comprehensive account of teaching and learning. We contribute to these efforts by expanding the 
constructs in Cobb and Yackel’s (1996) interpretive framework that allow for coordinating social and 
individual perspectives. This expansion involves four different constructs: disciplinary practices, class-
room mathematical practices, individual participation in mathematical activity, and mathematical con-
ceptions that individuals bring to bear in their mathematical work. The first two constructs offer in-
sights into the mathematical progress of the classroom community while the latter two address the 
progress of individual students. While the four analyses are informative in their own right, power is 
added with a discussion of combining and coordinating across the four analyses. Such networking 
strategies and methods have considerable potential for increasing explanatory, descriptive, and pre-
scriptive power. 

Introduction 
Recent work in mathematics education research has sought to integrate different theoretical 
perspectives to develop a more comprehensive account of teaching and learning (Cobb, 
2007; Hershkowitz, Tabach, Rasmussen, & Dreyfus, 2014; Prediger, Bikner-Ahsbahs, & Ar-
zarello, 2008). One of the early efforts at integrating different theoretical perspectives is 
Cobb and Yackel’s (1996) emergent perspective and accompanying interpretive framework. 
In this paper we expand the interpretive framework for coordinating social and individual 
perspectives by offering a set of four constructs for how to examine the mathematical pro-
gress of both the collective and the individual. In the full paper we use data from an under-
graduate mathematics course in differential equations to illustrate these constructs by con-
ducting four parallel analyses and make initial steps toward coordinating across the anal-
yses. In this expanded abstract we introduce the four constructs. 

In the interpretative framework, classroom mathematical practices, a collective construct, 
are viewed as reflectively related to the individual construct of conceptions and activity. 
Grounded in a need to more completely account for undergraduate students’ mathematical 
activity and the desire to connect with existing cognitively-based literature, we expand 
these two constructs into the following four constructs: disciplinary practices, classroom 
mathematical practices, participation in mathematical activity, and mathematical concep-
tions. While each of the four constructs are informative in their own right, power is added 
when one combines and coordinates analyses across the four constructs. Indeed, Prediger, 
Bikner-Ahsbahs, and Arzarello (2008) argue that such networking strategies and methods 
are sorely needed, and they describe the benefits that such a coordination or combination 
affords. For instance, they state that “developing empirical studies which allow connecting 
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theoretical approaches” may further the scientific discipline of mathematics education re-
search by allowing us “to gain an increasing explanatory, descriptive, or prescriptive power” 
(p. 169). 

The four analytic constructs and respective research questions are shown in Figure 1.  
 

 
Disciplinary practices 

Classroom  
mathematical practices 

Participation in  
mathematical activity 

Mathematical  
conceptions 

 
What is the mathematical 
progress of the classroom 
community in terms of 
the disciplinary practices 
of mathematics? 
 

What are the norma-
tive ways of reasoning 
that emerge in a par-
ticular classroom? 

How do individual students 
contribute to mathematical 
progress that occurs across 
small group and whole class 
settings?  

What conceptions do 
individual students bring 
to bear in their mathe-
matical work? 

Figure 1. Four constructs for analyzing mathematical progress and respective research questions 
 
In the next section we operationalize each of these constructs and then conclude with a dis-
cussion on various ways for coordinating analyses.  

Analytic Constructs 
Classroom mathematical practices.  Classroom mathematical practices refer to the normative 
ways of reasoning that emerge as learners solve problems, explain their thinking, represent 
their ideas, etc. By normative we mean that there is empirical evidence that an idea or way 
of reasoning functions as if it is a mathematical truth in the classroom. This means that par-
ticular ideas or ways of reasoning are functioning in classroom discourse as if everyone has 
similar understandings, even though individual differences in understanding may exist. The 
production of these normative ways of reasoning constitute the mathematical progress of 
the classroom community. The empirical evidence needed to document normative ways of 
reasoning is garnered using the approach developed by Rasmussen and Stephan (2008) and 
Stephan and Rasmussen (2002). This approach applies Toulmin’s argumentation scheme to 
document the mathematical progress.  

In his seminal work, Toulmin (1958) created a model to describe the structure and function 
of argumentation. The core of an argument consists of three parts: the data, the claim, and 
the warrant. In an argument, a speaker or speakers makes a claim and presents evidence or 
data to support that claim. Typically, the data consist of facts or procedures that lead to the 
conclusion that is made. To further improve the strength of the argument, speakers often 
provide more clarification that connects the data to the claim, which serves as a warrant, or 
a connector between the two. Finally, the argumentation may also include a backing, which 
demonstrates why the warrant has authority to support the data-claim pair. Toulmin’s mod-
el also includes qualifiers and rebuttals. To document normative ways of reasoning, one be-
gins by using Toulmin’s model to code every whole class discussion, resulting in anywhere 
from a few to more than a dozen coded arguments. The collection of all coded arguments 
results in an argumentation log for all whole class discussions. The next step involves taking 
the argumentation log as data itself and looking across all class sessions to see what math-
ematical ideas become part of the class’ normative ways of reasoning. The following two 
criteria are used to determine when a way of reasoning becomes normative:  
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Criterion 1:  When the backings and/or warrants for a particular claim are initially present 
but then drop off. For example, criterion 1 is satisfied when the same claim gets debated on 
more than one class period or more than once during the same class period and in subse-
quent occurrences the backing or warrants drop off. 

Criterion 2:  When certain parts of an argument (the warrant, claim, or backing) shifts posi-
tion within subsequent arguments, indicating knowledge consolidation. For example, criteri-
on 2 is satisfied when once-debated conclusions shift function over time and serve as un-
challenged data or justification for future conclusions.  

The use of this methodology requires classrooms in which genuine argumentation is a norm. 
That is, students are routinely explaining their reasoning, indicating agreement or disagree-
ment with other’s reasoning, etc. 

Disciplinary practices.  Disciplinary practices refer to the ways in which mathematicians go 
about their profession. The following disciplinary practices are among those core to the ac-
tivity of professional mathematicians: defining, algorithmatizing, symbolizing, modeling, and 
theoremizing (Rasmussen, Zandieh, King, & Teppo, 2005). Not all classroom mathematical 
practices are easily or sensibly characterized in terms of a disciplinary practice. This is be-
cause classroom mathematical practices capture the emergent and potentially idiosyncratic 
collective mathematical progress, whereas a disciplinary practice analysis seeks to analyze 
collective progress as reflecting and embodying core disciplinary practices. For example, an 
important algorithm in differential equations is Euler’s method, which is a numerical tech-
nique for obtaining an approximate solution to an initial value problem. When students have 
opportunities to create and use an algorithm, such as Euler’s method, they are positioned to 
participate in the disciplinary practice of algorithmatizing. The term algorithmatizing is simi-
lar to the term “theoremizing” in the following way. Each has a noun as the root (algorithm 
and theorem) made into a verb. The verb form reflects a focus on student activities, namely 
creating and using algorithms in the former and conjecturing and proving in the latter. When 
students are engaged in genuine argumentation it is often the case that conjectures are 
made and then justifications are created to support or refute the conjectures. The term theo-
remizing is used to explicitly encompass both conjecturing and steps toward justifying the 
assertions.  

Our use of the term “disciplinary practice” is somewhat similar to how Moschkovich (2007) 
describes “professional discourse practices”, which includes the discourse practices of aca-
demic mathematicians. We agree with Moschkovich that such practices are culturally and 
historically situated. Moreover, while perhaps not all academic mathematicians would char-
acterize their work in terms of defining, algorithmatizing, symbolizing, and theoremizing, we 
argue that these broad categories do capture much of what professional mathematicians do 
and represent what Moschkovich (2007) argues are “socially, culturally, and historically pro-
duced practices that have become normative” (p. 25). In our analysis of classroom data, 
however, we employ a grounded approach (Glaser & Strauss, 1967) to characterize the 
ways in which the students engage in these broader disciplinary practices. That is, we do not 
impose any set of a priori categories of student activity related to defining, algorithmatizing, 
symbolizing, or theoremizing, but rather allow the data to shape how we characterize the 
features of a disciplinary practice that emerge in a particular class. 
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Mathematical conceptions.  As students solve problems, explain their thinking, represent 
their ideas, and make sense of others’ ideas, they necessarily bring forth various concep-
tions of the ideas being discussed and potentially modify their conceptions. From this point 
of view, we seek to answer the question: What conceptions do individual students bring to 
bear in their mathematical work? For example, in the inquiry oriented differential equations 
class where students reinvented Euler’s method, individual students thought about rate of 
change in various ways, many of which are exemplified in the literature on ratio and rate 
(e.g., Thompson, 1994; Zandieh 2000).  

Analyses of individual student conceptions can make use of constructs from prior work that 
have characterized different views that students can have of key mathematical ideas. In-
deed, there is a rich literature that has characterized various ways that students might think 
about particular ideas in linear algebra, analysis, differential equations, and abstract algebra. 
For example, both Sierpinska (2000) and Hillel (2000) developed overarching frameworks 
for analyzing student reasoning across the linear algebra curriculum.  Other studies analyzed 
student difficulties with the notions of basis, linear transformation, and rank, among other 
concepts.  

Participation in mathematical activity.  This construct for analyzing individual mathematical 
progress is used to answer the question: How do individual students contribute to the math-
ematical progress that occurs across small group and whole class settings? To address this 
question, our approach draws on recent work by Krummheuer (2007, 2011). Krummheuer 
characterizes individual learning as participation within a mathematics classroom using the 
constructs of production design and recipient design. In production design, individual speak-
ers take on various roles, which are dependent on the originality of the content and form of 
the utterance. The title of author is given when a speaker is responsible for both the content 
and formulation of an utterance. The title of relayer is assigned when a speaker is not re-
sponsible for the originality of either the content nor the formulation of an utterance (i.e., 
responsible for neither content nor form). A ghostee takes part of the content of a previous 
utterance and attempts to express a new idea (i.e., is responsible for content but not form), 
and a spokesman is one who attempts to express the content of a previous utterance in 
his/her own words (i.e., is responsible for form but not content). 

Within the recipient design of learning-as-participation, Krummheuer (2011) defines four 
roles: conversation partner, co-hearer, over-hearer, and eavesdropper. A conversation part-
ner is the listener to whom the speaker seems to allocate the subsequent talking turn. Thus, 
the conversation partner is not only directly addressed but also evidences a high level of 
engagement. Listeners who are also directly addressed but do not seem to be treated as the 
next speaker are called co-hearers. Whereas the previous two listening roles involved direct 
participation of the recipient to the utterance, the final two involve indirect participation. 
Those who seem tolerated by the speaker but do not participate in the conversation are 
over-hearers, and listeners deliberately excluded by the speaker from conversation are 
eavesdroppers.  
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Conclusion 
At a minimum, the four constructs provide an opportunity to analyze the same phenomenon 
from four distinct points of view – as if one were gazing at the same object from various 
vantage points in order to capture many qualitative nuances about the object. In addition to 
using various combinations of the four constructs to more fully interpret students’ mathe-
matical progress, there exist multiple ways in which coordination across the four constructs 
is possible. For instance, one could choose an individual student within the classroom com-
munity and trace his/her utterances for the ways in which they contributed to the emer-
gence of various normative ways of reasoning and/or disciplinary practices. Alternatively, 
when considering a normative way of reasoning, a researcher could investigate who the 
various individual students are that are offering the claims, data, warrants, and backing in 
the Toulmin schemes used to document the normative way of reasoning. How do those 
contributions coordinate with those students’ production design roles within the individual 
participation construct? For instance, does a student ever utilize an utterance that a different 
student authored as data for a new claim that he is authoring, and in what ways may that 
capture or be distinct from other students’ individual mathematical conceptions? We also 
imagine ways to coordinate across the two individual constructs as well as across the two 
collective constructs. For example, how do patterns over time in how student participation in 
class sessions relate to growth in their mathematical conceptions? Are different participation 
patterns correlated with different mathematical growth trajectories? In what ways are par-
ticular classroom mathematical practices consistent (or even inconsistent) with various dis-
ciplinary practices? Finally, research could take up more directly the role of the teacher in 
relation to the four constructs.  
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Transforming aspirations of future mathematics teachers into 
strategies in context  

Irene Biza 

University of East Anglia, Norwich 
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In this paper I present a collaborative research and development programme, in which we design 
situation specific tasks and use them to explore, challenge and change knowledge and beliefs of in- 
and pre-service secondary mathematics teachers. In this work we use practice-based and research-
informed tasks in which we invite teachers to consider a mathematical problem and typical student 
responses (and teacher reactions) to this problem. So far the programme develops in four stands: (1) 
mathematical knowledge for teaching; (2) classroom management and mathematics learning; (3) 
disability and inclusion in the mathematics classroom; and, (4) meta-use of tasks and task develop-
ment. Examples of tasks from these strands will be discussed in the session. 

Introduction 
In this paper I present a collaborative research and development programme since 2005 on 
secondary mathematics teachers’ knowledge and beliefs and the transformation of these 
knowledge and beliefs into pedagogical practices. Research acknowledges the overt dis-
crepancy between theoretically and out-of context expressed teacher beliefs about mathe-
matics and pedagogy and actual practice (e.g. Speer, 2005) and a substantial body of work 
in mathematics education explores the use of specific teaching cases (e.g. Markovits and 
Smith, 2008) in teacher education. Our research sets out from the assumption that teacher 
knowledge is better explored and developed in situation-specific contexts and to this aim 
we design situation specific tasks (thereafter Tasks) – i.e. tasks based on specific mathemat-
ical teaching scenarios – and then use them for research and teaching purposes. These class-
room scenarios: are hypothetical but grounded on learning and teaching issues that previous 
research and experience have highlighted as seminal; are likely to occur in actual practice; 
have purpose and utility; and, can be used both in (pre- and in-service) teacher education 
and research through generating access to teachers’ views and intended practices.  

So far, seven mathematics educators from the UK, Greece and Brazil have been involved in 
this programme and the research we have conducted – and we anticipate to conduct in the 
following years – is divided in four strands: (1) mathematical knowledge for teaching (e.g. 
mathematical thinking; pedagogical and didactical practices in the mathematics classroom); 
(2) classroom management and mathematics learning (e.g. interference of the classroom 
management with the learning of mathematics); (3) disability and inclusion in the mathe-
matics classroom (e.g. deaf and blind students strategies in dealing with mathematical prob-
lems); and (4) meta-use of tasks and task development (e.g. asking teachers to create their 
own classroom situations and tracking the impact this engagement has on their knowledge 
and beliefs). The format of the Task varies across the programme – e.g., monologue or dia-
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logue; script or video clip format; one or more students; teacher intervention or not; etc. – in 
order to address different issues and different aspects of these issues in relation to the 
teaching and learning of mathematics. In the following sections I describe briefly each one 
of these strands.  

Mathematical knowledge for teaching 
In the Tasks of this strand we invite teachers to: solve a mathematical problem; examine a 
(fictional yet research-informed) solution proposed by a student (or more than one stu-
dents) in class and, in some versions, a (fictional yet research-informed) teacher response to 
the student; and, describe the approach they themselves would adopt in this classroom situ-
ation (Biza, Nardi & Zachariades, 2007, 2009; Nardi, Biza & Zachariades, 2012; Zachariades, 
Nardi & Biza, 2013).  

From the teachers’ responses to these Tasks we aimed to explore teachers’ subject matter 
knowledge and their gravitation towards certain types of pedagogy and didactical practices 
(Biza et al., 2007). So far, teacher responses in these Tasks, joined with post-Task individual 
semi-structured interviews, have allowed us to access a range of teacher knowledge and 
beliefs (epistemological and pedagogical). For example, in (Biza et al., 2009) we discuss the 
multiple didactical contracts on the role of visualisation in mathematics and mathematical 
learning that teachers are likely to offer their students under those influences (e.g. is a 
graph-based argument an acceptable argument in the mathematics classroom?). Additional-
ly, teachers’ responses to these tasks and interviews with them revealed a complex set of 
considerations that teachers take into account when they determine their actions (Nardi et 
al., 2012) – what Herbst and colleagues (e.g. Herbst and Chazan 2003) describe as the prac-
tical rationality of teaching. We demonstrate how teacher arguments, not analysed for their 
mathematical accuracy only, can be reconsidered, arguably more productively, in the light of 
other teacher considerations and priorities: pedagogical, curricular, professional and personal 
that influence the decisions teachers make in the classroom. Recently, we introduced a for-
mat in which an elaborated design that enriches and develops the previous one in which 
apart from the student flawed (fictional) response(s), a fictional response from a teacher 
has been added (Zachariades, et al. 2013). With this design we aim to explore, not only 
whether the teacher can identify a student mathematical error and what their pedagogical 
intentions are, but, also, how they evaluate the pedagogical approach followed by another 
(fictional) teacher. 

Classroom management and mathematics learning 
The motivation for this strand came from the research and practice based observation that 
classroom management often interferes with working towards commendable learning goals 
(e.g. Kersting, 2008). The Tasks we designed for this strand are based on realistic classroom 
scenarios that combine seminal mathematics learning and teaching issues with classroom 
behaviour issues (e.g. classroom management, conflicts between students or between stu-
dents and teacher). For example, in one of these Tasks a class is asked to solve the problem: 
“When 𝑝 = 2.8 and 𝑐 = 1.2, calculate the expression: 3𝑐2 + 5𝑝 − 3𝑐(𝑐 − 2) − 4𝑝  ”. Two stu-
dents reach the result (10) in different ways: Student A substitutes the values for 𝑝 and 𝑐 
and carries out the calculation; Student B simplifies the expression first and then substitutes 
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the values for 𝑝 and 𝑐. When Student A acknowledges her difficulty with simplifying expres-
sions, Student B retorts offensively (“you are thick”) and dismissively (“what can I expect 
from you anyway?”). Both solutions are correct and Student B’s approach particularly 
demonstrates proficiency in important algebraic skills. But Student B’s behaviour is ques-
tionable. 21 prospective mathematics teachers were asked to write, and then discuss, how 
they would handle this classroom situation. Results indicate commendable norms teachers 
aspire to establish in their classroom: peer respect; value of discussion; and, investigative 
mathematical learning. However, they often miss the opportunity to engage students with 
metacognitive discussions and mathematical challenge as they focus on behavioural issues 
or endorse dichotomous and simplistic views of mathematical learning (Biza, Nardi & Joel, 
2015). 

Disability and inclusion in the mathematics classroom – CAPTeaM 
This is a recent development of our programme and relates to inclusive education and 
teacher perspectives on how students with disabilities (in our studies so far deaf, blind and 
with Down syndrome) learn mathematics. Our project is called CAPTeaM (Changing Ableist 
Perspectives on the Teaching of Mathematics) and is funded by the British Academy. Specif-
ically, according to the ableist world-view, the able-bodied are the norm in society and disa-
bility is an unfortunate failing, a disadvantage that must be overcome. Within education, 
ableism results in institutional and personal prejudice against learners with disabilities, and 
has a drastic effect on approaches to teaching (Nardi, Healy & Biza, 2015). Our project in-
vestigates how ableist perspectives impact on the teaching of mathematics, a discipline 
where public perceptions of ability as innate often shape pedagogical perspectives and prac-
tice. In this strand the expertise of a team of Brazilian researchers (Lulu Healy and col-
leagues) on mathematics learners with disabilities joined with our Task design approaches to 
develop and trial Tasks that invite teachers to reflect upon the challenges of mathematics 
teaching in inclusive classrooms. The Tasks in this strand are of two types. In Type I, using 
the approach described by Biza et al. (2007), the scenario is inserted as a video clip into a 
brief narrative about a fictional mathematics classroom. We then invite participants (pro-
spective mathematics teachers) to assume the role of the teacher of this class and evaluate 
the interactions of the disabled students that were presented in the video clips – first indi-
vidually and in written responses to a set of questions, and then in a group discussion 
(which we also video-record). In the tasks of Type II, which aim to provoke reflections about 
how access to mediational means differently shapes mathematical activity, participants 
work in groups of three. Two members of the group are asked to solve a mathematical 
problem whilst, temporarily and artificially, deprived of one of their sensory or communica-
tion canals. A group discussion of their experiences follows.  

For example, in one of the Type I Tasks students work on exploring how they would de-
scribe what a square-based pyramid is to someone who doesn’t know. André, who is blind, 
and has been working with 3D solids, offers a description (seen by participants in a video 
clip) shaped around the idea of a square based pyramid being built out of gradually shrinking 
squares. Preliminary analysis of 81 responses indicates, for example, preference for switch-
ing André’s perspective on a square-based pyramid towards the textbook definition of a 
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pyramid (faces, edges and vertices) and preference for a discussion of a square-based pyr-
amid as a composition of fixed shapes (four triangles and a square) (Nardi et al., 2015).  

Teachers’ Narratives: Meta-use of tasks and task development 
This strand is in resonance with works such as Zazkis, Sinclair and Liljedahl (2013) on teach-
ers’ creation of their own lesson plays. We started working on this direction last year when 
we invited prospective teachers to write a brief teaching/learning scenarios from their own 
first experiences from schools. We collected 12 scenarios, we grouped them thematically 
and we invited trainees to discuss these in groups, produce posters of the key points of the 
discussion and then share these points with the whole group. The themes we identified con-
cern issues such as mathematical learning (e.g. misconceptions, instrumental and relational 
understanding); classroom management; student engagement; and, prospective teachers’ 
relationships with more experienced teachers. Group and class discussion were audio-
recorded and transcribed. We are now analysing these in close collaboration with practising 
teachers. We see these narratives as opportunities for teachers’ reflection on their practice. 
Furthermore, we see the benefits of the collaboration of researchers and teachers in the 
analysis of these narratives in both research and professional development. 

Conclusion 
In conclusion, from our research the last 10 years, we credit this task design with allowing 
insight into pre- and in-service teachers’ considerations. Teachers very often express com-
mendable aspirations without, however explaining how they would transform these aspira-
tions into practice. We propose the further implementation of this situation specific task de-
sign in teacher education programmes towards the transformation of these aspirations of 
future mathematics teachers into teaching strategies.  
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The KLIMAGS Project aimed at knowing more about the knowledge, competencies, beliefs, interest, 
and strategies that beginning primary teacher education students have in arithmetic and geometry, 
how that knowledge etc. develops in the first year of university studies, and what effects targeted 
innovations in university courses in arithmetic and geometry have on this development. The presen-
tation focuses on the research design of KLIMAGS and on results concerning courses in geometry at 
the University of Kassel. 

Introduction 
In the last fifteen years, there have been several studies that have investigated the profes-
sional competence of future or present mathematics teachers. The first such study was the 
Michigan project (see Ball & Bass, 2003 or Hill, Rowan & Ball, 2005) that conceptualized and 
measured the „mathematical knowledge for teaching“ of primary school teachers. They dis-
tinguished, following a well-known categorisation suggested by Shulman (1986), among 
content knowledge (CK) and pedagogical content knowledge (PCK), and further among 
„common“, „specialized“ and „horizon“ content knowledge respectively among knowledge 
of „content and students“, „content and teaching“ and „content and curriculum“. The MT21 
and TEDS-M projects (see Schmidt, Tatto, Bankov et al., 2007, and Tatto, Schwille, Senk et 
al., 2008; in particular for the results of the German project component see Blömeke, Kaiser 
& Lehmann, 2008, and Blömeke, Kaiser & Lehmann, 2010) investigated, comparatively on 
an international level, the mathematical CK and PCK of future primary and secondary school 
teachers. They found considerable differences in students‘ knowledge, strongly correlated 
to the learning opportunities in teacher education. The COACTIV project (see Kunter, 
Baumert, Blum et al., 2013) studied the CK and PCK of a representative sample of German 
secondary school teachers. Because the study was linked to the longitudinal component of 
the German PISA study 2003/04, COACTIV could link the teacher data to the student data 
and detected strong correlations between teachers‘ CK and PCK, on the one hand, and be-
tween PCK, aspects of instructional quality and students‘ learning progress on the other 
hand (see Baumert, Kunter, Blum et al., 2010, for details). 

So in all studies, the future or practising teachers‘ CK proves to be a highly important com-
ponent of teachers‘ professional competence. It is a major task of pre-service teacher edu-
cation to supply future teachers with the necessary CK. At the same time, the TEDS study 
has revealed considerable shortcomings in German primary school teachers‘ CK (see Döhr-
mann, 2012, for details). This finding is in accordance with the unsatisfactory results of pri-
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mary school students‘ performance in various university examinations that most university 
teachers experience regularly. That was the starting point of the KLIMAGS project. 

The KLIMAGS Project 
The KLIMAGS Project, embedded in the khdm centre for university mathematics education 
research (www.khdm.de), investigates the mathematics courses for first year primary 
school students at the universities of Kassel and Paderborn. KLIMAGS started in October 
2010, directed by P. Bender, R. Biehler, W. Blum and R. Hochmuth, and aimed at knowing 
more about the knowledge, competencies, beliefs, interest, and strategies which beginning 
primary education students have in arithmetic and geometry, how that knowledge etc. de-
velops in the first year of university studies, and what effects targeted innovations in uni-
versity courses in arithmetic and geometry have on this development. The research design 
of KLIMAGS was as follows. The student cohort 2011/12 was the control group (CG), both in 
Kassel and in Paderborn, with courses in arithmetic and geometry as taught in the years 
before; there were four points of measurement in the first two semesters. The student co-
hort 2012/13 was the experimental group (EG), with certain innovations in these courses, 
and the same points of measurement. For these measurements, special achievement tests 
were developed, with 52 items in arithmetic and 26 items in geometry. All tests were IRT 
scaled, with EAP/PV reliabilities between .75 and .85 and item parameters ranging from –3.3 
to 3.6. 

The KLIMAGS sub-study “Geometry Kassel” 
Our presentation in Hannover will concentrate on the courses in geometry in Kassel. In 
summer semester 2012, the beginners (CG) were investigated in a pre-/post-test design, 
and in summer semester 2013 the corresponding cohort (EG) in the same way. The innova-
tion in the EG lecture and the accompanying written exercises consisted of a treatment of all 
modes of representation (enactive, iconic, symbolic) for the topic of congruence mappings, 
an explicit change between these representations as well as a meta-cognitive explication of 
connections and a reflection on the relevance for students’ learning, whereas in the CG lec-
ture only iconic and symbolic representations were treated, with deliberately no meta-
cognitive elements. The rationale for this innovation is rooted in well-known findings about 
positive effects of a transfer between different modes of representation (mainly on the 
school level). The innovation in the EG tutorials consisted of a professionalization of the tu-
tors of the course, in particular through tutor training in diagnosis, feedback and learning 
support; in parts we could draw on experiences from the LIMA project (see Biehler, Hänze, 
Hochmuth, Becher, Fischer, Püschl et al., 2013). This innovation is rooted in recent findings 
about the importance of the professional knowledge of teachers for instruction quality as 
well as for the learning progress of their students (see introduction). All other aspects of the 
two courses (especially the lecturer) were as identical as possible, both in content and in 
method. The time which was used in the EG for the transfer between representations and 
for discussions on the meta-level was used in the CG for further examples of concrete con-
gruence mappings. Treatment control took place by analyses of lecture scripts and students’ 
written exercises. Our research questions were whether this intervention actually results 
first in a better understanding of EG students compared to CG students for the content area 
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of congruence mappings and second in a significantly higher achievement progress of the 
EG, mainly resulting from their higher progress in the innovated content area. 

Results 
Our sample consisted of 255 students, mainly in their first year of study. The sub-sample 
relevant for the evaluation consisted of the 98 students who have taken part in both pre- 
and post-tests, 53 in the CG and 45 in the EG. On a 5 % level, there was no significant dif-
ference in the test results between the total sample and the sub-sample of 98 students. We 
had a rotation test design with two test versions, 13 of the 26 items identical and 13 items 
rotating. 

The main quantitative results are given in the following table (obtained by variance analyses 
with repeated measurements over latent person abilities). 

  Pre-test geometry Post-test geometry 

CG -1.01 (0.86) 0.36 (0.84) 

EG -1.18 (0.96) 0.66 (1.14) 

Thus, the essential results are: 

 The pre-test results of CG und EG are not significantly different (t-test,  
𝑡 (96) = 0.896,  𝑝 = .372) 

 Both groups show a big achievement progress (so both courses were efficient) 

 The achievement progress of the EG is significantly higher (ANOVA and F-test, 
𝐹(1) = 4.766; 𝑝 < .05; 𝜂2 = .047) 

So, the results show the expected advantage of the EG, and a closer inspection shows 
strong effects of items from the innovated content area (the number of items is too small 
for a split into two sub-tests, like we did in arithmetic). With our design, we cannot disen-
tangle the effects of the innovation in the lecture and of the innovation in the tutorials. The 
test results indicate that the main source for the effects is the innovation in the lecture, per-
haps moderated by the innovation in the tutorials. 

The advantage of the EG is also revealed by qualitative analyses of students’ solutions. For 
instance, for an item where the students had to compose two symmetry mappings (a reflec-
tion and a rotation) of an equilateral triangle, the solution rates in the post-test were 37 % 
in the CG and 51 % in the EG. Of course, such results are still disillusioning from a normative 
point of view. 

Outlook 
For the courses in arithmetic in Kassel we have obtained similar results. The intervention 
was analogous: multiple representations, change between them and meta-cognitive expli-
cation for the content area of divisibility rules based on position systems. Here, we found 
significant advantages for the EG in the sub-test corresponding to the innovation and no 
differences in the rest of the test (see Blum, Biehler, Hochmuth, Bender, Kolter, Haase et al. 
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in preparation). So an obvious conclusion from both courses is that lecture innovations as 
implemented in Kassel seem promising. However, the aim ought to be to have much more 
transfer to other content areas, what perhaps can be reached by even more meta-cognitive 
explications and reflections and a stronger connection of the mathematics courses with the 
corresponding courses in didactics of mathematics. And there have, of course, to be rein-
forced efforts to raise primary students‘ interest in mathematics, to change their beliefs, to 
advance strategies, and thus to contribute to a further improvement of their achievement 
progress. 
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Disagreements between mathematics at university level 
and school mathematics in secondary teacher education  
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In this paper, a project regarding developmental aspects as well as research aspects will be discussed. 
The project essentially concerns prospective mathematics teachers and their perceived disagree-
ments between university mathematics and school mathematics that Felix Klein called double discon-
tinuity. Firstly a motivation for the mentioned project is given. Afterwards the current schooling of 
prospective mathematics teachers is sketched and ways of expanding the traditional schooling in 
terms of reducing the perception of a double discontinuity are outlined with a few examples. Fur-
thermore, first findings from quantitative and qualitative pilot studies regarding the beliefs of pro-
spective teachers are provided. 

Background 
At the beginning of the last century, Felix Klein mentioned in the preface of one of his text-
books the notion of a “double discontinuity” in the mathematical socialization of mathemat-
ics teachers (Klein, 1908, 1). This term characterizes the awareness of discrepancies be-
tween school mathematics and academic mathematics that prospective teachers have to 
deal with, and also the transition from university studies to a professional career as a math-
ematics teacher in school. As a consequence of the perception of a double discontinuity, 
prospective teachers may lose sight of university mathematics after their exams and, thus, 
teach on the basis of experiences from their own schooldays (cf. Hefendehl-Hebeker, 2013). 
Even nowadays, this phenomenon still seems to exist, and prospective teachers frequently 
believe that the topics of university mathematics do not meet the demands of their later 
profession in school (ibid.). 

Considering this background, there is a need to reduce the discontinuities between universi-
ty mathematics and school mathematics. Taking the experience of scholars into account, 
prospective teachers are mostly not able to make the connections between school mathe-
matics and university mathematics on their own. Also, remarks by lecturers in this regard do 
not seem to have sufficient results (cf. Bauer, 2013). Developing the desired bridges and 
establishing such bridges in secondary teacher education, particularly in the first two years 
of the university studies, is the main aim of a project at the University Kassel called f-f-u 
(integration of mathematics and mathematics education at university) that combines devel-
opment and research. The mentioned concept is part of a larger project named PRONET 
(professionalization by integration) designed to promote teacher education in different fac-
ulties. In this paper, we briefly discuss how an integration of university mathematics and 
aspects of teaching mathematics could be applied to reduce the mentioned double disconti-
nuity in the mind of prospective teachers. 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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Fig. 1: Task “diagonals” for prospective mathematics teachers (cf. Blum et al., 2006, 121) 
 

University mathematics for prospective teachers 
Upper secondary teachers in Germany are obligated to take two basic subjects during their 
university studies, e.g. mathematics and chemistry, and also to enroll some general courses 
in pedagogy, psychology, etc. Therefore (and in contrast to other countries) prospective 
teachers have got a smaller amount of activities in their basic subjects in comparison to stu-
dents who follow a major programme in these subjects. However, as usual at German uni-
versities, prospective mathematics teachers at the University Kassel are enrolled in the 
same mathematics courses as mathematics majors, particularly in the first semesters. The 
mathematics courses, e.g. analysis, usually include four hours per week of plenary lectures 
plus two additional courses in a week in which student teachers organize exercises in small 
groups. These exercises rely on homework of the university students and contain a range of 
tasks that can be solved on the basis of the plenary lectures. The prospective teachers’ per-
formance referring homework yields to an admission for final exams referring to the course 
(e.g. analysis). 

Within the scope of homework and exercises the mentioned integration of mathematics and 
mathematics education is intended. The main idea of the project f-f-u is to enrich the set of 
tasks for homework with teacher-oriented tasks that are appropriate to illustrate connec-
tions between university mathematics and school mathematics. Aspects of developing these 
tasks as well as some examples are outlined in the following paragraph.  

Examples 
Actually, there are two directions of emphasizing bridges between school mathematics and 
university mathematics (Bauer, 2013). 

The first direction refers to bridging school mathematics and university mathematics. Specif-
ic tasks that we call teacher-oriented tasks could for example illustrate a need for advanced 
mathematics when dealing with mathematical issues in school. The following examples rep-
resent appropriate questions within the scope of school mathematics. 
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Fig. 5: Task “continuity” for prospective mathematics teachers 

 We want to add the areas of two rectangles. However, the edges of 
these rectangles overlap. Is the consequence of doing so that one 
of the tetragons has a smaller area?  

Fig. 2: Task “rectangles” for prospective mathematics teachers 
 
The second direction of emphasizing bridges between school mathematics and university 
mathematics includes the awareness that school-related questions sometimes need a deep-
er investigation represented by university mathematics. For example that means to analyze 
mathematical problems in school from a higher standpoint. Referring to the distinction of 
teachers’ professional knowledge by Ball et al. (2008), these tasks may include aspects of 
specialized content knowledge (SCK) as well as teachers’ knowledge of content and teach-
ing (KCT) and also teachers’ knowledge of content and students (KCS).  

In your lesson a discussion started about the question, whether 0.9� is equal to 1 or not.  

One student supposes: “Already in appearance, the figure 0.9� looks smaller than 1.” Another student 
states: “I guess 0.9� is equal to 1, but then it is somewhat rounded off.” Someone else considers: 
“One cannot decide this, because the infinite queue is incredible.” 

1) How would you comment on this topic? Can you give an adequate and school-oriented explana-
tion to your students? 

2) Provide a mathematical substantiation by means of the lecture about infinite series. 

Fig. 3: Task “period” for prospective mathematics teachers  
 

In the lecture we examined the derivative of functions of multiple variables. 

Now consider of introducing the derivative in school: What are the assets and drawbacks to intro-
duce the derivative by the limit of the difference quotient or by linear approximation? 

Fig. 4: Task “derivative” for prospective teachers (cf. Danckwerts & Vogel, 2006) 
 
A task that potentially demonstrates to prospective teachers a connection between univer-
sity mathematics and their own KCT could also refer to an overarching strategy of teaching 
mathematics, e.g. visualization (Arcavi, 2003).  

In schools, the conception of continuity is often based on a visual perception. Thus, a function would 
be defined as continuous if the graph can be traced “without taking off the pencil”. 

1) Analyze the function f(x) = � x ∙ sin 1
x    for x ≠ 0

      0        for x = 0
 in terms of continuity. Can you trace the graph 

of this function without taking off the pencil? 

2) Discuss the potentials and obstacles of visualization in the mathematics lesson particularly when 
dealing with the construct of continuity. 
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Further, a teacher-oriented task could include a student’s answer to an exercise that re-
quires a deep understanding of mathematics (Tall, 1992). For example, a typical exercise in 
school as well as in courses of mathematics education consists of a graphical differentiation 
or rather integration. Therefore, a student answer of a related exercise could be a starting 
point in order to reconsider rules and theorems of analysis. 

The derivative of a function in   𝑥 = 0  is  0 (𝑓’(𝑥) = 0). On the left side of 𝑥 = 0 the function has a 
positive slope, on the right side the function has a negative slope. 

Which shape of an extremum has got the function? Make a drawing of the function and give a rea-
son for your answer. 

   

Fig. 6: A task for pupils and a student’s answer 

Related research 
The main aim of the project f-f-u at the University Kassel is to develop an approach to inte-
grate aspects of mathematics teaching into mathematics courses. Thus, a first research 
question would be how prospective teachers deal with tasks which could illustrate connec-
tions between university mathematics and school mathematics. However, the main target 
of the project is to investigate changes of prospective teachers’ knowledge and beliefs re-
ferring to the double discontinuity that could be explained by the mentioned development 
of approach of courses for prospective teachers. For example, self-concept or anxiety with 
regard to mathematics (Hannula, 2012; Philipp, 2007) are related aspects that could be in-
corporated in the research by a mixed methods design (Creswell & Plano Clark, 2007) on the 
basis of the f-f-u program. A scale for measuring the prospective teachers’ perception of a 
disagreement between mathematics at university level and school mathematics was piloted 
in the winter semester 2015/16 and is provided in the following paragraph. 

In order to gain empirical evidence for the efficiency of the aforementioned method to show 
prospective teachers connections between university mathematics and school mathematics, 
students in the relevant mathematics courses will be assigned by random to a treatment 
group and a control group. While the control group should be taught traditionally, the treat-
ment group will get weekly teacher-oriented homework tasks that focus on bridging math-
ematics at university level and school mathematics in secondary teacher education. In this 
paper, we refer only to pilot studies. 
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Pilot Studies 
In the winter semester 2015/16 two basic mathematics courses at the University Kassel 
were selected in which the mentioned integration of mathematics and mathematics educa-
tion was piloted, i.e. “principles of mathematics” and “analysis”. Prospective mathematics 
teachers attend these courses usually in the first or rather in the third year of their universi-
ty studies. In contrast to students who major in mathematics, the teacher students got 
homework including an exclusive teacher-oriented task aiming to illustrate connections be-
tween university mathematics and school mathematics. 

The following teacher-oriented task was inserted into the course “principles of mathemat-
ics” and concerns different forms of proof and proving (Dreyfus et al., 2012). 

In the lecture we stated the theorem 

                           For each natural number n it counts: 1 +  2 +  … +  𝑛 =  𝑛 ∙ (𝑛+1)
2

 

and proved it already by induction.  

Now reveal this theorem for students (in grade five) in a concrete way. You can use 
for example figurate numbers to make this theorem plausible.  

 

Fig. 7: Task “induction” for prospective mathematics teachers 
 
The answers of the prospective teachers on the mentioned task were mostly elaborated and 
sometimes individual, too (“Dear student …”). All explanations proved to be age-based, 
partly even without variables or formulas. Thus, the emphasis was put on a visual approach 
based on generic proofs. 
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Fig. 9: Task “derivation rule” and an answer from a prospective teacher 
 

 

Fig. 8: Excerpts of prospective teacher’s answers on the task “induction” 
 
A further task which could lead to the experience that mathematics at university level is 
relevant for school mathematics was inserted into the course “analysis”. This teacher-
oriented task deals with a derivation rule which plays an important role in mathematics at 
school due to curve sketching. 

The following derivation rule is a special case of the product rule as seen in the lecture: 

If the function 𝑢(𝑥) is differentiable in place a, the function 𝑓(𝑥) =  𝑘 ∙  𝑢(𝑥) (with a real factor 𝑘) is 
also differentiable in place a by 𝑓′(𝑎) = 𝑘 ∙  𝑢′(𝑎) 

1) Give a formal proof of this derivation rule. 

2) Illustrate the mentioned rule to students. You can start therefor with a polynomial of grade 2 and 
consider how the graph of the function 𝑓(𝑥) arises from the graph of the function 𝑢(𝑥).  
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At the very beginning of the piloting, a group of 16 prospective teachers attending the 
mathematics course “analysis” was asked how they managed to deal with the teacher-
oriented tasks in their homework since it was the first time in their university studies that 
such tasks were deployed. The responses were quite different and contained comprised 
amazement as well as slight uncertainty: 

„Well, up to now, I have seen from mathematics lectures that the tasks were always 
somehow difficult and dealing with proofs and I got adjusted to it (laughing) – but 
then this specific task appeared“ 

„I noticed that this task was different and I did not exactly know, what was the ex-
pectation concerning a solution“ 

„I solved the first part of the exercise and then thought: Where is the rub? – I must 
have missed something“ 

Furthermore, a scale for measuring the prospective teachers’ perception of a disagreement 
between mathematics at university level and school mathematics was piloted in a mathe-
matics course (N = 60). All measures were taken on 6-point Likert scales1. 

University mathematics helps me to get better into school mathematics. 

University mathematics does not meet the demands of my later profession in school. 

I think that I require a deep understanding of mathematics in order to teach math in school. 

For me, it is meaningful to deal with mathematical topics which exceed school math. 

It irritates me that I have to attend mathematics courses at university. 

University mathematics has mostly little relation to school mathematics. 

I see correlations within school math much better by means of the mathematics course. 

The mathematics course promotes me to be in thinking “one step ahead” of the students. 

The relevance of university mathematics for the activity as a teacher in school is … 

Tab. 1: Piloted Items concerning the perception of a double discontinuity 
 
At a value of Cronbach's alpha 0.782 these items seem to have the potential to provide 
good internal consistency. Interestingly, a better result is achieved when regarding only the 
perspective teachers in the course (N = 35) and not all mathematics students (Cronbach's 
alpha 0.831). 

Concluding remarks 
The main topic of this paper was to discuss types of teacher-oriented tasks aiming to reduce 
the double discontinuity that prospective teachers might perceive when regarding the con-
nection of university mathematics and school mathematics. We made a distinction among 
tasks that show connections of topics in mathematics courses at university to similar con-
texts in school mathematics, that show the need of sophisticated mathematics when dealing 

                                                 
1 Whereas in the first eight items the university students may choose an option in a scale from “strongly disa-
gree” to “strongly agree”, the last item refers to a scale from “very low” to “very high”. 
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with school-related mathematical problems and that show the benefit of a deep mathemati-
cal background when evaluating students’ solutions. To measure changes in prospective 
teachers’ beliefs referring to the double discontinuity, we developed a questionnaire includ-
ing 9 items that actually seems to measure these beliefs.  

In the following steps of our research, we will compare two groups of prospective teachers – 
one group in a traditional course, one group in a course using the mentioned teacher-
oriented tasks – using amongst others the scale referring to the double discontinuity to 
prove if the type of the course has an effect of the prospective teachers’ beliefs. 
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Design research on inquiry-based multivariable calculus: 
focusing on students’ argumentation and instructional design  

OhNam Kwon1, YoungGon Bae2, KukHwan Oh3 

1Seoul National University, 2Michigan State University, 3Dukyang Middle School 
(1South Korea, 2United States of America, 3South Korea) 

In this study, researchers designed and implemented an inquiry based multivariable calculus course as 
well as to derive the characteristics of instructional intervention for enhancing students' argumenta-
tion in proof construction activities. Multiple sources of data were collected, students’ reasoning in 
the classroom discussions were analyzed within the Toulmin’s argumentation structure and the in-
structional interventions were gradually revised according to the iterative cyclic process of the design 
research. The students’ argumentation structures presented in the classroom gradually developed 
into more complicated forms as the study progressed, and the researchers derived the interventions 
were effective at improving students arguments.  

Introduction 
One of challenges in undergraduate mathematics classrooms is the shift from traditional 
teacher-centered and textbook-dominated approaches to new instructional approaches that 
are student-centered and inquiry-based (Holton, 2001). However, there is a shortage of 
studies that go beyond basic topics of calculus into areas such as multivariable calculus and 
differential equations (Rasmussen, 2014). Also, there is a lack of instructional tasks devel-
oped for inquiry-based learning (IBL) and a lack of research dealing with classroom interac-
tion and the instructor’s role in multivariable calculus teaching/learning. This study attempts 
to develop an inquiry-based multivariable calculus course and derive the characteristic of 
instructional interventions for enhancing students’s argumentation. The complexity of an 
argumentation structure depends on the reaction between arguments of the protagonist 
and critical responses of the antagonists. The complexity of an argumentation structure 
grows as the discussion is more active (van Eemeren et al. 2007). Thus, the argumentation 
structure analysis can serve as a quality criterion for mathematical inquiry through proof 
construction activities in IBL. Considering that learning in IBL is to learn to act and think like a 
mathematician, students’ change of argumentation structure is a proper criterion for the 
students’ learning in IBL. For this purpose, the researchers adopt an empirical approach to 
study students’ arguments in the classroom, and use Toulmin’s argumentation structure 
(1958, 2003) and the classification of argumentation structures suggested by van Eemeren 
and Grootendorst (1992) as the frameworks of analysis. 

Methods 
Over a total period of 14 weeks, the students observed two or three online video lectures 
(20-30 minutes each) and participated in one face-to-face in-line session (75 min) every 
week. The class was composed of 18 freshmen majoring in mathematics education majors 
who had taken the course “Calculus I” as a prerequisite, and a total of five small groups of 
                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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three or four students each were set up for learner-centered discussion during the in-class 
sessions. Depending on the task at hand, laptops or tablet computers were provided for the 
students to use for discussion or problem-solving purposes. 

Results 
The students’ argumentation structures presented in the in-class sessions gradually devel-
oped into more complicated forms as the study progressed, and the researchers conclude 
that the interventions were effective at improving students’ arguments. 

Phase 1 

The aim of the week’s in-class session was to provide students with the opportunity to ob-
serve whether the symmetry of partial derivatives holds for two functions and to examine 
several aspects of the functions, such as graphs, limits, and continuity, in order to inquire 
about the conditions that would satisfy the property. In the in-class session, however, the 
students could not reach the final step, in which they were to suggest their own conjectures 
about the symmetry of partial derivatives. In some steps, students had difficulty construct-
ing their arguments as the researchers had intended, and the instructor had to directly con-
vey certain mathematical knowledge to students that they were expected to be able to de-
rive themselves. Finally, students could not perform well in the last two steps of the task, 
and the argumentation structure was also different from what the researchers had expected 
(Figure 1). 

 
 
In the Figure 1, a solid line is used to represent stages of argumentation that students per-
formed well and a dotted line is used to link parts of the students’ argumentation that did 
not occur in the in-class session; shaded regions indicate parts that the researchers did not 
anticipate in the design stage or had to change spontaneously during the in-class sessions. 

 

Figure 1: Argumentation structure in Phase 1 
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Phase 2 

At the end of the in-class session in phase 1, the instructor had explicitly presented Young’s 
theorem and the above lemma and asked students to suggest how it could be proved and to 
complete the proof of Young’s theorem in their reflection journals using the MVT. Student S2 
proposed an argument using the MVT twice, and the researchers decided to begin the dis-
cussion of how to prove Young’s theorem in the fourth in-class session by sharing her idea 
with her peers. The researchers anticipated that during the session, students would point 
out some of the problems with S2’s proof. 

Students proposed three different ways, including S2’s proof mentioned above. All pro-
posals were based on the same idea, namely exhibiting the difference in terms of the func-
tion and to determine when the concept of limit should be used in the proof. During the 
whole-group discussion, a multiple argumentation structure focusing on showing the validity 
of each proof and on comparison between them was observed (Figure 2). 

 
 
 
In this session, the more complicated task of proving Young’s theorem was proposed, and a 
task sequence was implemented beginning with an incomplete solution. It seems that this 
approach—posing a relatively difficult question incorporating a suggested idea—was more 
effective than simply providing student with the idea on its own without a specific starting 
point. By explicitly revealing the controversial point in the proof, the tasks enabled students 
to suggest multiple warrants for one claim in each small-group discussion, causing the 
whole-class discussion to result in a multiple argumentation. 

Phase 3 

In vector calculus, conservative vector fields can be defined in different ways, and most 
textbooks introduce the definition with several equivalent statements. The task asked stu-
dents to prove that a potential function exists if the value of line integration is independent 
of the curve when the starting point and the terminal points are fixed. Researchers design 
the sequence of the task to construct a new function and examine the function to ensure 
that it satisfies the definition of potential functions. Although the instructor showed part of 
the proof to students in the online session to reduce their burden with this unfamiliar and 
complex task and to improve their concentration, she didn’t provide students with individual 

Figure 2: Students’ argumentation structure in Phase 2 
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steps to the proof. In other words, students need to find strategies to develop proofs by 
themselves.  

In this session, the students’ proof construction activity was implemented as expected in the 
HAS, but the instructor had to provide students with scaffolds to help them reach certain 
sub-claims. Therefore, the students’ argumentation structure appeared in the form of the 
compound argumentation, but showed the slight difference in the shaded regions of the 
HAS. The shaded regions indicate the instructor’s active engagement in the discussion (Fig-
ure 3). 

 
 
 
The main goal of the task in this session was to find and specify new ideas to accurately 
advance and complete the proof. While the task was described relatively clearly, it is diffi-
cult for students as it demanded several complex sub-claims and warrants, and promoted 
more elaborated arguments. Also, it led to active discussion in small-group discussion and 
required the instructor’s engagements and discussions between small-groups. Therefore, 
the task contributed to the appropriate environment for IBL so that the students can con-
struct the desired compound argumentation. 

This chapter summarizes key findings from the study supported by Center for Teaching and 
Learning at Seoul National University (Kwon, Bae, & Oh, 2015). 
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Pre-service mathematics teachers 
solve problems in a digital game environment  

Ariel Lifshitz, Michal Tabach 

Tel-Aviv University 
(Israel) 

Problem-solving in mathematics is considered to be important for developing mathematical thinking. 
This study focused on problem-solving in a digital game environment. A one-semester course, tailor-
made for prospective high school mathematics teachers, was designed and implemented. The course 
included a chain of digital games in which players were asked to develop a solution strategy. This 
study examines students' use of the concepts of symmetry, complementary-to-whole and parity as 
resources while solving problems in a digital game environment. Specifically, the study seeks to eval-
uate the contribution of this environment (problem-solving and digital games) as a whole to students' 
mathematical thinking, as exhibited among other things by the differences between their pre- and 
post- responses to a set of four visual pattern problems. Initial findings indicate that about half of the 
participants changed the mathematical resources they used to solve the same pattern problems. 

Background 
"Problem solving provided a way into the joys of doing mathematics and the pleasures of 
discovery" (Schoenfeld, 2013, pp. 31-32). Problem-solving in mathematics is considered to 
be important for developing mathematical thinking. Engaging in problem-solving has the 
potential to develop innovative thinking, encourage creativity and facilitate handling new 
mathematical challenges (Resnick, 1987). During the past several decades, significant ad-
vances have been made in understanding the complex processes involved in problem-
solving (Schoenfeld, 2013). One of the challenges associated with problem-solving is persis-
tence—the amount of time students think is appropriate to spend working on mathematics 
problems. According to Schoenfeld (1992), students who spent most of their time solving 
short exercises involving mathematical skills expected to solve any problem in a few 
minutes, leading them to give up on more complex problems they might have been able to 
solve after only a few minutes of effort. A digital game environment in which players are 
immersed in a culture and way of thinking has the potential to enhance collaboration and 
may contribute to students' motivation and persistence (Gee, 2007; Eseryel, Law, Ifenthaler, 
Ge, & Miller, 2014).  

The current research is part of a larger study aimed at describing, analyzing and understand-
ing the problem-solving behavior of pre-service math teachers in the unique environment of 
digital games. In particular, we focused on possible changes in the problem-solving abilities 
of prospective math teachers following participation in a one semester course.  

Methods 
Participants in the study included 41 prospective high school mathematics teachers who 
participated in an explicitly designed one-semester-long course. The participants were in 
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their second or third year (out of four) of studying towards their BA in Math Education and 
acquiring a teaching certificate. One of the research tools was an identical pre- and post-
questionnaire (Figure 1) with four geometric pattern problems that could be represented 
either by linear (𝑎𝑥 + 𝑏) or by quadratic (𝑥2  ±  𝑥) expressions. The question asked with 
respect to each pattern was: If the pattern continues in the same way, how many gray 
squares will appear in the nth place of the pattern? 

Figure 1: Four geometric patterns 

 

 

 

 

 

 
 

Findings 
Students' solution resources were extracted from their responses and were categorized 
based on Hershkowitz, Arcavi and Bruckheimer (2001): numerically driven solutions—
solutions that ignore the visual representation—and visually driven solutions. In the article 
by Hershkowitz et al. (2001) the categories were specific to the presented problem. We 
extended the categories and classified different generic strategies (Table 1). As shown in 
Table 1, the participants used a variety of resources that were based on numerical or visual 
considerations.  

Table 2 shows the distribution of students’ use of resources in the pre- and post- question-
naires. As can be seen in the righthand column, the number of students who were not able 
to generalize the patterns or did not show the solution strategy decreased dramatically. The 
percentage of students who used numerical considarations as resources decreased, while 
the percentage of students who used visually driven resources increased. For example, stu-
dents who solved Pattern 4 using the numerical resource of looking for a numerical pattern 
between two sequences of numbers were likely to use a variety of visually driven solutions 
in the post-questionnaire. 

If we compare the solution resource employed by each individual student for each task in 
her/his pre-questionnaire to the resource student employed in the post-questionnare, we 
find that for the first and second patterns that were based on changing linear phenomena, 
56% and 63% of the students respectively changed their solution resource. For the third 
and fourth tasks, which were based on changing quadratic phenomena, 34% and 66% of 
the students respectively changed the resource on which their solution was based. Also, the 
analysis of student consistency in using the same resource for all four tasks in the post-
questionnaire revealed that only 3% of the students used numerical resources.  

Students' responses were analyzed with 
respect to Schoenfeld's (1985, 2013) cat-
egorization for the analysis of a problem-
solving attempt: a) the individual’s 
knowledge/resources; b) the individual’s 
use of problem-solving strategies/heuris- 
tics; c) the individual’s monitoring and 
self-regulation/control; and d) the individ-
ual’s belief systems. In this paper we focus 
on the first category – resources. 

Figure 1: Four geometric patterns 
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Summary and discussion 
After participating in a semester-long problem-solving course in a digital game environment, 
students were more likely to use the context of the problem in their problem solving. The 
geometry pattern problems were given in a visual context, which on the pre-questionnaire 
was ignored by more than 40% of the students, who used only numerically driven solutions. 

Table 1: Categories for students' solution resources 
 

  Category Example 

N
um

er
ic

al
ly

 d
riv

en
 s

ol
ut

io
ns

 

Using formula to find 
the nth term of a se-
quence. 

Example of solution to pattern 1: 
"It is clear that this is an arithmetic sequence with d = 𝟐. It was 
difficult to find a1 in order to fit to the index” 
𝑎𝑛 =  6 + (𝑛 − 1) × 2 
 

Looking for numerical 
pattern between two 
sequences of num-
bers. 
 

Example of solution to pattern1: 
I was looking at the examples and found the pattern.  
(the questionnaire showed a numerical table: age, number of 
gray squares) 

Decomposing the se-
quences of numbers 
into a variant part and 
an invariant part. 
 

Example of solution to pattern1: 
I was looking for a pattern that grew each time by 2, so by using 
2x and according to the first age I found the constant (4) 

Vi
su

al
ly

 d
riv

en
 s

ol
ut

io
ns

 

De
co

m
po

si
ng

 th
e 

vi
su

al
 p

at
te

rn
s 

in
to

 
pa

rt
s 

A variant part 
and an invari-
ant part 

 

1 (the square at the corner) + 2 (the 
number of the additional squares) × age 

Symmetry 

 

Symmetry between the vertical and 
horizontal sections and another cube at 
the edge. 

Other 

or 

 

The row is n+1 and the column (excluding 
the top square) is n.  

Complementary to a 
whole 

 or 

 

I calculated the area of the square, and 
subtracted the diagonal. 
or 
If we connect the gray squares on either 
side we will get a rectangle whose width 
= n and height = n minus 1. 
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Combination of visual 
solutions 

 

You can see symmetry; the number of 
gray squares covers a rectangle whose 
sides are two consecutive numbers. 

 Other  Visually I saw the pattern. 
 

Based on the limited findings presented here, we can say that indeed participation in the 
explicitly designed course contributed to students' mathematical thinking. We consider the 
numerically driven solutions as ignoring a meaningful aspect of the problem at hand, while 
we see the visually driven solutions as an indication of students' thinking. Since no such pat-
terns were part of the tasks students engaged in during the course, they had to think about 
these patterns on their own. 

Table 2: Distribution of students' solution resources 

% 

Numerically driven solutions Visually driven solutions Failed/ 
Didn’t 
indicate 
solution 
process 

Us
in

g 
fo

rm
ul

a 

Lo
ok

in
g 

fo
r n

um
er

i-
ca

l p
at

te
rn

 

De
co

m
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ng

 th
e 

se
qu

en
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s 
in

to
 a

 
va
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nt

 p
ar

t a
nd

 a
n 

in
va

ria
nt

 p
ar

t. 

Decomposing the visual 
patterns into parts 

Co
m

pl
em

en
ta

ry
 to

 a
 

w
ho

le
 

Co
m

bi
na

tio
n 

of
 v

i-
su

al
 s

ol
ut

io
ns

 

Ot
he

r 

A
 v

ar
ia

nt
 p

ar
t 

an
d 

an
 in

va
ri-

an
t p

ar
t 

Sy
m

m
et

ry
 

Ot
he

r 

Pa
tt

er
n 

1 
 

 

Pre 17  38 36 2     7 

Post 15 10 12 61 2      

Pa
tt

er
n 

2 
 

Pre 16 17 9 7 12 29    10 

Post 7 7 12 10 35 15   12 2 

Pa
tt

er
n 

3 
 

Pre  37     48   15 

Post  24    2 72   2 

Pa
tt

er
n 

 
 

Pre  41   5  14 20  20 

Post  24   12  39 21 2 2 
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Standpoints on elementary mathematics  
William McCallum 

The University of Arizona 
(United States of America) 

Klein's beautiful vision of viewing elementary mathematics from an advanced standpoint inspired 
generations of mathematicians who have developed an interest in the school mathematics. The re-
cent MET II report recommended that prospective high school teachers take three courses on high 
school mathematics from an advanced viewpoint. In this talk we attempt to tease apart three com-
ponents of Klein's perspective, which we call the advanced perspective, the higher perspective, and 
the technological perspective. We hope to raise questions that serve for a disciplined discussion in 
mathematics departments on how to implement the MET II recommendation. 

Advanced or Higher? 
The title of Klein’s book in English is “Elementary Mathematics from an Advanced Stand-
point,” but it could equally have been translated as “Elementary Mathematics from a Higher 
Standpoint.” Is there a difference? “Advanced” connotes being further along, possibly being 
in a different terrain altogether. Students of advanced mathematics consider mathematical 
objects unimaginable to the typical school student; groups, fields, categories, schemes, 
sheaves. “Higher” connotes a broader horizon on the current terrain rather than a different 
terrain. A higher perspective enables one to see how everything fits together. It is possible 
to have advanced knowledge of mathematics without having any perspective on high 
school mathematics at all. 

Klein takes both perspectives in his book. In his account of arithmetic, he sees the subject as 
being unified by the properties of operations, a view which can be obtained from a higher 
standpoint. He describes ways in which students might approach the commutative law for 
multiplication (using arrays) or the rules for multiplying negative numbers (using an area 
model to visualize (𝑎 –  𝑏)(𝑐 –  𝑑)). He also describes various advanced views of arithmetic, 
for example as an axiomatic system where the main concern is consistency. He points out 
that formal systems have a fundamental problem, the “application of these laws to actual 
conditions.” By this he means that there is no guarantee that a formal system concords with 
the real world of quantities experienced by students. In this way the advanced perspective 
can sometimes be quite disconnected from the experience of teachers and students. By 
contrast, the higher perspective should collect and connect those experiences, just as the 
view from a mountaintop collects and connects many narrower views.  

The Role of Direct Experience 
A difference between the mathematics of elementary school and the mathematics of sec-
ondary school is that in elementary school students can have a direct encounter with the 
numbers and operations they are studying. When they study whole numbers they can count 
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things and arrangement them in various ways. When they study fractions they can measure 
lengths or areas. As students advance into secondary school the mathematical objects they 
study become less and less accessible to direct experience. 

As an example, consider the treatment of the logarithm in secondary school mathematics. 
Students encounter logarithms as they were first encountered in history, as the exponent 𝑦 
in the expression 𝑥 = 𝑏𝑦. The first tables of logarithms, constructed by Napier and Bürgi, 
used bases 𝑏 very close to 1, in order to make it possible to work with only integer values of 
𝑦. As Klein says, Napier and Bürgi “grasp[ed] the thing by the smooth handle.” Working with 
non-integer values of 𝑦 raises many difficult questions. The definition of 𝑏𝑦 when 𝑦 is ra-
tional is subtle, and the extension to irrational numbers is even subtler. One way of viewing 
this material from an advanced perspective is to define the natural logarithm as a definite 
integral and then to define the exponential as the inverse function, and verify that the laws 
of exponents are satisfied. This is a long way from the original intuition of 𝑏𝑦 as a power. 
This is a case where the advanced standpoint occupies different terrain. 

The Role of Technology in Providing Direct Experience 
The metaphor I have used for distinguishing the higher perspective from the advanced per-
spective is very much a metaphor from the technological era. We look down on landscapes 
from airplanes, and we see satellite pictures of the earth. Technology also has a role in 
providing students with direct experience of advanced concepts. The mathematical subtle-
ties notwithstanding, students can use technology to compute and experiment with expo-
nential and logarithmic functions, to graph them, to explore their properties, to model with 
them. Technology allows students to work directly with sophisticated mathematical objects, 
to have those objects become real for them. To a certain extent it allows them to circum-
vent advanced mathematics, which can be both a good thing and a bad thing. In the case of 
logarithms, it would be a good thing if technology helped students see a broad picture of 
how all the pieces fit together, for example the relationship between properties of expo-
nents and properties of logarithms, or the complementarity between the rapid growth of 
exponential functions and the slow growth of logarithmic functions. Such a collection of 
connections might constitute what we have called a higher perspective on the topic of loga-
rithms. On the other hand, the naturalness of the base 𝑒 for the natural logarithm is a mys-
tery without the advanced perspective. 

Klein himself was fascinated by technology. His book is full of computing machines and 
computing devices, and he was well aware of their potential to promote mathematical ex-
plorations. He was interested in how their mechanisms reflected the underlying mathemat-
ics. By contrast, technology in education today is often viewed as a black box, a tool for ex-
ploration. The analog of Klein’s preoccupation would be an interest on the part of mathema-
ticians and educators in the use of computer programming in the teaching of mathematics. A 
recent project of Al Cuoco et al at EDC aims to study the relationship between a computer 
programming course and mathematical habits of mind. 
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Which Standpoint for Prospective High School Teachers? 
The purpose of this discussion is to provide some framework for discussing the question of 
what mathematics prospective high school teachers should know. In the United States, fu-
ture high school teachers often take courses designed for the mathematics major. Since 
these courses are also designed to prepare students for graduate work in mathematics, they 
are often courses that look forward to more advanced topics rather than courses that reflect 
backward on high school mathematics. The 2012 MET II report recommends that high school 
teachers in the United States “should be required to complete the equivalent of an under-
graduate major in mathematics that includes three courses with a primary focus on high 
school mathematics from an advanced viewpoint.” This report is aimed at departments of 
mathematics, who generally have responsibility for the content knowledge of high school 
teachers. It would be helpful in implementing this recommendation for mathematicians in 
those departments to conduct a disciplined inquiry into the three standpoints on their sub-
ject matter discussed here: advanced, higher, and technological.  
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Exploring and overwriting mathematical stereotypes in the 
media, arts and popular culture: The visibility spectrum  

Elena Nardi 

University of East Anglia, Norwich 
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I discuss an analytical and pedagogical tool, the “visibility spectrum”, which can be used to determine 
the degree and quality of presence of mathematics and mathematicians in the media, arts and popu-
lar culture. The spectrum comprises six levels: “invisibility”; three types of “exotic presence” (“auxil-
iary”, “vilification”, “admiration”); “political correctness”; and, “normalization” and has been adapted 
from media and cultural studies which trace how/whether social groups that are often un-
der/inappropriately represented gradually gain a more acceptable kind of visibility. Here I demon-
strate the levels of the spectrum and offer evaluative evidence of its use in teaching students major-
ing in Education and largely destined to become primary teachers.  

Introduction 
The relationship between mathematics and students is often tantalised by perceptions of 
tedium, difficulty, lack of creativity, elitism and unsociability. Outside school one influence 
on young people’s attitudes (and choice of field of study) can be in the ways mathematics 
and mathematicians are portrayed in popular culture. While our first priority needs to be 
with improving students’ experience of mathematics within school, we also need to develop 
systematic ways of working against stereotyping and towards engineering more favourable, 
and accurate, images. Within school we need to openly address these images: question the 
inaccurate, undesirable ones, and make the most of the rest. Outside school we need to 
work more closely and systematically with the often well-intended, but not always best-
equipped, ‘outsiders’ who create those popular images.  

The preparation of teachers rarely equips them for this complex task. Here I draw on materi-
als collected and analysed for research purposes as well as my teaching a module entitled 
Children, teachers and mathematics: Changing public perceptions of mathematics to under-
graduates majoring in Education, and largely destined to become primary teachers. The re-
search, and the associated module, explores questions such as “what are the dominant pub-
lic perceptions of mathematics and mathematicians?” (thereafter Q1) and “if we were to 
work towards overwriting stereotypical images of mathematics and mathematicians, what 
images would we replace them with?” (thereafter Q2). The study and the module activities 
make extensive use of an analytical and pedagogical tool, which I call the visibility spectrum, 
and which can be used to determine the degree and quality of presence of mathematics and 
mathematicians in the media, arts and popular culture.  

One observation that underlies the work that I draw on here is that the timing for consider-
ing Q1 and Q2 is particularly ripe, given the increasing presence, in recent years, of mathe-
matics and mathematicians. To address Q1 and Q2, I deploy the visibility spectrum to exam-
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Fig. 1. Pupil portrayal of mathematician from 
Picker & Berry (2000) 

ine media, arts and popular culture excerpts to trace dominant discourses on mathematics 
and mathematicians (from less to more desirable ones). To address Q2, I also draw on ac-
counts of mathematical experience, collected from learners across educational levels and 
ages to propose a more desirable, and accurate, image of mathematics.  

In what follows I outline the visibility spectrum and young people’s often ambivalent rela-
tionship with mathematics. I then sample the dominant ways in which mathematics educa-
tion, mathematics and mathematicians are portrayed in the media, arts and popular culture. I 
conclude with an indication of an alternative, and more accurate, portrayal towards which 
we, as mathematics educators and mathematicians, can work more systematically. 

Tracing discourses on mathematic(ian)s: the visibility spectrum 
The visibility spectrum is a theoretical construct – which I conceived originally as an analyti-
cal tool, and more recently I have been deploying also as a pedagogical tool – that can be 
used to determine the degree and quality of presence of mathematics and mathematicians 
in the media, arts and popular culture. The spectrum comprises six levels: “invisibility” (0); 
three types of “exotic presence” (1-3: “auxiliary”, “vilification”, “admiration”); “political cor-
rectness” (4); and “normalization/acceptance” (5). For example, in the context of film, the 
visibility spectrum can be used to trace: absence of portrayals of mathematics and mathe-
maticians in certain film genres (0); evidence of some visibility of mathematics and mathe-
maticians as a form of otherness that is either auxiliary and largely insignificant (1), or asso-
ciated with villainry (2), or lined with awe at the extraordinary mathematical ability of cer-
tain characters, fictional or historic (3); evidence of a politically and educationally correct, 
often deliberately positive portrayal, particularly of important mathematical figures (4); evi-
dence of a normalised and natural portrayal (5). A few examples follow. 

The visibility spectrum emerged out of works in 
media and cultural studies (e.g. Fiske, 2010) that 
examine portrayals of other ‘differences’ (e.g. in 
relation to class, gender, race, ethnicity and sex-
ual orientation) and is predicated on two (not 
fool-proof yet) assumptions: that deploying a 
construct that emerged out of studies of the 
various ‘differences’ listed above is valid in the 
context of mathematics education; and, that 
there is a direct influence of popular portrayals 
of mathematics and mathematicians on the 
ways in which young people relate to mathe-
matics. Works such as Picker & Berry’s (2000, 
the data of which is sampled in Fig. 1) have 
started to explore this assumption. 

 

 

My use of the visibility spectrum is two-fold: to examine media, arts and popular culture 
excerpts to trace dominant discourses on mathematics and mathematicians (ultimate aim: 
identify, and engineer, trajectory from less to more desirable ones); and, towards analysis of 
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learners‘ accounts of mathematical experience (ultimate aim: to engineer trajectory towards 
more favourable experiences and perceptions). This use is aimed across educational levels 
and ages and has the potential to become a point of synergy between mathematics educa-
tors and mathematicians (Nardi, 2014). Theoretically these aims resonate with broader aims 
often found in the area of cultural studies in (mathematics) education. As the Editors of Ju-
bas, Taber & Brown, (2015) note in the preface of their Transgressions: Cultural Studies and 
Education book series: 

‘… cultural studies scholars often argue that the realm of popular culture is the most 
powerful educational force in contemporary culture. […] Educators […] must under-
stand these emerging realities…[…] Without an understanding of cultural pedagogy’s 
(education that takes place outside of formal schooling) / role in the shaping of indi-
vidual identity – youth identity in particular – the role educators play in the lives of 
their students will continue to fade.’ (2015, Preface) 

In this their words resonate with works on affect and meta-affect in mathematics education 
(e.g. DeBellis & Goldin, 2006): 

‘Meanings provided young people by mainstream institutions often do little to help 
them deal with their affective complexity, their difficulty negotiating the rift between 
meaning and affect. School knowledge and educational expectations seem as anach-
ronistic as a ditto machine […]. […]school knowledge and educational expectations of-
ten have little to offer students about making sense of the way they feel, the way 
their affective lives are shaped.’ [ibid.] 

They conclude: 

‘In no way do we argue that analysis of the production of youth in an electronic me-
diated world demands some “touchy-feely” educational superficiality. What is need-
ed in this context is a rigorous analysis of the interrelationship between pedagogy, 
popular culture, meaning making, and youth subjectivity.’ 

This study takes this cue and brings it into mathematics education. For example, in Chapter 4 
in (Jubas et al., 2015) entitled Teachers on Film: Changing Representations of Teaching in 
Popular Cinema from Mr. Chips to Jamie Fitzpatrick, Tony Brown traces a shift in film narra-
tives about teaching and teachers (shepherd, guardian, hero, social mediator and more re-
cently as agent of school/learner failure). The study I discuss here asks: What are these nar-
ratives for mathematic(ian)s? Are they shifting? And, if so, how? Within mathematics educa-
tion questions such as these are akin to the work by Moreau, Mendick and Epstein (e.g. 
2010) and their ESRC-funded study of identity shaping forces of popular culture (with a fo-
cus predominantly on gender and to some extent class). Here is their definition of identity 
and identity work that I draw on in the present study: 

‘…imagining the self as a complex and contradictory space in which discourses […] 
work and are worked […] identity as something always in process and never attained 
and so as requiring constant effort. To capture this I use the phrase ‘identity work’ 
[…]. Another way of thinking about this is to read identity as a verb rather than a 
noun, something that we do, and are done by, rather than something that we are.’ 
(Mendick, 2005, p.205)  

Within mathematics education there is a small body of work that describes portrayals of 
mathematic(ian)s and relationship between these and images held by young people (e.g. 
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Gadanidis & Scucuglia, 2010; Lim, 1999). For the purposes of this study I endorse Lim’s 
(1999) definition of ‘image of mathematics’ as follows:  

‘a mental representation or view of mathematics,  presumably constructed as a result 
of social experiences,  mediated through interactions at school,  or the influence of 
parents, teachers, peers or mass media.  Also includes: ‘all visual and verbal repre-
sentations,  metaphorical images and associations, beliefs, attitudes and feelings  re-
lated to mathematics and mathematics learning experiences. (p.2) 

Young people’s ambivalent relationship with mathematics 
A pragmatic and theoretical origin of the work I discuss here lies in the fact that, at least in 
the UK where most of this work is being conducted, young people’s relationship with math-
ematics is overall negative – particularly as they enter adolescence. For example, Nardi and 
Steward (2003) described secondary pupils’ extensive and often quiet disaffection from 
mathematics as T.I.R.E.D. (characterized by Tedium, Isolation, Rote Learning Practices, Elitism 
and Depersonalisation) and Brown, Bibby and Bibby (2008) traced how this relationship 
seems to drive students away from undertaking mathematics studies at post-compulsory 
level. Again at least in the UK, the often morbid coverage in the media of issues related to 
the ways in which young people experience – and perform in – mathematics in school exac-
erbates and, some may say, perpetuates largely negative images. Two key characteristics of 
this portrayal (see, for, example, Fig.2) are: the deficit discourses on mathematics teachers 
and teaching; and, the stereotypical, and largely unfounded portrayals of mathematical abil-
ity.  

 
Fig. 2. Media excerpt portraying typical perceptions of mathematics teaching. 
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Portrayals of mathematics and mathematicians: a sample 
The bulk of the media, arts and popular culture excerpts that have been the focus of the 
work discussed here (so far the analysis in focused on: film; anglo-centric, mainstream ex-
amples; initial phase of the study time span: 12 years (1997-2009); current time span: 2 
years (2013-2015)) have been found to treat mathematical ability as madness, or at least 
as strangeness – levels (2) or (3), in the language of the visibility spectrum. Well-known 
examples, include treatment of this madness, or strangeness, rather variably: as clinical (A 
Beautiful Mind, Fig. 3), of a more poetic / metaphysical nature (Pi), part of a web of complex 
familial, social and professional relationships (Proof, A Serious Man) and often embodied by 
a young and attractive male (Good Will Hunting). The strangeness/madness of the mathe-
matically-related characters in these films is palpable. Crucially – and without a hint of ques-
tioning – their mathematical ability seems to go hand in hand with this strange-
ness/madness. Out of their stories mathematics emerges as a preoccupation of the few 
(and the rather odd): if there is a mathematician in sight then they must be of the genius 
type. And (most often) he must be mad. Often too, the narrative in these films is underlain 
by two, in my view, problematic juxtapositions: between intelligence (as devious artifice, 
and with a propensity for evil) and ignorance/stupidity (as doe-eyed innocence and natural, 
unspoilt goodness – see, e.g., Forrest Gump and TV sitcom character Joe in Friends); and, 
between action and theory (mathematical ‘geniuses’ dragged out of their ivory towers by 
no-nonsense, street-wise action men, and occasionally women, so that their ‘genius’ can 
finally become of use, see, e.g., Jurassic Park, Numb3rs). It is in this cultural ambience that 
mathematics educators often find themselves defending their subject to prejudiced audi-
ences and most people – often including not only pupils but parents and, even, teachers – 
casually admit to mathophobia. It is in this cultural ambience that dislike of and disengage-
ment from mathematics emerges as natural and socially acceptable.  

Example 1 (Fig. 3): A Beautiful Mind (Goldsman, 
2001). An account of the life of mathemati-
cian John Nash, Nobel prize winner and crea-
tor of Game Theory. John Nash suffered se-
vere mental health problems throughout his 
life. Here is a quotation from the trailer 
voiceover: 

The extraordinary gift, that set 
him apart, would push his mind 
beyond its limits. 

 

 

 

Example 2 (Fig. 4): Mean Girls (Fey, 2004) 

Cady: I think I'm joining the 
Mathletes.  

Regina, Gretchen, Karen: No! No, 
no!  

Regina: You cannot do that. That 
is social suicide. *Damn*! You are 
so lucky you have us to guide 
you. 

 

Fig. 3. Portrayal of mathematical 
ability as otherness/madness, A 
Beautiful Mind. 
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Damian: [reading Cady's class 
schedule] Health, Spanish... 
you're taking 12th Grade Calcu-
lus?  

Cady: Yeah, I like math.  

Damian: Eww. Why?  

Cady: Because it's the same in 
every country.  

Damian: That's beautiful. [to Jan-
is] This girl is deep. 

 

Towards a more desirable, and accurate, image of mathematics  
I would now like to put forward a more appealing, and in my view accurate, portrayal of 
mathematics as offered by learners, doers and users of mathematics from across education-
al levels, and based on evidence and testimonials from studies that I have been involved 
with over the years: research mathematicians, (Nardi, 2008); mathematics undergraduates 
(Nardi, 1996); aforementioned secondary students (Nardi and Steward, 2003), primary pu-
pils (Ainley, Pratt and Nardi, 2000). Mathematics emerges out of these testimonials as a 
powerful way of reasoning, expressed in technical-yet-effective language, and as a reward-
ing intellectual pursuit and preoccupation. A bold portrayal of mathematics involves, as per 
participant mathematician in (Nardi, 2008) choosing to ‘stop shying away from the nature of 
our subject’. It also involves moving away from what Nardi and Steward (2003) called the 
‘mystification-through-reduction’ (p.362) of school mathematics, the attempt to ‘simplify’ 
mathematical thinking by converting into execution of cues and procedures – and thus em-
bedding it even more irrevocably into students’ experience as a ‘hierarchical game’ (p.362), 
played only by those who can, and leaving out the longing for understanding, hence intel-
lectual satisfaction and ultimate enjoyment of the subject. 

My overall claim is that mathematics does not need to try to be, as a school subject as well 
as in popular perception, what it is not; nor to suppress what it actually is. In fact all mathe-
matics needs to do is celebrate, publicly and dynamically, its true nature: alienation from the 
‘nature of our subject’, ‘dumbing it down’, forcing it into an artificial and ultimately uncon-
vincing straightjacket of ‘accessibility’ and ‘relevance’ drains the life out of it and detracts 
from its most crucial, and attractive, characteristics. There are three clusters of activity that I 
would like to report in order to sample developments in this direction: 

(1) Theory: This concerns the emergence of science communication as a discipline in its own 
right and particularly Emergence of analyses of public (colloquial) and private (literate) dis-
courses of mathematics. One example is Barwell’s (2007) analysis of mathematicians’ talk 
(in this case during a live radio broadcast about the Poincaré conjecture). The works that I 
exemplified in the earlier parts of the paper and offer analyses of popular culture as (math-
ematics) pedagogy and extending and refining works on meta-affect are further examples. 

(2) Public Engagement: This concerns activities that aim to draw non-mathematical audienc-
es into the world of mathematics and into considering the possibility of mathematical stud-
ies. One example of these are – in my institution – the MAUD events (Maths at Uni Days, 

Fig. 4. Portrayal of mathematical 
ability as ‘social suicide’, Mean Girls. 
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since 2006) a collaboration between the Schools of Education and Mathematics, also with 
the Further Mathematics Centre hosted at UEA. Aim: to showcase the importance and appeal 
of mathematics as well as its capacity to open windows to a wide range of professions 
(Bills, Cooker, Huggins, Iannone, & Nardi, 2006).  

(3) Teaching: This concerns designing and offering modules that use research-informed 
analyses to build towards a more desirable, and accurate, portrayal of mathematic(ian)s. 
Aim: to change perceptions of mathematics and mathematicians held by key stakeholders in 
the teaching and learning of mathematics, e.g. prospective teachers. This also concerns de-
signing classroom interventions that alert students to (and challenge), portrayals of mathe-
matic(ian)s in the media, arts and popular culture. As an example I would like to put forward 
an undergraduate module that I have been teaching in my institution since 2012 (Children, 
teachers and mathematics:  Changing public perceptions of mathematics, BA Education, Year 
3, Autumn Semester). I quote from the flyer distributed to students who are considering 
taking the module as an option (student uptake has been rising from 25% to 75% over 
three runs of the module):  

‘This module explores a range of issues that relate to young children’s learning of one 
of the most important, yet notoriously feared and misunderstood, subject: mathemat-
ics! […] We aim to share some of the excitement experienced by those who love 
mathematics – enthusiastic teachers, university mathematicians and other profes-
sionals – but we also examine some of the key challenges that young children face 
when they engage with mathematical learning in primary school.  We investigate 
where the social and psychological ‘stigma’ of mathematics comes from – the fear 
that prevents many people from building a good relationship with mathematics.  We 
juxtapose this ‘stigma’ with results of neuroscience that show that mathematical 
thinking is quite natural; in fact that mathematical ability is innate to all human be-
ings! We also juxtapose these research findings with examples from popular culture 
(TV, films, pop music) and the arts that seem to perpetuate largely ‘math-o-phobic’ 
images. We consider how education, particularly in the crucial years of primary 
school, can work against the tide of such images and introduce children to the crea-
tivity and excitement of mathematics!’ 

Following 10x2h lectures, the module offers 10x2h seminar pre-set activities which include: 
Media excerpt tasters; Student accounts of relationship with mathematics; Student show-
case of media excerpts; Reflections on the mathematics curriculum I (early and upper prima-
ry years); 2-minute Maths Pitches (Student choices); Analysis of classroom incidents (math-
ematical, social and affective perspectives); Student analysis of own selection of media, art 
and popular culture excerpts; Student analysis of portrayals of mathematic(ian)s on film 
(five pre-set films); Student Debunking Myths About Maths (Kogelman & Warren, 1978: 
Innate, Male, Introvert, Burn Out, Uncreative); Student 3-5 mini maths lessons. 

In conclusion: Our first priority needs to be with improving the students’ experience of 
mathematics within school.  We also need to develop systematic ways of working against 
stereotyping and towards engineering more favourable, and accurate, images. So, within 
school we need to openly address these images and question the inaccurate / undesirable 
ones.  Most of all, we need to make the most of accurate and desirable images. Outside 
school we need to make our within school efforts better known, understood and appreciat-
ed by the general public. Because one influence on young people’s attitudes (and choice of 
field of study) originates in images of mathematics and mathematicians in the media, arts 
and popular culture, outside school we also need to work more closely and systematically 
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with the often well-intended, but not always best-equipped, ‘outsiders’ who create those 
popular images.  

The moment seems to be apt for this image-shifting enterprise. I quote from 
www.BoxOffice.com, the marketing strategy put together by the producers and distributors 
of Ridley Scott’s The Martian (2015) which at the time of writing had grossed about half a 
billion US dollars in the box office and was also collecting several 
accolades for its script, direction, acting and visual effects – see trailer at 
https://www.youtube.com/watch?v=ej3ioOneTy8, with astronaut Mark Watney, played by 
A list Hollywood actor Matt Damon, is ‘doing the math’ (many times). In the film’s marketing 
strategy, engagement with science is a ‘draw, not a deterrent’. The film presents ‘relatable, 
cool science’, ‘surprising plausibility’ and ‘the technical details keep the story relentlessly 
precise and the suspense ramped up’. Commentators praise ‘Matt Damon’s everyman per-
sona infused by terrific wit’, its ‘humor mixed with smarts’ and how it ‘made science cool 
again’. So, science has its visibility spectrum level 5 item… Time, perhaps, for mathematics 
to acquire its own too? 
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How do pre-service teachers experience math didactics 
courses at university?   

Johanna Ruge1, Reinhard Hochmuth1, 2 

1Leibniz Universität Hannover, 2Leuphana Universität Lüneburg 
(Germany) 

In Germany teacher students often express dissatisfaction with the current institutional arrangements 
of teacher training. To gain a better understanding of this phenomenon, first, the teacher training 
system in Germany will be briefly described. In doing so, the position of math didactics and its disci-
pline culture will be taken into account in relation to mathematics and educational sciences. Second, 
the experiences of teacher students in university courses will be discussed by taking into considera-
tion their own concept of teacher professionalization. The findings are exemplified by the case of the 
teacher student Anna. 

Teacher training in Germany 
Teacher training in Germany is split in two phases; the first phase is situated at university 
and the second phase takes place in school and in specific seminars outside the university. 
During a bachelor’s and following master’s degree students shall first build up a substantial 
base of theoretical knowledge about mathematics and teaching, before going to practical 
training in the second phase. The federal states of Germany organize their teacher education 
differently, but mostly follow a structure similar to the one of Lower Saxony presented in 
the following. 

When enrolling at a university, teacher students choose two school subjects they want to 
teach. Depending on the school type for which they want to become teachers, teacher stu-
dents choose to study a specific bachelor’s and master’s degree program: primary and lower 
secondary education or vocational school education. Future secondary school teachers begin 
their studies in an interdisciplinary bachelor degree program and continue their studies doing 
a master degree in education. These different study programs vary in their structure and 
focus. In primary and lower secondary teacher education programs more weight is put on 
pedagogical subjects, while in secondary school teacher education programs the mathemati-
cal requirements are higher. Our contribution focuses on the first phase of primary, lower 
secondary and vocational school teacher education.  

These mathematics teacher degree programs include the study of elementary math, math 
didactics, educational sciences, the other chosen subject and its related subject matter di-
dactics. Each of these different fields of study is shaped by its specific discipline culture.  

Discipline cultures 
The different academic disciplines can be distinguished by their epistemological structure 
and focus. According to these two axes, Becher (1989) developed a taxonomy of four dif-
ferent types of discipline cultures: Hard pure, hard applied, soft pure and soft applied. 
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• Hard and pure disciplines aim at general propositions, try to find recurrent patterns and 
seek simplicity in theories. It is possible to split the knowledge base into traditional sub-
themes. Mathematics can clearly be identified as hard and pure discipline. 

• Hard and applied disciplines draw on hard and pure disciplines for their knowledge base, 
but have a strong focus on professional practice and therefore application (e.g. Engineer-
ing).  

• Soft and pure disciplines aim to understand phenomena in their complexity and a diversi-
ty of theories makes it difficult to clearly identify subthemes (e.g. sociology). 

• Soft and applied disciplines draw on diverse theories, with a strong focus on their impli-
cations for professional practice. Educational sciences fall into this category, relying on 
theories from several different disciplines and being influenced by different discipline 
cultures.  

Math didactics can be described as an interdisciplinary discipline ranging in between its con-
tributory disciplines mathematics and educational sciences. These two disciplines are located 
at opposite corners of Becher’s two-dimensional taxonomy system. Math didactics there-
fore can be perceived from different angles and foci. On the one hand, math didactics is a 
scientific discipline trying to merge several theoretical influences; on the other hand, math 
didactics is an applied subject and is complicated by vocational pursuits. Especially in the 
context of teacher training, math didactics is presented as a subject providing a bridge be-
tween mathematics and educational sciences. It is the one subject that is specific to mathe-
matics teacher training in university context. 

The different types of discipline culture affect the curriculum structure, teaching and learning 
in the specific disciplines. Math didactics is therefore framed by its reference disciplines. 
Neumann (2003) identifies the epistemological characteristics of teaching and learning in 
these reference disciplines as follows: 

• Hard and pure disciplines follow a curricular structure, whose organization is linear, hier-
archical and cumulative. The focus lies on understanding theory in depth, reasoning and 
discipline-specific skills. It is hallmarked by assessments in form of examinations. 

• Soft and applied disciplines are structured dominantly in seminars addressing research 
from different paradigms. Because of its focus on the later application the aim is broad 
knowledge relevant for practice related skills. These are assessed in form of essays. 

These show that teacher students have to handle different epistemological views and re-
quirements in math didactics courses.  

How do pre-service teachers experience math didactics courses at uni-
versity? 
The preliminary results presented in the following are part of an ongoing qualitative study 
addressing learning experiences of pre-service mathematics teachers in the institutional 
context of university teacher education programs in Germany. 

It’s not very surprising that teacher students’ rationales are diverging with regards to the 
question of which focus math didactics courses should have and which knowledge math 
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didactics is supposed to provide. In the following we explore this rationale further and ex-
amine how it is linked to discipline cultures. For this purpose we don´t see discipline cultures 
as a behavior-determinant, but explore according to the subject-scientific approach 
(Holzkamp, 1985) the meaning-reasoning relations from the teacher students’ standpoint. 
Holzkamp (1985) argues that humans recognise the world from their own perspective and 
with purpose; reality is interpreted by the subject in connection with her or his experiences 
and intentions and in view of their perceived “life interests”. 

Teacher students therefore ascribe meanings to their experience with different discipline 
cultures in relation to their own concepts of professionalization; this affects their perception 
of math didactic courses. 

Method 
Eight pre-service teachers – aiming to be primary school, lower secondary school or voca-
tional school teachers – have been interviewed at the Leuphana University Lüneburg. The 
pre-service teachers had different educational backgrounds and were at different stages in 
their studies.  

The semi-structured interviews addressed questions about students` concrete learning ac-
tivities, the students’ motivation to become mathematics teachers, perceived support and 
experienced conditions of studying. After the interview, each student was asked to com-
plete a Mind Map on what she or he considered important for her or his learning. The sub-
jective standpoints of the students were the starting point of the analysis. The data is cur-
rently analyzed using a combination of grounded methods (Strauss & Corbin, 1990) and 
techniques provided by objective hermeneutics (Wernet, 2009). 

Preliminary results 
In the following, findings are exemplified by the case of Anna. Anna studies in a primary and 
lower secondary teacher education program and aims to be a lower secondary school 
teacher. At the time of the interview, Anna had just completed her bachelor’s and was about 
to begin her master’s program. She chose to write her bachelor thesis in math didactics. 

Significant interaction takes place between teacher students’ views on mathematics and 
their experiences in university courses. Anna’s experiences with mathematics in school con-
text led her to develop a quite stable view, that doing mathematics will lead to definite solu-
tions. She recounts that she liked mathematics in school because it was always correct or 
false, and therefore the grading doesn`t rely on the mathematics teacher’s interpretation. In 
university courses she relies on sample solutions for learning mathematics, providing her 
with a secure guideline of what she is supposed to learn. She strongly emphasizes structure 
in her learning and recognizes her inability to have an overview of the knowledge she is 
supposed to learn, especially in the beginnings of her study.  

The view on mathematics teaching is linked to the view on mathematics, but brings in the 
substantial element of the perception of the later profession. Anna’s view on mathematics 
teaching can be described in terms of the teacher being a guide through mathematics (as 
she is looking for a guide through mathematics at university), who is in charge of leading all 
pupils through difficulties in mathematics. Therefore she anticipates providing step by step 
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instructions to her future pupils. For her, the fundamental task of a teacher is taking care of 
and controlling the learning progress of her future pupils, that leads her to search for the 
best-practice answer. 

This eagerness to figure out the best-practice for applying the knowledge she learned at 
university and the mode of assessment allows us to understand her perception of math 
didactics courses. 

• In her opinion, teacher training should be structured more like an apprenticeship model, 
more so than the current German model. She would prefer to actually be co-teaching 
twice or three times a week and imagines benefits for teacher students and the teacher 
at school. She acknowledges the importance of theoretical knowledge in elementary 
math courses seeks for (practical) methodical knowledge in math didactics courses. 

• Assessment provides her with the security of having mastered learning tasks (guiding 
function) and therefore plays a crucial role in her personal learning. Her preferred mode 
of examination is the written exam, in all her different fields of study. She is overstrained 
by essays in math didactic courses and feels left alone with this task. She cannot picture 
the purpose of essays in math didactics courses and hence has difficulties figuring out 
her learning tasks, while writing essays. The rationale of linking different theories and 
discussing their implications, instead of finding the one solution – which is typical for soft 
and applied disciplines – remains alien to her. 

Hence she primarily expects math didactics to provide her with methodical knowledge. Thus 
math didactics courses can only partially satisfy her expectations. Anna does not recognize a 
bridging of and educational sciences neither on a theoretical nor on an analytical level. She 
cannot integrate (theoretical) methodological considerations into her perception of math 
didactics and thus cannot integrate practices coming from an educational sciences culture 
into her own learning in math didactic courses.  

Teacher students` experiences in math didactics courses are linked to their own profession-
alization concepts and can essentially be characterized by their view on mathematics and 
mathematics teaching. Especially the rationale on assessment in math didactics courses dis-
plays a strong discipline culture influence. 
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Teaching undergraduate mathematics – reflections on 
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Imre Leader is a Professor of Pure Mathematics at the University of Cambridge. In 2013, he was in 
Singapore as the 10th Singapore Mathematical Society Distinguished Visitor. In an interview published 
in the Mathematical Medley (Yap, 2013), Leader answered a wide range of questions regarding 
mathematics and mathematics education at the university level. In this paper, we reflect on some of 
his observations and distill their implications with a view to framing a research and developmental 
agenda for teaching undergraduate mathematics for pre-service teachers.  

Introduction 
Imre Leader is a Professor of Pure Mathematics at the University of Cambridge. In 2013, he 
was in Singapore as the 10th Singapore Mathematical Society Distinguished Visitor. In an 
interview published in the Mathematical Medley (Yap, 2013), Leader answered a wide 
range of questions regarding mathematics and mathematics education at the university lev-
el. Leader is an excellent mathematician (by this we mean that he does original work in 
mathematics and publishes actively as a result) and a very engaging lecturer – the first au-
thor attended his talk on the Ackermann function to a group of secondary school students 
and learnt something new as well as saw that some students learnt as well. In addition, he 
has taught mathematics at Cambridge since 1989 and so his views on teaching university 
mathematics should give us pause for careful consideration. 

In this paper, we reflect on some of his observations and distill their implications with a view 
to framing a research and developmental agenda for teaching undergraduate mathematics 
for pre-service teachers.  

What kind of mathematics to teach? 
Leader talks of two further broad kinds of needs for students who do not intend to become 
professional mathematicians (Yap, 2013). First, for those who would go on to be using 
mathematics a lot, such as people going to engineering, physics, chemistry, economics, he 
recommends that they learn “just … what they need” (p.3), i.e. the mathematical concepts 
and formulas necessary for their professions. On the other hand, if they would not be going 
to use mathematics a lot, such as those going to banking, it seems to him most important 
that they “learn to think” (p.3), which we interpret to be problem solving skills, logical think-
ing and some rigour. With the limited time in the curriculum, we do not understand him to 
mean that the first group would be taught “how to think” as well. 

With regard to future school teachers, Usiskin (2001) concurs with the need for relevant 
mathematics, i.e., the thorough understanding of the mathematics that they will teach in the 
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school. Thus, they would seem to fall into the category of non-professional mathematicians 
who would be using mathematics a lot. However, teachers need to also transmit the disci-
pline of mathematics to their students and so it seems to us that a level between mere us-
ers of mathematics and professional mathematicians is justified. Teachers of mathematics at 
every level should see the big picture in mathematics. They need to know how mathemati-
cians solve unfamiliar problems and so model such behaviour to their students, understand 
how mathematicians tackle infinity and thus guide their students to not only rely on their 
real-world intuitions, understand the centrality of proof and so help their students see a dis-
tinguishing aspect of mathematics as a subject, and learn how to read and write mathemat-
ics and here see that, like other subjects, self-directed learning in mathematics depends 
very much on personal reading and writing. We name such a product of the ideal pre-service 
teacher mathematics curriculum as the mathematician educator.  

What pedagogical approach to take? 
Leader describes the Cambridge approach to teaching mathematics is as mainly the tradi-
tional lecture-tutorial system: “In the lecture, you present the material. But then, the point 
of the homework sheets, or example sheets, should be to make the students partly under-
stand the material, but much more to think about the material. Both are really important.” 
(Yap, 2013, p.5) Then he makes the startling assertion: “Maths is hard. Almost every stu-
dent in almost every lecture is lost after 15 minutes. Maybe they have a vague idea of what 
is going on, but the details are left out, even for the best students. It’s human nature … most 
of the time they are not following it.” (p.5) Remember that we are talking about Cambridge 
University, an upper bound for ability, so Leader’s statements imply that although necessary 
for first contact with the content, lectures are wholly inadequate for learning and must be 
supplemented with tutorial questions that require work and deep thinking. 

To the question of how often a maths course involves students reading and learning from a 
textbook, the reply was: “Never ever. So in Cambridge, the maths course is based on the 
lecture. So the feeling is, if a student has copied out from the board, he will understand it. 
With a textbook, a student can read it line by line, but not understand in any depth.” Leader 
is very sceptical about students reading on their own before a lecture: “If the student has 
lecture notes, the student will not concentrate during the lecture. They will daydream, they 
will say, “Oh I could read it some time.” Second thing: the lecture gets much worse. The lec-
turer thinks “I can be disorganized. I can skip some bits which are in the notes.” … thirdly, … 
we find that when a student has written down stuff in his own handwriting, even if he 
doesn’t understand it, he has some ownership that he wants to learn it. If a student photo-
copies other students’ notes or gets printed notes, he doesn’t own it, will never learn it. … I 
think printed notes are a great great evil. All students want them, and think, “Of course they 
help. How can they not help you?” But they are very bad, for these reasons.” (Yap, 2013, 
p.5) Such comments would seem to undermine efforts to teach students to read (see for 
example, Alcock, Hodds, Roy & Inglis, 2015; Tay, 2001, 2014) and Leader adds: “That’s 
great if the students have already, in advance, read the day’s lecture notes. But of course 
real life isn’t like that. Students never read beforehand. It’s always a disaster. It’s just human 
nature.” (Yap, 2013, p.6) Attempts to use the ‘flipped classroom’ methodology at tertiary 
setting (McGivney-Burelle & Xue, 2013) should also be reconsidered since Leader’s obser-



khdm-Report, Nr. 05, 2017 

88 

 

vations about top quality student’s inability or aversion to reading must have some truth in 
them. 

On writing mathematics and the understanding of propositional logic (or syntactic under-
standing as conceptualised by Weber & Alcock (2004)), Leader explains the Cambridge ap-
proach which he admits works only because Cambridge can pay for the labour intensive 
pedagogy: “Cambridge is very lucky to have what we call the supervision system. So the 
students go to lectures, two hundred of them. … Lecturer gives out a problem sheet, sheet 
of exercises. The students will do the exercises, then once a week the students will have a 
supervision … that means two students to one professor, for an hour, each course. So, it’s 
very intensive. And during that, the supervisor looks at the student’s work, reads it carefully 
… and says … “This is badly written. Here’s how you can improve it.” So it’s done by talking 
to the students. But that’s a luxury tutorial system. … I don’t believe in a separate expository 
writing class. I much rather they wrote the actual maths as how they learnt it. … So my per-
sonal feeling is that teaching students standard logic is a waste of time. If you try to teach 
students how to negate a statement “All pigs can fly.” You teach them that then negation 
says, “Some pigs can’t fly.” So they get very good at that but still when they get to maths, 
they flip back and do things directly, in their own wrong way. So I think the best place to 
teach elementary logic is during the supervision, when they first have a maths theorem to 
prove, like “A implies B”. And they say “Suppose A isn’t true. Then B isn’t true and I’m 
done.” And then you correct it. I quite firmly believe that teaching logic separately is useless 
as they never learn to apply it in actual maths contexts.” (Yap, 2013, p.7) 

If the best students have such a hard time with learning mathematics if left to self-directed 
reading and writing mathematics, and the Cambridge solution involves close (and expen-
sive) supervision, what pedagogical approaches would avail to the ordinary student in the 
ordinary university? 

A curricular approach to teaching undergraduate mathematics 
Alcock and Simpson note that students take a number of years for “development from an 
action through a process to an object conception before they begin to use the concept at 
university … [but] at the university level, a similar development is necessary, but a much 
shorter time period is available.” (2009, p.22) Herein, perhaps, lies the difficulty that makes 
any well-intentioned pedagogy at university level flounder. There is not enough time. In 
addition, actions tend to be piecemeal from well-intentioned (or enlightened) lecturers and 
only implemented in their own courses. There is not enough time to teach reading and writ-
ing, understanding and construction of proofs, when the knowledge content needs to be 
covered. 

A possible solution to the conundrum above would seem to be a curriculum review that 
rightly involves all who are teaching the curriculum. Tyler (1949) proposed a basic model of 
curriculum design that apparently is not utilized by most university faculty. In brief, Tyler’s 
model requires first that the objectives of the curriculum be placed in a matrix with the 
modules of the programme so that the design can ascertain which cell in the table will be 
activated, i.e., which module can be used to attain the objective. The design requires the 
selection/development of learning experiences to achieve the objectives within the module. 
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The assessment and its modes of whether the objectives are achieved are also decided at 
the design stage. 

The Mathematics and Mathematics Education department of the National Institute of Educa-
tion has decided to use Tyler’s model for the curriculum review and design of its undergrad-
uate mathematics programme to take effect in 2016. The belief is that important process 
skills such as reading, writing and problem solving (Toh et al., 2014; Ho et al., 2014) can be 
thoughtfully spaced out over the four-year curriculum and a lecturer will know from the 
start what s/he has to emphasise and assess, and what has been done before his/her 
course, and what will follow further down the line. For example, reading can be spaced out 
as follows: reading of definitions (Year 1), reading of a short proof (Year 2), reading of defi-
nitions and proofs before a lecture (Year 3), reading of journal papers for honours disserta-
tion (Year 4). 

The feedback from faculty as they engage in curriculum review and design will be of great 
interest as such a collaboration is rare. We hope to be able to report in more detail on the 
progress of the review in December 2015.  
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How do undergraduates read mathematical texts? 
An eye-movement study   

Lara Alcock, Tom Kilbey, Matthew Inglis 
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This paper reports on an eye-movement study of undergraduate mathematical reading behaviours.  
The eye movements of 38 undergraduate students were recorded as they read a multi-page text-
book section on graph theory; participants then took a short comprehension test.  This abstract re-
ports basic results showing that neither reading time nor processing effort – measured via mean fixa-
tion durations – predicted comprehension test performance: students who read for longer or tried 
harder did not necessarily learn more.  The conference report will include more detailed analysis of 
participants’ eye movements: it will explore their relative attention to different parts of the text and 
the extent to which they shift their attention back and forth during learning, and will analyse the ex-
tent to which these behaviours differ across more and less effective learners.   

Introduction 
Undergraduate mathematics students are expected to learn in part by reading lecture notes 
and textbooks. But do they read effectively?  Research shows that perhaps they do not.  
Interview studies indicate that when reading textbook passages, students tend to respond 
unhelpfully when facing confusion (Shepherd & van de Sande, 2014); eye-movement stud-
ies indicate that when reading a single purported proof, students tend to make less effort 
than mathematicians to study logical relationships between its claims (Inglis & Alcock, 
2012).   

This report will extend work of both types by reporting a study in which 38 undergraduate 
mathematics students read an extended graph theory textbook passage while their eye 
movements were recorded, then took a short comprehension test.  It will report descriptive 
statistics showing dramatic variation in students’ reading times and comprehension test 
scores, and analyses of differences in reading behaviours of more and less successful stu-
dents, including their attempts to link different parts of the text, their relative attention to 
different representation types, and their relative attention to definitions, theorems, proofs 
and examples. 

Theoretical Background 
There has been increasing interest in recent years in undergraduates’ mathematical reading 
behaviours and their consequences for comprehension.  This has arisen in part because 
many lecture-based learning situations demand that students learn from written mathemat-
ics (Weber & Mejía-Ramos, 2014), and in part because researchers recognised that earlier 
work on proof had tended to focus on proof construction rather than on other issues such as 
comprehension (Mejía-Ramos & Inglis, 2009).  Mathematicians have argued that compre-
hension tests and other activities related to proof evaluation can and should be used as a 
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way to support critical engagement with complex mathematical arguments (Conradie & 
Frith, 2000; Kasman, 2006), and mathematics educators have done theoretical and empirical 
work in developing proof comprehension tests (Mejía-Ramos, Fuller, Weber, Rhoads & Sam-
koff, 2012). 

Empirical study of broader mathematical reading behaviours nevertheless remains in its in-
fancy, although studies of two types are contributing in different ways.  First, interview 
studies indicate that when reading textbook passages, students tend to respond unhelpfully 
to confusion: compared with more mathematically experienced readers, they can be inat-
tentive to details, insensitive to confusion or error, and less likely to seek resolution via 
careful re-reading (Shepherd & van de Sande, 2014).  Such observations provide insight into 
suboptimal reading behaviours, but interview studies are necessarily subject to issues of 
reactivity (Russo, Johnson & Stephens, 1989): reporting aloud while learning can be ex-
pected to influence the behaviours under study. 

Second, eye-movement studies indicate that compared with mathematicians, undergradu-
ates attend less to the words of purported proofs and less to the logical relationships be-
tween their claims (Inglis & Alcock, 2012).  Related work has demonstrated that self-
explanation training can improve both attention to logical relationships and consequent 
comprehension (Hodds, Alcock & Inglis, 2014), but eye-movement work in this area has so 
far been restricted to the study of single proofs.  It is thus limited in external validity: when 
studying lecture notes or textbooks, students need to understand extended passages of 
mathematical information; single proofs form part of such passages, but a student need not 
restrict their attention in this way. 

The exploratory study reported here takes a step toward bringing together these approach-
es, studying eye movements of undergraduate mathematics students as they read an ex-
tended passage from graph theory text. 

Method 
The textbook section used was taken from the introductory chapter of the open-source 
textbook Algorithmic Graph Theory (Joyner, Nguyen & Phillips, 2011).  Graph theory was 
considered appropriate because it requires few prerequisites and it commonly involves both 
verbal and algebraic arguments and diagrams.  The first part of the chapter was formatted 
for eye tracking, with a standard font size but larger than usual spaces between lines; one 
definition and one diagram were repeated where this resulted in their being more separated 
from related content than they were in the book, and references to computer representa-
tions of graphs were removed.  The resulting file took up 16 screens and included introduc-
tory material on vertices, edges, orders and sizes of graphs, adjacency and degree of verti-
ces, regular graphs, subgraphs, walks, trails and paths, and connected, complete and cycle 
graphs.  It contained several definitions, two sets of worked problems, two theorems with 
short proofs, one proposition with a lengthier proof, several diagrams, and passages of ex-
planatory text. 

A comprehension test was designed based on problems from the end of the chapter; be-
cause the number of questions on the included content was small, these were augmented 
with questions from a local graph theory course.  Questions included multiple-choice items 
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on basic definitions, drawing a graph and answering questions about its properties, and 
proving unseen results.  The maximum score was 20. 

Participants were mathematics students who had not taken a course in graph theory; each 
took part individually in exchange for a £6 inconvenience allowance.  Participants were in-
formed about the study’s purpose and told that after the reading phase they would be 
asked to answer some questions without access to the textbook section.  The eye-tracker 
was calibrated in each case, then participants read at their own pace.  When they had fin-
ished, they were given 15 minutes to attempt the comprehension test and were asked to 
report their scores in earlier core mathematics courses; from these we constructed a prior 
performance measure.  Forty students participated, and eye-movement data from 38 was 
of sufficient quality for analysis. 

Results 
Basic descriptive results are reported here; more detailed analyses of differences in reading 
behaviours are summarised and will be reported in detail at the conference. 

Participants’ prior performance scores ranged from 38% to 91% with a mean of 64.5%, 
meaning that they were representative of the student body as a whole (UK universities typ-
ically require 40% to pass a course and 70% for a first-class degree).  Comprehension test 
scores ranged from 1 to 19 out of 20 with a mean of 9.68, and showed a moderate correla-
tion with prior performance (𝑟 = .34, 𝑝 = .036).  This is unsurprising: one would expect 
mathematically stronger students to do better in both, but short-term learning from a single 
text and longer-term learning from more materials obviously demand different skills. 

Total reading durations varied widely, ranging from 13 to 35 minutes with a mean of 20.5 
minutes; nevertheless they did not significantly correlation with comprehension test score  
(𝑟 = -.08, 𝑝 = .645).  This is striking: if longer study time does not reliably need to greater 
learning, then some students must use their reading time considerably more effectively.  A 
similar result was found for mean fixation durations, where longer fixation durations are 
associated with greater processing effort (Rayner, 1998).  Mean fixation durations were not 
significantly correlated with comprehension test scores (𝑟 = -.08, 𝑝 = .624).  Thus neither 
time nor effort predicted learning outcomes in the obvious way. 

To investigate more localised differences in reading behaviour we divided the text into are-
as of interest (AOIs) (Tobii Technology, 2010), one for each title, quote, definition, example, 
theorem, proof, diagram, problem, and worked solution.  To assess participants’ attempts to 
link different parts of the text, we analysed participants’ total visit counts, where a visit is a 
set of consecutive fixations in an AOI.  When controlling for reading time there was no sig-
nificant difference between higher- and lower-performing students on this measure. We 
note, however, that visit count is only a proxy for shifts of attention – studies of single 
proofs have considered between-line saccades (Inglis & Alcock, 2012) – and it is not obvious 
how best to study this aspect of reading behaviour for extended passages of text. 

To assess participants’ distribution of attention across different types of text we calculated 
the proportions of their reading times spent on these types.  Students who performed better 
in the comprehension test paid less attention to examples and more to definitions and theo-
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rems, a result consistent with long-established arguments about the need for students to 
understand the importance of definitions in mathematics (Vinner, 1991).  We note, howev-
er, that effect sizes were small, and that there remain numerous questions about how best 
to study and understand differences in mathematical reading behaviours.  We will report on 
the details of these analyses and discuss the methodological issues further at the confer-
ence.   

Discussion 
This study was designed to explore undergraduates’ mathematical reading behaviours dur-
ing study of an extended textbook passage.  Eye-tracking allows us to do this in an unobtru-
sive way because it provides behavioural measures without requiring participants to articu-
late their thoughts aloud.  Of course, it has limitations: one commonly-offered critique is that 
eye-movement analyses require students to read on a screen, and that this is different from 
reading mathematics on paper with a pen in hand.  While this is indisputable, reading on a 
screen is a common activity in contemporary education: both students and mathematicians 
routinely access information in this way.  More importantly, it cannot account for between-
participant differences: all participants in the reported study were in the same position.  
Nevertheless, we agree that external validity remains an issue, and future research might 
well look to use mobile recording methods to study mathematical reading ‘in the wild’ 
(cf. Savic, 2015). 

In the meantime, our early analyses indicate that obvious variations in reading duration and 
effort do not account for differences in learning effectiveness, and that explanations for this 
must therefore reside in other aspects of reading behaviour.  At the conference we will re-
port in detail on participants’ relative attention to different aspects of the text, analyse the 
extent to which this differs across more and less effective learners, and discuss follow-up 
research questions that would be open to investigation using a variety of methodological 
approaches. 
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Undergraduates learning of programming for simulation and 
investigation of mathematics concepts and real-world 

modeling  
Chantal Buteau 

Brock University 
(Canada) 

In a position paper for the European Commission’s contributions to European Research, the European 
Mathematical Society (2011) recently stated that: “Together with theory and experimentation, a third 
pillar of scientific inquiry of complex systems has emerged in the form of a combination of modeling, 
simulation, optimization and visualization.” (p.2). How should university mathematics education re-
spond to this newly identified ‘third pillar of scientific inquiry’ for complex systems? In this extended 
abstract, I briefly discuss an implementation at Brock University (Canada) since 2001 of a sequence of 
three undergraduate, constructionist mathematics courses that aims at supporting students’ devel-
opment of proficiency in this third pillar. 

Introduction 
At Brock University (Canada), all undergraduate mathematics majors and future mathemat-
ics teachers learn, as part of a sequence of three core mathematics courses1, to design, pro-
gram, and use interactive computer environments, that we have called exploratory objects 
(EO), for simulation and investigation of mathematics concepts, conjectures, and real-world 
modelling (Muller et al., 2009). These project-based MICA courses, an acronym for Mathe-
matics Integrated with Computers and Applications (Ralph, 2001), can be seen to support 
students’ development of proficiency in the third pillar of scientific inquiry of complex sys-
tems as described by the EMS (2011) (Buteau et al., 2016); indeed, an official departmental 
document that led to adopt these courses in 2001, states (Buteau et al., 2016, [p.3]): 

In dealing with such problems [from pure and applied mathematics that require ex-
perimental and heuristic approaches], students [in MICA courses] will be expected to 
develop their own strategies and make their own choices about the best combination 
of mathematics and computing required in finding solutions… [The] goal is to help 
students build a portfolio of techniques which they are confident in applying to a di-
verse range of mathematical problems that may or may not have exact solution.  

In the following, I briefly discuss the MICA classroom implementation and student experi-
ences, and end with a mention of forthcoming research. 

The classroom implementation: an integrated model 
Each MICA course is designed around project assignments that count for about 75% of stu-
dents’ final grades. For the three MICA courses, there are in total 14 individual projects, 
eleven of which on topics assigned by the instructor and the other three at the end of each 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
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urn:nbn:de:hebis:34-2016041950121 
1 Recent changes in the undergraduate program will affect these courses mostly starting in 2016-17. This paper 
discusses the implementation that has been taking place from 2001 to 2015. 
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course on a topic of the student’s own choice (Buteau et al., 2014a). As an example of an 
instructor’s selected topic, students enrolled in 3rd MICA course in 2012 were required to 
program cellular automata processes to simulate real-time epidemic spreads, investigate 
their evolution and effect of inoculation, and explore their approximate related costs (Bu-
teau et al., 2014a). Figure 1 provides two interface frames of a student’s EO. We argue that 
this work exemplifies an instance of students (guided to) engage in the third pillar of scien-
tific inquiry.  
 

   
Figure 1. Screenshots of a second-year student’s, Ramona, assigned EO project about simulating 
and investigating epidemics and their related costs (Buteau et al., 2014a). 
 
The pedagogical MICA course design chosen by the department involves a course format of 
2 weekly hours of lecture (mathematics content) together with a two hour computer lab 
session (programming-based mathematics tasks). It also involves an integrated teaching 
model wherein students learn computer programming within these mathematics courses in 
conjunction with mathematical concepts of increasing complexity (most students enrol in 
MICA courses with no programming background). In particular, this means that the MICA I 
course has been carefully designed to support the students’ instrumental genesis (Rabardel 
1995/2002) of programming needed for engagement in the third pillar (Buteau & Muller, 
2014).  

In addition, the pedagogy adopted in MICA courses requires a different teaching paradigm 
than the common university model of the delivery information followed by the students 
working on instructor developed problems (Muller et al., 2009). The role of the instructor 
becomes one of a facilitator. For example, as part of becoming proficient in the third pillar, 
we argue that one should develop the ability to conjecture, and identify and state mathe-
matics problems. For example in MICA I lectures, some classroom time is devoted to activi-
ties wherein students regroup to develop conjectures on a topic (e.g. prime numbers), fol-
lowed by a classroom discussion on the precision, importance, and relations among conjec-
tures and then by a classroom discussion on the relevance of programming technology to 
investigate them (Muller et al., 2009). This experimental mathematics aspect of the MICA 
courses is also reflected in all EO projects (Marshall & Buteau, 2014).  

Overall, the pedagogical paradigm adopted in the MICA courses follows that of a construc-
tionism approach (Papert, 1991); for example, Papert (1980) stated that in a microworld 
situation, “the relationship of the teacher to learner is very different: the teacher introduces 
the learner to the microworld in which discoveries will be made, rather than to the discovery 
itself” (p. 209). Similarly, an instructor in MICA courses introduces during lectures mathe-
matics concepts that ground a mathematical context for (motivating) students to investigate 
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them, in lab sessions or through their EO assignments: the students create (i.e., design, pro-
gram, etc.) a computer environment with interface which they use and amend as required 
to investigate the mathematical concept, conjecture or real world application. In short, the 
MICA instructor presents a situation to solicit students to think like mathematicians engaging 
in the third pillar of scientific inquiry rather than to teach them about mathematics. 

The students’ learning experiences  
When creating and using an EO for their investigation of a mathematics concept, conjecture, 
or real-world situation, students in MICA courses (are guided to) engage in the third pillar of 
scientific inquiry (Buteau et al., 2016). Diagram 1 summarizes a student’s engagement dur-
ing his/her EO work (Buteau & Muller, 2010) which, we argue, reflects well the work of a 
mathematician engaging in the third pillar. For students, the mathematical work in each EO 
involves mainly two aspects: the programming of (known) mathematics concepts and the 
investigation using the EO interface (according to an experimental mathematics approach). 
 

 
 

Diagram 1. Development process model of a student creating a computer environment for a 
mathematical investigation or application (modeling or simulation) (Buteau & Muller, 2010; 
Marshall & Buteau, 2014). 
 
Also, a recent preliminary empirical study (student survey, N = 56) provides evidence that 
students, who have completed the MICA courses, view that they have engaged in the third 
pillar of scientific inquiry (Buteau et al., 2015). For example, a student describes the MICA 
courses in the following manner: 

The courses teach you how to use an interactive programming environment … and al-
low you to use it to investigate different mathematical theorems and concepts. It is 
very effective because it allows you to make your own program to be able to see 
how this concept works, and play around with it to reach a further understanding of 
the concept; 

and a graduate from MICA courses, also a teaching assistant in MICA II course, describes: 

Overall, these courses are meant to provide students with both the tools and the 
mindset to tackle a wide variety of mathematical problems efficiently, through the 
use of modern computer softwares. (Buteau et al., 2015, p.147) 

The empirical study also suggests that students view developing, as they progress through 
their MICA courses, 15 key competencies in relation to the third pillar; for example i) to self-
motivate to learn/do mathematics; ii) to engage in the process of mathematics research; 
and iii) to closely reflect on problems (Buteau et al., 2014b). In fact, most of these 15 com-



khdm-Report, Nr. 05, 2017 

99 

 

petencies align well with results from research on programming-based, constructionist ap-
proach to mathematics learning such as Wilensky’s (1995) (Marshall et al., 2014). 

Furthermore, our recent case study that closely examined a student’s overall 14 EO work 
(Buteau et al., 2016) suggests that students may view experiencing a sense of empow-
erment in terms of creation and validation of mathematical knowledge; e.g., a student 
writes: “I have developed [the knowledge] about how to creatively think about a problem 
for ways that it could be modelled.” This is reflected in the student’s following quote sug-
gesting that he views having become proficient, i.e., confident and skilled, in engaging in the 
third pillar: 

…The possibilities are only limited to the creativity of the mathematician making the 
models. I think the major skill I will take with me from MICA courses is the ability to 
create, analyse and explore dynamical systems and make the connections between 
them and the real world. (Buteau et al., 2016, [p.20]) 

Future research  
The case study mentioned above is preliminary to a forthcoming comprehensive study on 
MICA students’ appropriation of programming as an instrument for engagement in the third 
pillar, framed mainly in the context of an instrumental approach (Rabardel 1995/2002). 
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Duality between formalism and meaning 
in the learning of linear algebra  

Jean-Luc Dorier 

Université de Genève 
(Switzerland) 

In the French tradition of Bourbaki, the theory of vector spaces is usually presented in a very formal 
setting, which causes severe difficulties to many students. The aim of this talk is to analyze the un-
derlying reasons of these difficulties and to suggest some ways to make the first teaching of the the-
ory of vector spaces less inefficient for many students. From a mathematical analysis with a historical 
perspective, we analyze the teaching and the apprehension of vector space theory in a new ap-
proach. I particular, we w show that mistakes made by many students can be interpreted as a result 
of a lack of connection between the new formal concepts and their conceptions previously acquired 
in more restricted, but more intuitively based areas. 

Linear algebra: a first encounter with formalism 
Linear algebra is universally recognized as a very important subject in the mathematics cur-
riculum in many universities. Usually linear algebra represents the first contact with such a 
"modern" axiomatic approach. However, since the 90s in many universities, the teaching of 
linear algebra became less formal and it is often preceded by a preparatory course in Carte-
sian geometry or/and by a course in logic and set theory. Yet, in secondary school, students 
still learn the bases of vector geometry and the solving of systems of linear equations by 
Gaussian elimination. Therefore, they have some knowledge on which the teaching of linear 
algebra can be based. For the moment, the idea of teaching students the axiomatic elemen-
tary theory of vector spaces within the first two years of science university has not be ques-
tioned seriously, and the teaching of linear algebra, in most countries, remains quite formal. 

In the 80s already, A. Robert and J. Robinet (1989) showed that the main criticisms made by 
students toward linear algebra concern the use of formalism, the overwhelming amount of 
new definitions and the lack of connection with what they already know in mathematics. It 
is quite clear that many students have the feeling of landing on a new planet and are not 
able to find their way in this new world. On the other hand, teachers usually complain of 
their students' erratic use of the basic tools of logic or set theory, and have no skills in ele-
mentary Cartesian geometry and consequently cannot use intuition to built geometrical rep-
resentation of the basic concepts of the theory of vector spaces. In my doctorate (Dorier 
1990), I tested with statistical tools the correlation between the difficulties with the use of 
the formal definition of linear independence and the difficulties with the use of the mathe-
matical implication in different contexts. The results showed clearly that no systematic cor-
relation could be made. This means that students' difficulties with the formal aspect of the 
theory of vector space are not just a general problem with formalism and logic but mostly a 
difficulty of understanding the specific use of formalism and logic in the theory of vector 
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spaces and the interpretation of the formal concepts in relation with more intuitive contexts 
like geometry or systems of linear equations, in which they historically emerged. I will ana-
lyze this point in more details in this paper on the specific point of linear independence. 

Linear independence 
Liner independence is one of the most basic notions in vector space theory. Yet, even if stu-
dents can be easily trained to solve standard questions like "is this set of vectors independ-
ent or not?" in various contexts, the use of these notions in less straightforward situations 
may be much less easy. On the other hand, the historical genesis of this concept is maybe 
less trivial as could be imagined. I will first give some accounts on students' difficulties, I will 
then give a brief account of the historical evolution and finally draw out some conclusion on 
the basis of a coordinated epistemological synthesis of the first two points. 

Students’ difficulties 
In a standard linear algebra course, students are trained to check whether a set of n-tuples, 
equations, polynomials or functions are linearly independent. This technical part of the 
learning is often quite easy going. However it does not mean that the same students are 
able to use the concept of linear independence in more formal contexts. 

For instance, let us consider the following two conjectures: 

1. Let 𝑈, 𝑉 and 𝑊 be three vectors in 𝑹𝟑, and 𝑓 a linear operator in 𝑹𝟑, if 𝑈, 𝑉 and 𝑊 are inde-
pendent, 𝑓(𝑈), 𝑓(𝑉) and 𝑓(𝑊) are independent. 

2. Let 𝑈, 𝑉 and 𝑊 be three vectors in 𝑹𝟑, and 𝑓 a linear operator in 𝑹𝟑, if 𝑓(𝑈), 𝑓(𝑉) and 𝑓(𝑊) 
are independent, 𝑈, 𝑉 and 𝑊 are independent. 

When asked whether each of these conjectures is true or false. Many students have the 
feeling that the first is true and the second is false… On the basis of this first impression, 
beginners usually try to use the formal definition, without first checking on concrete exam-
ples. They try different combinations with the hypotheses and the conclusions, and very 
often give a proof that shows some difficulty in the use of the formal definition of linear 
independence, but my analysis led to show that this is not just a lack of ability with the use 
of logic and implication. (Dorier, 1997, pp. 116-121, Dorier 1998 or Dorier, 2000, pp. 95-
103). If a certain level of ability in logic is necessary to understand the formalism of the the-
ory of vector spaces, general knowledge, rather than specific competence is needed. Fur-
thermore, if some difficulties in linear algebra are due to formalism, they are specific to line-
ar algebra and have to be overcome essentially in this context.  

On the other hand, some teachers may argue that, in general, students have many difficul-
ties with proof and rigor. Several experiments that we have made with students showed 
that if they have connected the formal concepts with more intuitive conceptions, they are in 
fact able to build very rigorous proves. This implies not only giving examples but also to 
show how all these examples are connected and what is the role of the formal concepts 
with regard to the mathematical activity involved. 
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Historical background 
Formalized axiomatic theory of vector space dates only from the early 20th century (see 
Dorier 1993, 1995a, 2000 – 1st part). The first time the question of dependence was dis-
cussed is in a text published by Leonhard Euler (1707-1783) in 1750 about what is known 
as Cramer’s paradox. In this text, Euler does not use the term “dependence”, he says that an 
equation is “contained” or “comprised” in others. His idea is that this equation does not 
bring more new restriction on the unknown than the others. There his conception of “de-
pendence” is not quite the same and I have use the term “inclusive dependence” to distin-
guish it from the conception in terms of linear combination being zero. Mathematically 
speaking, the linear dependence between 𝑛 equations in 𝑛 unknowns is equivalent to the 
fact that the system will not have a unique solution. However, the two properties corre-
spond to two different conceptions of dependence, and the inclusive conception is natural in 
the context in which Euler and all the mathematicians of his time were working, that is to 
say with regard to the solving of linear equations, and not the study of equations as objects 
on their own. Yet, there is a difficulty for further development regarding the concept of rank. 
1750 is also the year Gabriel Cramer (1704-1752) published the treatise that introduced the 
use of determinants which was to dominate the study of linear equations until the first quar-
ter of the 20th century. In this context, dependence was characterized by the vanishing of 
the determinant. The notion of linear dependence, now basic in modern linear algebra, did 
not appear in its modern form until 1875. Ferdinand Georg Frobenius (1849-1917) intro-
duced it, pointing out the similarity with the same notion for 𝑛-tuples. He was therefore able 
to consider linear equations and 𝑛-tuples as identical objects with regard to linearity. This 
simple fact may not seem very relevant but it happened to be one of the main steps toward 
a complete understanding of the concept of rank. Indeed in the same text, Frobenius was 
able not only to define what we would call a basis of solutions but he also associated a sys-
tem of equations to such a basis (each 𝑛-tuple is transformed into an equation). Then he 
showed that any basis of solutions of this associated system has an associated system with 
the same set of solutions as the initial system. This first result on duality in finite-
dimensional vector spaces showed the double level of invariance connected to rank both for 
the system and for the set of solutions. Moreover, Frobenius' approach allowed a system to 
be seen as an element of a class of equivalent systems having the same set of solutions: a 
fundamental step toward the representation of sub-spaces by equations. 

This brief summary of over a century of history shows how adopting a formal definition 
(here of linear dependence and independence) may be a fundamental step in the construc-
tion of a theory, and is therefore an essential intrinsic constituent of this theory. 

Conclusions 
Students must be aware of the unifying and generalizing nature of the formal concept. In 
our research, we used what we called the meta lever to build teaching situations leading 
students to reflect on the nature of the concepts with explicit reference to their previous 
knowledge (Dorier 1995b, 1997 and 2000 (II.4) and Dorier et al. 2000). In this approach, the 
historical analysis is a source of inspiration as well as a means of control. Nevertheless, 
these activities must not only involve a lecture by the teacher, nor a reconstruction of the 
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historical development, but take into account the specific constraints of the teaching con-
text, to reconstruct an evolution of the concepts with consistent meaning. 

For instance, with regard to linear (in)dependence, based on students’ good practice of 
Gaussian elimination for solving systems of linear equations, we can make them reflect on 
this technique not only as a tool but also as a means to investigate the properties of the 
systems of linear equations. This does not conform to the historical development, as the 
study of linear equations was historically mostly held within the theory of determinants. Yet, 
Gaussian elimination is a much less technical tool and a better way for showing the connec-
tion between inclusive dependence and linear dependence as identical equations (in the 
case when the equations are dependent) are obtained by successive linear combinations of 
the initial equations. Moreover, this is a context in which such question as “what is the rela-
tion between the size of the set of solutions of a homogeneous system and the number of 
relations of dependence between the equations?” can be investigated with the students as 
a first intuitive approach for the concept of rank. Rogalski has experimented with teaching 
sequences illustrating these ideas (Rogalski 1991, Dorier 1997 and 2000, II.3). In these ex-
periments, we have also proposed a different way to introduce the concepts of linear de-
pendence and independence that introducing the formal theory after having made as many 
connections as possible with previous knowledge and conceptions in order to build better 
intuitive foundations. 

The theory of vector spaces is a unifying and generalizing theory, in the sense that, histori-
cally, not only did it allow solving new problems in mathematics, but it essentially unified 
tools, methods and results from various backgrounds in a very general approach. Thus its 
formalism is a constituent of its nature. Yet all the problems our students may solve with 
this theory could be solved with less sophisticated tools which they have already learnt (or 
at least are supposed to have learnt). Therefore the gains of this unification and generaliza-
tion have to be understood by them, if we want them to accept this formalism and to use 
the theory correctly.  
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Use of letters in mathematics at university level 
teachers’ practices and students’ difficulties  

Viviane Durand-Guerrier 

University of Montpellier  
(France) 

In this communication, we will question the possible impact on students learning of the rather com-
mon practice at tertiary level of a floating use of letters in proof and proving. We first provide a brief 
logical background concerning the logical status of letter relying on Copi’s natural deduction. We then 
provide an example out of a textbook address to undergraduates enlightening what we mean by 
“floating use of letters”. Finally, we will put this practice in relationship with students’ difficulties. 

Introduction 
In mathematics education, at tertiary level, there is an increasing use of letters with various 
logical status: variable, either free or in the scope of a quantifier (universal of existential); 
singular element; generic element. Taking in account the logical status of a letter in a proof 
is often a clue aspect in proof and proving. Nevertheless, this remains often implicit in 
mathematical texts address to students, in particular when teachers consider it is not dan-
gerous (Durand-Guerrier and Arsac, 2005). In this communication, we will question the pos-
sible impact on students learning of the rather common practice at tertiary level of a floating 
use of letters in proof and proving. We will first provide a brief logical background concern-
ing the logical status of letter relying on Copi’s natural deduction, considering introduction 
and elimination of quantifiers as a mean to explicit this logical status. We will then provide 
an example a floating use of letters in mathematical a textbook on advanced calculus. Final-
ly, we will suggest that this practice could reinforce some students’ difficulties. 

Relationship between quantification and logical status of letters 
In line with several authors (i.e. Dubinsky & Yparaki, 2000, Selden & Selden, 1995, Epp 
2004) we claim that quantification matters are playing an essential role in mathematical 
activity and conceptualization. In this respect, we consider that first order logic developed in 
the late nineteenth and early twentieth centuries by logicians such as Frege, Russell, Witt-
genstein, and Tarski, is a relevant epistemological reference for analyzing mathematical dis-
course, as well written that oral. Among the relevant aspects for a didactic perspective we 
focus in this paper on the dialectics between syntax and semantic, form and content, logical 
validity and truth in an interpretation, theoretically founded by Tarski (1933) and popular-
ized by Quine (1950). These dialectics provide a relevant background for analyzing mathe-
matical activity, including but not restricted to proof and proving in mathematics (Durand-
Guerrier, 2008, Durand-Guerrier & al. 2012). A main feature of first order logic is to analyze 
the statement in object, properties, relationships and quantifiers. As a consequence the is-
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sue of the logical status of letter is crucial: a letter may represent a singular object (a con-
stant) or a generic element (an element consider only as a member of a given set or sub-
set); a letter may also have the logical status of free variable in an atomic formula, that does 
not represent anything but is subject to assignation, or a bounded variable in the scope of a 
quantifier (a particular case of mute letter). Possibilities to deal with letters in mathematical 
activity are constrained by their logical status. However, in mathematics and in undergradu-
ate mathematics education, it is very common to let implicit the logical status of letters in-
volved in an activity, a reasoning or a proof, in particular via the spread use of implicit quan-
tification on universal conditional statements; we have shown that this is likely to induce 
difficulties for novice university students (Durand-Guerrier et Arsac, 2005). A pending ques-
tion in mathematic education concerns the balance between rigor requirements and prag-
matic aspect of mathematical reasoning and heuristic. The systems of natural deduction 
have been developed to provide a tool for analyzing effective mathematical reasoning. In 
our work, we use the system developed by Copi (1954) as a tool for analyzing the logical 
status of letters in proofs, reasoning and more generally in mathematical discourse in a di-
dactic perspective.  

Logical status of letter in the light of Copi’s natural deduction 
The main interest of natural deduction in a didactic perspective relies in the rule for elimina-
tion and introduction of logical connectors and quantifiers (Durand-Guerrier et Arsac, 2015). 
As we have said, we pay interest in our research on first order logic, which deals not only 
with propositions, but also predicates, variables and quantifiers. This needs to introduce 
rules for introduction and elimination of quantifiers. In Copi’s system, the rules involved an 
implicit generic domain of interpretation, and so they appear as formalization of the dialectic 
between formal statements in Predicate calculus and interpretation in a given universe of 
discourse. There are four rules concerning quantifiers; two of them are relying on logically 
invalid quantificational schema so that restrictions are required to insure validity. We present 
below the version of Copi (1954, second edition 1965).  

The first rule of inference concerns elimination of the universal quantifier; it is called Univer-
sal Instantiation (U.I.) and states that: “(...) any substitution instance of a propositional func-
tion can validly be inferred from the universal quantification“ (Copi, 1965, p.50). This rule 
relies on the valid schema  “(𝑥)𝛷(𝑥) ⇒ 𝛷(𝑦) “ and expresses that “What is true for all is 
true for any“. The second rule is the dual of the first one and concerns the introduction of 
the universal quantifier; it is called Universal Generalization (U.G.) and states that: “(...) the 
universal quantification of a proposition can validly be inferred from a substitution instance 
with respect with the symbol 𝑦.“ (ibid., p.51). This rule relies on the invalid schema 
𝛷(𝑦) ⇒ (𝑥)𝛷(𝑥). For this reason, it necessitates a restriction; you must be sure that no as-
sumption other than the property expressed by 𝛷 has been done. Obviously, it is build “by 
analogy with a fairly standard mathematical practice“ (ibid., p.50). The third rule concerns 
the introduction of the existential quantifier; it is called Existential Generalization (E.G.) and 
states that: “(...) the existential quantification of a propositional function can be validly in-
ferred from any substitution instance of that propositional function.“ (ibid., p.52). The fourth 
rule concerns the elimination of the existential quantifier; its is call Existential Instantiation 
(E.I.) and states that: “(…) from the existential quantification of a propositional function we 



khdm-Report, Nr. 05, 2017 

108 

 

may validly infer the truth of its substitution instance with respect to an individual constant 
which has no prior occurrence in that context.“ (Ibid. p.52). As the second rule, this one re-
lies on an invalid schema. This fourth rule is the more delicate to use, and necessitates a 
global control of the proof or of the argument. Indeed, as we have shown in Durand-
Guerrier et Arsac (2005), a control step by step is not enough to track possible invalid de-
duction. 

Floating use of letter in mathematical text addressed to under- 
graduates 
Although it seems indubitable that a correct use of letters in mathematics is a clue compe-
tence at university, we can observe in many mathematical texts addressed to students a 
floating use of letters in the following sense: in a text unit, it is not seldom that the logical 
status of a same letter is changing along the text. For example, the aim is to prove a univer-
sal statement in which the bounded variable is named 𝑥. The first thing is to introduce a ge-
neric element (U.I.), most often, it is also named 𝑥. In other cases, at some moment a singu-
lar element named 𝑥 is proved to satisfy a given property 𝑃; then the conclusion is “there 
exists 𝑥 so that 𝑃(𝑥) ” (E.G.). This practice is opposite with the choices made by Copi who 
changes the category of letters according with their logical status (𝑥, 𝑦, 𝑧, .. for variables; 𝑎, 
𝑏, 𝑐… for generic or singular elements). We find such floating use of letters in numerous 
proofs in textbooks, as in the following example (Figure 1): 
 

 

Figure 1: An example of proof with floating use of letter (Buck et Buck, 1965, p. 68). 
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In this proof, the letter 𝑥 is first used as a free variable in the definition of function 𝑓; then 𝑥 
intervenes in an unusual notation for the open interval ]0;1[. In the mathematical expression 
written on line 4, although 𝑥 and 𝑥0 have not been explicitly introduced, they seem to rep-
resent generic elements. This status of generic element for 𝑥0 is confirmed in line 5, but 
nothing is said concerning 𝑥. On lines 7 and 8, the letter 𝑥 intervenes in a sentence that 
could be formalized as a universal conditional statement in which 𝑥 would be a bounded 
variable. On line 9, in the first sentence the letter 𝑥 denotes a generic element satisfying 
“ 𝑥 – 𝑥0  <  δ  ”. In the following sentence, “Given ε > 0, we can ensure that  

“ 𝑓(𝑥)–  𝑓(𝑥0)  < ε by taking δ so that δ ≤ (𝑥0
 2/2)ε   ”, there is no indication that the letter 

𝑥 is a bounded variable in the scope of an implicit universal quantifier, corresponding to a 
Universal Generalization on 𝑥. As a consequence, the difference of logical status between 
the generic element 𝑥0, and the bounded variable 𝑥 remains implicit, while in the next sen-
tence on the property that 𝑓 is not uniformly continuous, the universal quantification of both 
𝑥 and 𝑥’  is explicit. Finally, 𝑥 and 𝑥’  are used to label the pairs (1/𝑛;  δ + 1/𝑛) depending on 
𝑛, without any indication of this dependence.  

Although we have not made an extensive inquiry, we hypothesize that this example is rep-
resentative of what we can find in mathematical textbooks addressed to undergraduates. 

University students difficulties related to floating use of letters 
Of course, for university teachers a floating use of letters is not problematic as they have 
semantic controls that prevent them from invalid mathematical arguments. Nevertheless, it 
is well known from history of mathematics that even prominent mathematicians have pro-
duced invalid proofs. Concerning students, in line with other authors (i.e. Selden and Selden, 
1995) we have shown that uncertainty on the logical status of letter provoke difficulties in 
proof and proving in mathematics, in particular when multiquantified statements are in-
volved (Durand-Guerrier et Arsac, 2005, Chellougui 2009). We will present during the con-
ference recent results showing that this might be source of conceptual difficulties. 
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When is a parabola not a parabola?   
Johann Engelbrecht, Harry Wiggins, Ansie Harding 

University of Pretoria 
(South Africa) 

We use the idea of sibling curves to visualize complex polynomials and their zeroes and see that a 
parabola is a singular case of a complex quadratic. Being four dimensional, it is problematic to visual-
ize graphs and roots of polynomials with complex coefficients in spite of many attempts through cen-
turies. Three dimensional sibling curves are introduced by restricting the domain of a complex func-
tion of a complex variable to those complex numbers that map onto real numbers, resulting in new 
representations of functions other than the well-known curves in the real plane that only depict part 
of a bigger whole. The expanded representation brings new insight into the understanding of com-
plex polynomials. In the case of a complex quadratic we see that the sibling curves lie on a three-
dimensional hyperbolic paraboloid.  

Introduction 
For centuries mathematicians have spent time and energy on how to visualize polynomials 
with complex coefficients and how to visualize complex zeroes of polynomials. Roots of a 
function have been visualized as the points of intersection with the “floor” (horizontal axis 
or plane). Since the graph of a complex function on a complex domain is four-dimensional, 
visualization is not evident. We have two planes, the Cartesian plane that can be used for 
showing the graph of a function and where its real roots lie and the Argand plane that gives 
a visual representation of complex numbers. Harding and Engelbrecht (2007a) followed the 
historical journey of finding roots of complex functions graphically but all attempts are 
somewhat artificial.  

A new idea appeared in print in 1951, in an American secondary school textbook (Fehr, 
1951). This approach was further developed by Harding and Engelbrecht (2007b). If we re-
strict the domain of 𝑓 to those complex numbers that map onto real values, on this restrict-
ed domain the function can be represented in three dimensions with the domain in the hori-
zontal plane (the complex plane) and the range along the vertical (real) axis. This led to the 
idea of sibling curves, which turn out to be a rich and useful way of visualizing zeroes of 
polynomials and other well-known functions as well as visualizing complex functions in 
three dimensions. 

In particular, a polynomial 𝑓 can be written in the form: 
𝑤 = 𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) = 𝑔(𝑥, 𝑦) + 𝑖ℎ(𝑥, 𝑦)  

for some polynomials 𝑔 and ℎ. If 𝑓 maps the complex number 𝑥 +  𝑖𝑦 onto a real number 
then ℎ(𝑥, 𝑦) = 0. Restricting the domain of the function 𝑓 to these points in the 𝑥𝑦 −plane, 
the condition ℎ(𝑥, 𝑦) = 0 defines a curve(s) in the Argand plane (the horizontal plane). The 
function 𝑓 with these curves as domain form the sibling curves.  
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Example.   If 𝑓(𝑧) = 𝑧2 + 2𝑧 + 2 and 𝑧 is a complex number 𝑥 + 𝑖𝑦  then 

𝑓(𝑧) = (𝑥2– 𝑦2 + 2𝑥 + 2) + 2𝑖𝑦(𝑥 + 1) 

So 𝑓(𝑧) is real in the plane 𝑦 = 0 (the Cartesian plane) and in the plane 𝑥 = −1  (a plane 
perpendicular to the Cartesian plane). In the real plane 𝑦 = 0 the function values are given 
by  

 𝑓(𝑥) = 𝑥2 + 2𝑥 + 2, 𝑥 ∈ ℝ,  

which is the well-known parabola that we have always considered as the entire graph.  

In the plane 𝑥 = −1 perpendicular to the Cartesian plane, the function is 𝑓(𝑦) = −𝑦2 + 1, 
 𝑦 ∈ ℝ. So the parabola as we know it is one of twin curves, defined in planes perpendicular 
to each other. These twin curves are called the sibling curves of the function. The function 
has complex roots 𝑧 = 1 ± 𝑖, and visually it is evident that these roots are situated where 
the function 𝑓(𝑦) cuts the complex (horizontal) plane. 

 

 

 

 

 

 

 

Figure 1: The quadratic function 𝑓(𝑧) = 𝑧2 + 2𝑧 + 2 
 

Expanding on the idea outlined above, Harding and Engelbrecht (2007b) developed sibling 
curves of a number of well-known functions, including cubics, quartics, exponential, trigo-
nometric and hyperbolic functions.  

The work on sibling curves was given a more solid mathematical founding in (Engelbrecht, 
Fouche, Harding, & Wiggins, 2015) in which the main result proven is that a polynomial with 
degree 𝑛 has 𝑛 sibling curves. This theorem is also true for polynomials with complex coeffi-
cients.  

Real and complex quadratics 
For quadratic polynomials where the coefficients are real, Wiggins, Harding, & Engelbrecht, 
(submitted) proved that we get two congruent (a distance preserving bijection existing be-
tween the curves) sibling parabolas that always meet in one point, the turning point of the 
original parabola. From Figure 1 it appears that the other sibling curve is also a parabola. This 
is indeed the case (Wiggins, et al. (submitted)). 

If the coefficients are complex numbers, Wiggins, et al. (submitted) proved that the two 

sibling curves intersect if and only if  Δ = 4𝑎𝑐−𝑏2

4𝑎
  is a real number. So the sibling curves in 

this case do not always intersect and are not always parabolas.  
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Example.    Consider 𝑓(𝑧) = (𝑧 − 1)(𝑧 − 𝑖) = 𝑧2– (1 + 𝑖)𝑧 + 𝑖.  

Let 𝑧 = 𝑥 + 𝑖𝑦, then 

𝑓(𝑧) = (𝑥 + 𝑖𝑦)2– (1 + 𝑖)(𝑥 + 𝑖𝑦) +  𝑖 = (𝑥2– 𝑦2– 𝑥 + 𝑦) + 𝑖(2𝑥𝑦 − 𝑥 − 𝑦 + 1). 
If 𝑓(𝑧) is real then 2𝑥𝑦 – 𝑥 – 𝑦 + 1 = 0 which means that the projection is hyperbolic.  

 

Figure 2: Sibling curves of 𝑓(𝑧) = (𝑧 − 1)(𝑧 − 𝑖) 
 

So for complex quadratics, the sibling curves of these quadratics are not necessarily longer 
parabolas and the projection of these sibling curves on the complex domain is a hyperbola 
and not two perpendicular straight lines as was the case with real quadratic polynomials.  

Hyperbolic paraboloid 
For quadratic polynomials, if the sibling curves meet they are two planar parabolas, each 
sibling curve lying in its own plane. If the two sibling curves do not meet, the curves are not 
parabolas, but again congruent curves (Wiggins, et al., (submitted)). 

Without loss of generality, we only need to consider the quadratic polynomial 

𝑓(𝑧) = 𝑧2 + 𝐶 for some complex number 𝐶. If 𝑧 = 𝑥 + 𝑖𝑦, then 

𝑓(𝑧) = 𝑥2– 𝑦2 + 𝑅𝑒(𝐶) + 𝑖�2𝑥𝑦 + 𝐼𝐼(𝐶)�. 

Hence the sibling curves always lie on a scaling, translation or rotation of the hyperbolic pa-
raboloid 𝑧 = 𝑥2– 𝑦2 (saddle shaped surface or “Pringle”). 

In Figure 3 we see the typical scenario when the two sibling curves meet. The two parabolas 
meet in the saddle point of the hyperbolic paraboloid – both parabolas’ turning point. 

 

Figure 3: Sibling curves of 𝑓(𝑧) = 𝑧2 − 1 on a hyperbolic paraboloid. 
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An animation of the sibling curves of the quadratic 𝑓(𝑧) = 𝑧2 + 2𝑧 + (1 + 𝑖𝑘) can be seen 
at https://cardanogroup.wordpress.com/. In Figure 4 we sketched snapshots of the sibling 
curves of this quadratic for various real values of 𝑘. Notice that when 𝑘 = 0 the two sibling 
curves are parabolas that intersect in a point.  

 

Figure 4: Snapshots of some sibling curves of  𝑓(𝑧) = 𝑧2 + 2𝑧 + (1 + 𝑖𝑘) 
 

Quite surprisingly we notice from this animation (or looking at the snapshots of the anima-
tion) that one half of the parabola joins up with another half of the other parabola to form 
new sibling curves when 𝑘 ≠ 0. 

The general case 
We considered a three-dimensional cut of the four-dimensional graph by only considering 
those complex numbers in the domain of which the function values are real. This is a special 
case since we do not see the complete four-dimensional object.  

If, however, we let  

𝑓(𝑧) = 𝑎𝑧2 + 𝑏𝑧 + 𝑐 = 𝑘𝑒𝑖𝑖 ∈ ℂ then 
𝑎𝑧2𝑒−𝑖𝑖 + 𝑏𝑧𝑒−𝑖𝑖+𝑐𝑒−𝑖𝑖 = 𝑘 ∈ ℝ   

which is exactly the case that was discussed. 

This fresh insight implies that by only considering the case where the function values are 
real we place no limitation on the images created representing all quadratics – nothing new 
will be seen if we include complex function values in the range instead of being limited to 
real function values.  

In conclusion 
The findings in this paper show that parabolas are singular cases of a general quadratic. We 
now have a new perspective on the shape of a parabola as traditionally acknowledged. 
From the work presented here (Figure 4 in particular) it appears that a parabola consists of 
two halves, each the degenerate case of part of a sibling curve. We are left with the ques-
tion as to how this interpretation fits in with the traditional locus definition of a parabola.  
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Mathematics and programming: tentative findings from a 
design research project  

Celia Hoyles, Richard Noss 

London Knowledge Lab, London 
(United Kingdom) 

Background: the case for programming 
Mathematics is a ubiquitous and vital substrate on which our culture and societies are built. 
Yet this fact is seldom fully exploited in educational contexts. The first step must, in our 
view, be to open the black box of invisible mathematics to more people. It will become evi-
dent that the challenge is broader than it seems at first sight, as we will need to confront 
the necessity that mathematics itself – not just its teaching – may have to be reviewed. The 
experience of girls and women in relation to this challenge is pivotal. We have argued else-
where that the complexity of teaching and learning mathematics, and will conjecture that 
mathematicians and mathematics education researchers can exploit digital technology to 
reveal more of what mathematics is, by offering a glimpse of the mathematical models un-
derlying many of the systems that form part of daily life (Hoyles, Noss, Bakker and Kent, 
2010).  

We will illustrate the conjecture by presenting some theoretical and practical issues in de-
sign research into the role of programming in mathematical learning, based on our ongoing 
experience of a large-scale design research study in England, the ScratchMaths project. 
Mathematics and programming in schools have a longstanding and intertwined history. 
More generally, learning to program has been shown to be an engaging activity for most 
children: they become more autonomous as they build, learn from feedback and debug. 
Programming at the school level has been shown to have the potential to develop higher 
levels of mathematical thinking, in particular linked to multiplicative reasoning, mathemati-
cal abstraction, including algebraic thinking, as well as problem solving abilities (see e.g. 
Clements, 2000).  We note however that unless activities are carefully designed, managed 
and sequenced, there might not be positive learning outcomes or trajectories, and there is 
an added risk that mainly advantaged learners – often boys – show learning gains (see for 
example, Yelland & Rubin, 2002).   

New programming languages have been developed since much of the research in compu-
ting and its relation to mathematical learning was undertaken. For example, Scratch is the 
latest language in a fifty-year history of LISP-based environments, the most famous of 
which (and the most researched) is Logo. These technical developments in what it means to 
program and the functionalities now available offer an unprecedented opportunity to inves-
tigate how best to develop the benefits of programming for what is now known as 'compu-
tational thinking' (CT) (Wing, 2008).  In addition, and the core of the research reported here, 
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is to revisit the potential and challenges of exploiting programming for developing mathe-
matical thinking and reasoning, to design an intervention arising from this analysis and to 
evaluate its effects on these processes and on mathematical attainment, again something 
now possible in England as computing is compulsory for all school students.  

Constructing a relationship between programming and mathematics 
In the previous section, we focused briefly on the historical research effort to understand 
what can be learned by programming. Our goal in this paper is much more focused and, we 
claim, somewhat unusual: it is to build a curriculum for learning mathematics through pro-
gramming. By the time students come to more advanced mathematics, we traditionally as-
sume that they are fluent in the language of mathematical expression – algebra (of course 
there are other ‘fluencies’ that matter like geometrical intuition). But we know that large 
numbers of students arrive at this point  without  being fluent in algebra – far from it. Our 
aim is to take steps towards building a mathematics curriculum of the future, one in which 
we may take for granted another powerful representational infrastructure to complement 
algebra – namely, programming. This means that we have two tasks: 1) to develop a cur-
riculum for fostering computational thinking, introducing quite young students to the ideas 
of the subject and 2) build a curriculum for mathematics, in which the key ideas of the com-
putational thinking course are exploited. 

The case for programming and mathematics is nicely put by diSessa (2001) who argued that 
it “turns analysis into experience and allows a connection between analytic forms and their 
experiential implications that algebra and even calculus can’t touch” (ibid., p. 34). The key 
effort in the work reported here is to elaborate the relationship between some clearly iden-
tified core ideas of programming and their expressive power in the articulation of mathe-
matical ideas: the research on which this is based is a three-year project, the ScratchMaths 
project, which we now outline.  

Overview of the ScratchMaths project 
The overarching aim of ScratchMaths is to develop and evaluate a curriculum for computa-
tional thinking (CT) which can serve as a substrate on which to construct a new mathematics 
curriculum that exploits CT, and to use this research to tease out broader issues around pro-
gramming and mathematics. Our specific aim is to assess the extent to which students at 
Key Stage 2 (age 11) can boost their national test scores at age 11 years by participating in 
a two-year specially designed ScrathMaths curriculum. The first year of the project has been 
devoted to iterative design and development of this curriculum; the second and third to its 
implementation in schools. More than 100 English primary schools were recruited during the 
early part of 2014-15. During 2015, a huge effort was made in designing materials, fol-
lowed by their iterative testing, and a focused effort of professional development for those 
teachers who would be involved in the trials. Details will be given at the conference.  

Space constraints do not allow us to do more than flag our thinking on this ambitious aim to 
exploit of computational thinking concepts for mathematics. At the conference we will give 
some examples of how CT concepts such as algorithms, decomposition, iteration, variable 
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and parallel processing can be designed to used to exploit reasoning about mathematical 
ideas such as the arithmetic of integers, variable and expressions, place value, position, ratio 
and other topics of the late primary and early secondary mathematics curriculum (this map-
ping is not 1-1!). 

Two kinds of evaluation will be undertaken. The first will consist of a qualitative analysis of 
how the CT curriculum offers an expressive medium for working on the Scratch-based cur-
riculum of the first-year implementation (the second project year) and the mathematics cur-
riculum of the second year implementation year (the third project year). The second will be 
undertaken by an independent evaluator who has split the sample of 100+ schools into 
treatment and control groups with similar profiles grouped around 7 hubs across England, 
and who will use item-based evaluations of national tests in mathematics to assess the ef-
fect of participation in the curriculum on the learning of mathematics. 

Design research in the ScratchMaths project 
As with all design research methodologies, our work has evolved cycles of design and pro-
cess evaluation. Our objective is to chart as closely as possible the triangle of interaction 
between the ScratchMaths curriculum instantiated in sets of activities, the teacher’s inter-
ventions, and the pupils’ actions and productions. Apart from allowing us to gain a picture 
over two years that will describe and analyse the role of the new curriculum in developing 
mathematical ideas, it will allow us to identify a causal mechanism for any quantitative find-
ings that emerge from the independent evaluation. Key foci for our qualitative analysis will 
be i. how the ‘big ideas’ of ScratchMaths are communicated through the activities, ii. the 
resilience of the intervention to ‘legitimate’ and ‘lethal’ mutations in pedagogy and curricu-
lum ‘delivery’ (Hung et al. (2010) and iii. the extent to which teacher expertise and experi-
ence impact outcomes. 

To achieve this, we have selected 5 trial schools in London with which we work closely to: 

• Observe the same key activity from each of the 3 modules (total 3 lesson observa-
tions for each Year 5 class) 

• Interview 6 pupils per school (at different attainment levels) after the activity to de-
termine what they learned/found difficult 

• Interview teacher after lesson to establish their preparation, aims and assessment of 
the lesson as well teaching challenges 

• Explore differences between the two Y5 classes in the same school and also be-
tween schools in terms of teaching approaches and adaptations of the materials. 

Developing a pedagogical framework (5Es) 
We have developed a pedagogical framework that we use to guide and structure the devel-
opment of the materials. We call these the 5E’s, and they consist of: 

Explore: Investigating ideas, trying things out for yourself and debugging.  

Explain: A crucial aspect of understanding ideas is being able to explain what you have done 
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and articulating the reasons behind your approach.  

Envisage: Have a goal in mind and to predict what the outcome might be before you try it 
out.  

Exchange: Collaborating and sharing is a powerful way to learn- trying to see a problem 
from another’s perspective as well as defend your own approach and compare it with oth-
ers.  

bridgE: Making links between the Scratch programming work and the language of ‘official’ 
mathematics. 

A concluding remark  
In this presentation, we will report on the framework of curriculum design (which embeds 
programming) that seeks to enhance both computational thinking and mathematical attain-
ment, as provisional outcomes of the design research. We would also raise some key issues 
for research, not least the problem of how universities should revisit what they teach and 
how in the light of new generations of students schooled in programming and fluent in ex-
ploiting the expressive power of programming to explore mathematics.  
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A reading course on Galois Theory  
Hans-Georg Rück 

Universität Kassel  
(Germany) 

I give a short report on a “best practice example”, hence reflecting ideas of a mathematician towards 
didactics of mathematics. I will speak on my experiences of giving a reading course on Galois theory 
replacing the usual lecture style on this subject. This course was aimed to math majors in their second 
or third year at a German university. I gave the course twice with different outcome. The results may 
have consequences (at least for me) for the mathematics education at the beginning level at univer-
sities. 

This is not a talk on a scientific paper. I will report on the realization of a reading course, and 
ask some question which arise in this context. 

The course Galois Theory is offered for students of mathematics in the second or third year. 
They had previously attended a lecture „Introduction to Algebra“, where they have learnt 
the basics on groups, rings and fields. These participants are also familiar with Linear Alge-
bra and Analysis.  

Galois Theory is the second part of the well-known lecture „Algebra“ whose content hasn’t 
changed since the days of Emmy Noether, c.f. the book „Modern Algebra“ by B.L. van der 
Waerden. Due to the new undergraduate programs this traditional lecture is now divided 
into two parts. Highlights of this second part are the algebraic description of the construction 
with ruler and compass, as well as investigations on the solvability of algebraic equations by 
radicals. The tool in both cases is the correspondence between groups and field extensions.  

Traditionally this course is also offered as a lecture. The lecturer presents the contents com-
pletely on the board or with a projector. In Kassel usually not more than 20 students partici-
pate. (Unfortunately teacher students avoid this subject, as well as other topics in Pure 
Mathematics.) Now this second part, Galois Theory, should not be offered as a lecture but as 
a reading course.  

For this purpose, I selected the textbook „A Field Guide to Algebra“ by Antoine Chambert-
Loir (Springer). The reason for choosing this book was its compact presentation of the mate-
rial, which could lead to the desired results in the given time. In addition the tools on groups, 
rings and fields are integrated in this book, which could help repeating these prerequisites. 
The fact that the book is written in English was regarded as an additional advantage.  

During the semester in each of the 12 weeks we had a course meeting of about two hours. 
In addition there was a tutorium where some exercises were discussed, this was lead by an 
assistant. I will report only on the course meeting.  

For each of the 12 meetings the students had to read and understand between 6 to 8 pages 
of the given book.  
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During the meeting we wanted to repeat and summarize the corresponding parts of the 
book together in a discussion with the whole group. But before that I would of course an-
swer questions of the students, which came up at their reading. For the discussion itself 
each student had to prepare two fundamental questions about the text. He or she should 
know their answers. With these questions I wanted to structure the discussion of the group, 
and I only wanted to be its moderator.  

Up to now this reading course took place twice, in the summer 2013 and 2014. 

Experiences in summer 2013  
At the beginning of the event, the first 2 to 3 appointments, about 15 to 20 people partici-
pated. But after that only 8 students were regular participants, all of them were very active 
during the course.  

The students were very engaged. They were always well prepared; they had read the text 
carefully. In particular their prepared questions provided an excellent framework for the 
discussion of the contents. These were real fundamental questions (e.g, „what is the defini-
tion of separable?“, “what is a normal subgroup?“, etc.). 

I knew most of participants before; they belonged to the top group of their semester. Some 
of them were already working as tutors. 

As the organizer of this reading course I had to fight with the problem of „completeness“. As 
a lecturer I am used to present the material completely without gaps in a logically correct 
sequence. All together I want to provide a complete view of the topic. Now as a moderator I 
had to accept that the participants made their own picture of the material and developed 
their own ideas of the relations. I gave this influence out of hand. Thus I had to force myself 
now and then not to fall back in lecturing – even if this „completeness“ seems not to be giv-
en. („Completeness“ is certainly also a problem in traditional lectures: Expectation of the 
lecturer – reception and acceptance of the audience.)  

At the last meeting we had a discussion about this form of a reading course. I summarize 
this: 

• The concept of this kind of reading course was valued as good by all the participants. 
It was mentioned positively that one could choose ones own speed in reading and 
could learn the material reasonably fast. However this only works with great interest 
and active participation. It was seen critically by a few students that the material was 
treated several times by reading and by discussing at the meetings; this could be 
boring at the end. 

• All the participants could imagine this form of a course to other events. But they ex-
plicitly excluded the beginner courses, which should still take place as traditional lec-
tures.  

• It was discussed in great detail whether the order „first reading by yourself, then 
summarizing the content in a group discussion“ should be changed to „first a sum-
mary by the lecturer, then reading by the participants". This question was then trans-
ferred to the traditional lectures. Some students wanted here also preliminary infor-
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mation (e.g. texts) before attending a lecture. They argued that in this case they 
could follow the lecture in an easier way. Their key point here was „preliminary 
working“ rather than „repeating the lecture“. But at this point there was no general 
opinion in the group.  

• Much of the discussion was about the choice of the right book. The language was not 
a problem at all. However it was criticized that the book was too one-dimensional 
and presented more details than concepts. It was interesting that the books they 
mentioned as alternatives are very classically written in the „definition-theorem-
style“ with a rather encyclopaedic point of view.  

Experiences in summer 2014 
At the beginning of the event, the first 2 to 3 appointments, about 10 to 12 people partici-
pated. But after that only 6 students were regular participants. Four of them were actively 
involved, the other two were very silent and could not be really reached. 

With my experience of last year, I acted at the beginning as a moderator. I assumed that the 
students had read the pages in the book independently. But then it was not clear to me if 
they had actually read the book and prepared the topic. I often doubted it, but on the other 
hand I was some times surprised by their detailed observations and concrete questions.  
They prepared the two fundamental questions seldom, and then these were not very help-
ful for the discussion of the material. 

The students were totally confused when I summarized the content of the pages in a slightly 
different style, not using exactly the words of the book. That was not a problem at all one 
year ago.  

Then I changed my attitude from a moderator to a teacher. I asked specific questions about 
the text, I asked for definitions and theorems, which they should have read. But these ques-
tions could not be answered. Then I made the students search for the corresponding pas-
sages in the book, read them and translate them into German. Their sentences made no 
sense. And it was not a question of the language; they had problems in understand the 
meaning of a statement. It was not clear to them what the assumptions and what the con-
clusions of a mathematical theorem are. 

As a consequence the reading course was transformed back into a more or less traditionally 
lecture. And finally this also changed the attitude of the students; they expected a „com-
plete“ explanation of the topic. 

At the end the final discussion about the form of the reading course was not very fruitful. 
The students could not reflect their own working and learning behaviour. 

Conclusions and Questions  
We see two completely different realizations of the reading course. The students of the first 
group had probably learned the reading and understanding of mathematical texts by their 
own. The students of the second group could not read texts and work independently, even 
after more than two years of studying mathematics. By the way, their grades at exams 
were not so bad. They were dependent on a strict guidance by the lecturer. 
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This raises some questions:  

• Where does one learn to read and understand mathematical texts?  

• Do the more and more polished beginner’s lectures (with tutorials, scripts, learning 
centres, etc.) prevent rather than encourage the self-learning process? 

• How can one influence the self-working process of the students without again guid-
ing them too much? 
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Constructionist computer programming for the teaching and 
learning of mathematical ideas at university level  

Ana Isabel Sacristán 

Center for Research and Advanced Studies (Cinvestav-IPN) 
(Mexico) 

In the 1980s and 90s, the idea of engaging in computer programming for learning and exploring 
mathematical concepts became popular in mathematics education at basic levels, in what is now 
known as the constructionism paradigm. However, the teaching and learning of mathematics in high-
er levels was rarely influenced by that approach. Here I present some of the projects that I been in-
volved with in the past few years, where this idea of students’ engaging in active computer pro-
gramming, within structured learning environments, has been at the centre. One such project, in-
volves engineering students engaging in the construction of video games, where they have to use 
mathematical models to create simulations of physical and engineering systems. Another is a virtual 
mathematics laboratory for continuing education distance students where they collaborate in building 
and exploring models of real phenomena. A third one is an approach for the teaching and learning of 
statistics where both under- and post-graduate students carry out sequences of tasks with the 
R programming environment for them to actively engage with both the statistical concepts as well as 
with a tool (R) for carrying out statistical analyses.  

The constructionist paradigm 
When Seymour Papert and his colleagues developed the Logo programming language in the 
1960s, the idea of learning by communicating (expressing) instructions to a computer was 
developed, and later expounded in Papert’s (1980) book Mindstorms. This became the Logo 
philosophy, later termed constructionism that is described as sharing “constructivism's con-
notation of learning as ‘building knowledge structures’ […] then [adding] the idea that this 
happens especially felicitously in a context where the learner is consciously engaged in con-
structing a public entity” (Papert & Harel, 1991, p. 1). 

In Papert’s (1980) vision, one particularly valuable means of achieving the above is in pro-
gramming the computer because, in doing that, the student “establishes an intimate contact 
with some of the deepest ideas from science, from mathematics, and from the art of intel-
lectual model building” (p. 5); and “in teaching the computer how to think, [students] em-
bark on an exploration about how they themselves think” (p.19). However, Papert not only 
places emphasis on computer programming, but also on the entire learning culture where 
educators (often called “facilitators”) can help by creating the conditions for construction 
and invention (rather than providing ready-made knowledge), giving students objects-to-
think-with including “emotionally supportive working conditions [that] encourage them to 
keep going despite mathematical reticence” (p. 197).  

Since the 1980s, there have been many projects attempting to implement the construction-
ist paradigm in order to enhance the learning of mathematics, many of the first ones using 
Logo programming, and most at primary or middle-school levels. However, implementing 
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constructionist exploratory learning environments in school cultures is problematic and 
complex, as has been discussed elsewhere (e.g. see Laurillard, 2002; Ruthven, 2008). Al-
ready in 1992, following the first ICMI Study Conference (on technology) held in 1985, 
Burkhardt and Fraser pointed to the evidence of difficulties for teachers in implementing 
such learning environments, although they acknowledged that the computer provides op-
portunities for exploration and experimental mathematics, and that programming projects, 
at school and university, had shown possibilities, although programming-based activities 
need to be designed carefully.  

The difficulties in implementation led to a significant decrease, at the end of the 20th centu-
ry and beginning of this one, of both open extended work in school mathematics, as well as 
of computer programming (replaced by, less user-expressive, software tools with new 
types of interfaces). In recent years, however, there has been a renewed recognition of the 
importance for students to learn how to program and develop computational thinking (an 
example of this is the so-called Hour of Code – see code.org). And a fairly recent study by 
Rich, Bly and Leatham (2014) confirmed Papert’s claims from 1980, by showing that pro-
gramming and solving programming problems, can: provide a context for many abstract 
concepts; illustrate the distinction between understanding the application of mathematics in 
a specific situation, and the execution of a procedure; help divide complex problems into 
more manageable tasks; provide motivation and eliminate apprehension; and give context, 
application, structure and motivation for the study of mathematics. In fact, programming can 
be an engaging problem-solving activity where students can explore mathematics in differ-
ent representations and generate and articulate mathematical relationships. Nevertheless, 
as has been learned, these programming activities need to be carefully designed and struc-
tured within a learning environment.  

Thus, expanding on Papert’s initial vision to include the lessons from the past 40 years, I 
consider that a constructionist implementation needs to have the following characteristics: 
(i) There has to be a (technological / computational) medium for an expressive activity (e.g. 
computer programming, or building/describing models or structures in a software), where 
the computer acts as mediating agent (computer-based activities are not meant to teach 
about the software, but as means for exploring and expressing ideas). (ii) Students need to 
be actively involved and at the centre of their constructions and explorations. (iii) The activi-
ties should take place within a structured learning environment (e.g. a microworld, in the 
extended sense described by Hoyles & Noss, 1987) that consider the characteristics of the 
specific learners and includes: a careful pedagogical design with materials (e.g. worksheets), 
and appropriate teacher interventions; and a social environment where students can collab-
orate and where products can be shared and discussed in small and whole groups. My per-
spective is in accordance with the three categories given by Resnick (1996) of discussing 
constructions, sharing constructions and collaborating on constructions; that is where stu-
dents work together on design and construction activities, whether supported or not by 
computer networks (as promoted by Resnick’s idea of distributed constructionism). 

I also follow Laurillard (2002), who advocates for constructionist and collaborative technolo-
gy-based learning environments in higher education, taking into account how students 
learn. For this, she considers that “the aim of university teaching is to make student learning 
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possible […] not simply impart decontextualised knowledge, but must emulate the success 
of everyday learning by situating knowledge in real-world activity” (p. 42) helping students 
reflect on their experience of the world and ways of representing it. 

Mathematical constructionist implementations in higher education 
As mentioned above, there are few constructionist implementations for mathematical learn-
ing at university level reported in the literature, relative to those reported at the K-12 levels. 
A notable exception is the MICA (Mathematics Integrated with Computers and Applications) 
program at Brock University in Canada (see Marshall, Buteau & Muller, 2014; see also Bu-
teau’s, 2016, contribution in these proceedings). That program was co-designed by Eric Mul-
ler, who was one of the first ICMI study participants, and it stands out as a complete curricu-
lar implementation that has been functioning for over a decade – rather than being just a 
limited-scope project – and that integrates computer programming activities in the pure and 
applied mathematics syllabi.  

On my part, in recent years, I have been involved in three constructionist projects in higher 
education, which I present next. All three consist of carefully designed activity sequences 
where university students engage in computer programming and/or expressive activities for 
mathematical exploration or learning, that include sharing, collaboration and discussion; fur-
thermore, in all three projects students are involved with topics and data related to real-life 
phenomena and that can be meaningful for their area of study. 

Videogame construction by engineering students 
In this project (see Preteli ́n-Ricárdez & Sacristán, 2015), we have been working with univer-
sity engineering students, in their last year of studies: inspired by the constructionist philos-
ophy and in particular by the work of Kafai (1995), we ask them to create videogames in 
which they have to use and adapt mathematical models. Some of the videogame topics in-
volve: physical phenomena (e.g. water behaviour that needs to be modelled and simulated); 
navigating mazes by virtual robots (which requires using and designing digital systems, i.e. 
combinational logic circuits); or include simulated mechanical systems (e.g. robotic arms). 
Thus, students develop know-how, for their future profession as engineers, of how to apply 
mathematical knowledge and modelling.  

The videogame constructions are structured through sequences of model-building tasks 
whose design takes into consideration the six principles of Model-Eliciting Activities – MEAs –
described by Lesh et al. (2000): reality, model construction, model documentation, self 
evaluation, model generalisation, and simple prototype. MEAs share some of the concep-
tions of constructionism in that:  

the  products  that  students  produce  […] involve  sharable,  manipulatable,  modifia-
ble,  and  reusable  conceptual  tools  (e.g.,  models)  for  constructing,  describing,  
explaining,  manipulating,  predicting,  or  controlling  mathematically  significant  sys-
tems.         (Lesh and Doerr, 2003, p. 3) 

Each activity sequence involves several stages combining or alternating paper-and-pencil 
work; individual and/or collaborative programming work; and whole class discussions.  



khdm-Report, Nr. 05, 2017 

127 

 

The programming of videogames is a motivating activity, that engages students in produc-
ing working models of certain real-life behaviours but in a context that is meaningful to 
them. It also helps them gain a deeper understanding of all the elements involved in the 
modelling process. For example, in the cases that include water-behaviour (Pretelín-
Rica ́rdez & Sacristán, 2015), students first need to produce a mathematical model for that 
behaviour: they usually come up with complex models of fluid mechanics, addressing the 
water model either as a molecular model or as a continuous model. They then realise that 
these models cannot be programmed as such into the videogame engines, so they are 
forced to analyse and discern the most important elements present, in order to produce, and 
program, simplified models into the videogame engine. They do this through collaboration 
and discussion.  

Figure 1 gives another example of a videogame, where the student-creator recorded a table 
of the characteristics of the objects in the game that would need to be programmed into the 
game engine (in this case GameMaker Studio, http://www.yoyogames.com).  

 

 

 

Figure 1: A students’ videogame with his table of physical characteristics of the objects involved 
that he would need to program into the game engine (right-bottom). 
 
As many students have explained, the videogame construction activities also provide them 
with the opportunity to apply their theoretical knowledge in real-life projects and experienc-
ing how such real-life projects could be carried out. In this way, students gain insights and 
expertise on how to apply their knowledge in realistic projects in different contexts related 
to their engineering profession. 

A virtual mathematics laboratory 
The second project (see Olivera, Sacristán & Pretelín-Ricárdez, 2013) involves a distance-
learning environment (a virtual laboratory) where university students (mainly adults pursu-
ing continuing education) are encouraged to explore, collaborate, build models (using vari-
ous kinds of expressive software described below), discuss and reflect upon various types 
of real-life mathematical problems (e.g. related to linear motion; gravity and free-fall; popu-
lation growth; cryptography). As in the first project described above, this project is also in-
spired on Lesh’s et al. (2000) model-eliciting activities, where many of the tasks centre on 
building models, cycling through models and sharing these.  
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The investigations use different materials (e.g. real-life videos) and a variety of complemen-
tary software – e.g. video software for frame-by-frame analysis; a virtual ruler for meas-
urements (e.g. JR Screen Ruler, http://www.spadixbd.com/freetools/jruler.htm); spread-
sheets or CurveExpert (http://www.curveexpert.net) for finding mathematical equations to 
fit the data; and modelling software, such as Modellus (http://modellus.co), for building 
mathematical models and comparing them to the real data.  

Interesting activities have involved the analysis of videos (which have led, for example, to 
extensive collaborative discussions on determining the scale of the videos), developing 
models to reproduce the behaviours and phenomena shown on the video, and analysing and 
discussing which proposed models best fit the real data (see example below).  

Since students are at a distance, they need to collaborate and share their conjectures and 
findings online in a web-based discussion forum. We consider this useful for learning, since 
it forces students to express their ideas, constructions and conjectures as clearly as possible 
to others in written form, thus helping them clarify their own understandings (while at the 
same time acting as windows, for teachers and researchers, into their meaning-making – 
Noss & Hoyles, 1996). In most activities, we have found students collectively brainstorming 
on a problem or on part of a problem. They are also encouraged to propose new problems 
to the online community. For example, after analysing free-fall videos of dropping objects 
on Earth, some students proposed analysing the gravity on the Moon by analysing a NASA 
video of an astronaut jumping on the Moon (Figure 2).  

 

Figure 2: Students propose, in the online forum, analysing the gravity on the Moon and creating 
models of an astronaut jumping on the Moon. 
 

 

Figure 3: Comparison in Modellus of the real data (left-hand side) with the model constructed by 
the students and represented by the green dot on the right-hand side. 

http://modellus.co/
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Because the video is not of a free-falling object, it generated discussions on what kind of 
movement it is (with students concluding it is a type of parabolic shoot with a nearly vertical 
angle). They then proposed mathematical equations that they then implemented in Model-
lus and compared it to their real data (Figure 3).  

As in the first project described above, the construction of models and simulations helps 
students identify and discern the important mathematical elements in the situation under 
study and that help model it. Furthermore, as in the example above, the construction of 
meanings is also helped by the support of the social structure created by the online commu-
nity. 

R-based tasks for the learning of statistics by environmental sciences students  
In another project (see Mascaró, Sacristán & Rufino, 2014), we have designed probability, 
statistics and experimental analysis courses for college and graduate environmental scienc-
es and biology students – who tend to have strong aversions to mathematics and statistics – 
through sequences of constructionist and collaborative, computer-programming activities in 
R (see the R Project for Statistical Computing – www.r-project.org). These tasks have been 
directly inspired by Logo programming microworlds. 

The aim is for students to develop statistical reasoning, rather than applying blindly statisti-
cal tests; build statistical models for research; apply and understand statistical computing 
software (in this case, the R programming language) to carry out calculations in experi-
ments; and learn how to interpret the results given by the software. All the activities are 
presented through R-code “worksheets” with instructions, guidelines, examples (using data 
adapted from real research situations), programming tasks, questions for reflection and 
comments (see Figure 4).  

 
Figure 4: Part of an R-based task, including on the left-hand side some worksheet questions, with 
typed commands for generating graphs (i.e. the histograms presented at the right). 
 
The understanding of statistical models is facilitated by creating objects in R, to represent 
them (e.g. graphs, lists of data, statistical values, etc.). Tasks are carried out through collabo-
rative work leading to reflective interactions, explanations and evaluations. By typing R-
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commands, students draw and interpret graphs (i.e. visualise models) relating numerical 
data to graphical representations, as well as to mathematical formulae. They need to predict 
what a change in the programming code would produce. In this way, students go back and 
forth in the analysis of the data, and suggest changes for obtaining different representa-
tions.  

After four years of design research and over a dozen courses at university and post-
graduate levels where the tasks have been implemented and refined, preliminary results 
have been encouraging, particularly in the affective dimension (see Mascaró, Sacristán & 
Rufino, 2015): many students lose their fear of statistics, with most of them actively engag-
ing in the activities; furthermore, several students have appropriated themselves of the 
software (e.g. building their own R scripts) for their own research with an apparent clearer 
understanding of statistical concepts.  

Final remarks 
All three projects described above meet the characteristics for a constructionist implementa-
tion, outlined at the beginning of this paper: at the core of each project are tasks that give 
students a central active role for exploration and construction, where they have to engage 
in some type of expressive activity (programming and/or modelling) using technology; and 
they all involve collaborative work and group discussions, where products are shared and 
analysed. We consider the latter social aspects to be fundamental for reflecting on the 
knowledge put into practice, and generating more stable meanings for that knowledge. 
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Misunderstanding: a straight path to misconception? 
Maria Specovius-Neugebauer 

(Universität Kassel) 

This is a report about experiences with mathematical language in student-teacher interactions espe-
cially with respect to examinations.   

Language in mathematical teaching 
Dealing with the particularities of mathematical language is one of the challenges for first 
year students in mathematics – every teacher can confirm this from experience. In the Ger-
man “Bildungsstandards für die Kompetenzbereiche im Fach Mathematik“ [1] six fields of 
competences in mathematics are identified, each in three levels of special requirements for 
the particular skills.  Measuring the results of examinations against these standards shows 
that in particular in the field of competence „Arguing in mathematics“ the future mathemat-
ics teachers quite often do not comply even with the lowest level. In addition, one of the 
more depressing observations in this context is that for quite many students even five years 
at the university do not change this.  

 In order to get a better grip on the particular difficulties of the students I started to collect 
answers from written and oral examinations. The first aim was to analyze the typical misun-
derstandings. The next aim is of course how to deal with them and how to avoid them. The 
data were collected in two fields:  

• Explanations and definitions for the main terms of a first year Analysis course 

• Arguing in elementary number theory 

What does it mean: recall a definition?  
In my written examinations of the first year analysis I often observed that students quite 
often are not able to apply definitions even to simple examples. Therefore I started to in-
clude one task related to the reproduction of the central definitions and the relations be-
tweenathem.  
To this end various formulations were used, here examples related to Analysis I and II, re-
spectively:  

• Convergence 

o Explain (“erkläre”) / explicate (“erläutere”) the concepts (“Begriffe”) Cauchy 
sequence and convergent sequence and their relationship.  

o What is a convergent sequence? What is a Cauchy sequence? What is the dif-
ference/relation? 

o Complete the following definitions: A real sequence (𝑎)𝑛 is convergent…. 

• Derivatives 

o Exlain/explicate the terms derivative, directional derivative, partial derivative. 
How are they related?  
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o Let 𝑓: 𝑈 → 𝑅 be a given function. What does it mean: the function is differen-
tiable/partial differentiable/ possesses directional derivatives in  𝑎 𝜖 𝑈 ? 

o Complete the following definitions: A function ... is differentiable in 𝑎 𝜖 𝑈 if 
and only if ....  

The answers were highly dependent on the specific formulation of the questions. Apart from 
the usual mistakes in recalling definitions like wrong or interchanged quantifiers, e.g., in 
both examples students mostly understood the first two formulations as a request to give 
some explications of their own mind rather than the correct mathematical definitions. In 
some cases it happened that they reproduced the correct definition and then added a wrong 
explanation indicating one of the common misconceptions. The latter happens very often 
while asking for the definition of a convergent sequence. Another phenomenon is a certain 
insensitivity about what is needed for a proper definition. Typical answers in this direction: A 
sequence is convergent if  𝑙𝑖𝐼𝑛→∞𝑎𝑛 = 𝑎  or a function is partial differentiable iff all partial 
derivatives exist – without giving the definition of a partial derivative.   

The next example is taken from a series of oral examinations (teacher students for second-
ary schools) here the students knew in advance about the question: What is a convergent 
sequence?  More than 50% answered: A sequence is convergent if it tends (“strives to 
reach” “strebt”) to a limit value but never reaches it. Especially the second point was very 
important to them. When asked about the references for this information the sources inter-
net, math-lessons from high-school and math-textbooks for high-schools were mentioned in 
equal parts. Without any doubt you can find these “definition” on internet platforms but the 
students mentioning textbooks were also absolutely convinced about their source.  

Comparing and distinguishing between definitions 
When going through the central definitions of a first year Analysis course questions related 
to integration are less popular than questions related to derivatives, e.g. At the end of the 
Analysis I course usually more than 50% of the students have no proper answer to the 
question what an integrable function is. This quotient is even higher when the Cauchy-
Riemann integral (“Regelintegral”, approximation via uniform convergence of step func-
tions) is introduced in the lessons instead of the Riemann integral. In addition also high em-
phasize on the difference between the notation primitive and integral and the role of the 
main theorem of calculus does not prevent that these terms are considered synonyms more 
or less.  

Again the answers depend on the particular formulation of the question. During my last 
Analysis courses I always introduced the Riemann integral via the upper and lower Rie-
mann-Darboux integral. At the end of my last Analysis course the formulation of the corre-
spondingataskawas:   
Let 𝑓: [𝑎, 𝑏] → ℝ  be a bounded function. What does it mean: 𝑓 is Riemann integrable over 
[𝑎, 𝑏]? Give two sufficient criteria for Riemann integrability.  

Correct answer: The function is 𝑅-integrable it the upper and lower integral coincide. (Of 
courseahighlyaappreciated:aanaexplanationaforatheseaterms) 
Expected criteria: continuity and monotonicity or the Riemann criterion, even in the form: 
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the difference between upper and lower sums becomes small if the partition of the interval 
is sufficiently fine.  

Qualitatively the resulting failures or inaccuracies in the answers were similar among all 
groups of students, here two groups of teacher students TSL3 (high school teachers), TSL4, 
mathematics bachelor MB, physics bachelor PB) although the quantitative view gives some 
differences as the following tables tell: 

Definition TSL3 TSL4 MB PB 

None at all 17 12 6 4 

The upper and lower sum coincide/coincide for some ε 
confusion between upper integral and upper sum 

  1 
  2 

  1 1 1 

The function must have a primitive    4   3 5  

other   8   1   

Table 1: Definition of Riemann integrability 
 
Criteria TSL3 TSL4 MB PB 

None at all 12 1 3 4 

Continuity is sufficient 13 6 8 4 

Monotonicity is sufficient  1 2 1 

Riemann criterion   2  2 1 

Differentiability is sufficient   7 5 2 1 

Continuity is nessecary   6 3  1 

Differentiability is necessary   6 8  1 

Table 2: Criteria for Riemann integrability 
 
It is remarkable that 59% of the teacher students did not even try to answer the question 
for the definition of the Riemann integral.  Concerning the criteria obviously monotonicity is 
not a criterion of which the students are really aware. In contrast the majority associates 
(confuses?) differentiability with integrability. What was not (and could not) be tested in this 
context whether the correct argumentation was clear for the students, namely that differen-
tiability leads to continuity hence to integrability.  

What is also obvious that a significant part of these students has a poor feeling for language 
at least about distinguishing between necessary and sufficient conditions. The formulation: 
“Die Funktion muss differenzierbar sein – the function must be differentiable” could be a slip 
of the tongue or an indicator for a missing comprehension of the relations.  

Arguing in elementary number theory 
Another class of examples is taken from examinations of L2-teacher students (secondary 
school). Here usually the students are less educated and less motivated for mathematics 
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and have more difficulties with abstract concepts than L3-teacher students. Nevertheless 
they should also comply with the education standards at least at a low level even from the 
start of their university studies. Here the test problems partly consist of explaining defini-
tions and relations in elementary number theory and again the particular formulations lead 
to obvious misunderstandings. Here one example, three questions in a row: 

a) What does the theorem about division with remainder tell? 
b) Which fractions can by expressed as a finite decimal number and why? 
c) When and why is a natural number divisible by 4? 

Expected answer to c) was the divisibility criterion related to the last two figures of the 
number together with the justification (multiples of 100 are divisible by 4).  However, quite 
a large number of students did not understand the question in this way, typical answers 
were: if it is a multiple of 4 or: if there is no remainder left after dividing through 4. Of 
course then typically there was no answer to the question ”why”. In the next problem of 
this test negations and elementary justifications in the context of divisibility were required. 
It becomes even more apparent from the answers to this task that a significant part of these 
students is quite averse to precise mathematical formulations – a language which they ex-
perience as strange and not adequate for their understanding. Hence it is not clear whether 
the formulation of c) in the form: “Give the criterion for divisibility of a natural number by 4 
and a justification” would have encouraged more correct answers.   
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3. MATHEMATICS AS A SERVICE SUBJECT 

(IN ENGINEERING AND ECONOMICS) 
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Differences between the usage of mathematical concepts in 
engineering statics and engineering mathematics education  

Burkhard Alpers 

Hochschule Aalen 
(Germany) 

In this contribution we present the results of an investigation of how mathematical concepts are in-
troduced and used in engineering statics in comparison with engineering mathematics. For this, two 
widespread textbooks in engineering statics have been analysed and some remarkable differences 
have been found regarding the usage of vectors, ‘differential’ elements, and variation concepts and 
notation. These differences create potential cognitive barriers for students which prevent them from 
connecting insights from the mathematical education and from engineering statics. We suggest some 
educational measures to address the problem. 

Introduction 
In engineering study courses, students encounter mathematical concepts and procedures 
not only in their proper mathematics education but also in application subjects that run in 
parallel or later. For providing an integrated curriculum as advocated by the European Socie-
ty for Engineering Education (SEFI) in (Alpers et al. 2013), the different usages of mathemat-
ics should be interconnected such that students experience a study course as a sense-
making network of modules. In order to recognize potential cognitive barriers, the use of 
mathematics in application subjects must be investigated and compared with the treatment 
provided in mathematics education. For the advanced subject “signal analysis” this has been 
done by Hochmuth et al. (2014) and interesting differences have been found. In this contri-
bution we investigate engineering statics which is a fundamental subject occurring in many 
engineering study courses. Two widespread textbooks in engineering statics from different 
‘educational cultures’ (from Germany: Gross et al. 2013; from the US: Hibbeler 2012) have 
been analysed. In the next section we present some remarkable examples for deviations 
from the usual treatment in mathematics textbooks (see e.g. Meyberg and Vachenauer 
2001; Papula 2007). Subsequently, we make some suggestions on how these deviations 
could be addressed in mathematics and/or application education. 

Differences in usage of mathematical concepts and notation 
The document analysis of the textbooks revealed essential differences in three areas: the 
concept, construction and notation of vectors; the usage of differentials; and the concept 
and notation of virtual displacements. 

In the statics textbooks, vectors are introduced as quantities which have a magnitude and a 
direction, not as elements of an abstract vector space given axiomatically. This, however, 
does not create confusion since in engineering mathematics textbooks like the two books 
cited above this is done similarly. In more advanced textbooks like Meyberg and Vachenauer 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
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(2001), only later in the exposition a more general treatment of vector spaces over the reals 
follows. 

In mathematics, vectors are generally “free” vectors (equivalence classes of arrows which 
can be mapped onto each other by translation), whereas force vectors in statics are intro-
duced as “bound” vectors which can be moved along a line of action without changing the 
static effect (also called “sliding vector” in Gross et al. 2013). This has consequences for 
vector operations since if one adds force vectors not having the same line of action as one 
adds free vectors, then one still has to determine the line of action of the resulting free vec-
tor, i.e. to turn it into a sliding vector again.  

A larger source of potential confusion in the analysed statics books is the use of the terms 
“component”, “coordinate” and “absolute value” (=“magnitude”) and the corresponding 
notations. A vector is written as a boldface capital letter (like 𝑨) and its absolute value is 
written as the same letter in italics (like A). If a coordinate system is given, then a vector 
can be decomposed into its components 𝑨 = 𝑨𝑥 + 𝑨𝑦 + 𝑨𝑧. It is also represented using 
coordinates and unit vectors as 𝑨 = 𝐴𝑥𝒆𝑥 + 𝐴𝑦𝒆𝑦 + 𝐴𝑧𝒆𝑧. This creates an inconsistency 
since the symbol 𝐴𝑥 is used to denote both the absolute value of the component vector 𝑨𝑥 
and the 𝑥-coordinate of the vector 𝑨 which might be negative. This generates a need for 
clarification in later work on tasks for example on computing forces of pins in trusses. Gross 
et al. (2012, p. 42) seem to grasp the problem when stating: “We would like to point out 
that the quantities 𝑆𝑗 are the forces in pins or ropes which are positive in the given direction, 
they are not the absolute values of the vectors 𝑺𝑗  ” (translated by B.A.). They (and similarly 
Hibbeler 2012) often solve problems where forces are applied to a rigid body and unknown 
forces are to be determined by setting up first a unit vector 𝒖 for an unknown force 𝑭 with 
a known line of action and then writing 𝑭 = 𝐹𝒖 , where 𝐹 then is the unknown (signed) co-
ordinate in direction of vector 𝒖 and not the absolute value of vector 𝑭. In essence, one has 
to distinguish between writing a vector as 𝑨 = 𝐴𝒆 where A is the absolute value and 𝒆 is a 
unit vector having the same direction as 𝐴 , and as 𝑨 = 𝐴𝒖 where 𝒖 is a unit vector with the 
same or opposite direction as 𝑨 and 𝐴 is the coordinate in that direction. 

A well-known difference between expositions in engineering and mathematics textbooks is 
the use of differentials (“infinitely small quantities”). This occurs in statics when defining and 
computing certain properties of geometric objects like first and second moments as well as 
centers. Here, from an object one picks a part which is infinitely small at least with respect 
to one dimension. Then, a (finite) property is determined (like the distance to an axis), mul-
tiplied with an infinitely small length, area, volume or mass of the part (dl, dA, dV, dm) re-
sulting in another infinitely small property, and finally all these infinitely many infinitely 
small quantities are “summed up” by integration which gives the (finite) property of the 
whole object. In mathematics education, similar problems appear when computing proper-
ties of “curved” geometric objects like the area between the graph of a function and the 
independent axis or the volume of objects generated by rotating a graph. Here, an approxi-
mation with finite objects is performed and subsequently the limit is taken, and then it is 
pointed out that the result depends on the existence of the limit. 
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Differentials also appear when investigating the connection between load, shear force and 
bending moment regarding beams (Gross, p. 185/186; Hibbeler p. 386/387). In Gross et al. 
(2013) an infinitely small part is picked. Since this also must be in equilibrium one can set up 
the respective equations using differentials and compute differential quotients. This way it is 
shown that for line loads the derivative of the shear force (resp. bending moment) is the 
negative load function (resp. the shear function). In the book by Hibbeler, however, a finite 
object is picked, the equations of equilibrium are set up, and only later the limit is taken 
which is the way it would have been done in mathematics. Then, the question of how to 
deal with a product of differentials (i.e., neglect it) does not come up. The treatment of 
hanging ropes (called “cables”) in the textbook by Hibbeler (2012, p. 397) is similar. In belt 
friction, however, Hibbeler (2012, p. 447) starts with picking a differential and sets up equi-
librium equations for this. Subsequently, he uses the argument that for infinitely small ar-
guments 𝑠𝑖𝑛(𝑑𝑥) = 𝑑𝑥 and 𝑐𝑜𝑠(𝑑𝑥) = 1 which again raises the question of what is “al-
lowed” when dealing with differentials. 

The largest gap between notation and reasoning used in mathematics and in statics occurs 
in the area of so-called “virtual work”. Here, a partial configuration is cut free such that it 
becomes moveable and the forces and moments acting on it from outside are identified. 
When these forces and torques result in so-called “virtual displacements”, then “virtual 
work” is performed. Since the configuration is static this work must be 0. The latter is called 
an “axiom” in Gross et al. (2013, p. 229) which is equivalent to the equilibrium conditions 
such that one can assume in statics one or the other. In Hibbeler (2012, p. 555) it is stated 
and motivated that in equilibrium virtual work must be 0. For engineering students who 
usually do not know the axiomatic structure of statics, this simply means that it is allowed to 
use this as a fact. In Gross et al. (2013, p. 227), and similarly in Hibbeler (2012, p. 555), vir-
tual displacements and rotations are introduced as having three properties: They are “imag-
ined” (not existing in reality), infinitely small, and geometrically possible (i.e. the configura-
tion is moveable). In order to distinguish these entities from infinitely small “real” displace-
ments a special notation is used: δ𝑟 or δϕ; correspondingly, virtual work is denoted by δ𝑊 
which is computed by taking the product δ𝑊= 𝐹* δ𝑟 or δ𝑊= 𝑀* δϕ. This notation comes 
from variation theory in mathematics which is too advanced for being included in the stand-
ard mathematics education for engineers. In Meyberg and Vachenauer (2001) there is a 
(final!) chapter on this topic which can hardly be assumed to be included in regular teaching. 
Moreover, the Gâteaux variation defined there uses a different notation δ𝑓 which is already 
the derivative and not an infinitely small quantity. 

For students to be successful in statics it is important to understand how they can use the 
principle of virtual work in order to solve equilibrium problems and when it is advantageous 
to do so instead of setting up systems of equilibrium equations.  The practical meaning of 
having different symbols 𝑑𝑟 and δ𝑟 is that they cannot be “cancelled”. For example, if two 
deplacements are dependent, say 𝑠 = 𝑠(𝑟), then the virtual displacements can be related by 
differentiation: δ𝑠 = (𝑑𝑠/𝑑𝑟)*δ𝑟. If there is one possible virtual displacement δ𝑟, then one 
finally ends up with an equation of type δ𝑊 = (… )*δ𝑟. Here, it is argued that the bracket 
must be zero since δ𝑟 is non-zero (Hibbeler 2012, p. 556; Gross et al. 2013, p. 229). Such an 
argument can hardly be followed since it is unclear which properties of the reals can be used 
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when dealing with infinitely small quantities. This becomes even more mysterious when 
there are two (or more) independent virtual displacements and it is argued that from the 
equation δ𝑊 = (… )*δ𝑟 + (… )*δϕ and the independence of δ𝑟 and δϕ it follows that both 
brackets must be 0 (Gross et al. 2013, p. 235). In (Hibbeler 2012, pp. 559, 564) this problem 
is circumvented by recommending to consider just one displacement at a time but it remains 
unclear why this is allowed.  In variation theory, which this is based upon, the corresponding 
argument is that the brackets are the Gâteaux variations which must be 0 but this theory is 
not available.  

Potential educational consequences 
The document analysis of widespread statics textbooks shows that there is potential for 
cognitive mismatches between students’ learning in mathematics and in statics. For a math-
ematics educator, a first consequence of this situation should be to discuss the issues with 
engineering colleagues teaching statics in order to find out where such mismatches occur. 
The potential sources for problems that have been identified can be addressed in different 
ways. Issues like different types of vectors and different ways of writing a vector should be 
addressed explicitly in mathematics education. One could, for example, provide tasks where 
vectors are to be written in different ways (as absolute value times unit vector having the 
same direction and as factor times unit vector where the latter has the same or the opposite 
direction). It is questionable whether the approach in Meyberg and Vachenauer (2001) to 
formalize the concept of bound vectors really helps since there is the danger that the formal 
mathematical apparatus blurs the conceptual kernel. 

The issue of using of differentials can also be explicitly addressed in mathematics education 
by presenting the engineering use as a kind of “shortcut”: In mathematics a precise argu-
mentation is given by first considering approximations with finite objects and then taking li-
mits (if they exist); the engineers shorten this and implicitly assume that all occurring limits 
exist.  

When topics are mathematically too advanced like variation theory (or distribution theory 
discussed in Hochmuth et al. 2014), then it does not help to provide “pseudo-arguments” 
that cannot be understood (like the bracket must be 0 since the differential is non-zero). It 
seems to be more helpful to clearly state the rules and usage scenarios. This is presumably 
what students concentrate on in any case because such a behavior promises success when 
encountering a similar type of task in examinations. A related problem occurs when ad-
vanced concepts are needed in application subjects before they are learnt in mathematics 
education (cf. Hennig and Mertsching 2012). If it is possible to provide a preliminary under-
standing tied in with existing knowledge (e.g., explaining multi-dimensional integration as 
infinite sum of infinitely small quantities as in one-dimensional integration) then this might 
be promising. Whether the measures suggested above really help in enhancing student un-
derstanding and avoiding confusion must be investigated in further research. 
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Unpacking procedural knowledge 
in mathematics exams for first-year engineering students   

Mike Altieri, Susanne Prediger 
Technische Universität Dortmund 

(Germany) 

For unpacking procedural knowledge in mathematics exams for engineering students, we distinguish 
knowledge in mind (knowing of the web of procedures and steps) and knowledge in use (including 
accuracy and speed, but also flexibility and adaptivity challenged by complex situations). Although 
both components are required in procedural items, students’ sources of failure vary with their 
achievement level and semester, as the empirical analysis of written tests shows. The suggested 
distinction and the empirical findings are relevant for adaptive training programs as well as for devel-
oping a theoretical foundation on the interplay of conceptual and procedural knowledge in tertiary 
mathematics for engineering.  

Adapting the research program of unpacking procedural knowledge 
Mathematics courses for university students in engineering have often been criticized for 
prioritizing procedural knowledge against conceptual knowledge, relying on the classical 
distinction by Hiebert & Lefèvre (1986). Thus, many research or design projects on mathe-
matics for engineers focus on increasing the emphasis of conceptual knowledge. The high 
practical relevance of finding a better balance between conceptual and procedural 
knowledge is affirmed by studies of demands in exams, showing that 70-80% of the items 
refer only to procedural knowledge (Bergqvist, 2007; replicated in an own analysis of 8 ex-
ams for engineering students from four German universities, cf. Altieri, in prep.).  

However, the compensatory emphasis on conceptual knowledge has led to scant academic 
attention on procedural knowledge in tertiary education, although deficits in procedural 
knowledge are prominently discussed in practical discourses among lecturers. A similar gap 
between the academic discourse (focused on conceptual knowledge) and the practical focus 
on procedural knowledge (without theoretical and empirical base) has been criticized for 
primary and secondary education 30 years ago, followed by very insightful research pro-
grams to unpack aspects of procedural knowledge for primary and secondary school stu-
dents (Schneider, Rittle-Johnson & Star, 2011). In this paper, we plead for the need to ana-
lyze more carefully different procedural demands and their connection to conceptual 
knowledge in order to substantiate research and design for enhancing both, conceptual and 
procedural knowledge for engineers.  

Hiebert and Lefevre’s (1986) classical definition of procedural knowledge as “rules, algo-
rithms or procedures used to solve mathematical tasks” (p. 6) has often been reduced to 
distinguishing know how and know what, with conceptual knowledge being the superior 
type. In contrast, Rittle-Johnson, Star and Durkin (2012) and others started research pro-
grams for secondary schools in which different components of procedural knowledge could 
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Fig. 1: Examples for sources of failure in “knowledge in mind” (student A) and “knowledge in 
use” (student B) 

be discerned, e.g. the knowledge of procedures, but also accuracy, speed, automatization, 
flexibility (cf. Star, 2005; Schneider et al., 2011). This unpacking allows to specify different 
qualities within the procedural knowledge rather than entangling type and quality. 

Procedural knowledge-in-use and knowledge-in-mind as sources of 
failure  
Our research contributes to adapting the research program of unpacking procedural 
knowledge to tertiary education, here mathematics for engineering first year students. The 
first step of the program starts by analyzing the different sources of engineering students’ 
errors and their change during the first year. Usually, systematic errors are distinguished 
from careless errors where the systematic errors are traced back to lacks in the knowledge 
of procedures and underlying misconceptions (Kersten, 2015). Our exploration of engineer-
ing students’ sources of failure shows that so-called careless errors can refer to all other 
relevant aspects of procedural knowledge: missing accuracy, speed (which is connected to 
missing automatization), but also flexibility and adaptivity (because using the standard pro-
cedure where shortenings are possible costs time and increases the chance for calculation 
errors). This is illustrated by typical student errors while applying Horner’s method (in Fig. 
1): Whereas Student A doesn’t know how to perform the procedure, student B performs 
principally well but miscalculates the fractions and cannot recalculate it within the limited 
time. 
 

Item Horner’s method  
 

 
 

 [Multiple choice between 10 results; 
Time limit 7:30 minutes] 

Solution of Student A 

 

Solution of Student B 

 

 
 

 

Knowing how to perform a procedure correctly, we define as procedural knowledge in mind. 
In contrast, accuracy in performing procedures within an adequate time, we define as pro-
cedural knowledge in use, which comprises several demands especially in more complex 
situations. This component is connected to automatization and flexibility as these compo-
nents can simplify the procedural demands. The conceptualization of knowledge in use re-
fers to a situated theory of cognition (Brown et al. 1989), explaining why knowledge in 
mind cannot simply be applied in each situation. Whereas Brown et al. (1989) mainly refer 
to conceptual knowledge, a situated perspective on procedural skills is required for unpack-
ing important sources of failure, especially failure of low performing students. The presented 
study unpacks procedural knowledge and compares between performance groups and lon-
gitudinally with respect to knowledge in mind and knowledge in use, guided by two re-
search questions: (1) How does procedural knowledge develop within the first two semes-
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ters in different performance groups with respect to selected basic procedures? (2) How do 
these differential developments in three performance groups vary for knowledge in mind 
and knowledge in use?  

Methods 
The longitudinal study was conducted with N = 1197 students in the first year courses 
mathematics for engineering. In the first and second semester, the students’ procedural 
knowledge was measured by two tests in two parallel versions each (one example of the 11 
items is printed in Fig. 1). The internal consistency of Cronbach’s alpha reached .74.  

The test construction and data analysis operationalized knowledge in use and in mind as 
follows: Time restrictions were set for each item for grasping the speed component of 
knowledge in use. Two independent rater teams coded all 2×11×1197 students’ written 
answers either as correctly solved or erroneous with respect to the sources of failure: a lack 
of knowledge in use versus knowledge in mind (as defined above). Interrater reliability 
reached an average Cohen’s kappa of .66, with an expert team judging on conflicts later.  

In the data analysis of each item, performances and rates of sources of failure were com-
pared between the performance groups and in longitudinal perspective. The placement for 
performance groups was conducted with respect to achievement in the first test: Partici-
pants with ≤ 2 correct items were regarded as low performers, with ≥ 6 correct items as 
high performers and the group in between as medium performers. 

Results: Different sources of failure for two selected items 
In the eleven items of the first test, on average 34% of students reached a correct solution, 
11% made an error traced back to knowledge in mind, and 55% back to knowledge in use. 
For unpacking this overall result in more detail, we present the longitudinal comparison of 
the three performance groups for two selected items in Figure 2. The solution rate of both 
items develops strongly in almost all cases. Hence, all three performance groups increase 
their procedural knowledge significantly within the first year of study. But low performers 
are not able to catch up the initial difference, their solution rates in the second test do not 
reach the solution rates of medium performers in the first test. In other words, the distance 
between low and medium performers regarding procedural knowledge counts more than 
one semester.  

Bars 7 and 8 in Fig. 2 show that low performers first enhance their knowledge in mind, 
which leads to a better performance in procedural knowledge. But they do not necessarily 
equally quickly strengthen their knowledge in use. Bars 2 and 8 reveal that even in the sec-
ond test, more than 10% of the low performers don’t know how to handle Horner’s method 
and more than 30% are not able to carry out the product rule correctly, resp. Nevertheless, 
bars 1 to 4, 9 and 10 show that errors traced back to knowledge in use can decrease sub-
stantially among medium and low performers. 
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Fig. 2: Development of correct solutions, lack of “knowledge in use” and “in mind”: Analysis for 
two exemplary items 

Discussion and consequences for interventions 
In this paper, we contribute to a longer-term research program on unpacking and fostering 
mathematical knowledge for engineering students. The distinction between procedural 
knowledge in use and in mind is powerful as it subsumes many important components of 
procedural skills (speed, accuracy, but also flexibility), and allows to isolate the component 
knowledge in mind which has the strongest connection to elements of conceptual 
knowledge. The mathematics engineering courses aim at both, conceptual knowledge of 
main concepts and connections, but also adequate procedural knowledge: Every student 
should know how to perform basic procedures because they are important tools in STEM 
fields like mechanics or signal and system theory. The study shows that knowledge in use 
and knowledge in mind show different dynamics for each performance group and vary sig-
nificantly between items and topics.  

These results are highly relevant for practical purposes because different approaches for 
fostering each component of procedural knowledge are required. Whereas an improvement 
of knowledge in use can be reached by strengthening automatization and flexibility, 
knowledge in mind might develop effectively by a permanent application of basic proce-
dures in complex situations in order to routinize and flexibilize their processing with links to 
conceptual knowledge, metaprocedures and the web of procedures they are embedded in.  

A lasting high lack of knowledge in mind among low performers seems to block the devel-
opment of knowledge in use during the first year. As a consequence it should be monitored 
and – if necessary – refreshed frequently. Regarding knowledge in use our findings show 
that it can develop strongly in all performance groups. But at all times low performers per-
manently lag behind medium performers for more than half a year. This should implicate an 
attempt to improve starting conditions for low performers by an adaptive training program 
at the beginning of study. 
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Motivating mathematics for biology students 
through modelling  

Simon Goodchild, Yuriy Rogovchenko, Olov Viirman 

University of Agder 
(Norway) 

This paper describes collaboration between two centres of excellence in higher education in which 
mathematical modelling tasks are introduced to biology students as a means of motivating students 
to engage more deeply in mathematical studies. A mathematics teaching developmental pilot study is 
described, and attention is given to students’ affective responses – their motivation to engage in the 
tasks and in mathematics. The responses suggest that inclusion of mathematical modelling in authen-
tic situations may have a positive impact on these students’ motivation to study mathematics. 

Introduction 
The first centre of excellence in higher education (CEHE) in Norway was established in 
Teacher Education at the beginning of 2012. Following this, three new CEHEs were created 
at the beginning of 2014, one in Music Performance, one in Biology and one in Mathematics. 
In this paper we report the efforts of two of these centres: Centre for Research, Innovation 
and Coordination of Mathematics Teaching (MatRIC based at the University of Agder – UiA) 
and Centre for Excellence in Biology Education (bioCEED based at the Universities of Bergen 
and Svalbard – UiB) to collaborate in developing mathematical modelling for undergraduate 
biology students. Collaboration across departments is not so unusual; here the collaboration 
between MatRIC and bioCEED is both across departments (mathematics and biology) and 
across institutions (UiA and UiB) separated by about 8 hours by road or three hours by air 
and road. 

At the outset there was a desire to explore ways in which the CEHEs in biology and mathe-
matics might collaborate. The focus, mathematical modelling, was a natural choice because 
MatRIC had identified modelling as an approach to motivating students’ engagement by 
making mathematics more meaningful in their programmes of study. The biologists were 
also concerned to motivate students to extend their mathematical knowledge beyond the 
basic compulsory course in their undergraduate studies. Biology students at UiB take one 
compulsory mathematics course, which comes in the first semester, and students from 
about twenty different natural science programmes come together for a general mathemat-
ics course. There are few opportunities for focusing on the issues specific to biology. 

Mathematics and biology 

“After a century’s struggle, mathematics has become the language of biology” 
(Steen, 2005, p. 22) 
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Recognition of the need to develop the mathematical competencies of biology students is 
not a Norwegian phenomenon, we note the arguments expressed, for example, in the USA. 
It is asserted that students of biology in the 21st century need to develop mathematical 
competencies to meet the demands of biological science (Labov, Reid & Yamamoto, 2010). 
The editors of Cell Biology Education assert that “The need for basic mathematical … literacy 
among biologists has never been greater” (Gross, Brent & Hoy, 2004, p. 85). Further, the 
mathematician Lynn Arthur Steen argues that biological and mathematical sciences need to 
be integrated within undergraduate education (2005); Louis Gross offers an explanation 
about what such integration might mean: “concepts from biology should be integrated with-
in the quantitative courses that life science students take, and quantitative concepts should 
be emphasized throughout the life science curriculum” (Gross, Brent & Hoy, 2004, p. 86). A 
report arising from a conference in 2009 organized by the American Association for the Ad-
vancement of Science draws attention to the important role of mathematics in biology and 
that mathematical modelling is a basic scientific skill within the ‘core competencies and dis-
ciplinary practices’ of biology (Brewer & Smith, 2011, p. 17). 

A teaching development project 
We report from the pilot phase of a developmental research project. In this research design 
cycles of developmental activity (planning, implementation, reflection, feedback) are theo-
retically informed and contribute to the development of theory (Goodchild, Fuglestad & Ja-
worski, 2013). This ‘pilot’ phase is concerned with the feasibility of a project in which teach-
ers and researchers from one university work with students at another, and the collabora-
tion across mathematics and biology departments. We want to explore how students re-
ceive and react to the introduction of mathematical modelling in biological situations, and 
generate evidence that will support the continuation of the project by convincing both 
mathematics teachers and biology teachers of its value. 

We have met with two groups of students. The first group was a feasibility study that took 
place in April 2015. Ten students volunteered to participate, all but one were in their first 
year and had completed the first mathematics course (10 ECTS points) successfully, the ex-
ception was a second year student who had accumulated 25 ECTS points in mathematics. 
This group met on one occasion, for three and a half hours. The second group comprised 
nine volunteers. The plan for this group is to meet on four occasions during their first (au-
tumn 2015) semester concurrently with their compulsory mathematics course. The second 
group is both younger and less experienced mathematically than the first group. Both 
groups are very small and we do not presume to draw any generalizable conclusions from 
these meetings. 

In the presentation we hope to report from all four meetings of the second group, however 
at the time of writing only the first meeting has taken place. The content of the first meeting 
of the second group was intended to be similar to that of the meeting with the group that 
met in April. However, due to a two and a half hour flight delay the first meeting of the sec-
ond group was shorter than intended – a significant practical issue when working across 
institutions! 
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The sessions began with a brief introduction to the basic ideas of mathematical modelling 
and the modelling cycle through iterations that were initiated by an authentic problem, 
through formulation, analysis, interpretation, validation, review of assumptions and refor-
mulation etc. Following this, students were asked to collaborate in modelling problems of 
increasing complexity, but requiring only pre-calculus mathematics. 

Problems set included, for example, one that required the estimation of a rabbit population 
based on counting the number of dead rabbits (due to road kill) along a highway. Another 
sought to investigate the sustainable ‘harvest’ from a population of fish in fishery. 

In this report we focus on the questions: 

What is the students’ response to mathematical modeling tasks in biological con-
texts and their motivation to pursue studies in mathematics?  

What is learned about biology students’ attitudes towards mathematics? 

To address these questions were refer to students’ responses to questionnaires comprised 
of likert style and open questions that were completed at the beginning and end of the ses-
sion. We report from the likert scale questions here. 

Observations and discussion 
Before engaging in the activities students were asked to rate their experience of mathemat-
ics as interesting and enjoyable, to express their opinion about the importance of mathe-
matics in biology, the relevance of their mathematics course, and the sufficiency of their 
mathematical knowledge. The average responses from the two groups of students, (where 
‘5’ represented the strongest positive response) were as follows: 

Mathematics is … interesting (3,1 and 2,89); enjoyable (2,9 and 2,56) important in biology 
(3,5 and 3,33), the sufficiency of their existing knowledge of mathematics (3,7 and 3,56). 

We emphasise that the groups are very small and little can be concluded from these figures, 
but we note the relatively weak commitment and enthusiasm in their attitudes towards 
mathematics, slightly stronger feelings about the importance of mathematics to biology and 
the perceived sufficiency of their own knowledge of mathematics. The latter is of interest 
given that the second group is less than half way through their mathematics course. How-
ever, the question seeking their opinion about the relevance of their mathematics course to 
biology elicited average responses (2,1 and 3,67). Given the consistency of the earlier re-
sponses the difference here is noticeable; the students who have completed the university 
course are less convinced than the students currently studying the course. It is impossible to 
say whether this is a systematic difference and even if it were, there could be many reasons 
for the difference. However, the issue we want to explore further is whether the general 
content of the university course in mathematics influences negatively students’ opinions 
about the relevance. 

At the end of the session students were asked whether they found the activity interesting, 
enjoyable and challenging; also whether the activity had contributed to their understanding 
of mathematics, biology and applications of mathematics to biology, and whether such ac-
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tivities would be useful in their regular mathematics courses. The results here show a similar 
pattern (5 point scale, ‘5’ strongest positive). 

The activities were interesting (4,4 and 4,13); enjoyable (4,0 and 3,88); and challenging (4,7 
and 4,5). To the questions relating to increase in understanding, of mathematics (3,8 and 
3,38); of biology (4,1 and 4); and applications of mathematics to biology (4,3 and 4,38). We 
find the strength of the positive response to the last two items surprising given that the 
people leading the activity are not biologists. Here also there was one question in which 
there was a noticeable difference in responses: to the question about the usefulness of the 
modelling activity in regular mathematics classes the first group responded more positively 
than the second (4,4 and 3,38). Again we emphasise that there may be many reasons for 
this difference, but taken in conjunction with our interpretation of responses to the question 
of relevance of their course to biology it may be that the incorporation of mathematical 
modelling activities might have a positive effect on students’ attitude towards the subject. 

We also noticed that the first group of students appeared to engage more productively and 
successfully with the tasks given. This could be because the first group of students had 
completed the whole mathematics course, some five months before the modelling session. 
It could also be that mathematical modelling requires students to have acquired a level of 
maturity as suggested by Edelstein-Keshet (2005). She suggests that mathematical model-
ling be included in courses for biologists as a second or third year topic “when the level of 
maturity of undergraduate students has increased” (p. 69). As we propose mathematical 
modelling be included in the first semester mathematics course we do not challenge Edel-
stein-Keshet’s suggestion, we rather confront the challenge if mathematical modelling is 
introduced to biology students in their first semester. 

A further objection may be raised. In our pilot experiments we are working with very small 
groups of students. How then can we propose that the activities be transposed to very large 
groups combining students from many different programmes of study? This question lies 
beyond the scope of the present paper, but we refer first to a meta-analysis of 39 research 
based studies (published in the period 1980-1996) of small-group learning by Springer, 
Stanne and Donovan (1999). The studies included in the meta-analysis demonstrated that 
learning in small groups had a positive effect on students’ achievement, retention and atti-
tudes. In another paper, Allen and Tanner (2005) point to evidence of successful transposi-
tion of problem-based learning from small group settings to large and very large classes. 
Our pilot project with small groups of students can be adapted to the large class settings. 
Our task is to convince the regular mathematics teacher that this is an effective approach. 
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Links between engineering students’ and their teachers’ 
personal relationship with mathematics  
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In Hernandes Gomes & González-Martín (2015), we investigated how the background (mathematics, 
engineering, etc.) of mathematics teachers in engineering programs can shape their own vision of 
mathematics, resulting in subtle differences in their vision of rigor, among other elements. Using tools 
drawn from the anthropological theory of didactics (ATD), and specifically the notion of personal rela-
tionship, we provide an analysis of interviews with two students, each of whom was paired with a 
different teacher interviewed in Hernandes Gomes & González-Martín (2015). Our results show that 
some elements of the teachers’ personal relationship with mathematics also emerge in the students’ 
interviews, in particular those elements pertaining to modelling and estimations. 

Introduction 
The importance of mathematics and its applications in various scientific and technological 
fields is undeniable. In engineering, the models required in interpretation and problem solv-
ing are usually an adaptation of (or based on) mathematical tools. However, the formalist 
approach used in mathematics instruction often obscures its practical applications. This “may 
result in a gap in the students’ ability to use mathematics in their engineering practices” 
(Christensen, 2008, p.131). For instance, Cardella (2013), in analysing how engineering stu-
dents use mathematical thinking in their capstone projects, noted the following with respect 
to students’ perceptions of precision: “some undergraduate engineering students can be-
come frustrated by the ambiguity and uncertainty that are normal for authentic engineering 
tasks” (p.96). This remark points to different practices (for mathematicians and engineers), 
where the ‘same’ elements acquire different status: for instance, whereas in mathematics, 
precision needs to be discussed and proved, in engineering it may be taken for granted as 
an explanation for certain practices. 

In this regard, Wake (2014) points out that it is very important “to design curricula in ways 
that ensure that mathematics is valued by learners as they attempt to make sense of, and 
with, mathematics in ways that facilitate their being able to engage in practice (doing) and 
developing their identity (becoming)” (p.288). Regarding this identity, the distinction be-
tween mathematics professionals and engineering professionals has long been identified 
(Snyder, 1912, p.125), and this discrepancy may be present in teaching practices. Engineer-
ing students’ vision of mathematics, as well as the way they use mathematics in their pro-
fessional life, is influenced by many factors, including their teacher’s approach to the sub-
ject. With this in mind, in Hernandes Gomes & González-Martín (2015), we investigated how 
teachers’ academic backgrounds (whether in mathematics, engineering, etc.) shape their 
vision of mathematics. We saw that the teachers’ own exposure to different practices 
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seemed to lead them to develop different views on the use of mathematics for engineering 
(we come back to the main results in the Data section). Consequently, aspects of that re-
search led us to reflect on mathematical practices in engineering courses, specifically. The 
research presented here focuses on engineering students’ vision of mathematics, how it 
relates to their teacher’s vision, and how it is influenced by their teacher’s background. We 
state the objective of this paper at the end of the Theoretical framework section. 

Theoretical framework 
Given an object o, an institution I, and a position 𝑝 in I, Chevallard (2003) defines the institu-
tional relationship with o in position 𝑝 as the relationship with the object o which should 
ideally be that of the subjects in position 𝑝 within I. This institutional relationship has an ef-
fect on the subject, who may belong (or has belonged) to several institutions, where s/he 
engages in different tasks at the heart of different practices (or praxeologies). Every subject 
𝑥 has a personal relationship with any object o as a result of all the interactions that 𝑥 can 
have with the object o in different institutions to which 𝑥 belongs (or has belonged), or in 
the different positions 𝑥 can occupy. From this personal relationship, an individual will be 
endowed with what could be designated as ‘knowledge’, ‘know-how’, ‘conceptions’, ‘com-
petences’, ‘mastery’, and ‘mental images’ (Chevallard, 1989, p.227). All these elements are 
developed by solving specific tasks, using specific techniques that are justified by given ex-
planations (technology). Furthermore, these tasks, along with accepted techniques and ex-
planations, are constrained by the institutional relationship that the institution has with the 
objects at play. Therefore, institutional relationships have an effect on an individual’s per-
sonal relationship with an object. This institutional relationship depends, among others, on 
the status assigned to o by I, which depends highly on 𝑝 (and therefore also on I), or on 𝑝’s 
modality of access to o, enabled by I (Winsløw, 2013). We illustrate this in the next para-
graph, using an example. 

A student who studies derivatives in a first-year Calculus course in a Faculty of Mathematics 
is subjected to the relationship 𝑅𝑀(𝑠, 𝑑). In subsequent courses, the notion of derivative is 
revisited and reconstructed in such a way that at the end of the Mathematics program, the 
same individual is subjected to the relationship 𝑅𝑀(𝑡, 𝛥). On the other hand, a student who 
studies derivatives in a first-year Calculus course in a Faculty of Engineering is subjected to 
the relationship 𝑅𝐸(𝑠, 𝛿) and, after using derivatives to solve various engineering-related 
tasks, at the end of the study programme this individual will be subjected to the relationship 
𝑅𝐸(𝑒, 𝐷). If these two individuals go on to occupy the position of teacher in a Faculty of En-
gineering, teaching derivatives, they will both be subjected to the relationship 𝑅𝐸(𝑡, 𝛿). 
However, they each will have a different personal relationship with derivatives, since they 
previously occupied different positions in different institutions and therefore probably used 
the object ‘derivative’ in different ways. As a consequence, it is possible they do not teach 
the ‘same’ notion of derivative to their students. The following diagram shows the different 
trajectories and institutional relationships to which both individuals have been subjected; 
even if both of them end up occupying the same position in the same institution, their tra-
jectories will have been different: 
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𝑅𝑀(𝑠, 𝑑) → 𝑅𝑀(𝑡, ∆) → 𝑅𝐸(𝑡, δ) 

𝑅𝐸(𝑠, δ) → 𝑅𝐸(𝑒, 𝐷) → 𝑅𝐸(𝑡, δ) 

We therefore believe that the situation of a mathematics teacher in an engineering faculty 
can be quite complex. The way mathematics topics are introduced in engineering is different 
than in a mathematics faculty, and an instructor with a background in mathematics should 
ideally teach engineering students differently than the way she or he was taught mathe-
matics. That said, instructors with a background in mathematics likely have a different 
teaching approach than engineering instructors who are also professionally active engi-
neers. For the most part, university mathematics teachers (and in particular, those in engi-
neering faculties) have no formal teacher training. Therefore, we conjecture they draw on 
elements present in their personal relationship with mathematical notions and that these 
elements may influence the vision (and the personal relationship) their students develop 
with respect to mathematics. 

Using the tools of the personal relationship and institutional relationship, this paper’s objec-
tive is to determine whether Engineering students studying under teachers with different 
backgrounds consequently develop different personal relationships with the mathematical 
notions they use, and, if so, whether it is possible to identify any common elements be-
tween the teachers’ and the students’ personal relationships with specific mathematical 
notions. 

Methodology 
It is important to note that the research presented here is in an exploratory stage. To ana-
lyse the pertinence of our theoretical approach, we are using already available data. By as-
sessing how the aforementioned theoretical tools can be used to study the type of phe-
nomena we are interested in, we will be able to make decisions regarding methodology and 
plan an adequate data collection strategy for future research. 

Our data are derived from a project that was developed in two stages (Hernandes-Gomes, 
2009). During the first stage, interviews were conducted with two teachers (T1 and T2) in 
an engineering school at a private university in São Paulo, Brazil. T1 is a female teacher with 
BSc of Mathematics, MSc of Space Engineering and Technology, and PhD in Mechanical En-
gineering, specialising in neural networks. At the time of the interviews, she had only taught 
at one university (for 7 years), teaching Differential and Integral Calculus, Analytic Geome-
try, and Linear Algebra. T2 is a male teacher with a BSc, MSc, and PhD in Mechanical Engi-
neering. T1 usually teaches mathematics courses, whereas T2 normally teaches profession-
oriented courses (Introduction to Computational Science, Mechanics of Solids, and Re-
sistance of Materials). Both instructors have overseen student capstone projects, and be-
cause this was the only activity they had in common, the interviews focused on their super-
vision of these projects. The two teachers were interviewed together on two occasions, to 
encourage dialogue between them and reveal the contrasts between their personal rela-
tionships with mathematics (Hernandes Gomes & González-Martín, 2015). 

During the second stage, interviews were conducted with two students, each of whom was 
working on a capstone project with a different one of the two teachers from phase one. S1 
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is a female student finishing her Bachelor degree in Production Engineering. Her capstone 
project, supervised by T1, concerned artificial neural networks. S2 is a male student finishing 
his Bachelor degree in Mechanical Engineering. His capstone project, concerning simulation 
software for mechanical engineering, was supervised by T2. The students' questionnaire 
was developed following the interviews with their teachers, and included elements pulled 
from the teachers' responses. The students were interviewed separately in December, 
2008. The interviews were audio recorded and transcribed. Figure 1 summarises the profiles 
of the teachers and students. 

Teacher Gender Academic Background Professional background Student 

T1 Female • Bachelor of Mathematics,  
• Master of Space Engineering 

and Technology  
• Doctorate in Mechanical Engi-

neering 

Has taught solely at this one uni-
versity for seven years, giving 
courses in Differential and Integral 
Calculus, Analytic Geometry, and 
Linear Algebra. 

S1 
Female 
Production 
Engineering 
Neural 
Networks 

T2 Male • Bachelor, Master and Doctorate 
in Mechanical Engineering 

Has taught at the university level 
for 23 years, and at this university 
for six years. His courses include 
Introduction to Computational Sci-
ence, Mechanics of Solids, and 
Resistance of Materials. 

S2 
Male 
Mechanical 
Engineering 
Simulation 
Software 

Figure 1. Profiles of both teachers and students 

Data 
In Hernandes Gomes & González-Martín (2015), we discussed the main differences be-
tween T1's and T2's approaches to mathematical rigor and approximation, which we sum-
marise briefly here. First, it is important to note that T1 sees herself as an expert in Artificial 
Intelligence, whereas T2 identified himself as an engineer at different points during the in-
terview (which was not the case with T1). We interpret this as evidence that even though 
they are both working in the same faculty of Engineering, the teachers see themselves as 
occupying different positions in different institutions; this is likely because they have partici-
pated in different praxeologies, solving different tasks. T1’s base training in mathematics is 
strongly present in her ways of doing. For instance, she uses mathematical tools to check 
that a result is correct: “What else can be done for certain work, to give it a better founda-
tion, to really be able to say: ‘Ah, this work doesn’t have any problem?’ Oh, let’s carry out 
the statistical analysis of this data”. For her, any discourse (or technology) used to verify 
results usually requires mathematical rigor; results need to be proven mathematically, even 
when they satisfy the requirements of the constructed models. This way of doing contrasts 
with T2’s practices, which are probably a product of the praxeologies he engages with as an 
engineer. During the interview, many of T2’s statements indicated he justifies some ways of 
doing based on common engineering practices: “you can do an experimental study”…“which 
doesn’t happen in reality”…“what in fact is an approximation,”…“all of that is experimental. 
You can also carry out a mathematical simulation, using computer programs, which are pro-
fessional.” During their exchanges, both teachers agreed that the vision of rigor is different 
for a mathematician than an engineer, which we again interpret as evidence of their experi-
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ence with different praxeologies in different institutions. In particular, praxeologies in engi-
neering allow for simplifications and approximations in everyday work to simplify calcula-
tions (less-than-strict mathematical rigor). Furthermore, T2 also frequently mentioned the 
use of professional software. 

During the student interviews, S1 acknowledged that her profile was more finance-related, 
and that she had approached T1 to supervise her capstone project because neural networks 
have applications in finance. She also acknowledged the strong presence of mathematical 
activity in her project: 

S1: The tool [T1] had used for her PhD was a probabilistic tool, and so the difficul-
ty lay in adapting the tool to anticipate [stock market] indexes. So, that was 
the major difficulty, changing the tool – not the type of tool, neural networks, 
but another type of network that was also new for [T1] […]. And in addition 
to that, I also used a classical tool, regression. 

On the other hand, S2 expressed many points of view that seem to indicate his personal 
relationship with mathematics as an engineer is similar in many ways to T2’s personal rela-
tionship. One viewpoint expressed by both T2 and S2 is especially worth noting: neither be-
lieves it is worth studying mathematics for its own sake, i.e. without putting it into an engi-
neering context. For instance, S2 was asked which of the results used in his capstone project 
depended on mathematics. He answered that his theories and formulations stemmed from 
physics, and that, like all physics theories and formulations, they could be considered math-
ematical only because physics depends on mathematics: “I can’t use physics without math-
ematics. So, I can consider it as… as mathematics too. But in the end, they are theories and 
formulations [derived] from physics”. We can see that each student experienced totally dif-
ferent praxeologies working under a different teacher, with a different weight given to 
mathematics: 

S1: It was like that, doing some tests, using the software and based on the litera-
ture to prove the model. 

S2: You don’t need to use an integral or a differential nowadays. The calculations 
we do are mostly basic. 

S2 added that while he anticipated using Calculus to prepare his master's, he believed he 
would never need it in his daily practice as an engineer (in particular, any integral or any 
differential), stating that the calculations he had to perform were quite basic. His views also 
echoed T2's vision of approximation, as we discuss below. Not surprisingly, S2 identifies 
himself as an engineer, while this kind of identification is absent in S1’s speech. However, 
S2 emphasised the need to interpret and understand notions, and insisted an engineer must 
have a solid vision of physics and a firm grasp of the different magnitudes used. This 
knowledge is necessary because an engineer often needs to work with estimations and in-
exact, approximate data: 

S2: Most engineers nowadays, in my opinion, are trained without a very good 
physical approach to problems. What does that mean? They sometimes don’t 
know what… what the magnitude of a Newton means, what an interval 
means, they don’t have a concept of the physical unit. 
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For S2, theory is a tool that backs up the use of approximations, as revealed in this quote: 

S2: [regarding the use of software] If you don’t understand the physical magni-
tude of the thing, you’ll get totally absurd results, and then he’ll look at the 
software, if he doesn’t understand the concept […]. You need to calibrate the 
model. Because if you go on refining, refining, refining… […] you’ll get to a 
size out of its range […]. And because of the theory, the integrals or differen-
tials used for these elements, the approximation won’t be an approximation 
[but will] become… something else. 

Their responses indicate that the students use mathematical elements in different ways. 
Furthermore, with respect to software, S2 mentioned different professional engineering 
programs (indicating his proficiency with them) and said that computers are necessary tools 
for engineers, reflecting the answers of T2. He stated that less-experienced engineers risk 
applying mathematical models strictly, leading them to wrong interpretations. S2 also said 
that some engineering problems cannot be solved by hand (another issue raised by T2), and 
that it takes a degree of intuition to know when to initiate computer modelling. On the other 
hand, S1 used Matlab and Minitab for the statistical analyses. 

Coming back to the different ways the students described their activity, the following 
quotes illustrate the students’ visions of their capstone project: 

S1: One of the difficult aspects was that […] in neural networks, you can use as 
much data as you wish, it even makes the model better. In regression, you 
can’t do that. Rather, you have to pay attention to the right amount […]. So, 
in the modelling, I had to pay attention, work with certain data […]. 

S2: In engineering […] you always work with tolerance […] and it has to be below 
a given limit. So… the result doesn’t matter, it’s… you test one piece, and 
there you get a given x: you don’t need to get exactly to that x. You have to 
make a calculation that gives less than x. And there, it’s good, it’s approved 
[…]. I think that’s what engineering is. At least, in my area of work, it’s been 
like that. 

S1’s description of her work seems to portray the activity of a mathematician, and the appli-
cation of mathematical models is very present. On the other hand, S2 directly addressed his 
vision of engineering, and it is clear that he has been involved in praxeologies where ap-
proximation and tolerance are quite frequent. This recalls Cardella’s statement, mentioned in 
our introduction, about the normality of ambiguity and uncertainty in authentic engineering 
tasks (2013, p.96), and contrasts strongly with the role of approximation in S1’s work: 

S1: Regarding approximation, I remember… we had some teachers in the intro-
ductory courses, they insisted a lot on that: that we could use approximate 
models, but with several decimal figures. And paying attention. Nowadays, 
professionally, I’m working a lot with accounting, and there you can’t approx-
imate anything: it either is or it isn’t. So, that’s it, there’s no such approxima-
tion: you need to have the exact value. 

Many of S1's opinions hewed closely to statements made by T1. Regarding approximation, 
S1 and T1 both asserted that results obtained by engineers need to be analysed and 
checked using a variety of tools. S1 pointed to one of her results which allowed her to use 
neuronal networks to predict stock market data with 98.6% accuracy, and discussed the 
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importance of using approximations. An interesting point of divergence between S1 and T1 
concerned the importance of studying pure mathematics. T1 expressed the opinion that an 
engineer must acquire basic mathematical tools. She also stated that she shows students in 
her mathematics courses how these tools will be applied in their professional practice. How-
ever, S1 stated that the models used in these courses are always ‘perfect’ and that the 
mathematics found in textbooks is very difficult to apply in practice, using real data. This 
supports Christensen's work (2008), which identifies a gap between mathematical tools and 
engineering practice. S1’s belief, also expressed by some researchers, is that “Mathematics 
learnt in the faculty have little or nothing to do with the real world”, which seems to indicate 
that her active engineering practice may influence her own personal relationship with math-
ematics in ways that diverge with T1’s personal relationship. 

Regarding this point, S2 also expressed concerns that resemble those of T2: when asked 
how his courses could be changed to facilitate the completion of capstone projects, S2 
pointed out the need to show the practical application of results, i.e., how an engineer 
would use results in her or his daily work. He also expressed his belief in the importance of 
proving these results. In this respect, T2’s and S2’s personal relationships with proof seem 
very similar: they both agree that an engineer needs to know what an integral is or how to 
solve a differential equation, even if this knowledge is not used in an engineer’s daily prac-
tice. S2 also mentioned the need for practical examples. This may be because he occupies a 
different position than T2: T2 is an experienced engineer, familiar with the application of 
mathematics in engineering, whereas S2 is still a student who does not yet fully understand 
how and when these skills will be needed in his daily practice. Regarding the use of mathe-
matics, S2 saw his own case as rather atypical: although he had used finite elements in his 
capstone project and was applying Calculus as he worked towards his master's degree, he 
said many of his fellow students continued to question the requirement to study certain 
mathematical results. 

Final considerations 
This exploratory work looks at common and divergent visions of mathematics espoused by 
engineering students and their teachers, and the adequacy of the notion of personal rela-
tionship to study these visions. Our data seem to indicate that the visions of S1 and S2 dif-
fer, and that although they both were completing engineering capstone projects, they were 
actually engaged in very different praxeologies. S1, supervised by a teacher with a back-
ground in mathematics, appears to have developed a vision that stresses rigor, and her ap-
proach to engineering is influenced by elements of mathematical praxeologies: analysing 
data, constructing models, proving their efficacy using statistical regression, etc. At the same 
time, her engineering experience seems to influence her personal relationship and she com-
plains that some of the models studied in her courses are always ‘perfect’. S2, however, 
seems to have developed a personal relationship that is much closer to T2's, who has train-
ing and experience as an engineer. Both S2 and T2 seem engaged in praxeologies that are 
more closely related to an engineer’s practice, using approximations and interpretations and 
employing computer software for testing. Whereas S1 seems more critical of the role of 
mathematics courses in her education, S2 seems to have developed a somewhat contradic-
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tory opinion, stating that it is necessary for engineers to understand mathematics, although 
his daily work as an engineer will not require him to apply this knowledge. 

This preliminary work indicates that further investigation is needed to explore the complex 
phenomenon of teachers with various backgrounds educating future engineers, and how 
their different personal relationships influence their students' vision and use of mathematics. 
The tools provided by ATD seem to provide a way to identify implicit differences in teachers’ 
views and practices, and reveal how these practices (or praxeologies) influence their stu-
dents’ work. 

However, we are aware of two main biases in the results presented here. First, our partici-
pants are rather ‘extreme’ cases, making it easier to pinpoint these differences — we are 
analysing individuals engaged in very different praxeologies. Taking this into account, we 
plan to apply our tools to more homogeneous populations and practices; for instance, teach-
ers giving the same first-year Calculus course. This will allow us to determine whether ‘an 
identical’ praxeology is developed the same way by teachers with different backgrounds. 
Secondly, we are also aware that the data analysed here were collected without specifically 
taking into account the framework provided by ATD. Given that these tools seem to help 
identify certain interesting elements in teachers’ and students’ responses that could be 
linked to institutional elements, we plan to continue our research by constructing a suitable 
methodological dispositive, with a sample that shares more commonalities. 

The next step of our research entails working with six teachers of a first-year Calculus 
course in engineering, each with a different background. We intend to analyse how these 
instructors develop praxeologies for teaching Calculus, how these praxeologies differ, and 
how they relate to the teachers’ different backgrounds and their personal relationships with 
the content of their Calculus course. The results of our analyses will be the source of future 
papers. 
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Conceptualizing students’ processes of solving a typical 
problem in the course “Principles of electrical engineering” 

requiring higher mathematical methods  
Jörg Kortemeyer, Rolf Biehler 

Universität Paderborn 
(Germany) 

The project KoM@ING aims at studying the mathematical skills required in technical subjects of bach-
elor programs in engineering. Our subproject is especially interested in the first-year-course “princi-
ples of electrical engineering". We will present our analysis of an exercise dealing with the time-
dependent behavior of a quantity in an oscillating circuit, which can be described using ordinary dif-
ferential equations of degree one and two. The presentation contains the newly invented concept of 
the student-expert-solution, which is a normative solution of the task and used as a basis for our 
empirical studies. We analyze students' problem solving processes as well as written exams concern-
ing the same task. We will point out specific difficulties and challenges.  

Introduction 
We are interested, which mathematics is used in basic courses on electrical engineering in 
electrical engineering study programs, how mathematics is used and how the way mathe-
matics is done differs from inner-mathematical contexts. To answer these questions, we 
analyze how first year students of electrical engineering solve electrical engineering tasks, 
which require knowledge and cognitive recourses from both mathematics (school, universi-
ty) and electrical engineering. The mathematical practices in mathematical contexts look 
different from those in engineering contexts (see Redish, 1995). We try to find out the diffi-
culties and the challenges caused by these differences. 

In German universities engineering students typically have to take courses in engineering 
subjects like the “Fundamentals of Electrical Engineering” (FoEE) and courses on the “Math 
for Engineering Students” (MfES) in the same semester. In FoEE-courses the theory is pre-
sented in the lecture while the accompanying exercise classes show ways to solve problems 
by simplifying the content of the lecture and making it applicable. In written examinations 
the students often do not need justifications for their solutions to get points. On the other 
hand, the MfES-courses show calculation methods rather than the proving of mathematical 
statements like in math lectures for students of mathematics. The content of the MfES-
course is calculus in one and in higher dimensions, linear algebra (solving of lineare equation 
systems, theory of eigenvalues) and complex numbers. 

The separation between the two subjects leads to some challenges for students: There are 
asynchronisms between lectures on MfES and FoEE, i. e., often a mathematical topic is 
needed in FoEE before it is presented in MfES. As lectures on mathematics have a deductive 
structure to assure understanding, it is not possible to adjust the order of the mathematical 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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topics in the MfES-course in every case. There is also a different mathematical practice in 
MfES and FoEE, e. g., in the use of vectors and differentials. 

We have the following research questions: (1) Which (idealised) solutions can we expect 
from students after their second semester of their electrical engineering studies? (2) How 
do students actually solve exercises in FoEE-courses and which difficulties do occur? (3) 
Which solving strategies do students use in their solution processes? 

We focus on four tasks of the second part of the “foundations of electrical engineering”-
course (the so-called GET-B-course), which students are to take in their second semester. All 
the students’ written work in an exam containing the four exercises was scanned and the 
same tasks were given to eighteen pairs of students, whose work and communication were 
video-recorded and transcribed. 

Theoretical Background and Methodology 
Our analysis of the problem solving processes is based on two tools: 

At first we need to describe the competences required in the task solving in engineering 
subjects. The so-called student-expert-solution (SES) is a “normative solution” that is based 
on the modeling cycle by Blum/Leiss, 2005, and the description of problem solving process-
es by Polya (1949). Another foundation are solutions of the tasks done by electrical engi-
neering experts in an expert interview, who were asked to solve the tasks from the per-
spective of a first-year student who well understood the contents of the GET-B-course. The 
SES is complemented with related theory-based comments in a second column, forming the 
so-called TESES, the theoretically enhanced student-expert-solution. The TESES is used to 
sharpen the theoretical description of the tasks and to analyze students’ solving processes. 

The starting point of our analyses was the “model solutions” on the tasks which were pro-
vided for the correction of the written exam. But there was the problem, that the model 
solutions of the exercises on electrical engineering mostly just contain the calculations or 
sometimes even just the result. In order to get detailed and normative solutions of the exer-
cises we conducted interviews with the task designer and other electrical engineering ex-
perts using the so-called PARI-method (Hall et al., 1995), which is a task-based interview-
technique. The abbreviation PARI stands for Precursor, Action, Result and Interpretation. 
Using this kind of interviews, the normative solution could be supplemented with compe-
tence expectations and additional remarks. 

The interview consists of three phases: the first step is the solving of the exercise without 
interruptions. Then a reconstruction of the reasons for the way the exercise was solved is 
done in order to identify the used resources and to get justifications for each step of the 
solution. Finally, there is a didactic reconstruction of the exercise. This reconstruction con-
sists of the scrutinizing of alternative solutions to the exercise, typical mistakes of students 
after their first year and possibilities for the validation of the results. In a second step, the 
expert is asked for reasons for assigning the exercise and possible variations for exercises 
on this topic. 

On the other hand, we base our analyses on theory of modelling and problem solving. The 
modelling cycle (Blum/Leiss, 2005) divides the solving of modelling tasks into seven steps: 
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(1) understanding of the task and construction of the “situation model”, (2) simplifying and 
structuring of the situation: construction of the so-called “real model“, (3) translating into a 
mathematical problem, (4) mathematical work, (5) interpretation of the result in the real 
world, (6) validation and (7) presenting of the results. It divides the process into “reality” 
(step 1, 2, 6 and 7) and “mathematics” (step 4); step 3 and 5 connect the two parts of the 
cycle. On the other hand, we use a conceptualization of mathematical problem solving pro-
cesses and heuristics by Polya, 1949, that describes four phases: the understanding of the 
problem, the devising of a plan, the carrying out of the plan and looking back. 

Our second tool is the so-called low-inferent analysis (LIA), which is used to analyze the 
solving processes of the student pairs. The LIA has four functions: at first, it connects the 
phases in the SES and the phases shown in the students’ solving processes. It describes the 
differences between the idealized solution paths in the SES and the actual solving processes. 
We annotate and interpret the differences to describe strategies of the students, which are 
independent from the actual exercises. At last, the LIA is used to find connections to the 
epistemic games resp. e-games (see Tuminaro/Redish, 2007) and justification strategies 
(see Bing, 2008). The e-games frame videographed solving processes in physics by three 
framings: quantitative sense-making, qualitative sense-making and rote equation chasing. 
The e-games were advanced by conceptualizations of mathematical justifications in physics: 
Calculation, Physical Mapping, Invoking Authority and Math Consistency. For example, “cal-
culation” stands for “a correct completion of an algorithm gives a correct result”. 

We also scanned 92 solutions of the four tasks that were done by students in a written ex-
amination to the second part of the “foundations of electrical engineering”-course. We di-
vided each subtask into different steps that would have to be done in order to solve it. We 
categorized each activity in a way, which is independent from the original marking of the 
examination and that consists of three degrees: the student gets a 2, if their solution was 
totally correct. They get a 1, if there were faults but their solution still contains right parts. 
The student got a 0, if their solution was totally wrong. If a previous step was wrong (coded 
as 0) or contains faults (coded as 1), but the student does the subsequent step in the right 
way, they get a 2 in the subsequent step. 

The following diagram shows how the different tools are used in our analysis: 

 
Fig. 1: Diagram on the connection of the different elements of our analyses 
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A Short Outline of the Exercise and Its Solution 
We now present one of the four exercises, the so-called 𝐴2 , which deals with transients in 
an oscillating circuit containing a resistor 𝑅  , an inductor 𝐿  , a capacitor 𝐶 and an ideal voltage 
source 𝑈0. It is shortened for brevity. 𝐴2 starts with the following sketch of the circuit: 

 

Fig. 2: Sketch of an oscillating circuit containing two switches, an ideal voltage source, a resistor, a 
capacitor and an inductor 
 
At the beginning the switches 𝑆1 and 𝑆2 are open and the inductor and the capacitor are 
totally discharged. At the moment 𝑡 = 0 the switch 𝑆1 is closed, while 𝑆2 remains open. 

In subtask 2.1 and 2.2 the students are to give the values of 𝑢𝐶(𝑡), the voltage at the ca-
pacitor, 𝑖𝐶(𝑡), the electric current in the capacitor, and 𝑖𝐿(𝑡), the voltage at the inductor, 
before and after the opening of 𝑆1. Solution: All three values are 0 before 𝑆1 is closed, be-
cause the components of the circuit are totally discharged. After closing the switch 𝑢𝐶(𝑡) 
and 𝑖𝐿(𝑡) are still 0, as a voltage at a capacitor resp. an electric current at an inductor does 
not change discontinuously; a fact the students learn at the lecture. 𝑖𝐶(𝑡) equals 𝑈0/𝑅 using 
Ohm’s law. 

In subtask 2.3 the students are to form an ordinary differential equation for 𝑢𝐶(𝑡). Solution: 
We have to apply Kirchhoff’s voltage law on the left part of the circuit, giving 
𝑈0 = 𝑢𝐶(𝑡) + 𝑢𝑅(𝑡), and use the two component equations of the capacitor 
𝐶u̇ 𝐶(𝑡) = 𝑖𝐶(𝑡) and the resistor 𝑢𝑅(𝑡) = 𝑖𝐶(𝑡)𝑅. The combination of those equations gives 

an ordinary differential equation (ODE) of first order, which is 𝑢𝐶(𝑡) + 𝑅𝐶u̇ 𝐶(𝑡) = 𝑈0. 

This differential equation is to be solved in subtask 2.4. Solution: The solution can be done 
using on the one hand the separation of variables combined with a variation of constants. 
On the other hand the solution can be found by superposition of the solution of the homog-
enized ordinary differential equation, one particular solution of the inhomogeneous ODE and 
the using of the initial value 𝑢𝐶(0) = 0. The solution is 𝑢𝐶(𝑡) = 𝑈0(1 − 𝑒𝑡/(𝑅𝐶)). 

In subtask 2.5 the students are to sketch the voltage curve of 𝑢𝐶(𝑡) and 𝑖𝐶(𝑡). Solution: The 
graph of 𝑢𝐶(𝑡) starting at 𝑢𝐶(𝑡 = 0) = 0 approaches an asymptote at 𝑢𝐶(𝑡) = 𝑈0, because 
𝑒𝑡/(𝑅𝐶) converges to 0 for 𝑡 → ∞. We get the function for 𝑖𝐶(𝑡) by another combination of 
the formulas from 2.3 and inserting of the solution for 𝑢𝐶(𝑡) from 2.4. 
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Fig. 3: Graph of 𝒖𝑪(𝒕) and 𝒊𝑪(𝒕) containing the time constant τ 
 
Before subtask 2.6, the transient after 2.5 is defined as completed, i. e. 𝑢𝐶(𝑡) is set to be 
equal to 𝑈0. Then 𝑆1 is opened and 𝑆2 is closed. So, in the first step the students have to 
translate the components of the following circuit and its experimental set-up into equations: 

 
Fig. 4: Sketch of the right part of the oscillating circuit 
 
This second part of the exercise is analogous to the first part, i. e., the students at first have 
to find the values for 𝑢𝐶(𝑡) and 𝑖𝐶(𝑡) in the changed situation, they have to find component 
equation and apply Kirchhoff’s laws and in the last step, they have to form and solve an 
ordinary differential equation. In subtask 2.6 the students have to find the values for 𝑢𝐶(𝑡) 
and 𝑖𝐶(𝑡) before and after the switching of 𝑆2 and justify their solutions. Solution: Before 
and after the switching, we get 𝑢𝐶(𝑡) = 𝑈0 and 𝑖𝐶(𝑡) = 0, as the transient is completed and 
the capacitor is fully loaded. The values do not change discontinuously, because of the com-
ponent equations of the capacitor resp. the inductor, which gives a continuous function. 

In subtask 2.7, the forming of the differential equation, the students have to find and com-
bine four formulas. They need the component equations for the capacitor (𝐶u̇ 𝐶(𝑡) = 𝑖𝐶(𝑡)) 

and the inductor (𝐿i̇ 𝐿(𝑡) = 𝑢_𝐿(𝑡)), as the circuit contains these two components. The ap-
plication of Kirchhoff’s laws gives 𝑢𝐶(𝑡) = 𝑢𝐿(𝑡) and –𝑖𝐶(𝑡) = 𝑖𝐿(𝑡). The equations can be 
combined by insertion of the first derivative of the component equation of the capacitor, 
which leads to an ordinary differential equation of degree two: 𝐿𝐶A u̇̇ E (𝑡) + 𝑢(𝑡) = 0. 

This differential equation is to be solved in subtask 2.8. The students learn approaches to 
solve such equation in their MfES-courses. We set 𝑢𝐶(𝑡) = 𝑒𝑎𝑡, which leads to the charac-
teristic equation 𝐿𝐶𝑎2 + 1 = 0, which only has complex solutions. The MfES-courses give 
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the solving approach 𝑢𝐶(𝑡) = 𝐴 · 𝑐𝑜𝑠(𝑎𝑡) + 𝐵 · 𝑠𝑖𝑛(𝑎𝑡). Using the initial values for 𝑢𝐶(𝑡) 
from part 2.6 gives the solution: 𝑢𝐶(𝑡) = 𝑈0· 𝑐𝑜𝑠(𝑎𝑡). The result can be validated by the 
consideration of the underlying physical situation: As the value of the voltage oscillates, it 
has to be described by trigonometric functions and cannot be solved by an exponential 
function as in subtask 2.4. 

Preliminary results of analyzing students’ solutions using the SES 
This exercise shows various characteristics of the use of mathematics in engineering sub-
jects. The sketch of the circuit is a conventionalized help for the mathematization of the giv-
en situation. As stressed in Biehler et al., in press, the students do not need a real model as 
suggested in the modeling cycle, but they need methods to understand the given conven-
tionalized sketches, in this case of the oscillating circuit. In contrast to the exercise on the 
magnetic circuit, in which the students have to translate a sketch of a magnetic circuit into 
an equivalent circuit diagram, in this task the sketch in figure 1 can directly be mathema-
tized to find equations needed for the ordinary differential equation. 

In the transition from 2.1 to 2.2, i. e. the switching S1, the students argued in two different 
ways: on the one hand they used the physical arguments shown above in the SES to this 
exercise, mainly saying, that the two values (𝑢𝐶(𝑡)  and 𝑖𝐿(𝑡)) do not change discontinuous-
ly, as they learned in the GET-B-lecture or experiments in lab classes at university. 

From a mathematical point of view other students got the same results using the compo-
nent equations of the capacitor and the resistor. 𝐶u̇ 𝐶(𝑡) = 𝑖𝐶(𝑡), the component equation of 
the capacitor, shows, that the current at a capacitor is dependent on the change of voltage. 
This means, that 𝑢𝐶(𝑡)  can be computed as an integral with integrand 𝑖𝐶(𝑡)/𝐶 and as the 
integral of a continuous function is a continuous function, 𝑢𝐶(𝑡)  cannot have points of dis-
continuity. 

The application of Kirchhoff’s laws can be seen mathematically as an application of graph 
theory. Applying Kirchhoff’s voltage law, the students have to find so-called meshes, which 
are directed, valued and closed paths in graphs. In this case the values are the different 
voltages in the mesh. Kirchhoff’s current law, the second law of Kirchhoff, also has a graph 
theoretical interpretation using nodes. 

In subtask 2.3 the students have to use “equation management” (see Biehler et al., in 
press), which consists of two steps: First the students have to recall the relevant formulas 
(in this case, the component equations and the equations formed using Kirchhoff’s laws) and 
then to transform these equations to get an ordinary differential equation for 𝑢𝐶(𝑡) only 
containing 𝑢𝐶(𝑡), its derivatives and constants. This extends the concept of equation man-
agement as the equations contain functional expressions like 𝑢𝐶(𝑡) or 𝑖𝐶(𝑡), derivatives and 
the students are forced to use analytic methods like derivation and integration to combine 
equations. 

The solving of 𝑢𝐶(𝑡) + 𝑅𝐶u̇ 𝐶(𝑡) = 𝑈0 is part of the “world of mathematics” as described in 
the modeling cycle as the students do not have to take the real situation into account in this 
step. 𝑢𝐶(𝑡) can totally be solved using methods and facts learned in MfES-courses. In a first 
step, the students have to solve the homogenized ordinary differential equation, in which all 
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terms without 𝑢𝐶(𝑡) or its derivatives are set as 0. The solution of the homogenized ordi-
nary differential equations, where 𝑈0 is set as 0, must be an exponential function as the first 
derivative of 𝑢𝐶(𝑡) is a multiple of 𝑢𝐶(𝑡). A particular solution of the inhomogeneous ODE 
can be found as 𝑢𝐶(𝑡) = 𝑈0, as the derivative of a constant is 0. Both experts and students 
argued this way before solving the task. 

When the students sketch the graph of 𝑢𝐶(𝑡) in subtask 2.5, they can either use their solu-
tion of 2.4 or the physical mechanisms (see Tuminaro/Redish, 2007, resp. Bing, 2008) 
knowing that in a circuit containing a resistor, a capacitor and an ideal voltage source, the 
capacitor loads up until it reaches the value of the ideal voltage source, in this case 𝑈0. The 
students get to know this behavior in experiments done in lab courses. Therefore, the graph 
of 𝑢𝐶(𝑡) = 𝑈0(1 − 𝑒−𝑡/𝑅𝐶) approaches 𝑈0, which is an asymptote of the function 𝑢𝐶(𝑡).  

The following subtasks of the exercise are analogous to the recently presented subtasks. 
Subtask 2.6 can be solved by looking at the physical mechanisms of such a experimental 
set-up or by interpretation of the component equations of the capacitor resp. the inductor. 
In 2.7 the students have to find the required formulas by mathematization of the compo-
nents using a translation of each component to its component equation as well as applying 
Kirchhoff’s rules on meshes and nodes, i. e., they have to use graph theory again. In this 
case, the equation management also includes methods of calculus, which leads to an ordi-
nary differential equation of degree two. This can be solved using methods taught in the 
lectures on MfES, so again the “world of mathematics” is entered. The validation of the re-
sults can be done by again looking at the physical mechanisms. As the value of 𝑢𝐶(𝑡) oscil-
lates, it has to be described using combinations of trigonometric function instead of an ex-
ponential function. 

Summary and Conclusions 
The student-expert-solution (SES) is a newly invented tool to describe problem solving pro-
cesses in the field of basic engineering courses like the Fundamentals of Electrical Engineer-
ing or Fundamentals of Mechanics for mechanical engineers resp. civil engineers. It is a de-
tailed and normative solution for engineering tasks, which is complemented by theory-
based comments and remarks of experts concerning competence expectations and addi-
tional remarks on the certain type of exercise like typical mistakes, variations or reasons for 
the assigning. The SES conceptualizes the solving process in a general way and divides it 
into three phases: mathematization, math-electrotechnical working and validation. 

The phases have special characteristics in electrical engineering in the first two semesters:  

The mathematization-part typically contains the use of conventionalized sketches (like 
sketches of circuits or equivalent circuit diagrams), instead of constructing a „real model“ (as 
suggested in the modelling cycle) or drawing a figure (see Polya). In a second step, students 
have to apply certain rules for the translation of the components and the experimental set-
up in order to get a task, which is solvable using methods learned in MfES and FoEE. 

The math-electrotechnical working contains a working with quantities and using resources 
like equation management, which are not solely based on pure mathematics. The students 
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do not directly apply calculation methods learned in the MfES-courses, which would be part 
of a “world of mathematics”. 

The validation consists of an analysis of units and magnitudes or the comparison with be-
havior known from experiments in lab courses. The students do not do a validation of the 
model adequacy, but they validate the used mathematical approach. 

Outlook 
Our analyses will be extended by the analyses of the work of the students in the remaining 
exercises of the GET-B-exam, which require various kinds of mathematics. In one exercise 
on magnetic circuits, the students just need to form and combine equations to calculate 
physical quantities (see Biehler et al., in press). In another exercise they need to solve inte-
grals in one variable to calculate for example the root-mean-square-value or the rectified 
value, which can be directly translated into the calculation of certain means. In the last exer-
cise on complex alternating current, students have to calculate quantities using complex 
numbers and so-called vector diagrams. This approach uses an isomorphism between trigo-
nometric functions, which describe the values of voltages and currents in alternating cur-
rents, and the complex exponential function in the complex plane. 
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Interactive tools in lectures with many participants 30F

  
Florian Leydecker 

Leibniz Universität Hannover 
(Germany) 

On this poster I present different possibilities for the activation of students in lectures with many par-
ticipants including an instant feedback for both sides on the learning progress. I examine a paper-
based evaluation tool (EvaExam) and different online voting tools (Eduvote and arsnova.net). Ad-
vantages and disadvantages are discussed. 

Introduction 
The first year course “Mathematics for economy students 1 and 2” at Leibniz Universität 
Hannover is held in a group of approximately 600 students. It consists of a lecture (two 
hours), a central tutorial (two hours) and small tutorials (two hours) weekly. Especially in 
large groups it is difficult to get direct and immediate feedback from all students about their 
understanding and their learning progress. Usually only a small amount of students partici-
pates actively and answers my questions. A lot of students are quite passive and just listen 
and copy the contents from the board during the lecture. 

To cope with these problems I tried different evaluation and voting tools to increase the 
interactivity in my lectures and to reach the following aims: 

1. Getting direct information about the actual knowledge from most of the students and 
not only from some people who participate actively. All students should get the possi-
bility to participate anonymously. 

2. Increasing interactivity during the lesson 

3. Motivating the students to think and work on their own or together with a seatmate 

4. Increasing attention during the lesson due to small active breaks 

As in the TV show “Who wants to be a millionaire” it is possible to use so-called clickers 
which are small voting computers which have to be handed out to the audience. But due to 
the size of the group the use of those clickers was not suitable. So I started to use different 
tools presented in the next paragraphs. 

Use of the paper-based evaluation tool EvaExam 

Firstly I tried the paper-based evaluation tool EvaExam. In the beginning of the lesson a 
questionnaire was distributed among the students. During the lecture I presented six multi-
ple and single-choice questions and the students had to mark the correct answers within 
some minutes. Finally the questionnaire was collected, scanned and automatically evaluat-
ed. One week later the solutions to the exercises were discussed during the lecture. It 
turned out that the personal and time costs are too high and that the students are dissatis-
                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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fied with not getting their results immediately but one week later. Nevertheless participants 
valued the use of multiple-choice questions. 

Evaluation of the use of multiple-choice questions (n = 430): 

The exercises …                                                                                                                                             
1. … help me to check if I understood the lesson. 
2. … help Dr. Leydecker to find out where students have problems. 
3. … help Dr. Leydecker to find out which part of the lesson should be explained again or in a 

more detailed way. 
4. … help me to keep concentration during the lesson. 
5. ... loosened up the lesson. 
6. The number of exercises is appropriate. 
7. The time to solve the exercises was appropriate. 

 

 

full agreement (blue column), agreement (red column), rather no agreement (green column), no 
agreement (violet column) 

Use of online voting tools 

There are different tools to get direct feedback from the students with less effort. On the 
one hand I used the commercial tool EduVote (http://www.eduvote.de/) which has to be 
downloaded onto the smartphone or the tablet computer from the app store. On the other 
hand there is the web-browser based tool ARSnova (https://arsnova.eu/mobile/). Both pro-
grams have in common that the students can enter their choice anonymously into their 
smartphones and the lecturer gets a direct feedback which can also be projected using the 
data projector during the lecture. Using EduVote every computer can enter a result twice to 
give people without a smartphone or flatrate the possibility to enter their results into their 
seatmates’ mobile devices. 

As a test I used EduVote during a repetition lesson with different linear algebra and analysis 
questions to prepare the students for the upcoming examinations. The questions required 
active computations from the students.  

When they were shown the questions the students started to calculate on their own but 
also discussed the questions with their seatmates which is also desired. In the auditorium 

http://www.eduvote.de/
https://arsnova.eu/mobile/
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one could observe a “productive whisper”. When the voting was stopped the students be-
came quiet and waited for the results. Finally the result was explained in detail by a volun-
tary student or by myself.  

During the tests it turned out that it takes a lot of time to wait for the answers of all stu-
dents as the group’s performance and learning speed varies substantially. Therefore I usual-
ly stopped the evaluation at approximately 220 answers (more than 50% of the audience) 
to have enough time for discussing the result and for further explanations. 

Evaluation of the use of EduVote (yes/no): 

 n=220 (+/-20) 
I regard it as a problem that not all students have a 
smartphone with a flatrate  

15% 

I have got a flatrate for my device 68% 
The interactive exercises during the lecture are helpful to 
learn the material 

72% 

Interactive questions during the lessons are positive 92% 
I would prefer to have interactive questions more often 93% 

Conclusion 

The use of interactive elements has several advantages: 

• Large participation of the students, every student can participate without having the 
fear of being embarrassed. 

• The students get an immediate feedback about their knowledge and the knowledge 
of the whole group. 

• The students can communicate with each other about mathematics during the les-
son. 

• The attention during the lecture is increased. 

• The lecturer gets an immediate feedback and can eventually make her/his explana-
tions clearer. 

• But there is a big disadvantage: One question takes about five minutes of time so 
that it is not possible to use the program too often.  
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In this presentation an extended praxeological model based on concepts from the Anthropological 
Theory of Didactics (ATD) is used to analyze the relationship between different mathematical dis-
courses in advanced engineering courses, such as Signals and System Theory (SST). The model allows 
in particular to discriminate between practices and reasoning patterns established in HM-courses and 
in SST-courses. Its usefulness is exemplarily illustrated by the analysis of a sample solution to a prob-
lem from a SST-course provided by the lecturer.  

Introduction and research question 

Engineering students encounter mathematical practices and reasoning patterns both in 
courses for Higher Mathematics (HM) and in advanced engineering courses, such as Signals 
and System Theory (SST). The mathematical discourse in SST-courses includes HM-practices, 
combines HM practices with electrotechnical rationales and constructs new mathematical 
practices provided with specific electrotechnical reasoning patterns. The basic analytical 
tool, to analyze the relationship between the different mathematical discourses, is an ex-
tended praxeological model based on concepts from the Anthropological Theory of Didac-
tics. The extended praxeological model allows in particular discriminating between practices 
and reasoning patterns established in HM-courses and in SST-courses (Hochmuth & 
Schreiber, 2015a, b).  

In this presentation we focus on an SST-exercise and the sample solution given by the lec-
turer. The guiding research question is: What praxeologies arise in the sample solutions and 
how are the different mathematical concepts, established in HM- and SST-courses, related? 

The extended praxeological ATD-Model  
In ATD (Chevallard, 1992, 1999; Winsløw, Barquero, Vleeschouwer & Hardy, 2014) the clas-
sic praxeological model is the so called “4𝑇-model [𝑇, 𝜏, 𝜃, 𝛩]”, where 𝑇 is the type of task, 
𝜏 are the appropriate techniques to solve the task, 𝜃 are technologies explaining and justify-
ing the techniques and 𝛩 denotes the underlying theories justifying the technologies. This 
model is applicable to every human activity. 

In order to analyze the praxeological structure of higher engineering courses and especially 
focusing on the complex mathematical discourse of SST-courses, we extend the classical 
4𝑇-model in the following way 
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Techniques and technologies are differentiated in two branches: To discriminate between 
the two branches we focus on technological aspects: If a technique is motivated, explained 

or justified by electrotechnical or physical reasoning, it is labeled as a SST-technique ( *
SSTτ ). 

The corresponding technologies are denoted by SST-technologies ( *
SSTθ ). Those techniques 

and technologies are in a sense related to real world phenomena. If techniques and technol-
ogies are related to mathematical concepts established in the HM-courses (e.g. “because the 
function is continuous”), they are seen as HM-techniques ( HMτ ) and -technologies ( HMθ ).  

The * denotes the result of a didactic transposition process (Chevallard, 1991; Castela, 
2015). Although HM-courses are also results of didactic transposition processes, we omitted 
the * in the HM-branch, because the didactical transposition of HM-courses takes place in 
other institutions than the didactic transposition of SST-courses. In this way, we indicate our 
focus on lecture notes and course materials from higher engineering courses. 

A praxeological analysis of a sample solution to a SST-problem 

This section shows the application of the extended praxeological model to an exercise from 
a problem set of a SST-course32F

1. The exercise is given as follows:  

Assuming 0 < 𝐼 < 1, thus 𝐴(𝑡) > 0, (the envelope of an AM-signal is always positive), 
show that the above-mentioned envelope detector actually delivers a signal proportional to 
𝐴(𝑡). 

This exercise is also part of the lecture notes and is assigned directly after the introduction 
of the envelope detector as part of the section on amplitude modulation (AM). The sample 
solution given by the lecturer is shown in the appendix. 

In the following, we illustrate the solution step by step: 

• Application of the envelope detector 

• Application of the envelope detector requires rectification and application of the low 
pass filter 

• Using absolute value to rectify the signal 

• Expanding the rectified signal into a Fourier series to decompose the signal into a 
constant component and oscillating components 

• Applying the low pass filter to get rid of the oscillating components (carrier signal) 

• Reading off the proportionality 

                                                 
1 The authors are grateful to Prof. Dahlhaus (University of Kassel) for placing the exercise and sample solution at 
our disposal. 



khdm-Report, Nr. 05, 2017 

174 

 

Praxeological analysis of the sample solution 
The solution steps are now considered under ATD-aspects and assigned to the different 
branches of the extended praxeological model: The task *T  is to show that the envelope 
detector delivers a signal proportional to the amplitude 𝐴(𝑡) of the modulating signal. To 
solve the task, it is necessary to apply the envelope detector ( *

SSTτ ) and then to read off the 

proportionality ( HMτ ). Elements of technology are, that the modulation index m  fulfills the 

necessary condition for the application of the envelope detector ( *
SSTθ ) and, that electro-

technical quantities are construable as variables in the context of linear functions ( HMθ ). The 

application of the envelope detector requires first to rectify the signal ( *
SSTτ ) and second to 

apply the low pass filter ( *
SSTτ ). Both techniques are essential for the reconstruction of the 

modulating signal ( *
SSTθ ). The low pass filter suppresses the frequencies of the carrier signal 

( *
SSTθ ). The rectification of the signal is done by taking the absolute value ( *

SSTτ ). This tech-

nique is classified as an SST-technique, because of taking the absolute value of a signal is 
the mathematization of rectification ( *

SSTθ ). Therefore, taking the absolute value is motivat-

ed by electrotechnical reasoning. For applying the low pass filter the constant component of 
the signal has to be separated from the oscillating components ( *

SSTτ ) and then, the oscillat-

ing component is omitted ( *
SSTτ ). To drop the oscillating components of the signal is a math-

ematical model for the action of a low pass filter ( *
SSTθ ). The decomposition of the signal can 

be done via Fourier series expansion ( HMτ ), because the signal is described as a continuous 

and periodic function ( HMθ ). The Fourier series expansion demands ambitious mathematical 

techniques ( HMτ ) and technologies ( HMθ ), for example manipulating infinite sums due to 

symmetry arguments. After the full Fourier series expansion of the signal is done, the first 
three summands are written down and finally, the oscillating summands are omitted due to 
application of the low pass filter. The remaining constant component of the signal is propor-
tional to the amplitude of the modulating signal. 

A graphical visualization of this analysis is shown in Figure . The graph shows both the struc-
ture of the sample solution and the result of the praxeological analysis. It is constructed as 
follows: if techniques require complex activities they become subtasks on a lower level. In 
the next step the praxeological model is applied to each vertex. To highlight the two 
branches we used different colors. The HM branch is colored in dark blue, the SST-branch in 
light blue. 

 

 



khdm-Report, Nr. 05, 2017 

175 

 

 
Figure 1: Graphical visualization of the analysis 

Discussion and Outlook 
The analysis in the preceding section shows, that the extended praxeological model is in 
principle capable of discriminating different discourses. It is noticeable, that the full Fourier 
series expansion of the signal is not necessary to solve the task. It would be sufficient to 
calculate the first Fourier coefficient, because the subsequent application of the low pass 
filter would suppress further summands of the series. In this way, by keeping electrotech-
nical aspects of the problem in mind, the solution would be much shorter and much more 
effective. For example, the ambitious HM-techniques, involving manipulation of infinite 
sums, wouldn’t be necessary any more. Calculating the first Fourier coefficient involves only 
simple integral techniques.  

A first hypothesis resulting from the analysis is that by keeping electrotechnical reasoning 
patterns and justifications in mind, at least some exercises could be solved more effectively. 
So, being able to recognize the different mathematical discourses in SST-courses would en-
able students to determine effective solution steps. 
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Appendix 
In amplitude modulation (AM) the amplitude of a high frequency signal (“carrier signal”) is modu-
lated to carry a low frequency signal (“modulating signal”) for transmission. An AM-signal can be 
represented as: 
 

𝑥(𝑡) = 𝐴(𝑡) cos(2 𝜋 𝑓0𝑡) = 𝐴[1 + 𝐼𝑠1(𝑡)]cos (2 𝜋 𝑓0𝑡) 
 
with modulating signal s1(t) = cos(Ω t),  Ω ≪ 2πf0 and modulation index 𝐼. Under certain conditions 
(AM-signal with 0 < 𝐼 < 1), an envelope detector, a simple circuit consisting of a rectifier and a low 
pass filter, can be used to reconstruct the modulating signal at the receiver. 
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While problem solving has been researched in depth, little is known about how engineering students’ 
develop domain-specific problem solving competences during their qualification. In our study, we 
opted for investigating the interplay between mathematics and physics in terms of an outer and inner 
structure of students’ problem solving behavior. In our study, 21 engineering students at the begin-
ning of their studies participated. Data was collected by paper-and-pencil tests focusing on mathe-
matical and physical content knowledge as well as by videotaping group settings, immersing students 
in problem solving. We found different performance levels that can be characterized by students’ 
problem solving skills and how their mathematical and physical knowledge interact. 

Introduction 
Mathematics is an important subject in engineering education. The first terms of study are 
characterized by a high usage of mathematics, be it in the mathematics lectures themselves, 
in physics or further engineering lectures. Besides continuously improving their declarative 
and procedural knowledge in the respective fields, it is important for students to develop 
their problem solving competencies as this is one of eight competencies that engineering 
students need to learn according to the SEFI (2013) framework. The formation of these 
competencies is, however, often hampered by an asynchronicity of mathematical and engi-
neering education. Overarching aim of the project KoM@ING is to measure mathematical 
competencies of engineering students and the relations between the different lectures by 
combining a quantitative and a qualitative approach. In the quantitative project (project 
partners from IPN Kiel and University Stuttgart), IRT-based measures for higher mathematics 
and technical mechanics are developed to capture students’ development in their first year 
of study. Thus, individual competencies are measured reliably and validly, but no insight is 
provided into the concrete problem solving processes of students (Neumann, et al. 2015; 
Behrendt, et al. 2015). This presentation elaborates on the work of the qualitative project 
that scrutinizes these processes. That is, item difficulties as revealed by the IRT-measures 
are discussed in view of the problem solving phases involved, the employment of different 
heuristics, and the epistemic games that mediate between the world of physics and mathe-
matics.  

Theoretical framework  
In recent years, researchers have developed many different approaches to conceptualize 
problem solving in the domains of mathematics and physics (cf. Schoenfeld, 1985; Heinze, 
1997; Rott, 2013; Redish, 2005). These different perspectives on problem solving can be 
classified by distinguishing an outer structure in terms of timing and organizing cognitive 
processes and an inner structure considering heuristics and beliefs (cf. Philipp, 2012). In this 
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paper, we will explore the outer structure of students’ problem solving by drawing on Pol-
ya’s (1945) phase model of problem solving processes and by considering Epistemic Games 
(Tuminaro & Redish, 2007) when it comes to problem solving in physics contexts. In addi-
tion, we focus on the inner structure of students’ problem solving by referring to heuristic 
tools, heuristics strategies and heuristics principles (cf. Bruder & Collet, 2011). 

Modeling the process of (students’) problem solving from a more general perspective, the 
seminal work by Polya (1945) provides a promising approach by distinguishing four phases: 
understanding the problem; devising a plan, carrying out the plan, looking back. Polya’s in-
fluential model has been the basis for much of the research that has been conducted in the 
field of mathematical problem solving processes. Schoenfeld (1985) for example extended 
Polya’s model by an exploration phase, connecting the initial phase of understanding a prob-
lem with devising a plan. Likewise, Chinnappan and Lawson (1996) stress the importance of 
the first two phases: “[…] the planning process forced the solver to make optimum use of 
information that was identified and information that was generated” (p. 13).  

Concerning the interplay between mathematics and physics, Redish (2005) stresses that in 
physical contexts mathematics is used to “describe, learn about, and understand physical 
systems” (p. 6). Hence, to solve problems in physics in general one conducts the four steps 
of mapping, processing, interpreting and evaluating that moderate between the two differ-
ent worlds of mathematics and physics (figure 1):  
 

 
Figure 1: A model for the use of mathematics in physics (Redish 2005). 
 
In order to analyze students’ problem solving in physics in detail, Tuminaro and Redish 
(2007) draw on the above-mentioned ideas and suggest a framework called Epistemic 
Games which describes the outer structure of mathematical problem solving processes in 
physics contexts: “An epistemic game has a goal, moves (allowed activities), and an end 
state (a way of knowing when the game has been won)” (Redish 2005, p. 8). Hence, an 
Epistemic Game can be described by three components: entry, ending conditions and al-
lowed moves. The entry and ending conditions are determined by students’ expectations 
about and experience with physical problem solving. That is, as students are able to catego-
rize physical problems very quickly, this influences their choice of playing a specific game. 
The allowed moves are the “steps and procedures that occur in the game” (Tuminaro and 
Redish 2007, p. 12). In particular the authors identify six different epistemic games involved 
in students’ problem solving processes: Mapping Meaning to Mathematics, Mapping Math-
ematics to Meaning, Pictorial Analysis, Physical Mechanism Game, Recursive Plug-and-Chug 
and Transliteration to Mathematics. 
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In addition to the outer structure of the solution process, the methods, heuristics and strate-
gies used during the problem solving process are crucial for a successful performance as 
well. Chinnappan and Lawson (1996) describe the cognitive actions involved in the problem 
solving process in detail by distinguishing task-specific actions like “the ‘invert and multiply’ 
procedure in division of fractions problem” and domain-specific and domain-related actions 
like “draw a diagram” (p. 2). Bruder and Collet (2011) pursue this approach, too, and explain 
problem solving by means of heuristic tools, heuristic strategies and heuristic principles. 

Based on the theoretical framework described above in our study, we explore engineering 
students problem solving behavior in the first term of their studies and pay attention to the 
inner and out structure of the processes involved. In particular we pursue the following re-
search questions:  

• What general differences can be detected within different performance groups in 
terms of the outer structure and inner structure of the problem solving processes at 
the beginning of the first semester?  

• What differences in terms of the inner and outer structure of problem solving can be 
detected within a group of low performers and a group of high performers after the 
first term of engineering studies? 

Methodology 
In our study N = 21 students from one university in Germany in their first year of engineer-
ing studies participated. Among them were 6 female and 15 male students covering an age 
range from 18 to 21 (Mage = 19.29 years; SDage = 0.96 years). While all participants attended 
university courses considering fundamental knowledge in mathematics and physics, part of 
the students also attend courses in mechanical engineering (n = 15) and electrical engineer-
ing (n = 3); the remaining students indicated another or no discipline of their studies. 

Engineering students’ problem solving competence was measured two times in the course 
of the first term of their studies (cf. table 1). First, participants in our study worked alone on 
IRT-scaled tests for mathematical content knowledge (MathCK) and physical content 
knowledge (PhyCK), delivered from the quantitative sub-project of KoM@ING. In addition, 
students filled in the Force Concept Inventory which is an instrument for capturing physics-
related beliefs about the force concept. Second, students worked in groups (NGroup = 9) of 
two or three on a set of 16 items of the MathCK-test and on a set of 13 items of the PhyCK-
test with varying difficulty. The group work setting was chosen to initiate discussion among 
students and thus to allow for displaying their thinking processes (cf. Thinking Aloud-
method, e.g. Ericsson and Simon 1984). At the second point of measurement, the students 
worked within the same groups. 

Results and discussion 
Based on students’ content knowledge in mathematics and physics, a classification of three 
different groups could be applied to our initial nine groups: (1) high performers, (2) medium 
performers, and (3) low performers. Taken together, our findings show that students with a 
different level of professional knowledge in mathematics and physics use different situa-
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tion-specific skills. In terms of the outer structure of the problem solving process, perceiving 
and interpreting a given problem is highly influenced by students’ dispositions. The low per-
formers are not able to take advantage of the mathematics and physics lectures of the first 
term as do the medium and high performers. Although they possess more mathematical and 
physical resources at the end of the first term, they are still not able to apply their 
knowledge and to connect different facets to solve the various problems. High performers 
are successful because they consider more consciously than the other students all problem 
solving phases in more complex tasks. Their higher content knowledge in mathematics and 
physics enables them to apply mathematical procedures and physical laws for tasks that 
require that. These procedures and laws are not spontaneously available for the medium 
and low performers. In particular, the situation-specific skills reveal the interplay of mathe-
matics and physics content knowledge as decisive. Remarkably, we found that the use of 
“mathematics-dominated” Epistemic Games like Mapping Meaning to Mathematics could 
only be observed in the solution processes of the high performers and the medium per-
formers. In the group of low performers no group used these kinds of Epistemic Games, 
even though it would have been convenient to do so. When taking a closer look at the game 
Mapping Meaning to Mathematics in comparison to the game Mapping Mathematics to 
Meaning, our findings generically show that the group of high performers and the group of 
medium performers approached this specific Epistemic Game differently: While the group of 
high performers more frequently engaged in the game Mapping Meaning to Mathematics, 
the group of medium performers more often used Mapping Mathematics to Meaning, im-
plementing the contrary thinking process. The different use of Epistemic Games point to 
advantages that high performing groups have due to elaborated content knowledge, ena-
bling them to approach tasks on a meta-level.  
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At German universities there are two different approaches to mathematics education of students in 
business administration and economics (BE) study programmes: on the one hand, traditionally, math-
ematics modules are offered by mathematical departments (external mathematics education (exME); 
mathematics as a service subject). On the other hand, in many cases, the mathematics education of 
BE students is organized by BE departments (internal mathematics education (inME)). Thus, interest-
ing questions arise: How do the approaches differ structurally? Which approach is better? What condi-
tions are crucial? Which approach is more appropriate to address current and future challenges? This 
article attempts to give first answers for German universities based on data from 66 mathematics 
modules. 

Introduction 
Today, mathematics plays an increasing role in almost all scientific disciplines and, in particu-
lar, to business administration and economics (BE). Two developments have contributed to 
this fact. First, the application of mathematical techniques in economic theory has increased 
significantly since the 1940s. Secondly, empirical studies and simulation studies have gained 
importance in recent decades due to the availability of technical resources (computer hard-
ware and software) and data. A look at textbooks on mathematics for economics, micro- 
and macro-economics and econometrics shows the variety of mathematical techniques ap-
plied in BE study programmes. Against this background, it is no surprise that mathematics 
modules are anchored in all BE study programmes, where the curriculum exceeds the level 
of secondary-school mathematics. However, the corresponding modules differ considerably 
in terms of scope and content. Obviously, there are also large differences in terms of the 
professional and academic background of the mathematics educators. 

In general, two different approaches are implemented in BE study programmes with respect 
to responsibility for mathematics education. One approach is where economics departments 
provide the mathematics modules using mathematics educators from the BE departments 
(internal mathematics education (inME)). In the other approach, the mathematics education 
is provided by mathematical departments (external mathematics education (exME)). 

Against this background, important questions arise:  

• Why have these two approaches emerged? In some disciplines, exME does not pre-
vail (e.g., psychology), in other disciplines, imME does not exist. 

• What are the advantages and disadvantages of inME and exME in the field of BE? 

• What is the more appropriate concept regarding current and future challenges? 
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In this paper only some of these questions can be answered. The following empirical analy-
sis is based on structural data from 66 mathematic modules integrated in 98 BE study pro-
grammes (business administration (BA), economics (ECO), and business administration and 
economics (BA&ECO)) at German public universities. The focus is on the structural differ-
ences between inME and exME. Moreover, in an eclectic manner, current and future chal-
lenges are specified that are likely to affect the adequacy of inME and exME. 

Data 
Public German universities were considered if they offered one of the three study pro-
grammes: BA, ECO or BA&ECO. Thus, 62 universities were considered, in which 66 modules 
were offered for a total of 89 study programmes. The data have been taken from module 
descriptions and examination regulations. In addition, the web pages of the relevant de-
partments, institutions and faculty members were used for the database. The data were 
collected for the academic year 2014/15. 

Structures: An Overview 
The 66 modules were offered for a total of 89 study programmes (BA n = 35; ECO n = 28; 
BA&ECO n = 26). With four exceptions, one module was offered at each university, even if 
several study programmes were offered. In about half the cases (n = 32), the module was 
divided into two sub-modules. Thus, a total of 34+2×32=98 sub-modules were considered. 
Note: If a module was not divided then the module is also called a sub-module by definition.  

When a module was divided, the two sub-modules were usually offered by the same math-
ematics educator. In nearly all cases, the module was scheduled for the first semester or the 
first and second semester if the module was divided. On average, 8.5 ECTS credit points 
were awarded for mathematics. The average number of contact hours was 6.6 per week. 
Subjects of mathematics modules were secondary-school mathematics as well as basic top-
ics of analysis and linear algebra. Usually, financial mathematics was integrated. In some 
cases, a separate module on financial mathematics was offered. However, these separate 
courses are not part of this analysis. 

Nearly half of the modules (n = 30; q = 45%) were offered by mathematical departments 
(exME), slightly more than half (n = 35; q = 53%) by BE departments (inME). In one case, a 
mixed department (BE and Mathematics) was responsible for the mathematics module. 

Of the 98 sub-modules, 51 were offered by mathematics educators who had attained the 
academic title of professor. In five cases, mathematics educators did not have a doctoral 
title (e.g., Dr, PhD). However, the academic title of a mathematics educator alone does not 
allow conclusions to be drawn about the professional status of the mathematics educators. 
Since information regarding the professional background of the mathematics educators is 
often not publicly available or classification problems are present, no further information 
exists. For that reason, information about the share of mathematics educators who held a 
permanent position was not available using the data sources mentioned above. 

Moreover, the collection of data on academic careers is difficult because CVs are often not 
publicly available. In 53 of the 98 cases it could not be determined which first academic de-
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gree (e.g., master’s degree) the mathematics educators had obtained. In 29 of the remain-
ing 45 cases (q = 64%) the mathematics educator held a degree in mathematics. Five math-
ematics educators (q = 11%) held a degree in economics. Academic degrees in physics  
(n = 3), mathematical economics (n = 3), information management (n = 2) and statistics  
(n = 1) played a minor role. Note: each mathematics educator was counted twice if she/he 
offered both sub-modules of a module. 

Of the 98 mathematics educators of sub-modules, 93 held a second academic degree (PhD 
or a similar). In 48 cases, no information existed about the doctoral thesis field. In 23 of the 
remaining 45 cases the mathematics educators held a PhD or a similar degree in mathemat-
ics (q = 51%) and 12 in economics (q = 27%). In up to three cases the mathematics educa-
tors had gained a PhD in business administration (n = 3), geology (n = 1), engineering  
(n = 1), physics (n = 2), statistics (n = 2) or information management (n = 1). 

At a third academic level (second doctoral degree; e.g., habilitation and comparable qualifi-
cations), data availability was even more limited. It was assumed that 54 of the 98 mathe-
matics educators offering a sub-module had achieved a second doctoral degree. In 22 cases, 
no further information was found. For the remaining 32 cases, a second doctoral degree in 
mathematics was assumed that 17 cases (q = 53%). A second doctoral degree in economics 
was found in nine cases (q = 28%). In the remaining cases a second doctoral degree was 
held in business administration (n = 3), geology (n = 1) or statistics (n = 2). 

Eighteen of the 98 sub-modules (q = 18%) were offered by female mathematics educators. 
All five mathematics educators without a doctoral degree were female. Seven of the 42 
mathematics educators with a PhD but no academic title of professor, were female  
(q = 17%). In addition, only six of the 45 (q = 11%) female mathematics educators held an 
academic title of professor. 

Structures: Internal vs. External Mathematics Education 
Disaggregated results are presented here. Two groups of modules can be distinguished: 
those offered by mathematics departments (exME, n = 30) and those by economics de-
partments (inME, n = 35). One module was offered by a mixed faculty. Table 1 on the next 
page shows some initial results. 

Major differences were found between external and internal education. Briefly summarized, 
for external education (compared to internal education) the extent of education was higher, 
mathematics educators had a better professional position, lectures had a stronger academic 
background in mathematics, curricula were more homogeneous and textbook selection was 
broader. 

Valuation of Structures 
The structures of mathematics education are very heterogeneous. The reasons are manifold. 
They cannot and should not be discussed at this point. Only one remark: assuming that ex-
isting structures are a result of strategic decisions and taking traditional considerations of 
the theory of strategic management into account, two perspectives exist: One, following the 
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resource-based approach, the resources available to universities are essential; second, the 
Industrial Organization approach highlights the importance of ‘market conditions’. 

The structures of mathematics education in economics affect (indirectly) the success of stu-
dents in BE study programmes. Studies that examine this relationship theoretically or empir-
ically in detail do not exist. For that reason, further research is necessary to evaluate both 
models and provide advice to decision makers at universities. However, an evaluation of 
these models will be very demanding. Two aspects should be noted. First, the choice of a 
success variable is disputed. Second, a model of mathematics education that is adequate 
today may be inadequate in future because there are many current and future challenges 
that may change the models’ rating.  

Table 1: Structures in exME and inME 
 

Variable Units exME inME 

Credit points (average) Modules 9.1 7.7 

Contact hours (average) Modules 7.2 5.8 

Share of divided modules Modules .60 .37 

Share of modules offered by different lecturers  Divided Modules .06 .31 

Share of lecturers with academic title of professor Sub-modules .79 .43 

Share of lecturers with first academic degree 
(e.g., master’s) in: 
… mathematics 
… statistics 
… mathematics in economics 
… economics 
… business administration 
… information management 
… physics 

Sub-modules  
 

.77 

.07 

.07 
- 
- 
- 

.07 

 
 

.50 
- 
- 

.22 

.11 

.06 

.11 

Share of lecturers with second academic degree 
(e.g., PhD) in: 
… mathematics 
… statistics 
… mathematics in economics 
… economics 
… business administration 
… information management 
… physics 
… geology 
… engineering 

Sub-modules  
 

.71 

.14 
- 
- 
- 
- 
- 

.07 

.07 

 
 

.18 
- 
- 

.53 

.12 

.06 

.12 
- 
- 

Curricula:  
… ‘degree of heterogeneity’ 
… further modules with mathematical content  

Modules  
(Low) 
(No) 

 
(High) 
(Yes) 

Textbooks: 
… ‘degree of heterogeneity’ 
… use of Sydsaeter et al.  

Modules  
(High) 
(Low) 

 
(Low/High) 

(High) 
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Challenges 
In this section, some hypotheses on current and future developments are mentioned in an 
eclectic form. The question is which of the two models of mathematics education will re-
solve the challenges in a satisfactory manner.  

• Mathematics in economics increasingly loses the character of a preparatory disci-
pline. 

• Due to the implementation of the Bologna decisions, a process of modularization has 
occurred. As a rule, modules of a study programme have become self-contained and 
non-consecutive.  

• In almost all areas of economics, a process of mathematization occurs. In BE this is 
true for research as well as professional practice. 

• The importance of statistical and numerical methods and, hence, the use of appropri-
ate software (e.g., R, Stata, Mathematica) increases. 

• In parts of economics, the current use of mathematics is being critically discussed. 
Representatives of ‘plural economics’ are demanding the use of more appropriate 
mathematical methods. 

• The heterogeneity of students increases with regard to numerous factors. This ap-
plies to socio-economic, biographical, educational, psychological and motivational 
factors. 

• Education policy decisions in secondary school education have led to changes in 
mathematical skills in Germany (for example, the transition from G9 to G8 and the 
introduction of new education standards).  

• After education policy decisions in higher education in several German states, a study 
programme at a university can be taken without a general qualification for university 
entrance (in Germany: Abitur). Usually, these students have below-average mathe-
matics skills that make additional training in basic mathematics necessary. 

• In some German states, premiums for universities are discussed. For each successful 
study completion, the university should receive a premium. This could mean the im-
portance of mathematics modules will be reduced because mathematics is consid-
ered too demanding. 

• The scientific competition of economics departments increases in research. There is 
evidence that mathematically oriented departments have an advantage. This implies 
a higher level of mathematics in BE study programmes. 

• The competition of economics departments to students is also increasing. Depending 
on the strategic decisions, the importance of mathematics in economic study pro-
grammes may increase or decrease. 

These developments concern mathematics in BE in general. However, it remains to be ana-
lyzed which model of mathematics education may withstand the challenges. 

http://dict.leo.org/ende/index_de.html#/search=general&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=qualification&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=for&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=university&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
http://dict.leo.org/ende/index_de.html#/search=entrance&searchLoc=0&resultOrder=basic&multiwordShowSingle=on
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Conclusion 
This paper has shown that the structures of mathematics education in BE study programmes 
at German universities differ significantly. In particular, differences between exME and inME 
are evident. Furthermore, current and future challenges were outlined. Until now it was not 
clear under which conditions exME (with respect to inME) was more appropriate. This should 
be clarified in further research. Clearly, the result will depend on the choice of educational 
and economic target variables and the relevant educational and economic constraints. 
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Application-oriented tasks for first-year engineering students 35F

  
Paul Wolf, Gudrun Oevel 

Universität Paderborn 
(Germany) 

Our poster will present a concept for the construction of special application-oriented tasks for first-
year engineering students (especially for mechanical engineering) and a study about these tasks. The 
main goals of these tasks are to create a connection between mathematics and physics / engineering 
and the students’ interests in order to increase motivation, understanding of mathematical contents 
and the relevance-rating of mathematics for engineers. The study indicates the students’ attitudes 
about our tasks and gives hints to optimize the concept and the tasks.  

About the project 
The project team “Ing-Math” of the competence center of university didactic of mathemat-
ics (khdm) is currently realizing three projects. The project we would like to present is called 
“Mathematik für Maschinenbauer: Integration des Modellierens in ingenieurwissenschaft-
lichen Zusammenhängen” (German for “Mathematics for mechanical engineers: Integration 
of modelling in engineering teaching”). The project group works under the direction of Rolf 
Biehler and Gudrun Oevel, see also OEVEL et al. (2014). 

In our project we develop and implement interventions for the lectures of mathematics for 
mechanical engineering and analyze them in regard to their acceptance and effects. The 
planned interventions are especially: 

• Emphasizing the application area of mathematics in engineering: Preparing the stu-
dents for simulating, modelling and interpreting of problems and their solutions 

• Visualization and integration of mathematics through engineering applications 

• Reorganization of the learning content in time and order, so the required mathemat-
ics are taught parallel to the engineering lectures  

• Reorganization of the learning content regarding their relevance 

• Carrying out empirical studies about the effects of our interventions and about the 
attitudes and competencies of the students 

Our poster will mainly present our work on the first, the second and the last point. The de-
veloped tasks and their conception as well as their enhancement, evaluation and the back-
ground theories will be a main part of the dissertation of the first author. 

Our conception for developing application-oriented tasks 

Many first-year mechanical engineering students don’t know and cannot see the connec-
tions between mathematics and their field of study. In many cases demotivation and disin-

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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terest on mathematics are consequences – although math is an important subject for engi-
neers. 

The goal of the project is to develop and evaluate tasks which fit in usual mathematic lec-
tures for mechanical engineering regarding to the topics and the requirements. But what 
does “fit in” mean in this case? We will present the criteria, which he have developed. These 
criteria are on the one hand anchored in the discussion of the mathematic didactic about 
classification of application-oriented tasks (MAASS, 2010) and on the other hand they con-
sider the specific conditions of mathematic lectures for engineers. With regard to the work-
load the tasks should be equivalent to one out of usually four exercises in a week. Thereby 
we distinguish our project from other ones which are more time-consuming and more com-
plex (like ROOCH et al. (2014) or ALPERS (2001)). In comparison our idea is less extensive, 
but less expensive and can be implemented in nearly every usual mathematic lecture for 
engineers. 

The development of the tasks is based on the conception which is currently developed by 
the first named author in the context of his dissertation project.  

Figure 1 shows the most important aspects of our conception “good application-oriented 
tasks in mathematics for mechanical engineers” in short. At the poster-session we will glad-
ly explain every aspect, the terms as well as their relevance and practicability. 
 

 

Fig. 1: The conception in short 
 
Most of our tasks, like “Half pipe”, “Laser beam” and “Stressing a structural element”, are 
published in Wolf & Biehler (2014, German). Some tasks are already translated in English 
and can be enquired via wolf@khdm.de. 

Testing and evaluating the tasks 

In 2013, in order to evaluate the tasks, we observed and filmed some students while they 
were solving one of our tasks. The data has been analyzed within the scope of a master 
thesis and the results indicated that the development of such application-oriented tasks is 
promising. In 2013/14 we carried out a comparative study between mechanical engineering 
(treatment group) and economical engineering (control group) students who were visiting 
the same mathematical lecture. While the treatment group additionally worked on our appli-
cation-oriented tasks every two weeks, the control group just solved pure mathematical 

mailto:wolf@khdm.de
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tasks as usual. Through surveys at the beginning, during and the end of the semester we got 
a comprehensive view of the students' attitudes towards our tasks and about the effects of 
the intervention. In 2014/15 we carried out a similar study, but this time over two semes-
ters and the treatment group was randomly chosen (no distinction between the different 
fields of study). In both studies we were able to prove that our tasks have had positive ef-
fects on the students' appreciation for the relevance of the mathematical topics. Especially 
the lack of such tasks causes a decrease in motivation. Round about 62% of the control 
group and only 20% of the treatment group would like to switch to the other group. Fur-
thermore our surveys showed that over 80% of the treatment group would prefer an appli-
cation-oriented tasks to a pure mathematical task with the same topic. 

In the course of our studies we have seen that the students want a closer combination of 
the mathematical and the technical / physical lectures of their field of study. Due to that fact 
we initialized a cooperation between the lecturers, which lead to regular meetings, new 
research possibilities and a matching of the content of teaching.  
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University students’ eye movements on text and picture when 
reading mathematical proofs 36F

  
Jana T. Beitlich, Kristina Reiss 

Technische Universität München 
(Germany) 

Theories of multimedia learning suggest that the combination of text and picture can support learn-
ing. It is still an open question whether this combination is also beneficial for learning mathematics 
and particularly for understanding mathematical proofs. It is also unclear whether learners actually 
look at pictures when reading proofs. We analyzed eye movements of 19 university students with 
low and high prior knowledge while they were reading three proofs. We found that the students 
looked at the pictures, but also that they fixated longer on the text than the pictures, and that they 
alternated between text and pictures. We also found a weak tendency that less experienced students 
focused longer on the pictures and switched back to the pictures more often than more experienced 
students. 

Theoretical Background and Research Question 
The use of pictures that accompany text is common practice in university teaching. Cognitive 
psychological theories on multimedia learning (e.g. Mayer, 2001; Schnotz & Bannert, 2003) 
give explanations why it can be reasonable to combine text and pictures to facilitate learn-
ing. In their integrated model of text and picture comprehension, Schnotz and Bannert 
(2003) differentiate between descriptive (e.g. text, formulas, mathematical expressions) 
and depictive (e.g. drawings, diagrams, maps) representations. When reading a text, readers 
first create an internal representation of the text surface (descriptive), then a propositional 
representation of the text (descriptive), and finally a mental model of what they have read 
(depictive). To comprehend pictures, readers first create a visual image of the picture (de-
pictive), then a mental model (depictive), and finally a propositional representation of what 
they have seen (descriptive). That means that external descriptive representations as well 
as external depictive representations lead to both internal descriptive and internal depictive 
representations (Schnotz & Bannert, 2003). Therefore it seems to be reasonable to integrate 
information from descriptive and depictive representations in teaching materials to give the 
readers the opportunity to build up a rich mental model respectively propositional represen-
tation of the content. Accordingly, for the reader, alternating between text and pictures 
seems to be a good reading strategy to make adequate mental representations of the pre-
sented materials. 

In fact, the combination of text and pictures seems to be effective for the learning process, 
especially for learners with low prior knowledge (Schnotz & Bannert, 2003). Although a 
large number of studies have focused on multimedia learning, there is only little empirical 
research on multimedia learning in the domain of mathematics (Atkinson, 2005). In a recent 
study by Beitlich, Obersteiner, and Reiss (2015) the authors analyzed how secondary school 
students make use of different representation formats (text, mathematical symbols, and 
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pictures) in heuristic worked examples. The authors found that the students spent most of 
their reading time on looking at the pictures, followed by symbols, and text. They also found 
that the students alternated between different representation formats relatively often 
which might be an indicator that they were trying to integrate information from different 
representation formats. 

At university, mathematics is typically taught in a definition – theorem – proof structure. That 
means university students’ central activity is reading and constructing mathematical proofs 
(Mejia-Ramos & Inglis, 2009). In the last years, an increasing interest in studying the reading 
of mathematical proofs evolved. In a study by Inglis and Alcock (2012) undergraduates and 
mathematicians had to read proofs in order to validate them while their eye movements 
were recorded. Besides other results, the authors found that the students spent significantly 
more time on the formula parts of the proofs than the mathematicians. Furthermore the 
mathematicians shifted their attention back and forth between consecutive lines of the 
proof significantly more often than the students. 

Even though mathematical proofs play a very important role in their studies, many students 
struggle with mathematical proofs. One way to support students’ learning is combining tex-
tually presented mathematical proofs with pictures. Even if the combination of text and pic-
tures within proofs is often found in textbooks and lectures (Stylianou, Blanton, & Rotou, 
2015), it is still an open question whether such an approach can in fact enhance students’ 
proof comprehension. More specifically, it is to date unclear whether students actually make 
use of such pictures at all when reading a mathematical proof, and, if so, whether the bene-
ficial effects of multimedia learning found in other disciplines also hold for learning of math-
ematics. There are two reasons why studying both questions is particularly relevant in the 
domain of mathematics. First, it is not clear that learners take into account pictures at all 
when the textually presented mathematical problem contains all relevant information. For 
example, Dewolf, Van Dooren, Hermens, and Verschaffel (2015) found that university stu-
dents scarcely looked at pictures presented together with word problems. Second, mathe-
matical objects are abstract and although using visual representations of these objects might 
help understanding relationships between them, arguments based on visualizations are not 
accepted in a mathematical proof. 

A suitable method to address the above formulated questions is eye tracking. More and 
more studies on multimedia learning have successfully used this method, because it allows 
conclusions about which pieces of information people take into account during the learning 
process (Van Gog & Scheiter, 2010). Eye movements consist mostly of fixations and sac-
cades. During a fixation, which typically lasts for about 200-300 ms, information is per-
ceived. A saccade is the very fast eye movement between two fixations, during which no 
information is perceived. There are two assumptions underlying the idea of analyzing eye 
movements: The immediacy assumption states that processing of information takes place 
immediately, the eye-mind assumption states that people mainly process the information 
they are looking at (Just & Carpenter, 1980). Although this strong version of the eye-mind 
assumption may not hold true in general, it seems to be reasonable to rely on this assump-
tion when people are working on cognitively demanding mathematical problems that con-
tain information in textual and pictorial format. 



khdm-Report, Nr. 05, 2017 

196 

 

The study described in the following is an exploratory pilot study to address the question 
whether university students look at a picture presented with the text of a mathematical 
proof when they are asked to read the proof. We included students with high and low 
mathematical skills to also investigate whether the looking on text and picture depends on 
prior knowledge. 

Method 
The participants in the study were 19 university students (six female), for whom mathemat-
ics lectures were a mandatory part of their studies. Their mean age was 23.3 years (SD = 
3.3). They were asked to fill out a questionnaire on personal data like their specific subjects 
(e.g. mathematics or computer sciences) and the number of semesters they had already 
studied at university. After that, they took part in a short mathematics test. Then the stu-
dents sat in front of a computer screen, which was connected to an eye tracker. The stu-
dents were asked to read three mathematical proofs on the screen that were taken out of 
textbooks on different areas for beginning students of mathematics. The participants were 
told that they should try to comprehend the proofs. Every item consisted of a theorem, its 
proof, and a picture that was placed between the theorem and the proof. The picture did not 
contain any additional information, but represented a part of the information provided in the 
text. There was no time limit, and the students had to press the space bar to proceed to the 
next item at their own convenience. After each item an open-ended question about the 
proof appeared on the screen and the students were asked to write down the main idea of 
the proof. All responses were given via the computer keyboard. 

To answer the research question we analyzed dwell times on the areas text and picture. For 
the area text we included only the text part of the proof, but not of the theorem. The dwell 
time is an indicator for how long the eye gaze remains on a specific area. We also analyzed 
dwell times standardized on the total reading time as overall reading times varied largely 
between participants. Furthermore we analyzed the order of the gazes on text and picture 
by means of sequence charts, which show the order and duration of the gazes on every 
area of an item for every participant. 

We allocated students to low or high prior knowledge groups based on a score calculated 
from their specific subject, their number of semesters at university, and their result of the 
mathematics test. There were twelve students in the low prior knowledge group, and seven 
in the high prior knowledge group. 

Results 
The dwell times on the area picture were above zero for every student in all of the three 
items. That means that every student looked at least briefly at the picture. To illustrate the 
dwell times, figure 1 shows a so-called heat map of the gaze durations of one item, summa-
rized over all participants. The colors indicate the least and most fixated areas, where blue 
stands for the shortest fixation times and red stands for the longest fixation times. 

The standardized dwell times showed that the students looked longer on the area text than 
on picture. On average the students looked at picture for 18% of their total reading time, 
and at text for 71%. 
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Figure 1: Heat map of the gaze durations of one item, summarized over all participants. 
 
The analysis of the sequence charts showed that nearly all students (except one) switched 
back and forth between text and picture. All students started with reading the theorem first. 
Most of the students continued in the given order (picture, then proof). The others contin-
ued with reading parts of the proof before having the first look at the picture. Exemplarily, 
figure 2 shows the sequence chart of one item. Gazes on the area text are colored green, on 
picture orange. The gaps result for example from gazes to other areas like the theorem. The 
other two sequence charts provide similar information. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Sequence chart of one item; gazes on text are colored green, on picture orange. 
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The comparison between the two groups of students showed a very weak tendency in the 
direction that students with less prior knowledge looked on average longer (19%) on pic-
ture than the more experienced students (16%), whereas they looked on average shorter 
(70%) on text than the students with higher prior knowledge (72%). This is possibly con-
nected to the finding that students with less prior knowledge switched back more often to 
picture than the students with higher prior knowledge. 

Discussion 
The university students in our study looked at the pictures that were presented with the 
text of mathematical proofs during reading the proofs. Fixation times on the text parts were 
longer than on the pictures, however, the participants switched back and forth between text 
and picture. These results confirm previous research by Beitlich et al. (2014), whose findings 
came from a similar study with academics with high expertise in mathematics. 

We found a very weak tendency that students with low prior knowledge looked longer on 
the pictures than students with high prior knowledge (vice versa for text), and that the less 
experienced students switched back more often to the picture than the more experienced 
ones. This is only a first, very vague impression. To make some clearer statements about the 
influence of prior knowledge on multimedia learning of mathematical proofs, more research 
is needed. 

To get better insights into proof comprehension, we are analyzing the additional data we 
got from the study, namely the questions about the proofs the students had to answer, and 
the main ideas of the proofs the students had to write down. Results are still outstanding. 

The results of the study provide preliminary answers to the questions formulated in the first 
part of this paper. In particular, the study shows whether and how students look at pictures 
when reading mathematical proofs. There are important remaining questions, e.g. whether 
proof comprehension can be enhanced by pictures accompanying the text, and whether the 
findings of multimedia learning found in other disciplines are valid for mathematics. More 
studies with a larger sample size and different items are necessary. In the long run, results 
of this study and other studies of that kind might help to improve the design of university 
teaching materials. 
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Geometry vs Doppelte Diskontinuität? 
37F

  
Christian Haase 

Freie Universität Berlin 
(Germany) 

The current mathematics curriculum for teacher education at Freie Universität Berlin needs to be 
overhauled. In close collaboration with the didactics institute, we propose to insert a full semester 
course on geometric problem solving and theorem proving prior to the usual introductory classes in 
Analysis and in Linear Algebra. In addition to drafting an effective syllabus, we need to observe very 
practical side constraints. This experiment could serve as a test case for the transfer from (basic) re-
search into practice. 

Status Quo 
The status quo in preservice teacher education has developed as a consequence of several 
ad-hoc reforms. The overall premise has been to design a course of study for mathematics 
majors and then to select courses for preservice teachers from that catalog. 

History 
Traditionally, prospective high-school mathematics teachers sat in the same introductory 
Analysis and Linear Algebra courses as mathematics majors in their freshman year. Several 
professors teaching these classes, observed a dichotomy between the two cohorts. It was 
perceived that, essentially, mathematics majors passed while teacher students failed. (Even 
though recent empirical research says otherwise, e.g., Roloff Henoch, Klusmann, Lüdtke & 
Trautwein, 2015.) It was decided in the early 2000's to create separate Analysis and Linear 
Algebra tracks for the teacher students. Due to resource constraints, this double offering 
could not be maintained for subsequent classes like Algebra & Number Theory or Stochastic.  

Current Curriculum 
s 

0BSemester  1BMain Subject  2BMinor Subject 
1 Linear Algebra 1 (10 CP) Linear Algebra 1 (10 CP) 

2 Linear Algebra 2 (10 CP) Analysis 1 (10 CP) 

3 Analysis 1 (10 CP) 

Mathematics & Computers (5 CP) 

Stochastics (10 CP) 

4 Analysis 2 (10 CP) 

Geometry (10 CP) 

Geometry (10 CP) 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
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5 Algebra & Number Theory (10 CP) 

Stochastics (10 CP) 

Algebra & Number Theory (10 CP) 

6 Seminar (5 CP) 

Bachelor's Thesis (10 CP) 

Seminar (5 CP) 

Mathematics & Computers (5 CP) 

 

The default course of study for preservice teachers with main subject Mathematics respec-
tively with minor subject Mathematics is displayed in the table on the previous page. 

These mathematics classes are, of course, accompanied by didactics, pedagogy and further 
courses. 

Issues 
There are a number of immediate issues why the current situation must be changed. 

• The drop-out rate has remained high, even after the introduction of separate 
Analysis and Linear Algebra tracks. 

• The different tracks are not necessarily taught in a very different way. This is in part 
due to the fact that these two subjects are highly standardized across (not only 
German) universities, and it is in part due to external compatibility requirements. 

• Still, the two cohorts are separated early, amplifying the effect of stereotype threat 
as described by Ihme & Möller (2015). The effect is then most visible in the 
subsequent classes Algebra & Number Theory and Stochastic where the cohorts are 
mixed again, now with even more severely different backgrounds. 

• In exit interviews still most (80-90%) of graduates report to experience the double 
discontinuity.  

Proposed Changes 

Goals 
The goal of the reorganization of the mathematics courses must be to deal with the above 
issues, and to allow for a transition from highschool to university mathematics which is 
meaningful to the preservice teacher. We still want our graduates to develop problem solv-
ing, abstraction, and communication skills of university mathematics, but we also want to 
equip them with a mathematical self-esteem which allows them to take abstract mathemat-
ical arguments back into the highschool classroom. 

A New Course 
The idea is to create a new course with the working title Geometric Reasoning after which 
preservice teachers have acquired – besides geometric knowledge – mathematical language 
skills, and a network of connections between highscool and university mathematics. This 
network together with a growing desire for justification should have them well prepared to 
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start their Let-ε>o-Analysis and their Let-𝒌-be-a-field-Linear Algebra courses together with 
mathematics majors. 

Following the outlined goals, the contents of the course should start with specific high-
school problems and develop them into formal and abstract proof based mathematics, 
adopting the strategy to preserve a continuity in the mathematical biography (Beutel-
spacher, A., Danckwerts R., Nickel G., Spies S., & Wickel G, 2011). At the same time, the 
course should intentionally leave open ends, pointing out where additional mathematics is 
needed to tackle the problem. Geometry seems particularly well suited for this kind of two-
sided docking. For an instance, start with ruler and compass constructions, leaving an open 
end to (Linear) Algebra at the impossibility to construct the regular 7-gon. Limit processes in 
volume computations provide a link to Analysis. 

It is imperative that the course starts to develop the students' ability to generalize, and to 
work with abstract concepts such as the axioms of incidence geometry. The students need 
to learn the language of university mathematics, the oral and written communication of 
simple mathematical arguments and proofs – all at a manageable level. Geometry has a lot 
of examples to challenge misconceptions and to refine intuition. It should not be hard to 
substantiate the relevance of this Geometry for high-school mathematics such as Schwarz & 
Herrmann (2015) did for Linear Algebra.  

The New Curriculum 

3BSemester 4BMajor 5BMinor 

1 Geometric Reasoning (10 CP) Geometric Reasoning (10 CP) 

2 Linear Algebra 1 (10 CP) Linear Algebra 1 (10 CP) 

3 Linear Algebra 2 (10 CP) 

Mathematics & Computers (5 CP) 

Analysis 1 (10 CP) 

4 Analysis 1 (10 CP) 

Stochastics (10 CP) 

 

Stochastics (10 CP) 

5 Analysis 2 (10 CP) 

Algebra & Number Theory (10 CP) 

 

Algebra & Number Theory (10 CP) 

6 Seminar (5 CP) 

Bachelor's Thesis (10 CP) 

Seminar (5 CP) 

Mathematics & Computers (5 CP) 

Resources 
Part of the appeal of the present concept to the practitioner is that it might actually materi-
alize. It is minimally invasive in that it does not stir up the entire mathematics major curricu-
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lum. Reuniting mathematics majors and preservice teachers in Analysis and Linear Algebra 
frees capacities for separate Algebra and/or Stochastics classes. 

In order to create a sustainable model, it is planned to set up an instructor wiki which in a 
first step should contain a script for the lectures, a reference list and a growing collection of 
exercises. 

Conclusion & Outlook 
This is an implementation project, not an actual research project. (Yet?) For one, I hope for 
input from researchers. But, in the best of all scenarios, the project will be evaluat-
ed/accompanied with feedback going both ways. A scientific discipline should not lose out 
of sight the transfer of its results into practice. Unfortunately, we do not have the time and 
resources to spend a decade on a design based approach as reported by Larsen, Johnson & 
Bartlo (2013) for instructional innovations teaching group theory. But certain aspects of 
their work, suitably scaled, should be applicable here. 

The measures proposed here address mainly the first discontinuity in the biography of pre-
service teachers. At the department, we are also discussing a capstone course involving 
both active high school teachers and finishing teacher students, developing the approach by 
Winsløw & Grønbæk (2014). Here, the implementation challenges will be even more com-
plex as it involves yet another administration. 

References 

Beutelspacher, A., Danckwerts R., Nickel G., Spies S., Wickel G. (2011). Mathematik neu denken. 
Wiesbaden: Springer. 

Ihme, T., & Möller, J. (2015), “He who can, does; he who cannot, teaches?” Stereotype threat and 
preservice teachers. Journal of Educational Psychology, 107, 300-308. 

Larsen, S., Johnson, E., & Bartlo, J. (2013). Designing and scaling up an innovation in abstract algebra. 
Journal of Mathematical Behavior, 32, 693-711. 

Roloff Henoch, J., Klusmann, U., Lüdtke, O., & Trautwein, U. (2015). Who becomes a teacher? Chal-
lenging the “negative selection” hypothesis. Learning and Instruction, 36, 46-56. 

Schwarz, B., Herrmann, P. (2015). Bezüge zwischen Schulmathematik und Linearer Algebra in der 
hochschulischen Ausbildung angehender Mathematiklehrkräfte – Ergebnisse einer Dokumen-
tenanalyse. Mathematische Semesterberichte 62, 195-217. 

Winsløw, C., & Grønbæk, N. (2014), Klein's double discontinuity revisited: what use is university 
mathematics to high school calculus? Recherches en Didactique des Mathématiques, 34, 59-86. 



khdm-Report, Nr. 05, 2017 

204 

 

Why linear algebra is difficult for many beginners 38F

  
Lisa Hefendehl-Hebeker 

Universität Duisburg-Essen 
(Germany) 

Linear algebra is a fundamental mathematical discipline, which provides a basic language with a wide 
range of application. It was developed from different phenomenological roots (algebra, geometry) 
towards an abstract axiomatic theory. This is the main reason why linear algebra is difficult for begin-
ners, at least for those who have problems to understand mathematics mainly by structure sense.  

Phenomenological roots 
The historical development of linear algebra was initiated by two different constraints, 
namely the problem of solving linear equations and the desire for numerical description of 
geometrical objects. The latter was due to a vision of Leibniz to make the analysis of loca-
tion and movement in geometry accessible to manipulation by algebraic formulas.  

The resulting reflections developed towards the theory of vector spaces and linear map-
pings as a common superstructure. “The concept of vector space, so elementary in terms of 
structure, encapsulates, in a very elaborated product, the result of a long and complex pro-
cess of generalization and unification.” (Dorier 2000, p. 59) Therefore linear algebra is a 
highly demanding domain of mathematics from the cognitive point of view.  

Levels of abstraction 
The concept of vector space is the result of an expanded “praxeological progression” 
(Winsløw 2014) with successive levels of abstraction. The concept of a vector itself is a 
common abstraction of already abstract objects like the sequence of coefficients of a linear 
equation or geometrical translation (Dorier & Sierpinska 2001), whereas „most concepts in 
school mathematics can be traced back to an origin in material physical activities of some 
sort or another (such as counting, measuring, drawing, constructing).“ (Dörfler 2003, S. 
154). To grasp these elaborated concepts requires sophisticated mental activities such as 
“encapsulation” (Dubinsky & Harel 1992), “objectivation” (Radford 2010) or “reification” 
(Sfard 1995, 2000). This also applies to advanced concepts like factor space and dual space.  

The axiomatic approach 
The development of mathematics towards a theory of abstract mental concepts has an ex-
terior counterpart in the current tools of representation. The professional mathematical lan-
guage is a highly developed artefact, usually related to the semantic of sets, which often 
means that other semantic implications or phenomenological roots are hidden and have to 
be revealed by the learners. So beginners in a course of linear algebra often have no orien-
tation to what needs the theory responds, whereas the lecturers act within a long-range-
perspective, which is not shared by the learners. In addition the strong logical hierarchy of 
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the axiomatic setting requires definitions and proofs, which do not seem necessary to an 
original point of view. Why for example is the following claim worth of special consideration: 
In a vector space over a field 𝐾 with unit element 1𝐾  the equation 1𝐾𝑥 = 𝑥 is valid for each 
vector 𝑥. 

Symbol sense and mental flexibility 
Further the mathematical language is highly conventionalised and it causes a high density of 
information, which requires symbol sense and a specific reading ability. In an expression like 
𝑀𝑛,𝑚(𝐾) each sign together with its position in the sequence of signs mediates a specific 
information which has to be decoded. Definitions are often formulated in a manner that fits 
operational needs but conceals the original meaning (for example the usual definition of 
linear independence).  

In addition the ability of flexible interpretation of the assigned objects within the theory is 
needed. A matrix can be considered as a system of scalars, a system of row respective col-
umn vectors or as a vector itself and it depends on the context which interpretation is ap-
propriate. This ability is also needed for applications of the theory, for example when func-
tions have to be considered as elements of a vector space.  

The theory on the whole requires flexible changes between different points of view, espe-
cially between calculation and structural considerations.  
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Online tests for evaluating learning success 
Kerstin Hesse 

Universität Paderborn 
(Germany) 

In a pilot project online tests with “unusual” multiple-choice questions covering some of the topics of 
“Higher Mathematics A for Electrical Engineers” have been developed and used in a test run in winter 
semester 2015/16. This paper gives the mathematics education background and discusses the differ-
ent types of multiple-choice questions developed in the project and their educational scope. Problems 
with low participation rates in the test run as well as directions for future research are also discussed. 

Introduction and background  
In a working group concerned with mathematics education for engineers the author pro-
posed a project where multiple-choice questions testing understanding rather than sche-
matic application of mathematical tools should be developed for the different course topics 
of “Higher Mathematics A for Electrical Engineers” (“Höhere Mathematik A für Elektrotech-
niker”) at Paderborn University. The ensuing discussion led to the idea of having online tests 
that can be taken by the students at any time within a certain time frame after the topic has 
been completed in the course. Two colleagues from engineering teaching the introductory 
engineering courses in the first semester and one colleague from mathematics who had just 
taught the introductory mathematics course for the mechanical engineering students ex-
pressed interest in joining the project with their own courses. Subsequently, it was agreed 
that the author would make a test run in a pilot project for some selected topics from “High-
er Mathematics A for Electrical Engineers” in winter semester 2015/16.  

By now 95 questions have been developed and implemented with Moodle for the test run 
which is open to electrical engineering students as well as mechanical engineering students 
und physicists, in order to get a larger cohort of students in the test run.  

Multiple-choice questions have been used for a long time and are one of the most popular 
assessment tools in education (Hassmén & Hunt, 1994, p. 149), since they are easy to im-
plement and mark (and can even be marked electronically without any involvement of the 
teacher). Wood (1977) gives a comprehensive overview of multiple-choice testing, which, 
of course, does not yet reflect any of the possibilities offered by computer-aided assess-
ment. Criticism has been voiced that multiple-choice questions are not suitable for testing a 
deeper understanding, since they offer a set of predetermined answers and usually do not 
ask the learner to do her/his own problem solving without any a priori information about 
the possible answers. See e.g. Hoffmann (1978) for a rather passionate criticism of multiple-
choice testing. Various authors have given guidelines for designing multiple-choice ques-
tions (see (Hansen & Dexter, 1997) and the references therein), and it has been investigat-
ed whether additional self-assessment (see e.g. (Hassmén & Hunt, 1994)) or/and partial 
scoring (see e.g. (Kansup & Hakstian, 1975)) can improve the reliability of multiple-choice 
testing. The effect of students’ guessing and how this can be remedied has also been con-
sidered (see e.g. (Wood, 1976)). The given references on multiple-choice testing are far 
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from complete and serve only as exemplary references to set the general context for this 
project. 

In the context of testing or assessment, particularly with large numbers of students, there 
has been an ongoing discussion (since at least the 1970s) on whether assessment with mul-
tiple-choice items can test the same assessments components as constructed-response 
items. See e.g. the publications by Kamps & van Lint (1975), Traub & Fisher (1977), Katz, 
Friedman, Bennett & Berger (1996) and Huntley, Engelbrecht & Harding (2009b). Rodriguez 
(2003) analyses 67 empirical studies concerned with the trait or construct equivalence of 
multiple-choice items and constructed-response items. He draws the conclusion that “Con-
struct equivalence, in part, appears to be a function of the item design method or the item 
writer’s intent.” (Rodriguez, 2003, p. 163). Katz, Friedman, Bennett & Berger (1996) give 
interesting insights into high school students’ approaches to multiple-choice as well as con-
structed-response questions, and Kamps & van Lint (1975) and Huntley, Engelbrecht & Har-
ding (2009b) provide evidence that certain assessment components in basic mathematics 
courses at university level can very well be tested with multiple-choice questions. Again the 
references given are far from complete but serve as exemplary references for this context. 

In the project described above we are interested in an “unusual” type of multiple-choice 
questions. The questions are “unusual” in that they explicitly test understanding by asking 
the student to pick the one right (or one false) statement among five given statements con-
cerned with a certain course topic. Finding the one correct (or one false) statement will, in 
most cases, require that the student does indeed solve several smaller problems. The nature 
of these questions is somewhat similar to the more sophisticated biology questions reported 
by Tamir (1993, see e.g. Exhibit 4), and there are both positive and negative ques-
tions/items (Tamir, 1993) in the online tests. Kamps & van Lint (1975, in particular items H 
and J of their multiple-choice test) and Huntley, Engelbrecht & Harding (2009b) give some 
examples of mathematics assessment questions that go in a similar direction. Variants of 
such multiple choice questions appear to have been used in written examinations at some 
German universities, and Schmidt, Macht, & Hess (2005) provide a collection of mathemati-
cal multiple-choice questions with detailed answers, predominantly taken from mathematics 
examinations for economics students. The questions published by Schmidt, Macht & Hess 
(2005) are of similar types to those developed by the author, but the average level of the 
questions is lower and they do not cover all the types of multiple-choice questions devel-
oped in the pilot project. In particular, the multiple-choice questions concerned with abstract 
statements (see below) are missing in Schmidt, Macht & Hess (2005). Some of the different 
types of the multiple-choice questions developed by the author will be discussed below and 
will be illustrated by four sample questions. These multiple-choice questions must also be 
seen as mathematical exercises. For a recent survey and background reference on the use, 
design and effects of exercises refer to Leuders (2015). 

The types of questions in the online tests  
In the pilot project 95 multiple-choice questions have been developed covering the first five 
topics of “Higher Mathematics A for Electrical Engineers”: 1. Sets and functions, 2. Vector 
calculus, 3. Linear systems of equations, 4. Further foundations, 5. Sequences of real num-
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bers. Each multiple-choice question offers five statements and asks the student to select the 
one correct (positive questions) or one false (negative question) statement. The student 
must choose exactly one statement, and due to the nature of mathematics (and careful 
wording) there will be exactly one correct or one false statement, respectively, among the 
five given statements. So the ambiguity of what is the “best” answer (for positive ques-
tions) that has been criticized with respect to multiple-choice (see e.g. (Hoffmann, 1978)) 
should not occur in this context. 

Besides positive and negative questions there are two basic types of questions: those that 
deal with examples and those that deal with abstract statements about the course content. 
Within each of these types the five given statements may either cover all exactly one topic 
(e.g. convergence of sequences of real numbers) or they may spread wider within one larg-
er topic of the course (e.g. statements about rather elementary properties of vectors). In 
either case, the answer will not be obvious, and even a good student will usually have to sit 
down and work out (in her/his head or with pen and paper) which one of the given five 
statements is the correct one or the false one. Thus the multiple-choice questions require 
problem solving on the student’s part, and some of the ones dealing with abstract state-
ments about the course content will even require that students draw their own conclusions 
and make up their own examples. 

Before we come to the sample questions, some words should be said about when the online 
tests shall be taken, what feedback the students will receive and what the intended learning 
outcomes are. Separate online tests will be taken for each course topic once the topic has 
been completely covered including the tutorial classes for this course topic. So all students 
should have done the exercises from the corresponding exercise sheets and should be fa-
miliar with the topic and with standard exercises for this topic. Since the assessment regula-
tions do not allow us to make participation in the online tests compulsory, these can only be 
advertised and recommended as an additional offer to get feedback on one’s own perfor-
mance with respect to the most recent topic of the course. The students can do the online 
tests from any computer at any time (while the test is still open) and they can use any re-
sources they like for help. The aim of the online tests is to provide the students with feed-
back on their learning and to help them with their learning. It is expected that good students 
will enjoy the different format and will be challenged to view the course material from yet a 
different angle, while week students will receive a timely feedback if they need to invest 
more time in studying and doing the exercise sheets. It is especially hoped that week and 
struggling students will thereby realize the need to study more (and often differently with 
better learning strategies) early on in the course, in contrast to having already been com-
pletely lost when this realization only comes at the final examination. After completing each 
multiple-choice question the students will see a feedback text that addresses the relevant 
points for solving this question. Not all steps will be given but the relevant points, so that 
students who did not know how to handle the question can now work out the details with 
this help. At the end of the multiple-choice test the students will get an overall score and 
some general feedback on their performance. 

Four samples of multiple-choice questions are shown below, three without the feedback 
text, and one with feedback text presented as screen shots from the online implementation 
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in Moodle. It should perhaps be mentioned here, that the course “Higher Mathematics A for 
Electrical Engineers” is taught in German; so the samples of multiple-choice questions below 
as well as the feedback text have been translated by the author for the express purpose of 
this paper. 

Sample 1: Which of the following statements about the complex numbers 𝑧 = 2 + 4𝑗 and 
𝑤 = 2 − 2𝑗 is false? All but one of the statements are correct. 

(a) 𝑧 + 𝑤 = 4 + 2𝑗     (b)  𝑧
𝑤

 = − 1
2

+ 3
2

𝑗  

(c) ∣ 𝑧 ∣= 2√5  and ∣ 𝑤 ∣= 2√2    (d)  

 

z = 2 − 4𝑗 and 

 

w = 2 + 2𝑗  

(e) 𝑧 ∙  𝑤 = 4 − 8𝑗 

This question covers a variety of different operations for complex numbers for an example 
and is a negative question (i.e. the one false statement, here (e), must be identified). In or-
der to solve the problem, the student must work her/his way through the statements, com-
puting each given object until she/he finds the false statement. It will be explained to the 
students at the beginning of the online test that it is recommended that they look at all 
statements (even if they believe that they have already identified the correct/false one) for 
the learning benefit. This is a rather easy question that the majority of the students will 
probably answer correctly. However, it seems advisable to include some rather easy ques-
tions at the beginning of and throughout each online test for motivational purposes.  

Sample 2: Which among the subsequent sequences of real numbers is convergent? All but 
one of these sequences of real numbers are divergent. 

(a) 

 

1 −
1
n2 + sin

1
n

 
 
 

 
 
 

 

 
 

 

 
 

n≥1

  (b) 

 

2n − n2( )n≥0
   (c) 

 

(−1)n( )n≥0
 

(d) 

 

en 2( )
n≥0

    (e) 

 

ln(n)( )n≥1  

This question may be seen as a positive question, since the property convergence is only 
satisfied for one of the examples. Here the student needs to inspect the different examples 
to find the convergent sequence. If a student knows that the sequence in (c) is divergent 
and that unbounded sequences cannot be convergent, then the sequence in (a) is easily 
identified as the convergent one with limit 1. 

Sample 3: Which of the following statements is false? All but one statement are correct.  

(a) The sum of two divergent sequences is also a divergent sequence. 

(b) The limit of a convergent sequence is uniquely determined. 

(c) The product of a bounded sequence and a sequence converging to zero is a convergent 
sequence. 

(d) If a sequence is monotone and bounded, then it is convergent.  

(e) Every convergent sequence is bounded. 

This question deals with abstract statements from the topic convergence of sequences of 
real numbers and is one of the most challenging questions. This question tests in parts famil-
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iarity with standard results from the topic sequences (statements (b), (d) and (e)), whereas 
(c) will have been stated differently in the course, noting that the product of a bounded se-
quence and a sequence converging to zero also converges to zero. The false statement (a) 
however will seem plausible to most students, and only a suitable counterexample will re-
veal why this is not correct. 

Sample 4: The fourth sample is shown as a screenshot from Moodle, where both the ques-
tion and the feedback text are shown. In the screenshot below an incorrect selection has 
been made (indicated by the red cross, whereas a correct selection would be indicated by a 
green tic-mark). After making this selection and submitting, the correctness of the selection 
is indicated as shown and the explanation in the second screenshot below is always dis-
played (regardless of whether a correct or an incorrect selection was made).  

 

 

 

This is a positive question of the type where several of the new mathematical concepts are 
considered for one particular example. Piecewise defined functions appear to be unknown 
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to most students from their school mathematics, and the new notions of injective, surjective 
and bijective are always challenging. So, although this question deals with a very concrete 
example, it is expected that most students will find this question far from easy. 

Low participation rates in the test run 
After implementing the 95 questions in Moodle, the author discussed the project with the 
colleagues who teach the first year mathematics courses for the electrical engineers, me-
chanical engineers and physicists in winter semester 2015/16, and all three colleagues 
agreed to support the project by recommending it to their students. They also invited the 
author into one of their lectures to promote the project in person by explaining what the 
project is about and showing how to get a Moodle account as well as giving a demonstra-
tion with some questions from the first online test. Despite this, the participation rate was 
quite low. In fact, so few students have actually completed the tests, that analyzing the sta-
tistics for each test will not give any useful insights. In the test run, the online tests have not 
been closed after a certain time period, and are still open during the academic year 
2015/16. While it is possible that some more students may attempt the online tests during 
their exam preparation, it is clear that something needs to be done to improve the participa-
tion rates in the online tests. 

Directions for future development and research 
On the development side, it is clear that the existing 95 questions have to be reviewed and 
improved. Furthermore, questions for the remaining five course topics need to be devel-
oped: 6. Continuity of real-valued functions, 7. Differentiability, 8. Integration, 9. Ordinary 
differential equations, 10. Infinite series. The author expects to develop another 150 ques-
tions for these topics. There would also be the possibility to add a second or even third set 
of some standard questions to the existing tests (and also to the ones to be still developed) 
such that students can have another try or two at these types of questions if they answer 
these types of questions incorrectly the first time. Likewise it would be possible to create 
some sets of specific types of standard questions so that each student gets a random sam-
ple from these types of questions. 

Should the development and implementation of these questions be ready in time for a first 
full run in winter semester 2016/17, serious thought needs to be given how to get a better 
participation rate in the tests, so that the students can actually benefit from this additional 
offer to get feedback via informal formative assessment through the online tests. As men-
tioned earlier, the current examination regulations make it impossible to make participation 
in the online tests compulsory, which makes it difficult to motivate students to take these 
tests. However, in winter semester 2016/17 the author will teach “Higher Mathematics A 
for Electrical Engineers” herself, and will thus have a much better opportunity to advertise 
and promote the online tests than this was possible in the test run. It may also be possible 
to give a bonus for participation in the online tests, which will allow students to improve 
their overall mark in the course if they have passed the final examination. We know from 
past experience that a bonus will greatly increase participation rates. However, since we 
cannot prevent students from getting help when they do the online tests, such a bonus 
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must, on the one hand, be small enough but, on the other hand, be still attractive enough to 
encourage participation.  

What are the directions for future research beyond the development and improvement of 
the questions for all ten topics of “Higher Mathematics A for Electrical Engineers”? There are 
two main avenues of research that the author is interested in pursuing:  

1) A detailed classification of the questions into different types 

The classification of the questions has already been briefly discussed in the second section 
of this paper. It is clear that a proper classification needs to be much more detailed and 
comprehensive and will very likely end up with more than the basic types of questions that 
have been identified so far. Furthermore it may also be interesting to consider certain types 
of questions in the context of individual topics. Generally the questions from the online tests 
should also be classified with respect to a suitable taxonomy for mathematics, e.g. the as-
sessment component taxonomy proposed by Huntley, Engelbrecht and Harding (2009a, 
2009b). For more literature on assessment models and taxonomies in mathematics see also 
the works by Bloom (1956), Niss (1993) and Smith, Wood, Crawford, Coupland, Ball & Ste-
phenson (1996). 

2) An investigation of the misconceptions covered by the different questions 

The author has over ten years of teaching experience and, from her professional practice, 
she is therefore quite familiar with many misconceptions that students may develop when 
they study higher mathematics at university. When the author taught “Higher Mathematics 
A for Electrical Engineers” in winter semester 2014/15, she personally revised all existing 
exercise sheets and solutions and added several questions and solutions to the exercise 
sheets from the previous run, led the large problem class in the lecture hall and also gave 
one of the small group tutorial classes. This experience provided a wealth of insight into the 
students’ problems with the course material and the misconceptions about each topic. It 
seems interesting to analyze a representative set of questions from each course topic to 
underpin their design with the currently available literature on student’s misconceptions 
about the respective topic. For more advanced topics or concepts the author expects that 
the literature on misconceptions within these topics or concepts may not be very extensive. 
It might also be interesting to contribute to the literature on students’ misconceptions should 
there be any topics where so far little or nothing has been published about misconceptions 
within these topics. 
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For several years it has been well-known that many students taking non-maths majors are chal-
lenged by the quantitative elements of their courses. Mathematics Support was developed in the 
1990s as a means of assisting such students. This paper presents an overview of the key findings 
from a qualitative research study involving senior managers in a wide range of higher education insti-
tutions in England in relation to the needs of their students in mathematics and statistics. These find-
ings indicate that all universities have a significant number of students who need additional support in 
mathematics and/or statistics if they are to be successful in their studies and beyond.  

What is Mathematics Support and why is it needed? 
Many disciplines are becoming increasingly quantitative – not only disciplines such as engi-
neering, the physical sciences and economics, which have long relied on mathematical 
models, but also, more recently, subjects such as the biosciences, psychology and many 
social sciences.  In England, the vast majority of students study no mathematics after the 
age of 16.  For many of these students who select non-mathematics majors in higher edu-
cation, the need to re-engage with mathematical or quantitative methods can be challeng-
ing and they are often ill-prepared for this challenge.  A report by the Advisory Committee 
on Mathematics Education estimated that, each year, around 330,000 students enter cours-
es in higher education where it would be beneficial for them to have studied mathematics 
beyond GCSE (the national qualification taken at age 16)105F

i whereas only 125,000 have actu-
ally done so (ACME, 2011). 

 In response to the needs of their students, many universities have introduced some form of 
Mathematics Support (MS).  The most common form of MS is the ‘drop-in’ centre – a staffed 
location where students attend (if they wish) at a time of their own choosing and receive 
one-to-one support in relation to those areas of mathematics that are causing them the 
most difficulty.  MS is typically provided in addition to the regular lectures, seminars, tutori-
als, etc. that make up the ‘normal’ teaching on a course and is accessed voluntarily by those 
who perceive they will benefit from it. 

The development of Mathematics Support in the UK 
Large-scale MS in higher education in the UK began in the early 1990s – the BP Mathematics 
Centre at Coventry Polytechnic established in 1991 was one of the first permanent drop-in 
centres.  During the 1990s a number of other centres were opened.  However, Kyle (2010, 
p.103) described the early days of MS as “a form of cottage industry practised by a few well 
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meaning, possibly eccentric individuals”.  In these early days, MS was usually a grass roots 
initiative introduced by mathematics lecturers seeking to remedy the under-preparedness of 
many of their students. 

In 2005, sigma a collaboration between the MS provision at Loughborough and Coventry 
Universities was designated by the Higher Education Funding Council for England (HEFCE) as 
a Centre for Excellence in Teaching and Learning (CETL).  This not only bestowed status on 
MS but also a substantial amount of funding and during the 5-year funding period, sigma 
was successful in establishing MS as a mainstream activity in many universities – to the ex-
tent that Kyle’s article (ibid, p.104) concludes that “Mathematics support came of age in the 
first decade of the 21st century”.  Following this, sigma was commission by the National HE 
STEM Programme40F

1 to undertake further work promoting MS in the HE sector.  In sigma’s 
final report for this Programme, David Youdan, Executive Director of the Institute of Mathe-
matics and Its Applications, is quoted as follows: 

“It is hard to overstate the importance of the expansion of the sigma network … The 
accepted position is that it is now a student’s right to receive support with the math-
ematical content of their degree.” (Fletcher, 2013, p.49) 

Qualitative Study: Senior Management Perspectives 
As previously stated, MS began as a grass roots initiative, but as it demonstrated its value to 
universities it became more of a main-stream activity.  In 2013, sigma received further 
funding from HEFCE to establish a sustainable community of MS practitioners.  As part of this 
work, sigma engaged with senior managers in universities to seek to gain an understanding 
from their perspective of the needs of their students in terms of MS.  To our knowledge, this 
is the first piece of work which has sought to understand the senior management perspec-
tive on the provision of MS.  In order to gain an in-depth understanding, a qualitative ap-
proach was used to gather the views of senior managers. 

Semi-structured interviews were carried out with senior managers, typically at the level of 
Pro-Vice-Chancellor (PVC) for Learning and Teaching in 23 universities from across the spec-
trum of higher education (including large research intensive, smaller research focused and 
newer more teaching focused institutions).  The interviews explored issues such as the chal-
lenges faced by students in relation to mathematics and statistics, how those challenges are 
being addressed, the degree to which MS is embedded in the institution, any plans to further 
develop MS and external support that universities felt might be helpful in terms of support-
ing their students mathematical and statistical needs. 

Full details of the qualitative study and an extensive analysis of its outcomes can be found in 
Tolley and Mackenzie (2015).  The following section gives a brief precis of some of the key 
findings. 

                                                 
1 STEM stands for Science, Technology, Engineering and Mathematics; the National HE STEM Programme 
(http://www.hestem.ac.uk/) was a major HEFCE funded programme to promote entry to and success in STEM 
disciplines in Higher Education. 
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Key findings and future developments 
All 23 interviewees reported that there are students at their institution who are challenged 
by mathematics and/or statistics. This was attributed to a number of factors including the 
small proportion of students who study mathematics post-16, the increase in inhomogenei-
ty of undergraduate cohorts that has taken place as the sector has grown and the negative 
attitudes towards mathematics and statistics that many students have developed during 
their pre-university education. In addition, many interviewees reported that, even where 
students had achieved a good grade in A Level Mathematics (the final pre-university qualifi-
cations taken at age 18), many had difficulty in applying the knowledge they had gained to 
solve problems in unfamiliar settings (typically in the context of their main discipline of 
study). 

The comments above did not only relate to students studying STEM disciplines, but rather 
applied to a rapidly expanding range of subjects that make increasing use of quantitative 
methods and mathematical models.  The comments also did not only apply to undergradu-
ates, but in many cases were more focused on postgraduates.  In some disciplines, post-
graduate study is considerably more quantitative than undergraduate study and bachelors’ 
degrees do not adequately prepare students for the more quantitative approach to the dis-
cipline at postgraduate level. 

All of the interviewees recognised that unless appropriate forms of learning support in 
mathematics and statistics are provided then it is inevitable that there will be an adverse 
impact on their students’ satisfaction, retention, achievement and employability.  As a con-
sequence, in many institutions decisions about the provision of MS are increasingly not be-
ing left to individuals at the grass roots level to take in isolation, but rather are becoming 
part of wider strategic considerations with MS being seen as part of a range of institutional 
support provision. 

Some institutions reported that they were considering requiring students to have achieved 
an A level in mathematics in order to gain entry to courses which previously had not had a 
specific mathematics requirement beyond the general matriculation requirement (applying 
to all courses in the institution) of GCSE Grade C. Whilst such an approach should mean the 
students that are enrolled are better prepared, the danger of such an approach is that the 
pool of students who have taken A level mathematics is relatively small and such a decision 
is likely to have an adverse an impact on institutional recruitment. 

Many interviewees identified professional development for their staff as a key need. Two 
distinct groups of staff with different needs were identified. Firstly, the needs of specialist 
staff working in mathematics and statistics support were recognised. In many institutions 
there may be only one such specialist and so the importance of networks for such staff to 
share good practice were highlighted. This is one of the things that sigma is seeking to pro-
vide as it develops a sustainable community of MS practitioners. Senior managers suggested 
that in addition to appropriate training, some kind of recognised or professionally accredited 
status would be beneficial. 

The second professional development focus that was identified related to the embedding of 
mathematics and statistics support in modules within the non-maths disciplines. Many sen-
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ior managers acknowledged that many of their staff in these disciplines themselves had 
issues of confidence and competence in relation to mathematics and statistics. This confirms 
the findings of the RSA report Solving the maths problem (Norris, 2012) which asserted that 
“English universities are side-lining quantitative and mathematical content because students 
and staff lack the requisite confidence and ability” (p.11, my emphasis). Senior managers 
believed that professional development was needed for colleagues in these disciplines in 
terms of their own quantitative and mathematical skills and also in terms of designing ap-
propriate curricula and teaching materials. 

The participants in the study also identified significant benefits from institutional networking 
in relation to MS.  It was recognised that many universities faced the same issues and so 
there were major efficiencies to be gained through the sharing of resources, particularly 
those focused at the stage of transition from school/college into university. Many of the 
senior managers were aware of the work of sigma and the resources that it provides 
through the mathcentre and statstutor websites (www.mathcentre.ac.uk and 
www.statstutor.ac.uk). A number of PVCs referred to sigma as the ‘go to’ organisation for 
information about MS. 

Overall the findings from this study show that senior managers are well aware of the diffi-
culties of their students in relation to mathematics and statistics. They further understand 
that this situation is unlikely to change significantly in the near future and that, consequent-
ly, the need for MS provision will remain. In addition, they recognise the benefits of belong-
ing to a specialist network that can provide professional development opportunities for staff 
at a local level.  
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Our observational study of 26 lecturers’ mathematics teaching in a small group tutorial context drew 
on a grounded analytical approach to analyse the different practices lecturers employ to teach math-
ematics. An in-depth study of a tutoring culture, formed by one of these lecturers, revealed that the 
majority of lecturer and students’ time was used for proof. Observation and interview data provided 
evidence for a number of the lecturer’s strategies for teaching proof. Findings indicated that the lec-
turer’s strategies from her research, such as a variety of heuristics for thought processes, informed 
her strategies for teaching proof. In this paper, we exemplify one teaching strategy. 

Introduction 
A review of literature with regard to proof and proving reveals a research focus on the roles 
of proof in mathematics scholarship and possible implications for teaching. Central roles of 
proof within mathematics are reported as: verification (to establish truth through proof), 
explanation (to gain insight into why it is true), systematisation (to organise results into a 
deductive system), discovery (to discover new results), communication (to convey mathe-
matical knowledge), and incorporation of well-known results into new frameworks (Bell, 
1976; de Villiers, 1990; Hanna and Jahnke, 1996). 

Reflecting on roles of proof, Bell (1976), de Villiers (1990) and Schoenfeld (1994) asserted 
that students should experience all roles of mathematical proof and proving, as mathemati-
cians do. Based on this assertion, Schoenfeld (1994) shared his experiences for teaching 
proof to undergraduate students, and through that, his teaching of what it is to do mathe-
matics and think. Problem solving heuristics illustrated in proofs were highlighted. Hersh 
(1993) and Hanna and Jahnke (1996) offered another perspective according to which differ-
ences between proof for research and proof for teaching occur. For instance, Hersh (1993, 
p. 396-397) stressed that “[s]tudents are all too easily convinced”, so the role of proof in 
teaching is not verification; it is instead “admission into the catalog of primarily absolute 
truths” or explanation. However, not all of the aforementioned scholars based their exposi-
tion on empirical studies of teaching in lecturing or alternative contexts. 

Through interviews with lecturers, Weber (2010) and Yopp (2011) investigated the roles of 
proof in university teaching. Yopp’s (2011) results indicated that in proof for teaching, dis-
covery and communication were absent from 14 research mathematicians and statisticians’ 
sayings. Also, Weber (2010) stressed the lecturers’ lack of strategies to achieve their goals 
in teaching proof. However, in neither study was the lecturers’ actual teaching observed. 
Our observational study investigates the practices lecturers employ to teach mathematics in 
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a tutorial context. In this paper, we draw on our study to present a lecturer’s actual teaching 
of proof, and shed light on the roles of proof in her teaching. 

Methodology 
At an English university, students were expected to attend lectures (100+ students) and 
tutorials (2-8 students) for the first year of their mathematics degree. Tutorials were 50 
minute weekly sessions provided for work on lecture materials, usually in analysis and linear 
algebra. Zenobia was the tutor for a small group of five students. She was an experienced 
lecturer in modules offered by the mathematics department and a researcher in analysis. 
The tutorial group included four high achieving students and an average student. 

In our study, observational and interview data of 26 lecturers’ teaching in tutorials was au-
dio-recorded and transcribed. Subsequently, data was gathered systematically from tutorials 
of Zenobia and two other of the 26 lecturers for more than one semester. Through a 
grounded approach to the data, an analytical framework TKiP (Teaching Knowledge-in-
Practice) emerged. In this paper, we use only the category teaching practice of TKiP.  

In TKiP, the unit of analysis for practice is the tool. We drew on Vygotsky’s tools (1978) and 
saw a tool as carrying its material and psychological nature inherently (Cole, 1994). For in-
stance, a graph of an injective function is a tool for teaching injectivity since it might suggest 
meaning for injectivity (psychological nature). A graph, however, is a curve drawn in a ma-
terial whiteboard or page (material nature). In the context of tools, lecturers’ actions in 
teaching were seen to be modes of action with tools (given the name strategies). For in-
stance, a lecturer’s use of graphs can be seen as a strategy. In case a strategy is identified 
repeatedly in the data from a lecturer, this strategy forms a characteristic of this lecturer’s 
teaching. So, teaching practice in TKiP is analysed into tools, strategies and characteristics of 
teaching. An in-depth study of Zenobia’s teaching revealed that the majority of Zenobia and 
students’ time was used for proof. We took a grounded analytical approach to analyse Ze-
nobia’s practice of teaching proof in her tutorials. In order to present Zenobia’s teaching of 
proof, we identified her teaching tools and characteristics. Characteristics of teaching, as 
repeated strategies, enabled us to gain insight into the culture formed in Zenobia’s tutorials. 

Zenobia’s teaching of proof 
Zenobia often used the whole tutorial time for one proof. In observations, she informed stu-
dents that: “Most of proofs you will see this year is that something satisfies a certain defini-
tion.” The definitions for the tutorial proofs were in linear algebra (subspace, bijective linear 
transformation) and analysis (unbounded sequence, 𝜀-𝛿 definition of limit, convergence of 
sequence, subsequence, bijective function). A teaching goal she declared in interviews was 
that: students should pass the exams. Zenobia also reflected on a second goal in interviews: 
students should work on fundamental topics (for instance, in analysis) and experience ‘what 
it feels to understand mathematics’. We looked at Zenobia’s actual teaching practice to 
make sense of ‘what it feels to understand mathematics’ for her. A list of Zenobia’s charac-
teristics related to teaching proof and mathematical thinking is: selection of tasks, dissecting 
definitions, creation of students’ positive feelings and participation, public presentation of 
results, getting intuition by visual reference/reference to examples and evaluation of the 



khdm-Report, Nr. 05, 2017 

220 

 

students’ sense making of mathematics. In this paper, we exemplify one characteristic: get-
ting intuition by visual reference/reference to examples. 

In interviews, Zenobia explained to us three steps she implements for conducting her math-
ematical research, and which, she declared, she also uses in her teaching.  

The first step [in doing research] is the decoding where you are given a problem and 
you have to understand what the problem is, what everything mean [e.g. by experi-
menting with images against definition], why it is a problem; the second step is with 
this picture that you have got from the decoding process, you get some intuition, you 
play around with things in your head a little bit and then you get this sort of ‘aha I 
figured it out, I have got this idea now of why that works’ and then you have got the 
encoding process [i.e. the third step] where you write it down [formally]. 

Our observations provided us with evidence for Zenobia’s declared connection between her 
teaching practice and her own mathematical research practice. In addition, we asked Zeno-
bia to reflect on evidence for her declaration in tutorials we observed. We made sense of 
these connections through our analysis of tools and strategies for the three steps in her 
teaching and research. In the above quotation, we coded the extracts “understand what the 
problem is”, “what everything mean [e.g. by experimenting with images against defini-
tion]”, “why it is a problem” and “get some intuition” as declared research strategies. In 
brief, these research strategies were heuristics for thought processes. Taking a grounded 
approach, we coded extracts of transcripts of her teaching as teaching strategies. Getting 
intuition by visual reference/reference to examples is one of Zenobia’s teaching strategies 
which were identified repeatedly in the data. This strategy was considered to form a charac-
teristic of Zenobia’s teaching, which we now exemplify. For instance, the proof task in tuto-
rial number 8 was: 

If 𝑠𝑛 converges to 𝑙, then every subsequence of 𝑠𝑛 also converges to 𝑙. 

A student was in charge of writing on the board. Students contributed for the writing up of 
the definition of convergence on the board:  

A sequence 𝑠𝑛 converges to 𝑙 if ∀ 𝜀 > 0 ∃ 𝑘0 ϵ 𝑅  s.t.  |𝑠𝑘‐ 𝑙  |< 𝜀 ∀ 𝑘 > 𝑘0. 

Zenobia asked the student on the board to sketch a convergent sequence. The student 
sketched a graph of a sequence which converges to 0. Zenobia then asked all students to 
put values of 𝑠𝑛, 𝜀, and 𝑘0 on the graph. Another student was invited to the board to select 
a subsequence on the graph and define it. The students contributed so that the student on 
the board wrote: 

A subsequence of a sequence 𝑠𝑛 is a new sequence 𝑟𝑚 = 𝑠𝑓(𝑚) where 𝑓 is an increasing  
function 𝑓: 𝑁 → 𝑁. 

Zenobia then asked all students to put values of 𝑟𝑚 on the graph. She wrote on the board 
that they know the two aforementioned definitions and they need to prove: 

∀ 𝜀 > 0 ∃ 𝑘�0 > 0 s.t.  𝐼 > 𝑘�0 ⇒ |𝑟𝑚‐ 𝑙| < ε . 

A students’ key result was to get 𝑘�0  from 𝑘0. Students were experimenting with special 
cases for 𝑘�0  and 𝑘0 on the graph. From special cases, they generalised that: Since 𝑓 is 
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strictly increasing, ∃ 𝑘�0   𝑓(𝑘�0 ) > 𝑘0 . For m >𝑘�0 , | 𝑟𝑚‐ 𝑙|=| 𝑠𝑓(𝑚)‐ 𝑙| < 𝜀  because 
 

𝑓(𝐼) > 𝑓(𝑘�0 ) > 𝑘0. 

In interview after the tutorial, Zenobia reflected on the use of the graph. She said: 

I think what I am trying to do here is to get them to connect because they have an in-
tuition. This intuitively isn’t obvious for everyone, so the point is to understand how 
your intuition about convergence connects to the rigorous definition of convergence. 

We coded the transcript extracts regarding work on the graph as Zenobia’s strategy: getting 
intuition by visual reference/reference to examples. According to the above quotation, the 
students would get intuition for the definition of convergence. Considering that notation of 
the definition was negotiated on the board, intuition about convergence was potentially a 
shared intuition among students. The reference was visual since it was a graphical represen-
tation, and in this instance, this representation was also an example of a convergent se-
quence and subsequence. Associated tools to the strategy were: the graphical representa-
tion, the example of a sequence 𝑠𝑛 given by a student, the example of a subsequence 𝑟𝑚 
given by another student, and Zenobia’s questions to students (such as asking all students 
to put values of 𝑠𝑛, 𝜀,  and 𝑘0 on the graph). 

Conclusions 
In our analysis of Zenobia’s practice, we reported on her teaching strategy getting intuition 
by visual reference/reference to examples. This report could add value to lecturers’ poten-
tial lack of strategies in teaching proof (Weber, 2010). Zenobia’s strategy contributed to a 
small group culture utilising her research strategies, such as “understand what everything 
means” and “get some intuition”. So, the students potentially made sense of the meaning of 
notation in the definitions and got intuition for the definition of convergence. Our interpreta-
tion of the roles of proof for this strategy is students’ gaining insight into why the statement 
of the proof task is true (explanation); and discovering results new to students (discovery). 
It seems that Zenobia’s goal of students’ experiencing of ‘what it feels to understand math-
ematics’ is related to experiencing these two roles of proof. It also seems that Zenobia’s 
strategy revealed discovery as a role of proof which Yopp’s (2011) lecturers did not self-
report. 
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Pedagogical Mathematics refers to mathematical questions or problems which arise in the context of 
pedagogical issues. Far from the boundaries of mathematical research, they nevertheless provide 
stimulus for mathematical investigation. Many are of use as initial motivation for a topic, for getting 
to grips with a topic, and for revising, reviewing and deepening appreciation and comprehension of a 
topic. Examples are given from the domain of linear algebra, arising from the creation of an applet to 
designed to display the geometric basis of matrices, bases, and eigenvectors.  

Introduction 
University mathematics abounds with threshold concepts: concepts that need to be deeply 
comprehended, appreciated and integrated into learners’ functioning so as to make progress 
and which, once appreciated, are ever-present to inform related concepts and the carrying 
out of procedures (Meyer & Land 2003). Sometimes they even obscure the passage or 
route taken to reach them, so deeply embedded do they become. Examples include func-
tions, equivalence relations, differentiation and integration, … . In mathematics there are 
many different concepts which could be considered core or threshold, and yet what for one 
course is a threshold concept may be peripheral for another. However, identifying threshold 
concepts for a particular course of study and arranging for students to encounter them ap-
propriately is pedagogically vital in caring for students’ learning. Identifying such concepts is 
one thing; working on developing a rich concept image (Tall & Vinner 1981) to accompany 
formal definitions of them is another; internalising them is yet another. 

In addition to threshold concepts there are ubiquitous themes that pervade mathematics, 
such as doing and undoing, which includes inverses and conjugation, what Melzak (1983) 
called bypasses; invariance in the midst of change; freedom and constraint; and organising 
and characterising (Mason 2011; see also Gardiner 1987). These are closely related to 
mathematical habits of mind (Cuoco & Mark 1996).  

I offer the conjecture that time spent internalising core concepts and ubiquitous themes is 
time well spent because it makes further development much more efficient: less effort is 
required for learning and for teaching. They form the foundations around which other con-
cepts, methods, procedures and concepts accumulate. It therefore behoves lecturers to se-
lect the core threshold concepts for their course and to spend sufficient time on these with 
students, in a variety of ways, so that students really do cross the threshold. These concepts 
can then provide the basis for reviewing a topic and for demonstrating appreciation and 
comprehension of concepts. 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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Furthermore, internalising, or as Gattegno (1970) put it, integration through subordination of 
attention is much more efficient and effective than mindless rehearsing of routine exercises. 
It is when uncertainty after uncertainty pile up one upon another that learners lose the plot, 
feel their confidence draining away, and experience their desire to understand mathematics 
more deeply drain away. 

To this end I shall pose some mathematical questions arising from pedagogical considera-
tions of core mathematical ideas from linear transformations. Mathematical problems that 
arise from pedagogical issues based on experience of teaching a topic give rise to what I call 
pedagogical mathematics. They often arise for me from making interactive applets for dis-
playing complex mathematical relationships, triggering engagement with significant math-
ematical questions, often ones which might not otherwise have come to mind. 

A further aspect of pedagogical mathematics involves the teacher having recent personal 
experience of the use of their own mathematical powers, and encounters with pervasive 
mathematical themes, which parallel the experience learners may have when trying to get 
to grips with new concepts. This is how to sensitise yourself to the confusions and experi-
ences of learners, enabling you to devise pedagogic strategies and tactics (Mason 2002) to 
ease learners over ‘rough ground’. 

Background Theories 

Integration Through Subordination 
Gattegno (1970) offered the challenging slogan, “Only awareness is educable”. Slogans like 
this can act as a protasis, which when combined with recent past experience, can invoke 
some sort of syllogistic conclusion (Mason 1998). Gattegno used awareness to mean ‘that 
which enables action’, and this covers both consciously and unconsciously invoked actions. 
Using an image of the human psyche as a chariot taken from various sources (Gurdjieff 
1950), I extended the slogan to include “Only behaviour is trainable” and “Only emotion is 
harnessible”. The idea is that energy flows from and through evoked emotions, and is avail-
able to be harnessed to intentional actions, but otherwise leaks through habitual actions. To 
educate your awareness is to integrate useful actions which can be enacted in the future, 
and to sensitise your attention to notice opportunities in the future. Gattegno (1970) ob-
served that integrating actions and attention-sensitivities is done most efficiently by subor-
dinating attention. By this he meant that since expert behaviour appears to be effortless, 
and does not absorb full attention to the action, the best way to integrate an action is to 
withdraw attention from performing it. This in turn is best achieved by students working on 
a task which calls upon them to enact the desired action while their attention is elsewhere. 
The film Karate Kid illustrates this beautifully in the context of martial arts, where in order to 
loosen the wrist, the boy is called upon to sand and then paint a picket fence: attention is 
directed to sanding and painting, and away from creating the wrist action. Pedagogic Math-
ematics used as exploration can achieve integration through subordination of attention. 

Concept Images, Example Spaces & Question Spaces 
Tall and Vinner (1981) drew attention to the possibility of a gap between students’ sense of 
a concept (their concept image), and the formal definition. The concept image includes as-
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sociations, familiar examples, mental images, inner incantations when carrying out proce-
dures, and ways of describing the concept in ordinary language rather than in the formal 
language. Shifting from familiar language to formal language so that the formal language is 
internalised and the language of choice when expressing their thinking takes time, certainly 
at the beginning of a university course in mathematics. 

A student’s concept image includes not simply a few examples that they may have used to 
gain familiarity, but the whole space of examples (Watson & Mason 2002, 2005) together 
with tools for tinkering with examples so as to construct new ones. From the point of view 
of variation theory (Marton 2015), to comprehend a concept is to be aware of what can be 
varied, over what range, and what cannot be varied or what constraints apply in various 
examples while remaining an example of the concept. 

Concept images include the various associations which may be triggered metonymically, 
with affective content, as well as metaphorically, with cognitive structure. They also include 
the actions that become available through these associations, which may or may not be 
conscious. 

It is not surprising therefore that a concept image may dominate any formal definition, at 
least until students have become familiar with using formal language to express them-
selves. 

The Role of Mathematical Tasks 
Students have been given mathematical tasks (problems to solve, exercises to complete) at 
least since the earliest records of mathematical activity. What are they for? 

Tasks can be used to prepare learners for a topic; to introduce a topic; to develop and enrich 
learner example spaces in the midst of a topic; to review a topic; and to evaluate learner 
appreciation and comprehension (their grasp or understanding) of a topic. For example, Bob 
Burn (2008) would often set for homework an impossible task such as inviting students to 
construct a continuous function on a closed interval of 𝑅 which does not attain its extremal 
values; in the next class he would then prove the theorem, knowing that students had some 
investment in finding out why they had failed. Guy Brousseau (2006) made a rough drawing 
of the medians of a triangle intersecting pairwise to form a triangle, and then asked stu-
dents to draw a triangle for which the intersection triangle was big enough to see clearly, 
ostensibly as a setting for further reasoning, but actually as a means of getting them to real-
ise (literally), conjecture and prove that the medians in fact intersect in a single point. 

The conjecture being put forward here is that selecting a few core threshold concepts and 
retuning to them throughout a course could prompt learners to get to grips with those core 
ideas, and to enrich both their concept images and their example spaces through repeated 
exposure to the same ideas. 

Assenting and Asserting 
Students who sit ‘at the back of the class’ (literally or figuratively) and assent to what is said 
and done are reinforced in their passive mode by the act of taking notes and attempting to 
keep up with the lecturer. But in order to learn to think mathematically it is essential to 
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make conjectures and then to test those conjectures. This is the essence of Pólya’s film Let 
us Teach Guessing (1965), and the backbone of Thinking Mathematically (Mason, Burton & 
Stacey 1982/2010). It is important that teachers generate a conjecturing or mathematical 
ethos in the classroom, in which students asserting something, then disbelieve their conjec-
ture and with the help of colleagues seek counter-examples by means of which to modify 
and improve it. 

Extending and Varying 
No task is an island, complete unto itself. It is (almost always) possible to extend and vary 
any result. As soon as a student can solve a particular problem, it is vital that they then seek 
the class of problems which succumb to the same method by changing one or more param-
eters. This is the what-if-not? questioning advocated by Brown & Walter (1983). Also avail-
able is to consider inverse problems in which (some of) what was data becomes unknown, 
and some of what had to be found becomes data. This what-if and what-if-not stance to-
wards problems generates similarity classes of problems and crystallises experience. 

See-Experience-Master, Manipulating-Getting-a-sense of-Articulating and Enac-
tive-Iconic-Symbolic 
Bruner (1966) distinguished three modes of (re)presentation, which can usefully be thought 
of as three different worlds of experience. Enactive refers to actually doing things, manipu-
lating something reasonably familiar (which may be a material object but can also be a dia-
gram or familiar symbols). Pólya (1962) used the term specialising: trying specific instances. 
The purpose of the manipulating is to get-a-sense-of what is or might be going on, seeking 
relationships which may later be seen as instantiations of properties (as part of generalisa-
tion). Often it helps top try to capture those relationships in a diagram (iconic mode). The act 
of conjecturing a generalisation is an attempt to articulate the underlying structural relation-
ships, and over time these articulations become more succinct and more meaningful. They 
may begin as long strings of cautious words, but eventually they become sufficiently suc-
cinct to be written down, perhaps even in a more formal mathematical expression (symbolic 
mode). When the symbols become familiar, they act as confidence-inspiring entities for ma-
nipulating and specialising in the future. That is why it is worthwhile spending time on the 
threshold concepts so that student confidence grows and so that they become building 
blocks of students’ appreciation and comprehension, rather than blockages to further under-
standing. 

Explorations in Linear Algebra 
The idea is to develop mastery of a topic not through rehearsal of routine exercises but 
through exploring a question which is challenging, and which calls upon the various technical 
terms and concepts of the topic. One way of doing this is to prompt learners to extend and 
enrich their example space; another is to pose challenges that go to the heart of the topic. 
All of the following arise quite spontaneously when using an applet to display the dynamic 
nature of linear algebra through varying basis elements and vectors. 

For example, having worked on change of basis in vector spaces: 
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• Given a non-singular linear transformation 𝑇 from a vector space to itself, what is 
the set of matrices that can be used to (re)present 𝑇? 

• Given a linear transformation 𝑇 from a vector space to itself, which sends the stand-
ard basis 𝒆 to the basis 𝒇, represented by a matrix 𝑀 which sends vectors specified 
in basis 𝒆 to vectors specified in basis 𝒆, what is the matrix of 𝑇 sending vectors 
specified in basis 𝒇 to vectors specified in basis 𝒇? 

The answer, to both, when you know, is of course easy. This is characteristic of threshold 
concepts: when you have crossed the threshold, questions about it are easy, but when you 
have not, they can seem insuperable. However learners who have only recently encoun-
tered the topic of change of basis may require some experimentation or exploration to con-
vince themselves, and being surprised at the generality, may be unsure whether they are 
correct. 

Linear algebra is as much geometric as it is algebraic, its power coming from harnessing the 
two. There is no need to use numbers when thinking of matrices: 

• Any two linearly independent vectors {𝑓1, 𝑓2}, will form a basis. The matrix 𝑀 which 
transforms the standard basis {𝑒1, 𝑒2} to {𝑓1, 𝑓2} can be presented as an action on 
any vector 𝑣 (in terms of the standard basis) which gives an image vector 𝑤 ex-
pressed in terms of {𝑓1, 𝑓2}. How might 𝑤 be constructed geometrically using the 
new basis {𝑓1, 𝑓2}? 

To attempt this requires clear thinking as to how the coordinates of a vector are interpret-
ed/constructed geometrically. It could be used before matrices are introduced at all, to offer 
a geometrical sense of what a linear transformation does, or after matrices have been en-
countered, to offer a geometrical sense of what matrix multiplication is doing. The applet 
which was presented at the conference (Mason 2015) offers opportunities to explore these 
and the following questions. It is entirely number-free (as far as the user is concerned).  

A related question is 

• How are the basis vectors of the row space of a matrix related geometrically to the 
basis vectors of the column space? How might this be seen geometrically? 

At an intermediate level is the following: 

• Linear transformations 𝑇 from 𝑅2 to 𝑅2 mapping 𝑣 to 𝑤, can be expressed in terms 
of the images of the standard basis under 𝑇, namely {𝑓1, 𝑓2}. What is the boundary of 
the region in which the second vector 𝑓2 must lie, so that 𝑇 has eigenvectors? 

Such a question has always been available to be asked, but when dynamic geometry is be-
ing used, it arises as an entirely natural question spurred by curiosity released by the possi-
bility of varying objects. The same question can be asked about 𝑓2 when 𝑓1 is held fixed. 

By contrast, the question 

• Given a non-singular linear transformation 𝑇 from 𝑅2 to 𝑅2, the image of a circle is 
an ellipse. How are the axes of the ellipse related to the transformation 𝑇? 
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requires deep insight into inner products as the means for calculating lengths, and possibly 
also change of basis, or else considerable exploration, in order to reach a satisfactory con-
clusion. 

For a more advanced group of students studying ring theory, a question such as the follow-
ing calls upon reviewing and enriching their concept of vector spaces by making use of new-
ly acquired concepts in a familiar setting. 

• The set of matrices mapping a vector space to itself and with v as an eigenvector 
forms a ring (closed under addition and scalar multiplication). What geometrically are 
the matrices that are 0-divisors? 

Even more challenging is the question 

• For a given linear transformation 𝑇 from 𝑅2 to 𝑅2, for which vectors 𝑣 with image 
𝑇(𝑣) is |𝑇(𝑣) –  𝑣| greatest and for which is it least? How do they relate to the ei-
genvectors? 

• When is the cosine of the angle between 𝑣 and 𝑇(𝑣) at its greatest and its least? 

Less challenging but equally powerful for consolidating appreciation and comprehension of a 
topic is to get learners to construct their own examples meeting various constraints (Watson 
& Mason 2005). For example, 

• Construct a matrix relative to the standard basis of a linear transformation 𝑇 from 𝑅2 
to 𝑅2 for which the eigenvectors are at an angle of 60° and for which one is twice 
the length of the other. Show how to convert your example into all other possible 
examples. 

Exploiting Pedagogy-inspired Mathematical Problems 
Showing students an animation means that they have seen something flash by. No matter 
how carefully animations are constructed, it is important that students try to re-construct 
mentally what they have seen, and then, on the basis of questions arising, have the oppor-
tunity to see the animation again, stopping it at critical points so as to check their conjecture 
or reach an interpretation of something they missed. Mental re-construction is one of many 
pedagogic devices for supporting students in educating their awareness, as they link actions 
with situations. 

Seeing something go by is not at all the same thing as getting experience. Gaining experi-
ence is not sufficient for internalising or integrating something, because, as I have said many 
times, “one thing we don’t seem to learn from experience, is that we don’t often learn from 
experience alone.” Something more is required. Although traditionally that ‘something’ is 
associated with “practice makes perfect”, there is little evidence of the adage actually being 
generally true. However, “practice through subordinating attention” is much more effective. 
The framework See-Experience-Master can act as a reminder to provide students with the 
kinds of experiences that they can work on to gain mastery, rather than simply seeing 
things go by in a rush. 

Through raising a number of mathematical questions, I have illustrated how pedagogically 
active questions can arise for someone who is alive and awake to their mathematical think-
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ing, seeking to vary and extend results with a problem-posing frame of mind. Even deeper 
appreciation of a topic is available when you try to display mathematical results in a dynam-
ic fashion. It is unfortunate that students don’t have the time to create the applets for them-
selves, but as a second best, displaying phenomena (dynamic and static) and getting stu-
dents to try to articulate what they have seen, formulate conjectures, and try to justify 
those conjectures, contributes to deepening their appreciation and comprehension of the 
particular topic and so to building their confidence in their grasp of the topic, while at the 
same time enriching their mathematical experience of mathematical thinking. 
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As part of the Characteristics of Successful Programs in College Calculus (CSPCC) project we observed 
nearly 70 lessons taught by 65 instructors at 18 institutions. The observation protocol included a 
Problem Log with which observers recorded the mathematical tasks used in class and their enact-
ment, specifically who was involved in the solution (e.g., groups, teacher), what representations were 
called for (e.g., symbolic, graphical), what technology was used (e.g., graphing calculators) and other 
important features (e.g., doing a proof). In all we analyzed 497 tasks. In this presentation we discuss 
what we learned about calculus teaching by analyzing the tasks used and their enactment and the 
affordances of the instrument used to collect classroom data.  

A first-year calculus course in the United States (Calculus I) provides the basic tools for stud-
ying the mathematical concept of change. In contrast to other counties, calculus in the Unit-
ed States is usually a first year university course and it is typically required for any science, 
technology, engineering, or mathematics major. In Fall 2010, over 300,000 students nation 
wide were taking a calculus course at their college or university (Blair, Kirkman, & Maxwell, 
2013). A persistent problem of the teaching of university calculus is the perceived high fail-
ure rate in the course (Bressoud, Mesa, & Rasmussen, 2015). Students’ disengagement is 
usually a major reason: lectures are uninspiring or unimaginative, the curriculum is “over-
stuffed” and taught at too fast a pace, and instructors show little concern for student under-
standing (Seymour & Hewitt, 1997). When students fail the course, their opportunities to 
pursue STEM fields are curtailed. The large proportion of students failing calculus contributes 
to the image of calculus as a filter (Steen, 1988). In the late 80s several efforts to change 
the nature of the curriculum and the teaching of calculus resulted in various changes that 
have percolated through current day curricula. The “Harvard” calculus, for example, makes 
heavy use of the rule of four (verbal, tabular, symbolic, and graphical representations), 
technology (notably graphing calculators and computer algebra systems), and conceptual 
and contextualized problems (see e.g., Hughes-Hallett, Gleason, McCallum, & Others, 2005). 
With the goal of identifying institutions that were especially successful in keeping students 
from dropping out of the calculus sequence, the Characteristics of Successful Programs in 
College Calculus (Bressoud, Rasmussen, Carlson, Mesa, & Pearson, 2010) was launched in 
2010. The study, conducted in two phases, generated survey and case study data that pro-
vide an unprecedented source of information about Calculus I students, their teachers, and 
their programs from a cross-section of over 150 post-secondary programs across the United 
States. In this paper we focus on a slice of the data collected as part of the case study phase 
of the project, specifically the observations of calculus lessons we conducted in the visits to 
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the 18 case study institutions that were selected because they were successful 44F

1, and use 
these observations to assess the extent to which lessons at these institution exemplify 
changes proposed by the U.S. calculus reform of the 80s.  

Teaching in higher education 
Teaching has been an important topic in the higher education literature (Menges & Austin, 
2001). Recent theorizations of teaching acknowledge the situated and historical nature of 
the activity, carried out by individuals, bound by disciplinary expertise and immersed in very 
specific contexts (e.g., Hora & Ferrare, 2012). The more specific construct, instruction, de-
fined as the interactions between the teacher, the students, and the content, within specific 
environments (Cohen, Raudenbush, & Ball, 2003), has been instrumental in investigations of 
mathematics teaching at community colleges (e.g., Mesa, Celis, & Lande, 2014). These con-
ceptualizations affirm the importance of studying how the interactions occur in real time in 
order to account for the ways in which learning can be facilitated. Studies of mathematics 
classrooms at research universities suggest that core instructional practices include lecturing 
while working out specific problems, with the goal of imparting information (Hora & Ferrare, 
2012) and that there is minimal use of complex problems, use of technology, or group work. 
These studies suggest that student participation in mathematics lessons is highly guided by 
the instructor and that there is an emphasis on solving problems at the board with the inten-
tion of demonstrating, rather than creating, knowledge. These studies however, lack the 
specificity of content that a single course provides and they do not look at ‘successful’ prac-
tice. In this study we rely on observation of calculus lessons taught at the successful institu-
tions to characterize the problems teachers and students in class. Specifically we asked: 
what are the mathematical and pedagogical features of the problems used in Calculus I les-
sons at institutions with successful calculus programs? This information helps determine the 
level of alignment between the implementation observed and the ideals of the US calculus 
reform. 

Methods  
We observed close to 70 lessons taught by 65 different instructors. Each section was ob-
served only once. Data were collected via an observation instrument designed to capture 
features of calculus instruction that we knew were present: lecture, interaction between 
teachers and students, and mathematical tasks (also called, simply, “problems”). For each 
problem we recorded the start and stop time of the problem, the problem statement, its 
solution, and circled codes attending to four dimensions: who performed the problem (Ac-
tor: the lecturer, the class, individual students, students at the board, students in pairs or 
students in groups), what technology was used in the problem (scientific calculator; gra-
phing calculators; computer algebra systems; animations), what representations were used 
(graphical, tabular, symbolic, verbal) and other complexity features (it required 
Proofs/Justifications, solution focused on Skills/Manipulation, the problem was Open Ended, 

                                                 
1 Success was defined by a combination of student variables from the survey (e.g., persistence in calculus as 
marked by stated intention to take Calculus II and affective changes, including enjoyment of math, confidence in 
mathematical ability, and interest to continue studying math) and program passing rates (Hsu, Mesa, & The 
Calculus Case Collective, 2014). 
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used a Diagram, was Contextualized, Multiple Methods were presented or discussed, see 
Figure 1). We analyzed the data at the two levels, problem and lesson. Descriptive summary 
statistics of data at the problem level give us a picture of what this corpus of problems looks 
like that we use to get a sense of what students might be experiencing in a given moment 
in time as they take a calculus lesson. There are limitations due to the small number of ob-
servations per teacher and the selectiveness of the institutions in the sample. The findings 
are not meant to be generalizations but rather descriptions of the phenomenon observed at 
these institutions as a whole. 

 
Figure 1: Problem log entry (White, Blum, & Mesa, 2013). 

Findings 
We recorded 497 problems across 67 lessons. On average the time spent on problems was 
high (~10 minutes), but the distribution of time was skewed: 23% of the problems took 
between 1 and 3 minutes, with the median being 6 minutes. Ten percent of the problems 
(45) took 20 minutes or more to complete. Instructors were in charge of presenting a large 
proportion problems (82%); other forms of engagement—group, pair, or class—were less 
common (each present in less than 3% of the problems), although students were observed 
working individually on nearly 15% of the problems. Technology use was also not very 
common, being observed in about 3% of the problems. Symbolic representations were used 
in almost two thirds of the problems, whereas graphs were present in almost a fourth of the 
problems. Finally, almost two thirds of the problems had a solution that emphasized skill 
development, whereas just 12% of problems were contextualized, and 9% required a proof 
or a justification. A small 3% and 2% of problems were open ended or solved in more than 
one way, respectively. 

Discussion and Conclusion 
The analysis of the problems in these Calculus I lessons from institutions with successful 
calculus programs suggest an astonishing homogeneity of practices. The analysis of the 
problems in these lessons suggest that: 1. for the most part the instructor is in charge of 
presenting problems, 2. the majority of the problems seek the reinforcement of skills and 
methods using mainly symbolic representations, and 3. technology, and other student cen-
tered class organizations were less frequently used. Two explanations can justify these find-
ings, content and difficulty of change. A non-negligible number of lessons dealt with topics 
for which reformed features may not have been helpful in achieving the lesson’s goal (e.g., 
learning to use the L’Hôpital’s rule). Thus a more nuanced analysis needs to account for spe-
cific topic of each lesson to determine whether content played a significant role in these 
findings (e.g., curve fitting may rely on technology). We also need to investigate whether 
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the opposite is true, that is, that there were a number of topics for which more interesting 
task features (e.g., pairs, graphing calculators, justification/proofs, multiple representations) 
could have been possible, but were not observed. Second, the literature indicates that 
changing educational practices is difficult (Dancy & Henderson, 2009). Perhaps the changes 
proposed by the calculus reform required difficult-to-secure resources (e.g., smaller class 
sizes instead of large lecture halls) or encountered faculty or student resistance, all of which 
can dampen efforts to make changes. Our analysis of the CSPCC survey data shows that 
student-centered instruction (group work, word problems, “flipped” class, student explana-
tions of thinking) had a small and negative impact on students’ attitudes towards calculus 
(Sonnert & Sadler, 2015). The connection is not simple to tease out with the current data, 
however, especially because the observations occurred in “successful” institutions. Our 
sample is small, but we believe that the observation process allowed us to gather infor-
mation that helps characterize the Calculus I lessons that over 2000 students were experi-
encing at a very particular moment in time. Our current ongoing analysis indicates that the 
instrument is useful in capturing the features that help distinguish various types of enact-
ments. This type of data also allows for clustering techniques that can be used to describe 
types of lessons, thus helping to describe students’ learning opportunities in this key, gate-
way course to STEM majors.  
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Lectures in courses for math majors typically revolve around definitions, theorems, and proofs, but 
the lessons students learn about mathematics extend far beyond the scope of the content discussed 
explicitly. Still, there has been little empirical research in this area. In my research, I explore what 
mathematical ideas different instructors try to convey in lectures and why. By comparing lectures in 
different sections of the same courses, and through interviews with the instructors aimed at eliciting 
their beliefs and goals, I have found that different practices for preparing for lectures lead instructors 
to different student profiles and consequently have great impact on the mathematics in the lectures. 
This finding has several potential implications for professional development at the collegiate level.  

Introduction 
What do we want students to learn in advanced proof-oriented math courses at university? 
What ideas and lessons about mathematics should instructors teach in lectures and how?  

There is a widely held criticism that lectures at university comprise almost entirely of cycles 
of polished formal expositions of definitions, theorems and proofs, presented in solemn and 
unrelieved concatenation (Davis & Hersh, 1998; Dreyfus, 1991). However, the perception 
that the mathematical content in lectures comprises only of definitions, theorems and proofs 
can be contested on at least two grounds: (1) There is a substantial body of literature (e.g. 
Schoenfeld, 1988; Yackel & Cobb, 1996) describing how students pick up practices, ways of 
thinking and perspectives about mathematics through instruction regardless of whether 
these ideas are discussed explicitly in classrooms or not; (2) Recent empirical studies that 
explored lectures in advanced math courses from the perspective of the instructors sug-
gested that the mathematical ideas instructors try to convey extends above and beyond the 
content that is written on the board or discussed explicitly in the classrooms (e.g. Lew et al., 
in press). 

This study explores the connections between instructors’ practices and beliefs, and the con-
sequent impact on the mathematics addressed in the lectures, by observing lessons and 
through interviews with different instructors teaching different sections in the same cours-
es. The goals of the study are: (1) To explore the mathematical ideas and lessons about 
mathematics that the different instructors try to convey in the lectures; and (2) To propose 
explanations as to why instructors address the mathematics in their lectures the ways they 
do. 
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Theoretical Background 
In terms of research and innovation, mathematics at the university level lags many steps 
behind K-12, as the curriculum and teaching practices in most university classrooms is es-
sentially the same as it has been for decades, and most advanced math courses are typically 
taught in a lecture format. Math lectures have been criticized repeatedly over the years by 
mathematicians and math-educators for communicating mathematics in a finished and 
polish form, usually following the sequence theorem-proof-applications (Dreyfus, 1991), 
and for depriving students the opportunity to experience and learn from the processes by 
which new mathematical ideas are generated (Davis & Hersh, 1998). However, these views 
of lectures are generally based on personal experiences and shared opinions (Lew et al., in 
press), as empirical research on the actual teaching practices at the university level is virtu-
ally nonexistent, and very little is known about what university math instructors think and 
do on a daily basis as they perform their teaching work (Speer, Smith, & Horvath, 2010). In 
recent years, several case studies of instructors at advanced mathematical courses have 
portrayed a significantly different profile of lectures than the one described by critics (e.g. 
Lew et al., in press; Pinto, 2013, in press).While these studies challenge the general percep-
tion of lectures and can lead to a better understanding of instructors’ teaching approaches 
and methods, the relationships between what mathematics instructors try to convey and 
how, and the ideas and lessons about mathematics that he students learn, remains mostly 
an uncharted research area. 

In this study I use Schoenfeld’s resources-orientations-goals (ROG) model for decision-
making processes (2011). The ROG model was developed as a tool for explaining how and 
why teachers make their instructional decisions they make in terms of knowledge, orienta-
tions (e.g. beliefs, views) and goals. Substantial empirical data has been subsumed under 
the ROG umbrella (e.g. Pinto, 2013, in press) and it has proven its usefulness in uncovering 
connections between particular beliefs and specific practices, inside and outside the class-
room. 

Methods 
Data were collected at two large public universities, one in Israel and the other in the United 
States, from 7 different sections in two Real Analysis courses. The instructors in this study 
were two graduate-student instructors (GSIs), two math lecturers, and three mathematician-
instructors. The GSIs based their lectures on the same lesson-plans while the other instruc-
tors followed, in varying ways and degrees, their course’s book. The author attended the 
lectures throughout the semester, taped them and took notes. The lectures were compared 
to the curriculum to highlight potential instances where the instructors tried to convey con-
tent beyond what was specified in the curriculum. These instances served as the focal points 
of discussions with the instructors that aimed at eliciting the mathematical ideas the instruc-
tors tried to convey, and the considerations underlying their instruction. The interviews 
were transcribed and analyzed according to the ROG framework to identify connections, first 
between the instructors’ beliefs and practices, and then to the mathematics in the lectures.  
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Findings 
The instructors teaching different sections in the same course relied on the same curriculum. 
Yet, in large measure, because of what they considered to be important about the content, 
what emerged in class, and what the students experienced, was radically different. The re-
flections of the instructors on their adaptations revealed that in many cases the instructors 
addressed the content in a way they hoped would convey important mathematical ideas. A 
discussion of the adaptations the instructors made and the mathematical ideas they were 
trying to convey is beyond the scope of this paper and will be presented separately. How-
ever, there are two important points to note. First, we note that instructors were conveying 
ideas beyond what was specified in the curriculum in all parts of the lectures. The few ex-
amples in the literature that the author is aware of that studied the content in the lecture 
from the perspective of the instructors have focused on the presentations of proofs. How-
ever, the instructors participating in this study have tried conveying valuable lessons about 
mathematics while motivating theorems, discussing examples and special cases, solving 
exercises, and introducing new concepts as definitions. The second point to note is that 
when considering the mathematical ideas the instructors had in mind and tried addressing in 
the lectures as a whole, it turns out that a significant portion of the content in the lecture 
remained implicit, that is, it was left for the students to infer, without being framed as a con-
tent that is taught or should be learned. Furthermore, in most cases these ideas were dis-
cussed orally without being recorded on the board, which according to the findings in (Lew 
et al., in press) suggests that students may have not recognized these ideas as a something 
they can and should learn.  

Another finding of this study is that most adaptations the instructors made were not the 
result of in-the-moment decisions, but rather a consequence of conscious and deliberate 
decisions made prior to the lecture. This observation highlights a significant difference be-
tween instruction in the collegiate level and instruction in K-12, where the course of a les-
son is often determined by interactions between the teacher and the students, and the con-
sequent in-the-moment decisions the teacher makes. Instead, the nature of a lecture at uni-
versity, where the instructors do most if not all of the talking, leads to a much bigger role of 
the lesson image – the instructors’ full envisioning, before the lectures, of how the lecture 
will play out in practice. Thus, the practices of instructors for preparing for a lecture, and the 
factors that shape these practices have a crucial impact on the mathematics in the lectures. 

Recurring patterns in the reflections of the instructors on their pedagogy, suggested four 
major categories that shape the lesson-image: The student profile(s) the instructors have in 
mind (student image), the model the instructors have of a good instructor (instructor im-
age), the sense of the mathematical experience the instructors want their students to have, 
as well long-term and short-term learning goals and outcomes (content image), and finally 
the constraints and expectations of the institution. These four categories were evident, to 
different extents, in almost every reflection of the instructors on their pedagogy. Two im-
portant observations to note are that by and large these images were independent of the 
specific content and the actual students in the classrooms, and that these images seemed to 
remain almost fixed in the discussions throughout the semester. This phenomenon may be 
due to the fact that instructors got very little feedback from their students during the se-
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mester and had little opportunities to challenge and refine their perceptions and under-
standing about how their student are doing, and what works in the lecture.  

One notable approach instructors have for preparing for lectures is to interact with the 
mathematics – make sense of the content, solve the exercises and prove the theorems on 
their own, and then reflect on what they were doing and use this reflections as a resource 
and a source of inspiration for discussions in the lectures. An example of instructor using this 
practice, and how it shaped the lecture, can be found in (Pinto, 2013, in press). Another no-
table approach for preparing for lectures is to try and scan the curriculum from the perspec-
tive of the students, and try to identify potential learning obstacles, misconceptions and dif-
ficulties students may face, as well as connections to students prior knowledge. This prac-
tice relies on, and is shaped by, what the instructors knows or believes about his students. 
As it turns out, the instructors in this study tended to rely on just one of these approaches. 
The two GSIs and two of the mathematicians relied mostly on self-reflections, while the 
third mathematician and the two experienced lecturer relied on different models of stu-
dents.  

There was a strong correlation between the practices the instructors use and their student 
image. Not surprisingly, in the case of the instructors that relied on self-reflection, the stu-
dent image had many characteristics in common with the instructors themselves. Conse-
quently, in many ways, the instructors were teaching future math researchers, and in their 
lectures they put great emphasize on modeling their own practices and ways of thinking. In 
contrast, the student image of the instructors that relied on different models of students 
was far less homogenous, and more independent of the instructors. These instructors were 
less prone to model their own behavior and ways of thinking, and instead modeled an ap-
proach that was closer to the students, for example by writing mathematics on the board in 
the same way as expected from students. The instructors also placed greater emphasis on 
misconceptions, as well as procedures and rituals, for example while reading definitions, or 
starting a proof. 

The findings discussed in this paper have several implications for professional development 
at the collegiate level. All the instructors in this study were highly motivated and their re-
flection on their teaching indicated high pedagogical awareness. Furthermore, the instruc-
tors were clearly acting in the best interests of their students, according to their own per-
spectives and understandings. However, limited understanding of the students sometimes 
constrained the instructors, as one of the GSI noted: “I know it is naïve to think that I and the 
students would find the same things interesting or confusing, but the way I see it is an inevi-
table working assumption.” Thus, this study highlights the importance of addressing prepa-
ration for a lecture, and helping instructors develop practices that would make them less 
dependent on self-reflections, and lead to instruction that fits better the actual students in 
the classrooms. 
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This presentation reports findings from university mathematics teaching in the tutorial setting. Alt-
hough the tutorial, in addition to the lecture, plays a vital role in university mathematics education, 
there is hardly any research on teaching assistants in Germany. To provide as much insight into their 
work as possible, teaching episodes are analyzed from various mathematical and didactical perspec-
tives. Among others, the constructions of mathematics in tutor-student interactions are discussed. In 
this paper, the focus is on ways the teaching assistants use to discuss exercises. We call them 
“scripts”. The five scripts that could be identified in 78 discussions are presented and illustrated by 
examples. 

Introduction 
Much research has been conducted on how and how well teachers teach mathematics in 
school. In the last decade, educational studies became more and more concerned with ter-
tiary teaching, however, the focus is mostly on lecturers and students. Little is known about 
the work of teaching assistants (TAs), who play an important role in mathematics university 
teaching. Teaching assistants in mathematics in Germany are usually undergraduate stu-
dents from mathematics teacher education programs, who teach small group tutorials with 
up to 30 students and often function as a link between lecturers and students. Many univer-
sities have recognized the impact TAs can have on the students’ learning and have devel-
oped special trainings, but only few research has been done on how they teach and how 
they could be supported more effectively (e.g. Mali, Biza, & Jaworski, 2015).  

The LIMA project developed a training program (e.g. Biehler, Hochmuth, Klemm, Schreiber, & 
Hänze, 2012) orientated on the specific needs of mathematical teaching. In order to identify 
the needs of our teaching assistants, we made a theoretical competence analysis and ob-
served teaching assistants during their work in the tutorials. However, a lot of input for the 
training was generated from experience and pedagogical literature. The question whether 
these underlying assumptions could be confirmed by research remained. This is where the 
author’s doctoral project focuses on: its aim is it to point out the challenges for teaching as-
sistants and to gain inputs for training. 

The doctoral project consists of three major studies. The first one is a theoretical discussion, 
comparing teachers and teaching assistants in order to determine to which extend results of 
educational studies related to school (e.g. Helmke, 2012) can be transferred or adapted to 
tutorials. The second part is based on studies of educational scripts (e.g. Pauli & Reusser, 
2003; Seidel, 2002), trying to identify typical scripts of mathematical tutorials. It gives an 
overview on the work of the TAs and is followed by a more detailed case study analysis of 
five discussions on one selected exercise. This third part examines tutorials, especially tutor-
student interactions, from mathematical and didactical perspectives. 
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Theoretical Background  
Schank and Abelson were the first to define scripts in 1977 and described them as „a prede-
termined, stereotyped sequence of actions that defines a well-known situation“ (Schank & 
Abelson, 1977, p. 41). This definition can be used in various contexts, for instance, Schank 
and Abelson use a restaurant script for illustration. Scripts have also been used in education-
al research, often to describe education in a non-laboratory setting. By using educational 
scripts, focusing on teaching activities, it is possible to reduce the high complexity of educa-
tion without having to use a laboratory setting (e.g. Blömeke, Eichler, & Müller, 2003). Pauli 
and Reusser (2003) conducted one of the greatest studies on scripts in mathematical educa-
tion, comparing German and Swiss data from TIMS-Study of the years 1995 and 1999. By 
analyzing the learning activities the teachers use in their math lessons, Pauli und Reusser 
were able to identify two main scripts for discussing new topics. The script dominating Ger-
man lessons (78%) was rather teacher-centered. This script was also very present in Swiss 
lessons (58%), however, 30% of the Swiss lessons had a more student-centered script 
(Geman lessons: 13%). Pauli and Reusser also found out that opening activities are present 
in about half of the lessons, the two most prominent activities were the “correction of 
homework” and “repetition of prior knowledge”. Closing activities at the end of the lesson 
were used in less than 10% of the lessons. For the main part of the lesson, Pauli and 
Reusser also identified what methods the teachers used to introduce a new topic, how they 
motivated new topics and whether they gave time for exercises.  

Design of the Study 
The study is being conducted at the University of Paderborn, where preservice teachers of 
mathematics are expected to attend lectures and small group tutorials of 10 to 30 students. 
Tutorials are 90 minutes weekly sessions. Part of the time is used to discuss exercises stu-
dents had to work on beforehand. The teaching assistants have corrected the student’s 
work and therefore know where the students struggled. Teaching assistants and lecturers 
meet weekly in order to discuss the students’ difficulties and to plan the tutorial. Some-
times, the teaching assistants get a lot of directions on what they have to discuss and what 
kind of methods they have to use, but in most cases they are rather free to plan their tutori-
al as they want to. The teaching assistant gets a model solution from the lecturer which is 
not made available to the students. 

The videos for this study were generated in tutorial trainings over several semesters, they 
were used to give feedback to their work as teaching assistants. The topics of the tutorials 
range from analysis to arithmetic and didactics of geometry. Now, this data, containing 78 
exercise discussions in 32 different tutorials, is analyzed in more detail. Most of the tutorials 
(24 of 32) were led by two teaching assistants, however, in most cases only one TA was in 
charge during the discussion.  

The qualitative content analysis (QCA) is used to analyze this large amount of video data. 
The thematic QCA by Kuckartz (2012)47F

1 seems to fit the research aim best, as it allows induc-
tive coding and also reduces the big amount of data. The discussion of exercises is divided 
                                                 
1 for a precise description of the thematic QCA see Kuckartz (2012, p. 77ff)  
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into three main phases: start up, phase of discussion, finishing up. The first and the last 
phase are coded for learning activities according to the study of Pauli and Reusser (2003). A 
learning activity is a well-defined situation in which the teaching assistant or a student takes 
over a special activity like “clarification of the task difficulty” or “summarizing the results”. 

The discussion phases are analyzed for three different main categories: methods, complete-
ness and didactical elements. The subcategories are generated by subsumption (see 
Schreier, 2012, p. 115f.), however, results from research on characteristics of classroom 
teaching (e.g. Brophy, 2000; Helmke, 2012) influenced the construction of categories. For 
example, “clarification of expectations” (e.g. Brophy, 2000, p. 31) is often mentioned as a 
characteristic of good teaching and can be found as a subcategory in the main category “di-
dactical elements”. The following subcategories were constructed in this process: 

phase categories 

start up opening activities 
• clarification of task 
• orientation for process of discussion 
• feedback on work of students 
• repetition of relevant topics 
• clarification of task difficulty 

discussion phase completeness 
• yes 
• no 

methods 
• discourse 
• presentation of TA 
• student presentation 
• work in groups 
• individual work 

didactical elements 
• visualization 
• highlighting common mistakes 
• reference to lecture, other exercises, school 
• draft solution 
• clarification of expectations 
• solving in several ways 
• recapitulation  
• clarification of student questions 
• generating cognitive conflicts 
• return of student questions 
• advanced questions 

finishing up closing activities 
• clarification of questions 
• summary of exercise 
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• advising students to do something 
• continuation of contents 

Table 1: Categories in the three phases identified by inductive coding 
 
Using these categories, each of the 78 discussions is assigned one of five different scripts. 

Results 
The following list describes these five scripts that could be reconstructed. 

• presentation of the model solution without didactical reflection 

The TA presents his solution without using many learning activities or didactical ele-
ments. The solutions are usually complete, except for small parts of the exercise, and 
quite similar to the model solution of the exercise. 

• presentation of the model solution with didactical reflection 

The TA presents his solution while using some learning activities or didactical ele-
ments, e.g. “giving feedback on the work of the students”. The solution is usually 
complete, except for small parts of the exercise, and quite similar to the model solu-
tion of the exercise. 

• discussion of selected difficulties 

The TA presents only parts of the solution while using some learning activities or di-
dactical elements. He often points to and explains specific mathematical problems 
the students had in their work. The presented solution is usually incomplete and dif-
fers from the model solution. 

• conveying of strategies to solve a specific type of exercises 

The TA can present the whole solution or only parts of it. He uses specific learning 
activities or didactical elements, e.g. “clarification of the task difficulty”, and hints at 
the steps the students have to take in order to solve this type of exercises. The focus 
of discussion is not on mathematical difficulties, but rather on the procedure. 

• clarification and implementation of a mathematical concept  

The TA can present the whole solution or only parts of it. He uses specific learning 
activities like “referring to lecture” and spends some time on explaining a specific 
mathematical concept. 

The following examples are to illustrate the scripts above and to clarify in which way they 
differ. Therefore, one exercise which is discussed by the teaching assistants Andrew, Oscar, 
and David is analyzed in more detail. The exercise is the following: 
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The lecturer presented Definition 3.1.3 two weeks before: 

 

Andrew uses the most frequent script, the “presentation of the model solution without di-
dactical reflection”, to discuss this proof. He starts out with a clarification of the task, then 
discusses the proof in instructive discourse for 10 minutes and ends up with encouraging 
the students to ask questions. The following table shows how his discussion can be divided 
into the three phases:  

Phase presentation of the model solution without didactical 
reflection 

start up opening activities: clarification of task 

phase of discussion method: instructive discourse 

completeness: yes 

didactical elements: none 

finishing up closing activities: opportunity to ask questions 

Table 2: Script for “presentation of the model solution without didactical reflection” on the exam-
ple of Andrew 
 
Andrew’s discussion is very typical for this script: he presents the solution in some kind of 
discourse without pointing out specific difficulties, presenting alternative solutions or using 
other kinds of didactical elements to especially enhance the learning process of the stu-
dents. The activities of the students are often limited to listening to the TA, taking notes and 
answering questions. 

Discussions with didactical reflection often show different opening activities and more di-
dactical elements. Oscar, for example, who discusses the same exercise as Andrew, high-
lights one major student difficulty. In the proof, the students had to argue why the following 
inequalities are equivalent:  

�
1

√𝑛
� < 𝜀 ⇔

1
√𝑛

< 𝜀 

Oscar has corrected the students’ proofs and is aware of this common difficulty. He makes 
the students discuss this problem:  

21  Oscar […] The absolute value was missing from one step to the next 
without any kind of reasoning. But you have to argue here. You 
have to write somewhere why you are not using them anymore. 
Yes. How can we argue here to omit the absolute value? One al-
ternative? (2 sec) Harry? 
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In order to make such kind of comment, he has to identify difficulties students had in their 
proofs. However, as he still presents the whole solution of the exercise, this discussion is 
coded as “presentation of the model solution with didactical reflection” and not as “discus-
sion of selected difficulties”.  

Phase presentation of the model solution with didactical 
reflection 

start up opening activities: clarification of task 

phase of discussion method: instructive discourse 

completeness: yes 

didactical elements:  

• highlighting common mistakes 
• reference to lecture 
• draft solution 
• clarification of expectations 
• solving in several ways 

finishing up closing activities: none 

Table 3: Script for “presentation of the model solution without didactical reflection” on the exam-
ple of Oscar 
 
Table 3 shows that Oscar uses more didactical elements to support the students. Whether 
he planned all these learning activities before the tutorial or whether he just reacts in the 
situation cannot be determined.  

David uses a third script for the same exercise. The beginning of his discussion indicates that 
his objective is not only to discuss difficulties students had to prove the convergence of the 
sequence, but to convey strategies of how to solve such kind of exercises: 

1  David So, in exercise 2 you had to verify that the sequence converges by 
using the definition. The sequence is (writes on board): 𝑎𝑛 = 1

√𝑛
. 

And you were supposed to use Definition 3.1.3. To begin with, can 
anyone recall Definition 3.1.3., just the content, not word for word? 
(2 sec)  

2  David We could try it together, if / (writes on board). (10 sec)  

3 David What‘s the key aspect of Definition 3.1.3? (7 sec)  

4 David No one? You know at least a part of it. It doesn‘t have to be per-
fect.  

In the above episode, David tries to call into memory the definition by posing many ques-
tions. The underlying strategy David might try to convey is to collect every information that 
the exercise provides and find out what helps you to solve it. This strategy can be used for 
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many exercises. In the following discussion, it becomes obvious that David especially wants 
to enable the students to handle this type of exercises. He recalls the different steps they 
have to take: state what you have to prove, assume a limit and then prove that the as-
sumed limit is correct. His objective becomes even more obvious in some of his following 
statements, for instance in: 

21 David […] Now, we are going to discuss a topic that not everybody has to 
understand, but you hardly always proceed in a similar way. Okay. It 
would be great, if you could write that we have to show this (points 
at definition on the board). […] 

He focuses on technical skills, understanding the concept of convergence is not part of his 
objective. As an advanced student, David knows that this technical skills will be more rele-
vant to pass the upcoming exam. He uses didactical elements like “clarification of expecta-
tions” which are very common for this kind of script. 

Phase conveying of strategies to solve a specific type of 
exercises 

start up opening activities: none 

phase of discussion method: instructive discourse 

completeness: yes 

didactical elements:  

• highlighting common mistakes 
• reference to lecture 
• draft solution 
• clarification of expectations 
• solving in several ways 
• visualization  

finishing up closing activities: none 

Table 4: Script for “conveying of strategies to solve a specific type of exercises” on the example of 
David 
 
The analysis of these different discussions shows, that TAs use different scripts for the same 
exercise. Therefore, there have to be other factors than the exercise type which influence 
the TAs in their choice of scripts. 

The coding is still in progress, however, the dominant script for the discussion of exercises is 
clearly “the presentation of the model solution without any didactical reflection”. As the TAs 
have corrected the students’ solutions beforehand, it is quite surprising that they still discuss 
the whole exercise and do not focus on difficulties or strategies. However, it is possible that 
they only satisfy the students’ needs for a model solution. The lack of didactical reflection 
can be due to the fact that it requires many competences, like e.g. diagnosis of students’ 
mistakes, which are even a challenge for experienced teachers.  
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Conclusions 
In this short paper, the reader should gain some insight into what happens in mathematics 
tutorials. The use of scripts makes it possible to characterize the very complex process of 
classroom teaching.  

In this analysis, five scripts TAs use to discuss an exercise could be identified. These range 
from the presentation of the model solution to the clarification of mathematical concepts 
and strategies. The most frequent script is the “presentation of the model solution without 
didactical reflection”. Its dominance is somewhat surprising as the teaching assistants know 
the students’ difficulties from the correction and could therefore concentrate on them in the 
discussion. The reasons for the preference of these scripts can only be assumed. 

As some examples illustrated, TAs use different scripts even for the same exercise. There-
fore, other factors than the exercise seem to influence their use of scripts. One important 
factor might be the students: their performance in solving the exercise beforehand and their 
contributions in the discussion might lead the TAs to change their intended script. In addi-
tion, every TA has a specific type of explaining and identifies with his role differently. Also 
external factors like demands of the teaching team or time restrictions can influence the 
type of discussion. These different factors could be discussed in tutorial trainings so that the 
teaching assistants become aware of the different scripts and consider all of them when 
planning their tutorials. 

Further studies will give more insight into the characteristics of tutorial teaching and regard 
more perspectives, trying to add some results to the research on teaching assistants. In ad-
dition, this doctoral study can hopefully contribute in increasing the attention on quality of 
education on the tertiary level. 
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How lectures in advanced mathematics can be ineffective: 
Focusing on students’ interpretations of the lecture 48F

  
Keith Weber1, Tim Fukawa-Connelly2, Juan Pablo Mejia-Ramos1 

1Rutgers University, 2Temple University 
(United States of America) 

In this report, we synthesize studies that we have conducted on how students interpret mathematics 
lectures. We present a case study in which students in an advanced mathematics lecture did not 
comprehend the points that their professor intended to convey. We present three accounts for this: 
students’ note-taking strategies, their beliefs about proof, and their understanding of the professor’s 
colloquial mathematics.  

Research on how students understand lectures in advanced mathematics is sparse. Although 
lectures are the usual way in which advanced mathematics courses are taught, there are 
few studies on this practice (Speer, Smith, & Horvarth, 2010). Only recently have research-
ers systematically investigated how students understand proofs (as opposed to how they 
check proofs for correctness) and research on how professors choose to present proofs is 
largely absent (Mejia-Ramos & Inglis, 2009). Our work seeks to address this void in the lit-
erature. 

In this paper, we first present a case study of one professor presenting a proof in a real 
analysis lecture (Lew, Fukawa-Connelly, Mejia-Ramos, & Weber, in press). Through inter-
views with the professor and his students, we noticed that students did not comprehend the 
main points that the professor was trying to convey. We hypothesized three reasons to ac-
count for this communication failure: (i) students’ notes focused on what the professor 
wrote on the board while the professor only stated his main points orally; (ii) students held 
unproductive beliefs about proof that led them to ignore the main points that the professor 
was trying to convey; (iii) students did not understand the professor’s use of informal collo-
quial mathematics, particularly the use of the term “small” in the context of real analysis. 

To further investigate these hypotheses, we first present a large study of lectures and note-
taking showing that professors tend to model mathematical behaviors orally and students 
rarely record these oral comments in their notes. We then present qualitative studies that 
illustrate how mathematics majors (Weber, 2010) and mathematicians (Lai & Weber, 2014; 
Weber, 2012) hold conflicting beliefs about the role of proof in lecture and students’ re-
sponsibilities in reading these proofs. We confirm the generality of these findings with large-
scale surveys (Weber, in press; Weber & Mejia-Ramos, 2014). Finally, we illustrate how the 
failure to understand “small” in a calculus context was also found in a study with a large 
sample by Oehrtman (2009). 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 

http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121
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A case study of a lecture in real analysis 
In this case study, we video-recorded a lecture in real analysis given by Dr. A (a pseudonym) 
at a large state university in the United States, focusing on a ten-minute proof of the follow-
ing theorem: If a sequence {𝑥𝑛} has the property that there exists a constant 𝑟 with  
0 < 𝑟 < 1 such that |𝑥𝑛– 𝑥𝑛−1| < 𝑟 𝑛 for any two consecutive terms in the sequence, then 
{𝑥𝑛} is convergent. 

We analyzed this lecture proof in three ways. First, our research team viewed the video and 
flagged for each instance in which we felt Dr. A was attempting to convey an important 
mathematical idea to his students. To corroborate our findings, we also showed the same 
videotape to another course instructor and asked him to make the same judgment. We en-
gaged in this process to see if the main points Dr. A was making were clear and accessible 
to a mathematically acculturated audience. Next, we interviewed Dr. A and showed him a 
video of the proof, asking him to stop the recording at each point he was conveying an im-
portant mathematical idea. We engaged in this process to see what content was being con-
veyed from Dr. A’s perspective, contrasting it with our own viewing to see if his points were 
being conveyed clearly. Finally, we interviewed three pairs of students. The details of this 
interview are described in Lew et al. (in press). For the purposes of this study, we focus on 
Pass 2 of the interview protocol in which students watched the videotape lecture and were 
asked what Dr. A was trying to convey in the lecture, and Pass 3 where students were 
shown the individual clips that (according to Dr. A) contained an important mathematical 
idea and asked what they thought Dr. A was trying to convey. 

The main results were that Dr. A was trying to convey five types of mathematical ideas: (i) 
Cauchy sequences can be understood as sequences that bunch up, (ii) one can prove a se-
quence with an unknown limit is converging by showing it is Cauchy (hereon referred to as 
the Cauchy heuristic), (iii) how one sets up a proof showing a sequence is Cauchy, (iv) the 
triangle inequality is useful for proving series in absolute value formula are small, and (v) 
the geometric series formula should be part of one’s toolbox to keep some desired quanti-
ties small. However, students usually did not cite any of this content as what Dr. A was try-
ing to convey after watching the lecture proof (Pass 2) through our data, even though it was 
clear to us what Dr. A was trying to convey. In the remainder of this this abstract, we focus 
on points (ii) and (v), and provide three accounts for why students did not comprehend 
these ideas. 

Students’ note-taking in advanced mathematics lectures 
There is a large body of research on note-taking in (non-mathematical) lectures. Two im-
portant findings are that if students do not record a lecture point in their notes, it is unlikely 
that they will recall this point at a later time (e.g., Einstein et al., 1985). Second, professors 
speak at a rate faster than students can write (Kiewra, 1987; Wong, 2014). Hence students 
cannot be expected to record everything that the lecturer says. They need to prioritize. 

In Dr. A’s lecture, he spoke of the Cauchy heuristic at three different points. For instance, his 
lecture contained the following: 
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There’s no mention of what the definition is of the sequence, so there’s no way we’re 
going to be able to verify the definition limit of a convergent sequence, where we 
have to produce the limit. So what do we do?  […] What kind of sequences do we 
know converge even if we don’t know what their limits are? Cauchy!  We’ll show it’s 
a Cauchy sequence […] We will show that this sequence converges by showing that it 
is a Cauchy sequence. A Cauchy sequence is defined without any mention of limit.   

Our research team highlighted this as the main point of the proof and we felt this excerpt 
conveyed this point clearly. However, no student mentioned this. We noticed that Dr. A only 
expressed this point orally. He never wrote the Cauchy heuristic, nor any of the other con-
tent, on the blackboard. The blackboard only contained the actual proof. When we looked at 
the students’ notes, we found that five students had not recorded any of Dr. A’s oral com-
ments. They had only recorded what Dr. A wrote on the blackboard. 

To assess the generality of these findings, we studied eight lectures in advanced mathemat-
ics and photographed the students’ notes after these lectures. We found that the professors 
commonly modeled productive math behavior but usually did so orally. However, the stu-
dents’ notes rarely contained the professor’s oral comments but usually contained com-
ments that the professor wrote down.  

Students’ beliefs about proof 
What students attend to in a lecturer’s presentation of a proof is necessarily dependent up-
on what they think the purpose of a proof is and what their responsibilities are when they 
read a proof. We investigated this issue by interviewing mathematicians about what it 
meant to understand a proof (Weber & Mejia-Ramos, 2011), what they were trying to con-
vey when presenting a proof (Lai & Weber, 2014; Lai, Weber, & Mejia-Ramos, 2012), and 
how students should read a proof (Weber, 2012). Key findings included that in lecture, a 
proof presentation was about illustrating large ideas and overarching methods; logical de-
tails could be found in a textbook. Interviews with mathematics majors revealed that many 
felt that understanding a proof consisted entirely of understanding how new statements 
were deduced from previous ones (Weber, 2010).  

In a survey with 175 mathematics majors who had completed at least one proof-oriented 
course and 83 math professors who had taught at least one proof-oriented courses, we 
found that these results generalized to this larger population. We found that the large ma-
jority of the mathematics majors felt that understanding a proof was entirely comprised of 
knowing how new statements could be deduced from previous ones and that they would 
not compare the methods that they would take to prove a theorem to the one in the proof 
that they read. The large majority of mathematics professors thought there was more to 
understanding a proof than understanding its deductive step-by-step process and they de-
sired that their students compared the methods that they would use to prove a theorem to 
the method in the proof that they read. (Weber, in press; Weber & Mejia-Ramos, 2014).  

Such findings can help account for the results observed in the case study discussed above. 
For instance, students might ignore Dr. A’s description of the Cauchy heuristic because they 
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did not think that proofs should be helpful in expanding their arsenal of proving methods. 
Also, consider the following excerpt from Dr. A: 

Dr. A: Now once again we ask the question.   If we were to show this is small, we 
must represent it in terms of what we know is small.  Well what do you know is 
small?  For n large enough, the difference between two consecutive terms is small. 
So what we must do is represent that as a sum of consecutive terms. 

When asked what Dr. A meant by this particular clip, no student mentioned the word “small” 
(both here and mostly throughout the interview). Rather, they focused on how he set up an 
equation, saying things such as, “how we can manipulate the problem statement”. Hence, 
students’ focus was on manipulation, rather than the proving method. 

Students’ understanding of colloquial mathematics 
In the preceding passage about keeping things small, Dr. A was using what we called collo-
quial mathematics, meaning we interpreted Dr. A as using informal English like “small” to 
help make technical ideas more accessible to his students. However, we argue that the stu-
dents did not interpret the word “small” in the way that Dr. A intended. When Dr. A used the 
term “small”, he was referring to quantities being arbitrarily small or sufficiently small 
(masking the use of universal and existential quantifiers). Dr. A uttered the word “small” 
eight times in his proof, but students rarely mentioned this in their interviews. When they 
did, they interpreted small as meaning a short or simplified equation. These results are con-
sistent with a large study with calculus students by Oehrtman (2009). Oehrtman found that 
despite the calculus professor continually using phrases such as “sufficiently small” or “arbi-
trarily small”, the students rarely used these notions in their reasoning about limits and in-
terpreted these phrases as meaning a very small fixed quantity. 
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Beliefs on benefits from learning higher mathematics 
at university for future secondary school teacher 49F
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This study provides a first insight into beliefs of preservice secondary (Gymnasium, college bound) 
school teacher about the rationale for learning higher (university) mathematics. The participants of 
the study were preservice secondary school teachers (n = 31) being at least in their 5th semester. We 
gave them the task of writing an essay with the topic “Analysis and me”. We analyze these essays, in 
the first part, we inductively extract criteria on what benefits students belief they get from attending 
university mathematics lectures, in the second part, we compare their statements with normative 
literature. The analysis shows a wide variety of beliefs concerning potential benefits. However, their 
views are based on a relatively limited view on teachers’ future roles in the classroom.  

Introduction 
In the last years, teacher education at university has become a subject of research, which 
gets more and more important. University education of future school teachers consists of 
courses in mathematics, in mathematics education and in pedagogy and educational science. 
The future teachers for the Gymnasium attend the same courses of university mathematics 
as mathematics majors. Other future teachers (primary and lower secondary) usually attend 
mathematics courses that are particularly designed for this group of students. It is often re-
ported in Germany that many Gymnasium student teachers show motivational problems 
with university mathematics courses, which they do not consider to be immediately relevant 
for their future profession. Surprisingly, there is hardly any systematic research on beliefs of 
these preservice teachers about learning university mathematics. One of the rare studies 
used a retrospective questionnaire for secondary school teacher (n = 176) after they had 
finished their studies (Bungartz and Wynands, 1998). The authors found out that the teach-
ers considered the level of mathematics courses at university “too high” and the connection 
to the intended job “too low”. However, the criteria applied by the participants are not ex-
plicit in these studies. 

Research questions 
Our central research questions are about the benefits seen by the student teachers in learn-
ing higher mathematic at university. 

1. Which benefits do student teachers see in learning higher mathematics at university 
for their future working as a teacher? 

2. Which aspects about their later professional life are articulated by the students and 
also taken into account in their evaluation of benefits? 
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Methodology 
To answer the questions above, we used narrative as a research tool. The participants of the 
study were Gymnasium student teacher who were just starting the course “Didactics of 
mathematics for grade 10 – 12”. This course focused on teaching and learning of calculus. 
The second author was the lecturer and the first author was the assistant, organizing and 
giving small-group tutorials. Almost all participants were in the 5th semester, i.e. at the end 
of the Bachelor of Education (n = 30) and had already attended lectures called “Introduction 
to mathematical thinking”, Calculus 1, Calculus 2, Linear Algebra, “Didactics of geometry”, 
one participant is in the 3rd semester. They were asked to write an essay on the following 
questions (according to Toerner, 1999): 

1. How was your calculus education at school? (Also describe your emotions and atti-
tude) 

2. How have your attitudes, your knowledge (e.g. about specific concepts), and your 
emotions changed because of the calculus lecture at university? 

3. What will be the benefit from the calculus lecture for your later professional work as 
a Gymnasium school teacher? 

4. Which new impulse will you pick up out of your experiences with your university ed-
ucation for your own teaching at school? 

5. What will you change in your own calculus lecture at school in comparison with your 
experiences in your school? 

Although they were advised to discuss these questions on five pages, most students wrote 
about three pages. In this paper we concentrate on questions 3 and 4.  

Data analysis  
Based on Grounded Theory (Strauss & Corbin 1996), we inductively extracted criteria what 
benefits students express with regard to attending university mathematics lectures and 
match these with three of four levels of mathematical content knowledge based on Krauss 
et al. (2013). We distinguish “school mathematical knowledge” comparing to level 2 define 
by Krauss et al. (2013) as a level of mathematical knowledge required of a good pupil, 
school mathematics from a higher standpoint” (Klein 2004) comparing to level 3 define by 
Krauss et al. (2013) which include i.e. a deeper understanding of the contents of the school 
curriculum and level 4 “University-level knowledge” as the knowledge, which has no over-
lapping with the content of school curriculum we call “university mathematical knowledge”. 

Results 
In the following, we present what benefits our students see on each level. One benefit men-
tioned in the essays of attending mathematics lectures at university is the opportunity to 
practice school mathematics like the calculation of integrals and fill gaps in the mathematical 
knowledge required at schools. These two points we extracted from the essays were classi-
fied as the function of practicing and extending “school mathematical knowledge” at univer-
sity level.  
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The level “mathematics from a higher standpoint” (c.f. Klein, 2004) is the most manifold 
type, although it is not easy to draw a boundary to “university level knowledge”. State-
ments of the students in the essays are pointing out that attending university mathematics 
courses is important because they learn deeper knowledge of concepts taught in school, for 
instance precise definitions and proven properties. Mostly, they gave no further explanation, 
why this is important, but one student hoped to give better explanations using this 
knowledge to future school students. In addition to this also concepts of proofs in school 
mathematics were mentioned. There are also statements, in which the students see a bene-
fit in a better understanding of why something is right or why the algorithm learned in 
school can be used that way. Another point is the establishment of links and connections 
between separated topics of mathematics. One aim of the students in their future work as a 
teacher is, that the pupils also see that mathematics is cross-linked. They want to bring 
school mathematics closer to university mathematics, but for different reasons; some hope 
that they can get the pupils to see the necessity for proofs, others think that they can moti-
vate their pupils with this and a last aim is to prepare the pupils for the transition to univer-
sity. For this, a deeper understanding of school mathematics is seen as important. Another 
benefit from learning mathematics in university is seen in supporting talented pupils and 
also in answering pupils’ questions, meaning not only questions on the curriculum but also 
beyond it. It was also mentioned in the essays that they could give the pupils advices for 
their studies, if they know the university courses. They also named other functions of uni-
versity level mathematical knowledge, which they did not explain in detail: supporting plan-
ning lessons, learning options for simplifications and helping to diagnose learning problems 
of pupils. 

Even if there is no direct counterpart of a part of “university mathematical knowledge” in 
school mathematics, students named benefits of this knowledge for their future teaching. 
So, university mathematics helps teachers to get a deeper insight into mathematics in order 
to show pupils the manifoldness of mathematics. Students also see a benefit in their experi-
ence that mathematics is not always easy to understand. To struggle with mathematics 
themselves, might make it easier for them to have empathy with pupils who have learning 
difficulties in mathematics. Another benefit proposed by the students is that in a few years 
topics in the school curriculum could change and topics they now only learn in university 
have to be taught in school. Because of that, they think it is good to learn also topics that 
have no direct counterpart in school mathematics at the moment. Furthermore, they named 
a social function as having studied university mathematics will give them authority of an 
expert mathematician compared to both pupils and other teachers. It was also mentioned 
that a teacher has to represent the subject at school and because of that it is necessary to 
have experience with university mathematics. The students also named the development of 
general mathematics competencies, which will be helpful in solving mathematical problems 
and challenges at school level and the knowledge of mathematics as a deductive system as 
a benefit, but without further explanation why they consider the latter as important for 
teachers.  

Comparing these findings with points considered in the literature we can identify some simi-
larities and differences. Shulman says that teachers “need not only understand that some-
thing is so; teacher must further understand why it is so.” (1986, p.9). This is also an argu-
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ment we found in the essays. He pointed out two other dimensions of curricular knowledge: 
lateral curriculum knowledge “underlies the teacher´s ability to relate the content of a given 
course or lesson to topics or issues being discussed simultaneously in other classes.” (Shul-
man, 1986, p.10) this is not mentioned in the essays, but the second dimension: vertical 
curriculum knowledge which includes “familiarity with the topics and issues that have been 
and will be taught in the same subject area during the preceding and later years in school” 
(Shulman, 1986, p.10) is mentioned by the students when they wrote that they will show in 
their further teaching that mathematics is cross-linked. The last point is also one of “Math-
ematical Task of Teaching” listed by Ball et.al (2008). However, Ball et al mention tasks for 
teachers that are not mentioned by the students like “appraising and adapting the mathe-
matical content of textbooks” or “using mathematical notation and language and critiquing 
its use”. 

Conclusions  
By interpreting our data we have to consider the fact that this is no representative sample 
because of selection effects. First of all, we have to remember that the students who took 
part in this study are probably “good” students, i.e. these are students who have already 
passed most courses for their Bachelor degree and studied according to schedule. So we 
have no essays from students who had big difficulties with their university studies or from 
students who have even quit their studies. The second point is that not all students attend-
ing the course wrote this essay. This selection can also be a positive selection because 
probably the more committed students wrote this essay. Additionally, the essays were not 
anonymized and so there is potential for social desirability. Nevertheless, we revealed a 
wide spectrum of believed benefits of learning higher mathematics at university. It is sur-
prising that most statements point out positive aspects. However, based on a relatively lim-
ited view on teachers’ role, students do not mention many aspects that are considered in 
the normative literature. This may have consequences in redesigning teacher education. 
Broadening the view of their future roles is important as well as deeper reflecting on the 
higher mathematics they have learned.  

Based on the statements from the essays, we have constructed an interview guide to get a 
deeper understanding of the beliefs about learning higher mathematics and to specify the 
knowledge levels. A second aim will be to create a typology of students. 
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To defy conventions? – University students’ demand of 
concrete examples and less mathematical formalizations 50F

  
Rita Borromeo Ferri 

Universität Kassel 
(Germany) 

Investigating preferences how university teachers like to learn and understand mathematics through 
lectures and seminars was neglected so far. Thus a study focusing on the mathematical thinking 
styles of becoming math teachers (N = 219) was conducted. A further goal was, if and how these 
styles are different dependent if they study for primary, secondary, high or vocational school. One 
central result of the study was that the students strongly expressed the demand of more concrete 
examples and less mathematical formalizations within lectures and seminars for a better understand-
ing of mathematics. However precise mathematical notations are a part of the mathematics scientific 
discipline. How much formalization is necessary? These questions are discussed. 

Theoretical background 
The theoretical background of the study is mainly based on the theory of mathematical 
thinking styles developed by Borromeo Ferri (e.g. 2004, 2010, 2015). The presented study 
is also embedded within the current discussion of teacher education development and high-
er-education mathematics. Thus central backgrounds concerning these topics will be de-
scribed briefly in order for a better interpretation of the empirical results of the study. 

Theory of Mathematical Thinking Styles (MTS) 
The term mathematical thinking style (MTS) is characterized as follows: 

“A mathematical thinking style is the way in which an individual prefers to present, to un-
derstand and to think through, mathematical facts and connections by certain internal imag-
inations and/or externalized representations. Hence, a mathematical style is based on two 
components: 1) internal imaginations and externalized representations, 2) on the wholist 
respectively the dissecting way of proceeding.” (Borromeo Ferri 2004, 2010) 

A central characteristic of the construct mathematical thinking style is the distinction be-
tween abilities and preferences. Mathematical thinking styles are about how a person likes 
to understand and learn mathematics and not about how good this person understands 
mathematics. This approach is based on the theory of thinking styles of Sternberg (1997). 
So in the sense of Sternberg (1997), “A style is a way of thinking. It is not an ability, but 
rather, a preferred way of using the abilities one has.” Mathematical Thinking Styles were 
reconstructed qualitatively and currently quantitatively measured with school and university 
students and teachers (Borromeo Ferri 2014, 2015). Thus the theory of Mathematical Think-
ing Styles is well-grounded theoretically and empirically. The three main styles are described 
as follows: Visual Thinking Style: Individuals prefer internal iconic representations and exter-
nalized iconic representations as well as the holistic way of proceeding. Analytic Thinking 
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Style: Individuals prefer internal symbolic representations and externalized symbolic repre-
sentations. They like to understand mathematical facts or solve problem step after step. 
Integrated Thinking Style: Individuals combine visual and analytic ways of thinking and are 
able to switch ways of proceeding. 

Teacher education in mathematics 
Results of the COACTIV-Study (Baumert, Blum, Neubrand) and the TEDS-Study (Blömeke, 
Kaiser, Lehmann) showed how amongst others that content (CK) and pedagogical-content 
knowledge (PCK) of becoming mathematics teachers are different dependent on the teach-
ing degree. The becoming high-school teachers in Germany for example achieved a high 
score in both CK and PCK compared to all the university students who studied the other 
teaching degrees (Baumert & Blum 2010). However, internationally the becoming primary 
teachers in Taiwan and Singapore got the best results in CK and PCK, whereas Germany’s 
primary and also secondary teachers were in the middle field (Blömeke, Kaiser & Lehmann 
2010). So the differences between the teaching degrees became apparent and have to be 
considered. Beneath these findings studies from the perspective of higher-education math-
ematics of the last years show the problems of first semester students with basics in math-
ematics. Often there is a discrepancy between suitability and conception concerning study-
ing mathematics (Roth, Bauer, Koch, & Prediger 2015). Most of the becoming teachers be-
lief that the level of mathematical content they learn at university is too high with regard to 
teach students at school. Nevertheless the students who are interested in mathematics and 
want to be a mathematics teacher still have to work hard to get their final exam. Although 
mathematics is taught mostly conventionally on the black board and exercises have to be 
done in a group there is no empirical evidence how students like to learn and to understand 
mathematics. Until now there is much knowledge about mathematical beliefs in this field, 
because it was and it investigated often within large-scale studies, but we know less about 
mathematical thinking styles of university students. 

Research questions 
• Are there differences between visual, analytic or integrated thinking styles depend-

ing on the teaching degrees of the university students? In particular: Do high-school 
teachers prefer stronger the analytic thinking style than the primary teachers? 

• Which personal ideas about how mathematics should be taught do university stu-
dents’ have?  

Methodology of the Study 
The sample of the study was N = 219 becoming math teachers of University of Kassel and 
University of Hamburg in their third year of university (87 primary teachers, 67 secondary 
school teachers , 56 high-school teachers, 11 vocational school teachers). The Mathematical 
Thinking Style questionnaire with 27 items was used, which comprised four different sub-
scales rated with likert-scale from 1-4, which means from [1] strongly agree to [4] strongly 
disagree. Also three problem solving tasks (open format) were integrated in the test and 
therefore a coding manual was developed concerning kinds of presentations and ways of 
proceeding for solving these tasks. The questionnaire also contains scales from PISA (PISA-
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Consortium 2006), in particular scales of beliefs, self-efficacy, motivation, emotion and con-
cerning exercising mathematics. One open question asked students concerning their wishes 
how mathematics should be taught within lectures and seminars. The data were analyzed 
with the software SPSS. A special analysis of the means was done in order to determine the 
characteristic value: 1 ≤ 𝑥 ≤ 2 visual thinking style, 2 < 𝑥 < 3 integrated thinking style, 
3 ≤ 𝑥 ≤ 4 formal/analytic thinking style. The open question was analyzed deeply and cod-
ed in categories concerning the answers. 

Selected results of the study 
Due to the limit of space only selected results are presented. The comparison between ana-
lytic and visual thinking styles showed a decrease of the visual thinking style preferred 
strongly by the becoming primary teachers to the high-school teachers preferring more the 
analytic thinking style. While the visual preference is decreasing the preference for the inte-
grated thinking style is increasing along the teaching degrees and the combination between 
working dissecting and wholistic is preferred by 80% of the participants. Although a math-
ematical thinking style is a personal attribute it shows that the accomplished teaching de-
gree influences if analytic or visual thinking is preferred most. Becoming high-school teach-
ers have more lectures and seminars of different mathematical topics than primary teachers 
Germany. So learning and practicing mathematical ways of thinking and notations is more 
exercised. Similar to the results of previous studies of MTS the integrated thinking style is 
preferred strongly. The correlation between best marks of school students and preference 
for the integrated thinking style was significant. Based on the MTS theory this style offers 
flexibility in thinking when working on mathematical problem independent, if these tasks 
are presented more visual or analytic (see Borromeo Ferri 2015). 

The results of the open question to the university students concerning their preferred way 
how mathematics should be taught in lectures and seminars was very interesting and leads 
to discussion. 129 of the 219 participants answered this questions and every respond was 
analyzed and coded. Finally 8 categories could be reconstructed and the ranking shows that 
wishes of students to get more concrete examples (85%) during their studies is on the top. 
 

Examples Visualization Linking-to-
practice 

Variety 
(teaching 
methods) 

Exercises 
(to be 
revised) 

Script 
(missing) 

Dissecting 
the content 
Of lectures 

Formalizing 

45, 5% 23,5% 8,6% 8,6% 5,9% 4,3% 2,1% 1,6% 

Table 1: Preferences and wishes of university students for mathematical lectures and seminars 
 
The detailed comparative analysis between the different teaching degrees concerning each 
category gave insight into the needs of the students. The demand of getting more “exam-
ples” was of high importance for the becoming secondary teachers (45,5%). The category 
“Visualizations” comprised the wish of students that mathematical contents should be 
taught more through visual representations like sketches or drawings and was ranked on 
place 2. Interesting was the discrepancy of this wish between the secondary teachers 
(52,9%) and the vocational teachers (12,5%). In particular the primary teachers claimed the 
“Linking-to-practice” (24,4%), because this category describes the individual’s noticed profit 
for the work in school later on. No high-school teacher expressed wishes in this direction. 
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Also the further categories showed a discrepancy between the teaching degrees. Especially 
both frequent mentioned categories “Examples” and “Visualization” should be discussed 
regarding to the higher-education mathematics perspective. 

Discussion – to defy conventions? 

Looking at the becoming math teachers from the MTS-perspective it offers an insight about 
their preferences how they like to learn and understand mathematics. Taking the manifold 
efforts like creating new and specialized lectures, training of tutors or using social apps with-
in lectures and also research in this field into account, there is one aspect, which is not easy 
to solve: reducing of typical mathematical notations and formalizations. The nature of math-
ematics as a scientific discipline implies correct and formal ways of notations, which are 
conventions for a common understanding and language within teaching and learning of 
mathematics worldwide. At the same time these techniques and the notations are abstract 
and need time to understand. Using visualizations or concrete examples instead can be sup-
porting elements, but not a substitution. Only 1,6% of the participants and in particular be-
coming high-school teachers demand for using formalization as a central part of mathemat-
ics lectures. Finding a balance between not neglecting mathematical conventions and pre-
paring mathematical contents visually or concretely for offering students a better and deep-
er insight in mathematics can be a reachable goal. To defy mathematical conventions would 
be provocative. Besides all the upcoming teaching modules for mathematics for teacher 
education as well for the undergraduate or graduate level defying the conventions should 
not be a goal, although it is students’ wish. Recognizing their demand and going a well-
balanced way including students’ interaction and ideas can be fruitful for motivation and 
learning of mathematics at university level for both students and lecturers. 
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A CAT’s glance towards abstraction 51F

  
Hans M. Dietz 

Universität Paderborn 
(Germany) 

Basic mathematics courses often belong to the top challenges for first semester students of econom-
ics and other non-mathematical disciplines. Non-adequate studying and working techniques are es-
sential reasons for that. As a remedy, we introduced an in-teaching system of methodological support 
called “CAT”. Empirical evidence shows that CAT meets the students' needs and also can provide im-
proved performance. On the other hand, not all of the students' difficulties in coping with mathemat-
ics could be addressed so far. Some of these difficulties are related to abstraction processes. We pre-
sent some initial considerations about these processes, aiming at further possible improvements of 
the support for students.  

Introduction 
The author’s long run experience in teaching basic mathematics courses for economists indi-
cates that one of the main reasons for the students’ problems in coping with mathematics 
originates in non-adequate techniques both of studying and of mathematically working. As a 
remedy, from 2010 on we introduced an in-teaching system of methodological support 
called "CAT". Since then, CAT could be gradually improved grace to the results of accompa-
nying empirical studies, which have been supported by the khdm, and grace to the immedi-
ate feedback from the students and the members of the teaching team. A detailed account 
to key features of CAT can be found, e.g., in Dietz (2013, 2015). Moreover, main findings of 
the empirical studies are presented in Feudel and Dietz (2015). In particular, the studies 
show that CAT meets many students' needs and that improved academic achievements in 
the group of students with medium initial skills are rather likely due to CAT. In addition, the 
studies indicate that CAT’s self-assessment support should be given more attention. How-
ever, some of he student’s difficulties are related to abstraction processes, which have not 
yet been sufficiently addressed. We present some initial considerations of this problem, aim-
ing at a better support for the students.  

A little more about CAT  
CAT combines a teaching and studying philosophy, working procedures, and „product 
guides“. Key elements of its philosophy are the principle ‘aid for self-aid’, and both the re-
quirement and support of a conscious knowledge management. The acronym CAT itself is 
derived from the procedures: check-lists (providing instructions and reminders for regular 
working steps), Ampel (german for traffic lights, supporting self-assessment), and toolbox 
(giving support for problem solving).  
The most significant role is played by the check-list „reading“. It provides procedure-like 
instructions how to read mathematical texts appropriately – from ’spelling’ symbols, notions, 
and formulas, up to he construction of valid mental concepts. The students are encouraged 
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to keep track of all important symbol and notion definitions in an own vocabulary and to 
augment its entries step by step by consistent extensions like examples/non-examples, vis-
ualisations (if approporiate), related statments, applications, etc. The collection of all these 
extensions together with the vocabulary entries is called concept base; it is essential for 
building a valid mental concept image in the sense of Tall & Vinner (1981). A detailed ac-
count of the steps of the reading process is given in the course textbook (Dietz, 2012).  

The need for abstraction  
Certainly, there is no need of discussing the general role of abstraction within mathematics. 
Moreover, it is known that many mathematicians gained their ability to deal with abstract 
objects, so to say, automatically during their education, without abstraction itself being an 
explicit educational subject. However, there is much disagreement w.r.t. how far non-
mathematicians should be able to perform abstraction and to understand and use abstract 
concepts. Accordingly, there appears to be no common consensus w.r.t. to the question 
whether, and how, abstraction can be taught. Note that, for the moment, we use ’abstrac-
tion’ in a rather broad sense; in particular, we cover mental activities of understanding ab-
stract objects, of working with them, or even creating such. In the author’s opinion, there is 
a particular need for supporting such abilities. Here are some indicators for that: 

• Following Piaget (e.g. 2003), abstraction abilities form an intrinsic feature of higher 
cognitive development. Hence they should necessarily be supported by any educa-
tion. 

• Good study results are closely related to the students’ metacognitive abilities to or-
ganize their own processes of studying, working, and problem solving. On the one 
hand, these processes involve a vertical reorganization of structures, which can be 
seen as a particular aspect of abstraction (in analogy to Hershkowitz et al. 2001); on 
the other hand, the support of such processes is CAT’s concern.  

• In modern economics, there is a particular demand for abstract approaches in order 
to understand the principles of economic phenomena in a qualitative way, irrespec-
tively of specific quantitative assumptions. E.g., rather than determining the operat-
ing minimum of a specific cost function like 𝑥 → 𝑥^3 + 2𝑥^2 + 111, 𝑥 nonnegative, 
by laborious calculations, students should be able to specify the operating minimum 
of any cost function, given only that it is of neoclassic type. Note that here we have 
to deal with abstract objects both from economics, and mathematics. Thus we have 
to establish the correct correspondence between these as well. 

A little more about abstraction  
There is a rich literature about ‚abstraction’, providing an a broad variety of concepts which 
differ in various aspects. From the point of view of describing underlying cognitive process-
es, Piaget contributed a well-recognized cornerstone (e.g., Piaget 2003). Meanwhile, Pia-
get’s concepts of empirical, pseudo-empirical, and reflective abstraction have been aug-
mented by further abstraction concepts like structural, operational, and formal abstraction, 
see Tall (2013). With regard to didactical implications we want to mention the initial works 
of Dawydow (1977) and of Hershkowitz, Schwarz, and Dreyfus (2001). Dawydow (1977) 
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writes „ ... der Abstraktionsprozess besteht darin, die Unabhängigkeit des Zustands ... eines 
Gegenstandes von bestimmten Faktoren zu bestimmen ... dieser wird gedanklich durch ei-
nen anderen ersetzt...“52F

1.  Hershkowitz et al. treat a contextual theory, with abstraction as an 
“ ... activity of vertically reorganising previous constucted mathematics into a new mathe-
matical structure ... “ As can be seen from these statements, the relation between the re-
spective concept of abstraction itself and possible didactic interventions for enhancing the 
corresponding abstraction abilities is by no means obvious. Generally, as was pointed out by 
Lowell (1979), the term abstraction has „ ... a wide variety of rather vague uses...“, and 
even „ ... his [Piaget’s] theoretical considerations fail to provide any operational definition 
fort he term.“  Lowell’s concern was that „ ... without an operationally acceptable definition 
for abstraction, it is difficult to see how any refined analysis of ... human learning in general, 
can be achieved.“ But notable progress was made since Lowell’s complaint. Steiner (1994) 
exploited the theory of semantic networks and focused on fostering algebraic-mathematical 
networks of (poor) 10th grade level students. He found out that different kinds of systemat-
ic treatment lead to measurable improvements in manipulating fractions, factorizations, and 
combinations thereof. Hefendehl-Hebeker and Rezat (2015) exposed essential features of 
advanced algebraic thinking; let us emphasize (1) a systematic use of variables, (2) the 
transition from operational to relational thinking, and (3) the development of a sense for 
term structures. The latter includes, briefly spoken, the ability of – or feeling for – 

• (3a) sensefully clustering subterms of an (algebraic) expression 

• (3b) appropriately reading symbolic expressions to extract all information 

• (3c) appropriately choosing symbols.  

Most of these abilities describe particular aspects of abstraction, partly augmented by addi-
tional thinking operations.  

Outlook  
We are interested in treatments on a metacognitive level as parts – or possible extensions – 
of CAT, repectively, in order to enhance particular abstraction abilities oft he students. Doing 
so, we have to confine ourselves to those aspects of abstraction that are accessible to rule-
based instructions. Ideally, these could be parts of a suitable checklist.  

At first, we note that the forementioned item (3b) is already at the very heart of CAT’s 
check-list “reading”. Up to now, the focus was on a deep understanding of mathematical 
concepts, starting from the respective concept definition. Obviously, widening the focus by 
systematic training of CAT’s reading technique in the domain of problem solving promises to 
provide an enhancement of these particular abstraction “skills”. Further aspects of abstrac-
tion that promise to be accessible for systematic training are  

• consequently symbolizing given (numeric) values, related to (1) 

• structuring and (re-)symbolizing mathematical expressions with the aim to recognize 
object categories of higher order, related to (3a); to give an example: 

                                                 
1 Author’s English translation: ...the process of abstraction consists in determininig the independence of a subject 
from certain factors ... this [subject] is mentally replaced by another  
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                                      .  

                    

(Instead of working with a particular functional structure of the power a transition to 
a more abstract functional expression is achieved, making general derivation rules 
more easily feasible.) 

• application of recursive techniques, to give an example:                                  

             

In analogy to Steiner’s work, it appears to be promising better abstraction skills of the stu-
dents by integrating these techniques in the set of methodological instructions and by train-
ing them properly. The developement of details, however, is subject to future work.  
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Reducing math anxiety 53F
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The common discourse in mathematics insinuates that mathematics is concerned with special objects 
and their properties which are studied via their representations. Thereby the used language is similar 
to that in physical sciences and gives the impression that mathematics gives us exact descriptions of 
the respective objects. Yet there is an unsurmountable tension in that those objects are so called 
abstract ones not amenable to our senses. The thesis now is that this leads to essential problems for 
the learner. As a way out a non-descriptive interpretation of mathematics according to Wittgenstein 
is proposed which also should be offered to the students. Therein math is viewed as a system of 
norms and rules which can be used as models and descriptions. 

Diagnosis 
This contribution is concerned with potential problems of students of mathematics at univer-
sities regarding ontological and epistemological aspects of their learning. It is a widely 
shared experience of university teachers that many students fail, show signs of anxiety and 
uneasiness and have great difficulties of organizing their learning and working in math, es-
pecially so regarding the understanding and constructing of proofs. Often the teachers are 
blamed for bad teaching or the mathematics is blamed to be meaningless for the students 
except for a small minority of so called highly gifted ones. In school mathematics the situa-
tion in principle is not much different but it is alleviated by a strong orientation towards ap-
plications and practical problems which partly succeed to give meaning and relevance as 
well to math even if it is experienced as very difficult. The learners there get the feeling that 
math is talking about and describing situations in reality like in physics or in economics. 
Thereby math becomes more like a technique, a collection of methods for solving problems 
and the question of genuine mathematical objects does not arise. Didactically this approach 
is exploited by trying in an empiricist way to develop (also cognitively) the mathematical 
objects by abstraction out of concrete situations. 

Yet, in modern math classes like calculus or algebra at the university this reference to topics 
outside of math is lacking even if it is used for motivating the pure math. The standard dis-
course in classes and textbooks presents math as the science the objects of which are sets, 
numbers, functions, algebraic structures, various kinds of spaces and so on. About those 
mathematical objects theorems are formulated and proved which are taken to give us abso-
lutely true and unchangeable propositions about properties of the objects. Mathematical 
theorems are stated like statements in natural sciences and on the face of it there is no 
doubt that the objects concerned can be viewed in analogy to physical objects, a position 
taken for instance by Gödel. But it is also generally agreed that the objects of mathematics 
are not located in space and time and that they therefore are not accessible to the senses as 
are at least most of the physical objects. Thus a paradoxical situation arises: in math so 
                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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called representations (formulas, diagrams, graphs, etc.) are used in all kinds of mathemati-
cal activities and they are considered as a kind of description of the inaccessible objects 
themselves. Because of the latter quality one never can scrutinize the fidelity of the descrip-
tion and one is without any alternative restricted to the representations themselves. This 
dilemma of a factual discourse about objects which in principle cannot be used either to jus-
tify or to falsify the assertions made about them in theorems is in principle unsolvable. It is 
my thesis that the talk about objects and their properties in pure math is a potential source 
for a feeling of lack of understanding and for a deep uneasiness on part of the students. 
From most other areas of learning they bring the experience that the respective discourse 
has reference and meaning somewhere in the perceivable reality in stark contrast to what 
they experience in math which thereby is in danger to be seen as meaningless.  

A first example is presented already by the “ideal” objects of geometry: geometry does not 
talk about the figures on paper but about “exact” ones. For the latter the question of exist-
ence and localization has belabored philosophers and mathematicians since centuries with-
out any conclusive solution. Any kind of (actual) infinity poses similar unsolvable problems. 
How to understand the talk about “all” natural numbers which yet is indispensable for un-
derstanding notions like (infinite) sequence, limit, irrational number and so on? Cantorian 
infinite sets are likewise prone to arouse similar questions. Here one easily has the impres-
sion not to know about what the mathematical discourse is speaking. Nobody can survey an 
infinite set and the intended referents of set theory remain hidden completely. But still, in 
the common textbooks sets are presented as objects of the mathematical investigations 
much like, say, cells are the objects of biology. Sometimes platonistic interpretations are 
offered (e.g. in Deiser, 2010) but mostly the common way of presenting math is seemingly 
viewed to be completely unproblematic. The students simply have to get used to that way 
of mathematical behavior but – my thesis – for many of them this is in fact not much more 
than induction into a meaningless operating with signs and words based on memorizing. 
Thus, what is needed is an alternative to the widespread physicalist or every day interpreta-
tion of mathematical language according to which words and signs receive their meaning by 
referring to something outside the language itself. For all the philosophical aspects here and 
in the following a good reference is Shapiro (2000). 

Therapy 
The main obstacle for a sober and not metaphysical interpretation of mathematical dis-
course appears to be the question about the ontological status of mathematical objects from 
which derive related epistemological issues. Various are the trials by philosophers to solve 
this problem none of which is satisfying because in one way or the other all stick to mathe-
matical objects be they platonistic, empirical, mental or fictitious ones. The only exception 
and substantial alternative appears to be the view proposed by Wittgenstein which we will 
consider here now. This view is embedded into a general philosophy of language and of 
meaning. Wittgenstein proposes to analyze meaning of words and more generally of signs 
not in terms of reference but of the usage made of them in the practice of sign use. The 
central notion for this analysis is that of language (or sign) games which are considered as 
the locus of meaning which therefore is shifted from the outside to the interior of sign use. 
If at all, and what, signs denote results from the “moves” (or language acts) within the sign 



khdm-Report, Nr. 05, 2017 

270 

 

game. The latter is a practice governed by explicit and implicit rules which are to be learned 
by participation in the respective game. The signs play a role analogous to that of figures in 
certain games like chess. To be meaningful there need not exist external referents for the 
signs of the game but there often are rules for how to use the signs to designate objects 
outside of the game. This is not the case for chess but essentially so for the sign game of 
arithmetic as Wittgenstein emphasizes. A figure in chess receives its meaning not by desig-
nating something (a king is not referring to a “king”) but by the rules governing how to 
move it. Nevertheless we use nouns for speaking about the figures of chess and Wittgen-
stein views the use of nouns in math in analogy to such practices. This is to say, the mean-
ing of a mathematical term is not fixed by its reference to a mathematical object of what 
kind ever (like in Frege) but by the rules for operating with it (like in Heine and Thomae). 
This, for instance, very nicely solves all ontological qualms regarding complex numbers 
where the search for referents plagued mathematicians and philosophers for centuries and 
of course the students of today. This similarly applies to (pure) arithmetic, or to quaternions, 
or to finite geometries, etc. The geometric model for the complex numbers here appears just 
as another sign game which mathematically is isomorphic to the original complex numbers 
as algebraic entities. It is important to realize the central role played in all these examples 
(and possibly everywhere in math) by the rules for operating with the symbols, diagrams 
and terms. That math can and should be interpreted as not being descriptive of a realm of 
independent objects is even more distinctly underlined by the notion of infinite set as given 
by Dedekind and Cantor where the ontological issues are even more exacerbated. The 
common definition (bijective mapping onto a strict subset) should be viewed not as describ-
ing an essential property of infinite sets but as prescribing a way of using that term, of of-
fering a rule for how to speak “about” infinite sets even if there are none of them inde-
pendent of that speaking. Of course this rule for the game of set theory is embedded into a 
vast collection of other rules about how to use terms like set, mapping, bijective, etc. From 
all these rules and conventions the game is developed further which I propose to view in 
analogy to the development of a fiction or of a theater play where again certain rules are to 
be regarded. Which those rules are is open to negotiation as the example of the axiom of 
choice shows very clearly where it took some time until the mathematical community 
agreed to use this axiom as a powerful means for proving theorems. One has for that inves-
tigated where and for which purpose the axiom has to be used and what will be “lost” if it is 
not admitted. This somehow formalist approach does not deny the role played by intuitions 
or by various heuristics. Like a good chess player has available a great many experiential 
guidelines though the game itself is completely controlled by formal rules. 

We have mentioned several times the notion of rule to which Wittgenstein accords great 
importance. He proposes to analyze mathematical concepts and theorems as a kind of rule 
which would save us the problem of truth in math. An illustrative example is the notion of 
sphere which then is not taken to describe some ideal objects. The mathematical sphere is 
not an object, even not an ideal or abstract one, but a rule for judging objects regarding their 
sphericity. If an object complies with this rule (more or less) we will consider it as a sphere. 
From this rule again other rules can be deduced which further illuminate our use of the term 
“sphere”. In this vein, a theorem like that about the “infinity” of prime numbers is not as-
serting the factual existence of infinitely many objects but it is just another rule within the 
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game of arithmetic. This interpretation of (pure) math as a collection of rules and norms 
sidesteps problems like those about the necessity, the certainty, the eternal validity of 
mathematical theorems since those issues for rules simply make no sense. For more on 
Wittgenstein see Dörfler (2014) and the references there. 

I think that students might profit if one would discuss such matters explicitly with them of-
fering thereby ways for a sober and not mystical way of thinking about math. Of course this 
is not meant in a dogmatic way or as the ultimate solution of all respective problems but in a 
good Wittgensteinean sense as a possibility to think about mathematics. The approach out-
lined above shows that the traditional questions about mathematical objects can be circum-
vented or even be shown to be void problems. Rules and norms do not have a truth value 
but they have to be accepted and followed by a community; they also cannot be falsified 
but only become outdated or appear to be no longer adequate. Thus the miracle of the ap-
parent eternal necessity of mathematical truths dissolves. Here again the comparison with 
chess is very helpful. Understanding math no longer resides in a mystical access to other-
wise inaccessible objects but in the conscious acceptance of the rules. The system of rules in 
math is clearly very complex and partly implicit such that this view does not spare the 
learner great effort and precise attention to the rules. But she now will take part in a public 
activity with signs and not in secluded cognitive endeavor. Learning math turns from a men-
tal construction of mathematical objects to the social participation in a practice which is 
guided by rules and conventions which have to be accepted by the learner to be experi-
enced as meaningful. The rules and norms are in principle conventional but they often de-
rive from practical mathematical and not mathematical demands and situations. And, as 
Wittgenstein emphasizes, they have to prove useful outside of mathematics. By this view a 
very sharp distinction is drawn between math and all sciences which might be very im-
portant for a relaxed understanding of math. Whereas in the sciences always an object can 
be assumed about which the science is reasoning but which is not itself present neither in 
the classroom nor in the textbook, in math the whole story is on the blackboard or on the 
pages of the books. There is nothing behind or under the mathematical “text”, a proof is not 
about a proof. It is again like with chess where everything is clearly and publicly visible on 
the board. Thus a last consequence would be a strong focus on the mathematical signs 
(formulas, diagrams but also verbal expressions like in set theory) and the operations with 
them. 
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How can Peer Instruction help the students’ learning progress? 
54F
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In a case study I will explore the learning process and how students acquire new knowledge during 
the discussion. The paper focuses on peer discussions initiated by a multiple choice clicker question 
that addressing the mathematical language. 

Introduction 
Mazur (1997) recommends the usage of clicker questions55F

1 during lectures as follows: First 
the lecturer presents the question and the students vote for the first time, then they discuss 
their vote for a few minutes with their neighbours and vote again on the same question 
before the correct answer is presented. Mazur named the peer discussion Peer Instruction 
(PI). 

However, some lecturers who use clicker questions skip the PI and explain of the correct 
reasoning after the first vote. They think a clear and accurate explanation will lead to more 
student learning than an explanation by peers would (Smith et al., 2009, p. 124). Smith et al. 
contradict this opinion. They point out that research in physics has shown that instructor 
explanations often fail to produce gains in conceptual understanding. Moreover they have 
shown in an undergraduate genetics course for biology majors “that peer discussion can 
effectively promote such understanding” (Smith et al., 2009, p. 124). 

During PI, students try to find the correct answer. Many lecturers assume that students can 
benefit from peer discussion only if someone in the group initially knows the correct answer 
and reasoning and can instruct the rest of the group (Smith et al., 2009). When I talked to 
mathematicians this is a frequent objection to the use of peer discussions in first year cours-
es. Many of them doubt that enough students have the knowledge to convince the others. 
So in this paper I want to show how first year students work together during PI and how 
they benefit from the discussion. 

Learning through Discussion 
According to Miller interaction is the key to developing new knowledge. During a discourse 
like in PI a social conflict (“who has the right answer”) can lead to a cognitive dissonance 
(“which is the right answer if both have 
different meaning and both think they 
would be right”) (Miller, 2006). This 
dissonance can be a starting point for 
gaining individual knowledge. 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
1 You can find one example of such multiple choice questions in this paper. 

Fig 1: Epistemological triangle 
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Steinbring supplies a “theoretical basis, where the epistemological conditions of mathemati-
cal knowledge are particularly related to interactive constructions of knowledge”. 
(Steinbring, 2005, p. xii). He combines the epistemological triangle as seen in figure 1 with 
Luhmann’s concept of communication.  

In interaction with others the students produce actively reciprocal connections between the 
„points" of the triangle (Steinbring, 2005). For example when students discuss about the 
concept of functions they relate the sign/symbol “f” with a diagram as a reference context. 
But this relation is not fixed; it can be modified during the interaction with others. So the 
“epistemological triangle reflects the particular status of mathematical knowledge as it has 
been constructed in the interaction to a certain point of time” (Steinbring, 2005, p. 78). 

This view of producing mathematical knowledge through interaction allows us to model “the 
nature of the (invisible) mathematical knowledge by means of representing the relations 
and structures constructed by the learner in the interaction” (Steinbring, 2005, p. 23). 

Methodology 
As mentioned above I would like to get a deeper insight into students interaction during 
Peer Instruction. Case studies can provide a rich and significant insight into events and be-
haviours, provides descriptive details about a particular phenomenon, can increase under-
standing of phenomenon and explore uncharted issues (Yin, 2006).  

In this paper I will present a case study on the students’ discussion process for one clicker 
question and concentrate on a few group discussions. According to Yin’s (2006) classifica-
tion this case study is a one case study with “embedded” subcases. 

The results presented here are part of a larger study in an undergraduate analysis course 
with 16 questions in 4 theatre style lecturers each 90 minutes long. The clicker question 
(figure 2) that is focused on in this paper was presented at the beginning of the second les-
son. 

With the given clicker questions the students had approximately one minute to think about 
it on their own before they voted for the first time. Afterwards they had approximately six 
minutes to discuss the solution with peers and vote a second time, followed by the lectur-
er’s clarification. For analysing the Peer Instruction, the students were asked which group is 
willing to record their discussion by dictaphone. Six groups volunteered. 

For good validity and reliability of the case study the audio recordings of the discussions 
were transcribed using GAT rules (Breidenstein, 2004). Afterwards the transcripts were in-
terpreted turn-by-turn analyses among members of the study group as described by 
Krummheuer (1992). In order to uncover the knowledge construction, they were then ana-
lyzed with Steinbring’s epistemology oriented methodology as describe above. 
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The clicker question 
Based on the findings 
of Dubinsky and Yipara-
ki (2000), that many 
students have major 
problems understanding 
the interlacing of “for 
all...there exists” (AE) 
and “there exist…for all” (EA), the clicker question presented in figure 2 was designed.  

In this question, the correct answer B) is contrasted by the two definitions A) and C). In defi-
nition A) the students should realize that “all  𝜖 ℝ+

 ” and “all 𝑥 𝜖 𝐷  ” can be shortened into 
„to all 𝑥 𝜖 𝐷“ thereby defining an absolute (global) maximum. Definition C) instead does not 
fit the idea of a maximum because each point of the function fulfils the prerequisite. 

Results 
At the beginning of the discussion none of the students could correctly reasoning that defi-
nition B) was right. The discussions revealed many misinterpretations like the following ex-
ample. 

At the beginning definition A) was the 
favourite definition for many students. 
These students interpreted the state-
ment (sign/symbol) “for all 𝜀 𝜖 ℝ+ and 
all 𝑥 𝜖 𝐷 with |𝑥 − 𝑥𝑜| < 𝜀 “ as an 𝜀-
neighborhood in the reference context 
illustrated in figure 3. One student rea- 
soned his interpretation by referring to the definitions of the convergence of sequences in 
which 𝜀 is used as arbitrary small number. 

S: Definition A) mostly makes sense for me because it means that you approach over all 
𝑥 (2.0) let the interval getting smaller and smaller. 
S: I see a connection to the concept of convergence (.) that you shorten the distance more 
and more (1.0) and nevertheless the 𝑓(𝑥0) is the greatest. 

In other groups students used the ε-
𝛿- definition of continuity to justify 
the correctness of definition A). It 
seems that this common use of 𝜀 
leads to the meaning of the sign “for  
all 𝜀 𝜖 ℝ+ as seen in figure 4. 
Altogether this misinterpretation could be found in three out of six groups. 

Fig 3: often seen interpretation
 

Fig 2: Voting question
 

Fig 4: often seen interpretation 

ε
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Two of these groups were able to recognize their mistake and understood that this defini-
tion A) is a definition of a global maxi-
mum. So a conceptual change from fig. 3 
to fig. 5 could be seen. The discussion 
process of these two groups were even 
more successful. They could even 
give a convincing argumentation for def-
inition B) to be correct. For example, one 
student who was asking his classmates  
“are there any differences between definition B) and C)” at the beginning of the discussion 
was then able to convince his colleagues at the end that definition B) was right with the 
words: 

L: you find any interval around 𝑥0 so that every function value is smaller (-) then you 
have a local maximum and that is exactly what is stated in b (-) find an epsilon inter-
val around 𝑥0 and all 𝑥 must be inside this (-) that is exactly what is formulated in b 

A learning progress in understanding of the meaning of the mathematical expressions could 
be observed in five out of six groups. Only the sixth group did not even try to interpret the 
three definitions. They were afraid to say something wrong. 

The key for the learning progress was mutual support. They helped each other by asking 
and answering question, giving critical comments, revealing gaps in the chain of argumenta-
tions, supporting argumentations and the famous gradual generation of thought through 
talk. This collaboration was possible because all statements were taken seriously. The at-
tempt to find connections between the mathematical symbolic expressions and their visual 
imaginations especially helped the students to overcome misunderstandings and supported 
the construction of new knowledge. 

Conclusions and discussions 
The examples show that peer discussion provides a chance for a learning progress and that 
students are able to reveal misunderstandings and successfully change their misinterpreta-
tions of mathematical expressions. It also shows that students work together in a collabora-
tive way, so the name Peer Instructions is misleading. It gives the idea that high achieving 
students support lower ones by explaining the right answer. But such explaining was not 
been seen here. Instead collaborative teamwork was the key for creating new knowledge. 
So I recommend using the words peer discussion or peering learning instead of Peer Instruc-
tion. To determine the best conditions for good collaboration further research is needed. 
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Connections: mathematical, interdisciplinary, personal, 
and electronic 56F

  
Deborah Hughes Hallett 

University of Arizona, Harvard Kennedy School 
(United States of America) 

How can creating links improve our students’ learning experience? We argue that students’ apprecia-
tion of the intellectual links profoundly affect their grasp of the material. We argue that personal links 
have a major effect on their confidence and motivation. We analyze a range of different types of 
links, characterizing each and identifying its benefits, and talk about how each might be created. Last-
ly we consider how the landscape will change as courses move online. 

Why Connections? 
For most people, learning involves making connections: Connections between ideas, con-
nections between fields, and connections between people:57F

1 

“Stunning new research on the brain by neuroscientists is adding a new dimension to 
our knowledge about learning that reinforces our previously tentative conclusions 
from cognitive psychology. This research provides growing evidence that learning is 
about making connections” (Cross, 1999) 

How does the goal of building connections inform our teaching? In this talk we consider how 
to build different types of connections and the benefits of each.  

Mathematical Connections 
The most salient connection is probably that between different areas of mathematics. For 
us, these connections are the life-blood of mathematics—they create the depth of under-
standing that allows us to analyze problems from a flexible point of view. Insight flows from 
the power to match the point of view to the task at hand. In addition, research shows us 
that “as students learn a discipline, their knowledge of the structural relationships among 
parts of the discipline become(s) more like that of experts.” (Schoenfeld, 1982). 

However, many students do not easily see mathematical connections. Student feedback 
makes it clear that students’ views of mathematics are often not the same as ours. For 
some students, mathematics is a set of procedures—a point of view that is unfortunately 
reinforced by the fact that the tests they take can often be done entirely procedurally, even 
if they were not intended to be that way. While there is general acknowledgement that pro-
cedures are important, they cannot be learned effectively in isolation: “To develop proce-
dural fluency, students need experience in integrating concepts and procedures and building 
on familiar procedures as they create their own informal strategies and procedures.” (NCTM, 
2014)  

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
1 Emphasis in original. 

http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121


khdm-Report, Nr. 05, 2017 

278 

 

• Challenge: How can we increase students’ appreciation of the connections between 
different areas of mathematics? 

The answer lies in the activities students do. The talk will characterize successful approaches 
to constructing activities and show examples from several courses. (Hughes Hallett, Gleason, 
& McCallum, 2013) 

Interdisciplinary Connections 
For students taking mathematics in the service of another field, interdisciplinary connections 
are essential as motivation and inspiration. In an Indian school where over 80% had failed 
mathematics, students reported in interviews “they are not interested in studying Mathe-
matics” because they perceive the subject as “too far from life to catch [their] interest”. 
(George & Thomaskutty, 2007)  

But interdisciplinary links are not sugar-coating—their role is not to make an unpalatable 
subject palatable. Their role is to enable students to develop a deeper understanding of both 
mathematics and the other field.  To ensure that this occurs, the applications shown have to 
be authentic. Contrived examples simply reinforce students’ notions that mathematics is not 
actually useful.   

• Challenge: How do we create meaningful interdisciplinary links to fields? Especially 
with fields that we have never studied ourselves?  

The answer parallels many of the recent advances in research—where the cutting edge is 
frequently interdisciplinary.  The National Academy of Sciences reports (Andreasen, 2005) 
“Advances in science and engineering increasingly require the collaboration of scholars from 
various fields”.  In particular, finance, biology, economic development, education, the law all 
use mathematics increasingly frequently and now depend heavily on data. Our teaching will 
similarly benefit from interdisciplinary input. 

The talk will consider practical ways to get this input and suggest how examples may differ 
from audience to audience. We will see a range of structures for interdisciplinary links, from 
co-teaching, to the use of joint assignments, to projects within a math course. These links 
are easier in some parts of mathematics than others, but all are appreciated by students. 
The response of faculty in other fields to the meetings described in “Voices of the Partner 
Disciplines” (Ganter & Barker, 2004) was superb.  

Personal Connections 
An undervalued tool in our teaching arsenal is out ability to forge personal relationships with 
our students. Some students do not want anything from a course except the material, but 
others are questioning the direction of their lives and greatly value our support or critique. 
Asked to recall a good teacher, most people point to someone who believed in them—not a 
teacher who did a brilliant job of presenting a theorem. Technical teaching skill is central—
but it is only part of the story. Equal enthusiasm for the material and for the students is an 
enormous asset because “Engaging students in mathematics conversations in classrooms is 
central to the development of students’ skills and understanding.” (Webb, 2014) 
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Yet there are often difficulties: Culture, language, interest may be barriers, and time is al-
ways short. 

• Challenge: How do we bridge the gaps and structure beneficial relationships with 
students? 

The answer includes listening as much as talking, restricting advice until it is asked for, and 
knowing who would benefit from our support and who would not. Refer elsewhere the ones 
that would benefit from other advice. Then the moments spent talking outside class may be 
some of the most important teaching moments we have. 

Electronic Connections 
With the rapid growth in online courses, we need to be able to adapt our answers in each of 
these areas. In the curricula arena, it is not hard to imagine the transition. Mathematical and 
interdisciplinary materials can be either paper or electronic. Indeed, interdisciplinary videos 
are likely to be a great improvement over paper materials. The transition to online is likely 
to occur naturally with time. 

Online grading is already well-established and fairly robust. WebWork, WebAssign already 
carry out a great deal of the day-to-day grading in US mathematics departments and are 
surprisingly helpful. When the grading of verbal answers and explanations becomes possi-
ble, it will be a huge boost for electronic courses. 

However, security, which is not important for MOOCs but vital for credit courses and degree 
programs, is currently a gaping need. The current online proctoring arrangements are largely 
not adequate for mathematics. The options lag far behind what is needed. 

• Challenge: How will the technology adapt to provide security for credit courses? 

Meeting thus challenge is unlikely to involve us directly, except as users. But as companies 
become increasingly interested in providing online training and MOOCs become essential 
gateways rather than luxuries, the pressure to improve security will likely produce results. 
As a community we need to be ready with requests that can shape the service into one we 
can use.  

In the realm of personal relationships, an electronic-only connection poses new questions.  

• Challenge: How will we create personal connections with online students? 

The answer may involve stitching together existing software or the next generation off-
spring—for example, Facetime, Skype, screen-sharing software—to enable us to see into the 
minds of our students in the same way as we can during an office visit.  

An online medium has huge potential. Instead of spending time on presenting material that 
students can read or learn from a video, we will be able us to focus our teaching on teach-
ing.  

• Challenge: Before a paradigm is thrust on us, the community of mathematics educa-
tors should shape the electronic connection they want. 
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Problem solving opportunities in frontal classes: 
Inquiry in teaching practices and learning strategies 58F

  
Boris Koichu, Eman Atrash, Ofer Marmur 
Technion – Israel Institute of Technology 

(Israel) 

The presentation is based on the results of two studies aimed at exploring opportunities for enhanc-
ing students’ active learning through problem solving in frontal lectures and tutorials of linear algebra 
and calculus university courses. In the first study,traditional linear algebra lectures and lectures in-
volving Classroom Response Systems were explored. The study resulted in an identification of a set 
of practices by which experienced lecturers created opportunities for interactive problem solving. The 
second study explored students’ learning strategies in calculus tutorials. We found that while some 
students followed the exposition, other students periodically stopped listening, engaged in independ-
ent problem solving, and then attempted to catch up with the exposition. Implications are drawn. 

Rationale 
A consistent recommendation made by many scholars is to enhance student learning of 
mathematics in higher education by collaborative problem-solving experiences (Artigue, 
Batanero & Kent, 2007; Dorier, 2000; Holton, 2000). This recommendation is frequently in-
terpreted as a “farewell, lecture” call for the deep reformation of traditional university 
teaching (Mazur, 2010). In spite of this recommendation, and the fact that, generally speak-
ing, findings about the effectiveness of lecturing are not encouraging (Cooper & Robinson, 
2000), mathematics is still taught in many universities in a traditional format. By a tradition-
al teaching format, we mean a combination of frontal lectures in which professors explain 
theoretical material to groups of 200-400 students, and frontal tutorials in which teaching 
assistants (TAs) explain problem-solving methods to groups of 40-80 students. This format 
implies that following the exposition and making notes are the main student activities during 
a class. 

The reasons for sustaining the traditional teaching format are related to the logistic con-
straints of universities (e.g., Walczyk, Ramsey & Zha, 2007), as well as to the preferences 
and beliefs held by either lecturers or students (Roth-McDuffie, McGinnis & Graeber, 2000). 
Additionally, there are studies that suggest: (i) frontal classes of outstanding lecturers can 
be engaging to students (e.g., Movshovitz-Hadar & Hazzan, 2004); (ii) the instructor quality, 
as reflected by the instructor’s connection with the students through carefully listening to 
their questions, probing their understanding, and keeping the level and pace of the course 
challenging and achievable, is the foremost explanatory variable of the students’ successes 
and failures (Bressoud, Carlson, Mesa, & Rasmussen, 2013); (iii) pedagogies supporting col-
laborative problem solving are feasible on the small scale (e.g., Yusof & Tall, 1999), but not 
always on the large scale. Consequently, identification of opportunities to enhance active 
learning in frontal large-group classes is still an important research enterprise. 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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This article concerns two interrelated issues: (1) teaching practices by which experienced 
lecturers create problem-solving opportunities for their students during frontal large-group 
classes; and (2) patterns of (active) student learning in such classes. We pursued the first 
question in context of frontal lectures of a linear algebra course, and the second one in con-
text of calculus course tutorials. 

Teaching practices of experienced linear algebra lecturers 
The goal of Atrash’s (2013) Ph.D. research was to identify and characterize the pedagogical 
practices that experienced lecturers employ in order to help students overcome their (antic-
ipated) difficulties with the material exposed in frontal large-group lectures (hereafter re-
ferred to as PPODs – Pedagogical Practices aimed at Overcoming Difficulties). The research 
comprised case studies of two experienced lecturers who taught linear algebra at the Tech-
nion.  For each lecturer two consecutive semesters of teaching were explored. During the 
second semester, Classroom Response Systems (CRS) were occasionally used as a techno-
logical artefact for enhancing the interaction. All the lectures were videotaped. The data 
consisted of 168 hours of video, field notes made by the researcher during the lectures, and 
10 stimulated-recall interviews with each lecturer. 

The video material was analyzed in three stages. At the first stage, the episodes in which 
the lecturers explicitly dealt with student difficulties were isolated in five randomly chosen 
lectures. At the second stage, the lecturers’ PPODs in these episodes were categorized using 
the grounded theory approach.  At the third stage, the identified categories were refined, 
verified, and implemented in the analysis of 50% of the videotaped material (42 hours of 
teaching per lecturer). In particular, the PPODs employed in teaching the same topics during 
two consecutive semesters were identified for each lecturer. The considerations of the lec-
turers for choosing particular PPODs were categorized in accordance with their reflection on 
the videotaped episodes considered during the stimulated-recall interviews. 

Nine PPODs were identified: Giving Numerical Examples; Highlighting by Asking Questions; 
Making Intentional Mistakes; Using Visual Aids; Repeating Twice; Solving/Proving in Several 
Ways; Anchoring in Real Life; Encouraging to Keep Working; Advising to Do or Not to Do 
Something. The first three PPODs included short breaks (of 10 seconds to 2 minutes) in the 
exposition during which the students were encouraged to think about the given challenge. 

Consider an example related to Making Intentional Mistakes. At a lecture on vector subspac-
es, Lecturer B. wrote on the whiteboard: "Given two subspaces 𝑈 and 𝑊: 𝑈 ∩ 𝑊 is a sub-
space, and 𝑈 ∪ 𝑊 is a subspace." The lecturer then proved the first part of the claim: 

"0 ∈ 𝑈 ∩ 𝑊 since 0 ∈ 𝑈 and 0 ∈ 𝑊. Following this, the set is closed under the operation of 
multiplication by a scalar: 𝑣 ∈ 𝑈 ∩ 𝑊;  𝛼 ∈ 𝐹  ⇒ 𝛼𝑣 ∈ 𝑈 and 𝛼𝑣 ∈ 𝑊 ⇒  𝛼𝑣 ∈ 𝑈 ∩ 𝑊. Sub-
sequently, the set is closed under the operation of addition as follows: 𝑢, 𝑣 ∈ 𝑈 ∩ 𝑊 ⇒
 𝑢, 𝑣 ∈ 𝑈 ⇒ 𝑢 + 𝑣 ∈ 𝑈 and 𝑢, 𝑣 ∈ 𝑊 ⇒ 𝑢 + 𝑣 ∈ 𝑊 ⇒ 𝑢 + 𝑣 ∈ 𝑈 ∩ 𝑊. 

At that point the lecturer provocatively said: “In order to prove the second part of the claim, 
about the union, I just change the sign.” He then inserted ∪ instead of ∩ in the above proof, 
looked at the students for about 5 sec in silence and declared: "The second claim is not true, 
where did I make a mistake?" 
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There were no immediate responses, so the lecturer continued and gave a counterexample: 
"Take for instance two subspaces 𝑥-axis and 𝑦-axis. The union of 𝑥-axis and 𝑦-axis is not a 
subspace since it is not closed under the operation of addition: (1,0) ∈ 𝑥-axis; (0,1) ∈ 𝑦-
axis; (1,0) + (0,1) = (1,1), and it does not belong to 𝑥-axis ∪ 𝑦-axis." Finally, the lecturer 
crossed out the “proof” on the board. 

In the lectures using CRS the time of dealing with student anticipated mistakes was longer 
than in the traditional lectures on the same topics. However, the average number of PPODs 
observed in the lessons with and without CRS was about the same and was not topic-
dependant. The most frequently used PPODs were: Giving Numerical Examples (97 occur-
rences in 84 hours of analysed lessons); Highlighting by Asking Questions (79 occurrences); 
Advising to Do or Not to Do Something (47); Repeating Twice (39).  

Given the high load and time constraints of the course, the lecturers made decisions wheth-
er to use particular PPODs based on considerations of both a mathematical and pedagogical 
nature. One consideration was related to the lecturers’ mathematical preferences in teach-
ing linear algebra. Namely, one lecturer gave the highest merit to nuanced exposition of 
theory (e.g., definitions), and the other lecturer saw her main mission in helping students to 
make sense of problem-solving methods. The lecturers also differed in their beliefs about 
the students' learning styles and strategies. In particular, one lecturer assumed students 
learn best when provided with comprehensive explanations, while the other deemed im-
portant to enable students to ask questions.  

Learning strategies of calculus students in frontal tutorials 
One of the goals of the Ph.D. study of Marmur (in progress) is to characterize learning strat-
egies that calculus students employ while listening to explanations by TAs in frontal tutori-
als. The presentation focuses on the strategies reflected by the students upon an episode in 
which one of the teaching practices identified by Atrash (2013) had been implemented, 
namely, Making Intentional Mistakes. The episode concerns the following problem:  

Show that the sequence                                              converges and calculate its limit. 

A design-based research of five iterations (Marmur & Koichu, 2016) has shown that this 
problem can evoke an aesthetic response from students when a TA acts as follows. The TA 
begins by attempting to prove on the board the monotonicity of the sequence by mathe-
matical induction. Surprisingly for the students, this attempt fails and the instructor crosses 
out the proof. Further reasoning suggests that the monotonicity can be proven if one first 
manages to show that                          . The latter statement, even more surprisingly for the 
students, again leads to a failed attempt utilizing mathematical induction, and the TA crosses 
out the content of the board once more. The TA then invites the students to recall the AM-
GM inequality (the inequality of arithmetic and geometric means) whose implementation 
easily accomplishes the proof of boundedness, and consequently the solution to the prob-
lem. 

Nine students who expressed strong emotions towards the problem took part in individual 
stimulated-recall interviews. The students were presented a 15-minute video excerpt of the 
lesson in which the problem had been taught. They were explained that the video served as 
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an aid for them to „relive” the lesson, and were instructed to pause the video whenever 
they had a particular recollection of what they thought or felt at that moment. The duration 
of the interviews ranged from 30 to 60 minutes, depending on the level of detail that was 
shared by the student. The interviews were audio-recorded and transcribed. 

One finding was that the interviewed students generally reported the episode of experienc-
ing intentional mistakes in class to be emotionally intense. Referring to entire solution-
attempts being crossed-out, student reports included: „I was in real shock”, „It was horri-
ble!”, „I felt frustrated”, and „It was infuriating”. Ultimately, the same students also used 
expressions like „amazing” and „beautiful” to describe the successful solution at the end of 
the lesson. We utilized the Contrastive Valence Theory (Huron, 2006) in order to explain the 
occurred changes in the students’ emotional responses: a strong contrast between an initial 
negative reaction-response to a situation, and a later reflective and re-evaluative appraisal-
response, is a mechanism that evokes and enhances pleasure.  

Another finding was that the strong emotional responses induced by the intentional mis-
takes seemed to enhance the students’ involvement in the lesson. During its course, the 
students continually produced anticipations and went through a number of emotional „ten-
sion-relief” cycles. Moreover, they reported to be active learners in the following meaning: 
while listening, they attempted to accomplish self-imposed tasks. These included tasks such 
as: independently testing alternative ideas to the solution; attempting to predict what the 
instructor is about to do next; identifying difficult places in the proof to come back to later; 
looking for connections between the problem taught in class and the corresponding home-
work assignment; and formulating problem-solving strategies from their current experience 
that they could use in the future. Several students reported they took the opportunity to 
cope with these self-imposed tasks when the instructor for instance addressed questions of 
other students. Two students explicitly reported occasionally “disconnecting” themselves 
from the lesson, looking for a solution on their own, and then coming back to the instructor’s 
exposition. As expressed by one of these students: 

“I personally started looking for ways how to succeed in continuing from here. It took 
me about three minutes to disconnect from my thoughts and come back to you. I did 
look for other ways how to continue and I really couldn’t find any. And then I came 
back. But I kind of had a pause of ‘ok, one moment, it can’t be that it’s impossible to 
continue’.”  

In this study, we utilized an emotionally loaded episode as a magnifying glass under which 
student engagement in undergraduate mathematics tutorials can be examined. Overall, the 
findings point out the complexity of student learning strategies whilst listening to a frontal 
exposition. In particular, there is evidence that students are capable of engaging in problem-
solving-like activity during frontal-style lessons.  

Concluding Remarks 
The traditional teaching format in higher education implies that students’ main activities 
during a lesson are listening and making notes. The main criticism on the traditional teaching 
format is that it does not encourage active learning (Artigue, Batanero & Kent, 2007; Cooper 
& Robinson, 2000). We have no intention to downplay this criticism, but rather would like to 
claim that special effort put into upgrading (instead of radically changing) the traditional 
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teaching format, could align it with the active learning paradigm. As argued, it is unlikely 
that the traditional teaching format will soon disappear in higher education – it is more likely 
that new technology-supported means would complement it. Thus, teaching practices en-
couraging active learning and problem solving in large-group mathematics classes should be 
identified and disseminated, and the knowledge on what happens with students during 
large-group mathematics classes employing such practices should be accumulated. Our find-
ings suggest that some of the students manage to engage themselves in problem-solving-
like activities not only during the breaks of the frontal exposition, but also concurrently with 
it. We believe that it is truly important to help regular students develop this skill. After all, 
learning from a frontal large-size mathematics class can be as active as learning from 
watching a good movie or reading a good book.  
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Perceived competence and incompetence in the first year of 
mathematics studies: forms and situations 59F
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One issue in university mathematics education is students’ motivation. Following recent theories, the 
personal experience of competence is a very important element for motivational development. We 
distinguish students’ experience of competence from their experience of incompetence and figure 
out how these experiences relate to different reference norms. For this, we conducted and coded 
interviews from students’ first year at university. The coded items show that students mostly seem to 
refer to the criterial norm, i.e. standards set through lectures and tasks. Students refer far less to the 
social or individual norms. However, when they refer to the latter, they much more often report ex-
periences of competence than incompetence. A further analysis towards typical forms and situations 
shows that in particular the experiences of incompetence relate to factors genuine to mathematics, 
like the specific language or proof.  

Introduction 
Studying mathematics is known to sometimes come along with motivational problems, es-
pecially in the first year (Daskalogianni & Simpson, 2002). Specifically in German mathemat-
ics and higher secondary teacher programmes, motivational problems form one major rea-
son for student drop out (Heublein, Hutzsch, Schreiber, Sommer, & Besuch, 2009), dropout 
rates ranging from 50% (Heublein, Richter, Schmelzer, & Sommer, 2014) up to 80% (Dieter, 
2012). Apart from dropout, students’ motivation is also central for their learning. Interest, 
for example, is an important predictor for the use of deep learning strategies, effort and 
learning in mathematics (Köller, Baumert, & Schnabel, 2001). We aim at working out rea-
sons for the development of students’ motivation in the typical German setting: Rather large 
groups of one hundred students or more attend lectures on real analysis or linear algebra, 
which are based on definition and proof. Every week, the students have to hand-in a task 
sheet, which includes proof-based tasks. The sheet gets marked and is then returned in a 
weekly tutorial where the solutions are presented and discussed. Typically, only students, 
who get at least 50% of the maximum score and pass an additional exam, pass the module. 
Attendance is neither required in the lectures, nor in the tutorials.  

Theoretical Background 
Following self-determination theory (SDT) by (Deci & Ryan, 1985; 2002), we assume the 
experience of three basic psychological needs to be crucial to students’ motivational devel-
opment: the needs for perceived competence, autonomy and social relatedness. In SDT, the 
role of the basic psychological needs for the development of motivation compares to the 
role of basic physiological needs (food, water) for the development of our body: need satis-
faction is necessary to thrive, in particular for the development of interest (Krapp, 2002). A 
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major difference is, however, that the satisfaction of psychological needs is a matter of per-
sonal perception. Thus, even in the same situation, different persons may experience need 
satisfaction very differently. We should also note that the perception of need satisfaction is 
not a matter of conscious knowledge but rather an affective reaction. For the development 
of motivation with intrinsic qualities, all three needs are important, whereas in our presenta-
tion, we will restrict to the need for competence. This need is satisfied when a person feels 
effective in interacting with his or her social environment and experiences opportunities to 
express his or her capacities. Since the need satisfaction relates to personal perception, it 
should not be confused with any external judgement of competence. In fact, people may 
feel competent at any level of actual ability. In recent years, SDT has been complemented 
by approaches of distinguishing non-satisfaction of needs from their frustration. Need frus-
tration goes beyond indifference or lack of need satisfaction and results in different need-
specific motivation (Sheldon & Gunz, 2009). Students might, for example, not feel compe-
tent because no one tells them that their work is good. As a qualitatively different experi-
ence, they might even start feeling incompetent if someone comes and tells them that their 
work is useless. We thus speak of need satisfaction or experience of competence as well as 
need frustration or experience of incompetence. 

In addition, we use categories of reference norm orientation (Rheinberg & Engeser, 2010) 
for greater differentiation of competence and incompetence experiences. The categories 
have originally been designed for teachers’ judgement of student work and distinguish three 
reference norms. The objective or criterial norm is used, when student work is judged based 
on factual criteria, e.g. predefined learning goals. The social norm is used to judge student 
work based on comparisons between different students (e.g., across the classroom) and the 
individual norm is based on longitudinal comparisons within one student. Since unlike in the 
situations the reference norms were designed for, the students in our settings have an ex-
ternal judgement of their competence provided by the grading of their tasks sheets and 
their exams, we add this external reference norm as a fourth category. The difference be-
tween the criterial norm and the external norm is that the external norm is based on exter-
nal judgements only, so there is no direct link to factual criteria. The criterial norm, in con-
trast, builds on mathematical content like topics from the lectures and the tasks.  

The research goals for this analysis are: Firstly, what norms do students relate to their com-
petence experience? Secondly, in which forms and situations do students experience com-
petence and incompetence in their studies? The answers to these two questions should pro-
vide a basis to discuss two more questions: Thirdly, can we identify aspects of students’ 
experiences of competence, which are specific to mathematics? Fourthly, what could be 
starting points for improving students’ experiences of competence?  

Design and Method 
Our data is formed by 48 semi-structured interviews with 20 first-semester students. Thir-
teen students were enrolled in a secondary teacher programme, six of them studied for a 
mathematics degree and one of them studied physics, and they all attended the same lec-
ture on real analysis. The professor held the course in a rather abstract way and included 
only few numerical examples. All students were asked to come for an interview in the 
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fourth or fifth week of their first semester. The participants were then asked to come again 
for a second interview shortly before the end of the first semester and again in the second 
semester, which they mostly did (20 / 16 / 12 students in the first / second / third inter-
view). The sampling aimed at covering very different experiences, in particular of successful 
and unsuccessful students. They all agreed in the anonymous, scientific use of their data and 
were given the possibility to discontinue the interview or delete passages from the tape at 
any time. 

The students were asked to broadly describe their experience and learning behaviour at 
university. Subsequently, they were more specifically asked for their satisfaction of the 
basic needs including competence, without explicitly suggesting any reference norm. The 
interviews lasted 30 to 80 minutes and were taped and transcribed. Since need satisfaction 
is usually connected to emotions and may thus be remembered quite well, we assume that 
the students recalled large parts of their important experiences. We thus expect to cover a 
very broad range of need satisfaction and frustration.  

To answer the first question for the reference norms, students’ statements in the transcripts 
were coded by two coders in parallel for both satisfaction and frustration of the need for 
competence concerning university mathematics anywhere in the transcript. The codes dif-
ferentiated the four norms (criterial, social, individual, external) mentioned above and were 
allowed to overlap, which they rarely did. Differently coded items were discussed and uni-
fied together with the first author. We want to illustrate the material and our coding by giv-
ing some examples: 

„Usually, it begins when you start engaging with the exercises. And actually it starts 
in this moment ‘okay I have read it, but I don’t even understand the task’.” (Incompe-
tence, criterial) 

„There is something where you realize, ok cool, I got it, apparently the others around 
don’t and the others around account for most likely around 90% of the lecture hall. 
That’s an awesome / well, let’s say a small sense of achievement.” (Competence, so-
cial)  

“When she [the professor] wrote the definition and theorems, I did not get it, I had no 
idea yet. But now that I have calculated a trajectory several times on the task sheets 
– I don’t know why – you then read the definition again and think ‘yes it is clear, it 
makes sense’.” (Competence, individual) 

“I thought ‘well actually, you got / I have done in MY VIEW everything RIGHT on the 
sheet’. And then you get it marked and there is written ‘0 out of 5 points’.” (Incompe-
tence, external)  

In order to answer the second research question, the coded items were again undertaken a 
coding procedure, this time more openly since there were no predefined categories. Instead, 
recurrent themes were constructed from the material. Again, overlapping of themes was 
allowed and 378 out of the 456 coded items could be assigned to at least one theme.  

Results 
The distribution of 456 coded items in absolute numbers and percentages of all 456 items is 
displayed in the following table: 
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 Criterial norm Social norm Individual norm External norm ∑ 

Competence  124 (27%) 23 (5%) 44 (10%) 34 (7%) 225 

Incompetence 184 (40%) 9 (2%) 10 (2%) 28 (6%) 231 
 

The table shows that the students reported both need satisfaction (4.7 statements per in-
terview on average) and frustration (4.8 statements on average) with balanced frequency. 
In both categories, they mostly referred to the criterial norm, accounting for two thirds of 
the statements. The statements within this category were unbalanced towards more reports 
of incompetence. The social norm was rarely mentioned in the interviews and the elements 
in this category mainly referred to competence and not incompetence. Similarly, the individ-
ual norm, which was mentioned more often, was more often related to competence. Slightly 
more positive statements were also given based on the external norm. 

We should be cautious in generalizing the findings concerning the frequency of codes, since 
our sampling did not aim at representativeness. In addition, students’ reports may be biased 
and not fully represent their experience and evaluations. The balance of positive and nega-
tive items is furthermore affected by students’ tendency to put their statements into per-
spective, so they often added something negative to a positive experience and vice versa, 
and also the interviewer explicitly asked for both positive and negative experiences.  

Anyway, to answer the first research question, we may conclude that students related their 
competence experience to all four norms and the criterial norm may be predominant. The 
reference to different norms seems to result in different experiences of competence and 
incompetence. To give an example, many students experienced problems following the lec-
tures and solving the tasks in the same manner as they did in school and consequently re-
ported competence need frustration referring to the criterial norm. However, when the 
same students compared themselves with others, who often shared these difficulties, they 
did not only put their assumed incompetence into perspective but sometimes also evaluated 
their partial success as competence. For the individual norm, the experience of looking back 
resulted almost exclusively in perceived competence, e.g. tasks which students did not un-
derstand at all seemed to be very simple some weeks later. Students then often realized 
and positively evaluated their learning and competence. 

For the second research question regarding typical forms and situations, the re-coding of 
these passages for emergent themes revealed four aspects of both positive and negative 
experiences: “Understanding” (in students’ personal sense) the lectures, specific topics and 
the tasks as well as being able to solve the tasks. In addition, four criteria of success 
emerged, namely doing these things (1) immediately, (2) on your own, (3) completely, (4) 
with visible success in terms of e.g. a document or a reaction by others. These criteria are 
closely linked to students’ former learning at school, where good students used to solve 
tasks on their own and completely. Students’ experience at school seems to function as a 
standard for the evaluation of their experience at university. These standards, however, 
were slightly adapted in the new learning environment. 

Two aspects were specific for positive experiences: a general feeling of all in all mastering 
the studies and a feeling of having developed a sense for “right and wrong” in university 
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mathematics. Moreover, positive experiences were intensified in four ways: (1) external 
confirmation, e.g. by a good grading or reaction from peers, (2) by knowing that “what you 
do is hard”, (3) by overcoming obstacles, e.g. doing things you had failed before and (4) 
explaining mathematics to peers. These positive aspects cannot be seen as independent 
from the negative aspects, since knowing, that university mathematics is hard and over-
coming personal obstacles are two factors which build on negative prior experiences. This is 
also clear for the positive experiences of having a feeling of mastering the studies and de-
veloping a sense for right and wrong, which was taken for granted in school and then ques-
tioned in the first weeks at university. 

Three aspects were specific for negative experiences, firstly the mathematical language 
including symbols, the vocabulary and its logic, secondly mathematical proof including tech-
niques and standards of argumentation as well as the purpose of proof and thirdly the work 
on the task including understanding the aim of the task, possible steps towards a solution 
and in particular the feeling of being stuck. They represent major characteristics of research-
oriented university mathematics (Mason, Burton, & Stacey, 2010; Tall, 1991; 2008). 

Discussion 
From the methodological point of view, we could see that interviews give a broad range of 
results on students’ experiences. However, the students’ spoke rarely about specific tasks or 
mathematical objects, theorems, etc. It is thus plausible, that there are aspects of studying 
mathematics, which did not appear in our study, although they are important for students’ 
experience of competence, like the demands of abstract concept formation. 

The first research question for the different reference norms revealed that students relate 
their experience to all four norms. The analysis indicates that for students’ motivation, it 
could be helpful to direct students’ attention not only to the criterial norm but also to the 
social and even more to the individual norm, the latter also being strongly recommended in 
school (Rheinberg & Engeser, 2010). Possible means could be the provision of individual 
feedback or tasks which foster students’ reflection on their learning. 

The second research question for typical forms and situations could be answered in general 
factors and specific factors for positive and negative experiences. Generally, students’ eval-
uations of their competence seem to be based on their experience from school, where they, 
unlike in university, were used to understand the mathematics rather quick and could solve 
their tasks on their own. The positive forms like developing a sense for right and wrong 
mainly build on prior negative experiences. Negative experiences related to mathematical 
language, proof and working on the tasks, which strongly differ between school and univer-
sity. In recent years, they have been addressed in practice-oriented books (Alcock, 2013; 
Houston, 2009; Mason, Burton, & Stacey, 2010) and in Germany also in new forms of lec-
tures which focus more on proof and problem solving as processes (Grieser, 2013). It is an 
open and interesting question, in how far these measures may help students to feel compe-
tent.  

We should keep in mind, however, that some parts of what students experience as serious 
problems are a natural part of studying mathematics at university and cannot be removed 
easily. It is not helpful, for instance, to explain the tasks in deep detail: “every task has an 
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explicit […] and an implicit or inner aspect [...] If the inner aspects becomes outer (is made 
explicit) then the whole nature and purpose of the task is lost, just as when you are working 
on a problem and someone drops a clue or tells you an answer and you feel deflated and 
uninterested in continuing. Students may then be able to circumvent the work they need to 
do.” (Mason, 2002, p.172). In both the education of teachers and (research) mathemati-
cians, learning and experiencing how to solve problems is a main education goal which re-
quires the students to be stuck in a problem again and again. Therefore, “Probably the single 
most important lesson to be learned is that being stuck is an honourable state and an essen-
tial part of improving thinking.” (Mason et al., 2010, p. vii). The students in our study, how-
ever, seemed not to have learned this lesson in school. There rather seems to be a change 
in the didactical contract during secondary-tertiary transition which is strongly connected to 
students’ experiences of competence. Unlike teaching in school, neither the lecture nor the 
tasks in university are designed for immediate understanding. On the contrary, understand-
ing the tasks is a new task itself. In addition, no one in university would expect an average 
student to solve every task on their sheet, whereas in school everyone is expected to fully 
do the homework. These aspects are not just a matter of difficulty, but – as the quotations 
above show – it is not helpful to explain in detail how the students should solve a task. This 
is again a major difference between school and university. We believe that more experi-
enced university students do value their experiences based on this new didactical contract, 
although empirically this is an open question. 

We now discuss the third question. As mathematics educators, we are in particular interest-
ed in factors which are specific to mathematics. These are exactly the aspects which are 
specific to negative experiences, namely the language, proof, working on the tasks and the 
didactical contract as well as the positive aspects building on the negative ones namely 
overcoming obstacles and being successful despite these problematic issues. Therefore, it 
would be very interesting to compare mathematics courses across different study pro-
grammes to see whether there are differences in competence experiences and in how far 
they relate to the different mathematical demands.  

The fourth and final question asks for starting points for improving students’ experience of 
competence. Since we could see that the individual reference norm as well as the social 
reference norm are connected to more positive experiences, one could help the students to 
become aware of their individual learning and its progress as well as to share experiences 
across the study group. To some extent, one might also try to help students with the specific 
problematic aspects, e.g. valuing work like exploring a mathematical topic, even if there is 
no visible outcome on paper or helping them to develop effective strategies for mathemati-
cal learning and problem solving. In particular in the context of proof, issues like language 
and socio-mathematical norms could be addressed more explicitly. Furthermore, the didacti-
cal contract could be made more explicit to the students. Although some parts will and need 
always be hidden, other parts need not. A good tutor would in his or her weekly tutorial not 
only present solutions but also reflect on these issues. However, this depends on personal 
commitment. An institutionalised solution might be given by drop-in centres for students 
(Croft, Harrison, & Robinson, 2009), although it is an open question in how far they may 
help students feel competent and motivated. 
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From the longitudinal perspective, we should also add that for some students, perseverance 
may pay off. Firstly, the students’ standards for the evaluation of experiences of compe-
tence adjust over time, so students who did not feel successful because they could not solve 
their task sheet completely, may some weeks later feel that this is normal without any feel-
ing of incompetence. Secondly, the individual reference norm with its benefits can only be 
used after some personal experiences. This becomes also visible in the different forms of 
positive experiences of competence, which build on previous negative experiences. This fits 
the observation of (Daskalogianni & Simpson, 2002), who found that many students have a 
“cooling off” period of motivation in the first weeks, which is followed by a “warming up” 
period.  
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Subject-specific interest and self-concept are theorized as important antecedents and results of learn-
ing processes. However, empirical results do not often support this hypothesis. In many cases, these 
affective variables are measured by questionnaires which refer to mathematics only in general terms. 
When transitioning to university mathematics however, the character of mathematics changes: from 
a school subject based on calculating and solving real-world problems to a scientific discipline. We 
surveyed individual interest and self-concepts concerning these two different characters of mathe-
matics. First results of a longitudinal study with 331 university students indicates the power of this 
approach to provide a deeper insight into the role of learners’ affective learning antecedents. 

Theoretical background 
Learning mathematics at university 
The transition from school to university is experienced as an exciting and challenging period 
by many first-year students. Two differences between learning mathematics at school and 
at university are frequently described in the literature: a shift in the character of mathemat-
ics and different demands related to the learning cultures (Gueudet, 2008). In school, math-
ematics is mostly taught as a tool to solve problems arising in private and professional life. 
The special character of mathematics is often called “school mathematics”, relating to a cen-
tral role of technical calculations and modelling real-world problems. In contrast to that, 
mathematics as a scientific discipline is dominated by formally defined abstract concepts 
and deductive proofs at university (university mathematics) (Dörfler & McLone, 1986). 

Interest and self-concept in learning processes 
Interest and self-concept are frequently theorized as important affective antecedents and 
results of subject-specific learning processes. Both of them describe a certain kind of per-
son-object-relationship (Marsh, Trautwein, Lüdtke, Köller, & Baumert, 2005). While interest 
relates to enjoyment, value, and an intrinsic curiosity connected to a subject by an individu-
al, subject-related self-concept refers to the individual self-image of one person concerning 
his or her subject-related performance and skills. 

Many authors argue that high interest and a positive self-concept are important for success-
ful learning processes, also in university mathematics (c. f., Valle, Cabanach, Núnez, Gonzá-
lez-Pienda, Rodríguez, & Pineiro, 2003). However, empirical findings do not frequently sup-
port this hypothesis (Hailikari, Nevgi, & Komulainen, 2008). We suggest that this gap be-
tween theoretical assumptions and empirical results might trace back to the way these mo-
tivational components are measured. Research on the secondary level has unveiled that 
interest, as sur-veyed by questionnaires, is not at all a fixed construct, but that its structure 
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undergoes sub-stantial changes over time (Frenzel, Pekrun, Dicke, & Goetz, 2012). Usually, 
the self-report scales used to measure interest and self-concept relate to mathematics in 
general terms, and not to a specific character of the discipline. Thus, various students might 
report interest and self-concepts relating to different characters of the discipline, leading to 
inconsistent results. In the SISMa project (Self-concept and Interest when Studying Mathe-
matics), we study, among others, the hypothesis that affective characteristics differentiate 
between these characters of the discipline.  

Measuring interest and self-concept in SISMa 
In previous studies, data concerning mathematics-related interest and self-concept were 
mostly collected by questionnaire items which do not determine a specific character of the 
discipline (e.g., “Mathematics is very important for me” or “I am good in mathematics”). 
Nevertheless, the character of mathematics that is taught at university differs substantially 
from the one students experienced in school. This is why we develop measurement instru-
ments in which we specifically address interest and self-concept concerning school mathe-
matics and concerning university mathematics. 

Table 1. Overview of measurement instruments for interest 
 
 School mathematics University mathematics 

Institution In school, mathematics was very 
important for me. (5 items) 

I am interested in mathematics 
with which you deal at universi-
ty. (5 items) 

General practice Calculating: It is exciting solving 
difficult equations. (6 items) 

Solving real-world problems (mod-
elling): I find it interesting to solve 
real-world problems with mathe-
matics. (6 items) 

Proving: Reading mathematical 
proofs is fun. (4 items) 

Using formal-symbolic represent-
tations: It is fun to exactly define 
mathematical concepts. (4 items) 

Situated practice 
(e.g., It would be 
fun to deal with 
this task.) 

 

Calculating: “Let 𝑓 be . 
Calculate the extrema of the func-
tion 𝑓.” (12 items) 

Solving real-world problems (mod-
elling): “By metal, you should pro-
duce a cylindrical can with a pre-
scribed volume. For which radius is 
the material consumption mini-
mal?” (12 items) 

Proving: “Let 𝑓: 𝐼𝑅−> 𝐼𝑅 be a 
differentiable function. Show that 
𝑓 is continuous.” (12 items) 

Notes: Measuring on a four-point likert scale from 0: I don’t agree to 3: I agree. 

Apart from surveying interest relating to “mathematics in school” and “mathematics at uni-
versity” in general, we took two different approaches to operationalize the different charac-
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ters of the discipline. Firstly, we chose four different mathematical practices, two of which 
are predominantly important in school mathematics (performing complex calculations, solv-
ing real-world problems) and two are predominantly relevant for university mathematics 
(proving, using formal-symbolic representations). Secondly, to substantiate our measures 
with a more situated approach, we chose tasks which requested one of three of these prac-
tices (performing complex calculations, solving real-world problems, proving) in a prototypi-
cal way on the level of university mathematics (Rach, Heinze, & Ufer, 2014). We surveyed 
students’ interest and self-concept relating to these practices in general resp. their interest 
and self-efficacy relating to the tasks. Table 1 gives an overview of the instruments.  

After piloting these instruments, we used them f. e. to study if facets of interest and self-
concept relating to different characters of mathematics can be differentiated in first-year 
university students. In this abstract, we concentrate on the interest measures.  

Design 
We conducted a longitudinal study with a sample of first-year students in two courses from 
five different study programs (n = 97 general mathematics, n = 96 financial mathematics, 
n = 99 teacher education for the high attaining school track, n = 16 teacher education for 
other school types, n = 18 computer science, n = 5 missing). We applied the same question-
naires on the first day of the semester (𝑁𝑇1 = 331) and after six weeks (𝑁𝑇2 = 199). 

First results 
Descriptive data and internal consistence of these scales 
Table 2. Means (M), standard deviations (SD) and Cronbachs’ alpha (α) for interest scales at start of 
semester (𝑻𝑻) and after six weeks (𝑻𝟐). 
 
Scale Start of semester (T1) After six weeks (T2) 

M (SD) Cronbachs’ α M (SD) Cronbachs’ α 

Mathematics 2.22 (0.43) .74 2.06 (0.50) .80 

School mathematics 2.10 (0.58) .77 2.16 (0.62) .82 

University mathematics 2.01 (0.60) .87 1.71 (0.69) .89 

General practice: Calculating 2.20 (0.46) .69 2.05 (0.47) .73 

General practice: Modelling 2.03 (0.58) .81 1.93 (0.59) .85 

General practice: Proving 1.83 (0.62) .76 1.51 (0.68) .84 

General practice: Using repre.  1.92 (0.59) .71 1.81 (0.61) .77 

Situated practice: Calculating 2.27 (0.56) .91 2.05 (0.58) .89 

Situated practice: Modelling 2.28 (0.53) .90 2.06 (0.55) .90 

Situated practice: Proving 2.32 (0.54) .92 2.12 (0.52) .90 

Notes: 𝑁𝑇1 = 263 (university mathematics), 𝑁𝑇1 = 314-331, 𝑁𝑇2 = 186-199. 
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Cronbachs’ alpha values indicate sufficient internal consistency of our newly developed 
scales. Exploratory factor analyses mostly replicated the theoretical structure of the instru-
ment, with the exception that the facets relating to the practices “Proving” and “Using rep-
resentations” collapsed into one factor in all analyses. So, we can combine these two highly 
correlated facets, see below, into one scale for further analyses. 

Relationships between interest concerning different mathematical practices 
As we argue, calculating and modelling are important activities in school mathematics 
where-as proving and using formal-symbolic representations are predominant in university 
mathe-matics. So we expected strong correlations only between individual interest on the 
first two and between the last two practices. Table 3 indicates that these assumptions were 
largely met. 

Table 3. Correlations between general practices at the start of the semester (𝑻𝑻) 
 
 Modelling Proving Using representations 

Calculating .31 ** .16 ** .19 ** 

Modelling           -.07              .03 

Proving   .59 ** 

Notes: 𝑁𝑇1 = 331, ** 𝑝 < .01. 

Perspectives 
Interest and self-concept are variables that indicate a person-object-relationship. As the 
“object”, which is taught and learned, changes during the institutional transition from school 
to university, it is necessary to examine interest and self-concept concerning mathematics 
in a differentiated way. One explanation for problems in finding relations between interest 
in mathematics and learning gain in mathematics higher education possibly lies in this dif-
feren-tiation of the constructs: Students might just have “a different mathematics” in mind 
when answering a general interest questionnaire on the first day of the semester as the 
mathematics they will encounter in their subsequent learning processes. The selected re-
sults mention that the developed instruments can be used to differentiate between interest 
and self-concept con-cerning various characters of mathematics. Thus, we will analyze the 
role of affective compo-nents when learning mathematics during the first semester with our 
instruments in the future. 

References 

Dörfler, W. & McLone, R. R. (1986). Mathematics as a school subject. In B. Christiansen, A. G. Howson 
& M. Otte (Eds.), Perspectives on mathematics education (S. 49-97). Dordrecht: Reidel. 

Frenzel, A. C., Pekrun, R., Dicke, A.-L., & Goetz, T. (2012). Beyond quantitative decline: Conceptual 
shifts in adolescents' development of interest in mathematics. Developmental Psychology, 48(4), 
1069-1082. 

Gueudet, G. (2008). Investigating the secondary-tertiary transition. ESM, 67(3), 237-254. 
Hailikari, T., Nevgi, A., & Komulainen, E. (2008). Academic self‐beliefs and prior knowledge as predic-

tors of student achievement in Mathematics: A structural model. Educational Psychology: An In-
ternational Journal of Experimental Educational Psychology, 28(1), 59-71. 



khdm-Report, Nr. 05, 2017 

298 

 

Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic Self-Concept, Inter-
est, Grades, and Standardized Test Scores: Reciprocal Effects Models of Causal Ordering. Child De-
velopment, 76(2), 397-416. 

Rach, S., Heinze, A., & Ufer, S. (2014). Welche mathematischen Anforderungen erwarten Studierende 
im ersten Semester des Mathematikstudiums? [Which mathematical demands do students expect 
in the first semester of their study?] Journal für Mathematik-Didaktik, 35(2), 205-228. 

Valle, A., Cabanach, R. G., Núnez, J. C., González-Pienda, J., Rodríguez, S., & Pineiro, I. (2003). Cogni-
tive, motivational, and volitional dimensions of learning: An Empirical Test of a Hypothetical Model. 
Research in Higher Education, 44(5), 557-580. 

  



khdm-Report, Nr. 05, 2017 

299 

 

 
 
 
 
 
 
 
 
 
 

 
6. LEARNING AND TEACHING OF SPECIFIC 

MATHEMATICAL CONCEPTS AND 
METHODS 

 



khdm-Report, Nr. 05, 2017 

300 

 

Understanding and advancing undergraduate mathematics 
instructors’ mathematical and 

pedagogical content knowledge 61F

  
Marilyn P. Carlson1, Stacy Musgrave2 

1Arizona State University, 2Cal Poly Pomona 
(United States of America) 

Mathematics PhD students and instructors are not being supported in acquiring coherent and rich 
meanings for foundational ideas that surface in some undergraduate courses. This leaves future 
mathematicians unprepared to connect more advanced mathematics topics to foundational ideas, 
making undergraduate students’ mathematics learning experiences less meaningful. In this session I 
will share select data from a study that explored the mathematical meanings that mathematics PhD 
students and mathematics instructors hold about ideas of average rate of change and exponential 
growth. These findings raise questions about the knowledge that is guiding mathematicians’ curricular 
and instructional choices. 

In recent years researchers have investigated the pedagogical and mathematical content 
knowledge for teaching ideas in both elementary (e.g., Hill, Ball & Shilling, 2008) and sec-
ondary (e.g., Silverman & Thompson, 2008; Tallman, 2015) mathematics. Other researchers 
have investigated and described key components of an inquiry orientation to teaching un-
dergraduate mathematics (Rasmussen & Kwon, 2007). These studies raise questions as to 
whether undergraduate mathematics instruction might benefit by engaging mathematics 
instructors in explorations of what is involved in understanding, learning, and teaching key 
ideas of courses they teach.  

The content focus of undergraduate mathematics curriculum and instruction within a math-
ematics department is commonly determined by the department’s mathematics faculty, 
most of whom have had few opportunities to consider what is involved in understanding 
and learning key ideas of the courses they teach. Though these faculty successfully com-
pleted graduate courses in mathematics, studies show that completion of more mathematics 
coursework does not necessarily improve a teacher’s instructional practices or understand-
ing of fundamental ideas they teach (Speer; 2008; Speer, Gutmann, & Murphy, 2005). Shift-
ing undergraduate instruction to be more conceptually oriented will require interventions 
that address what is involved in understanding and learning a course’s key ideas (Thomp-
son, Carlson, & Silverman, 2007), with sustained interventions that lead to rich connections 
among ideas. An instructor with strong understandings and connections is more able to en-
gage students in meaningful and coherent instruction (Tallman, 2015).  

This study is situated in the context of an intervention to support graduate students in con-
structing conceptual structures that will enable them to be highly effective teachers 62F

1. We 
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probed graduate students’ meanings for topics that are foundational to learning calculus and 
topics central to the current course they were or currently are teaching. We share our anal-
yses of the graduate students’ meanings relative to average rate of change (AROC) before 
and after the intervention. We also highlight graduate students’ difficulties in communicating 
about exponential growth (EG) as a second example that illuminates the need for content-
focused professional development of future mathematics faculty.  

An individual constructs meanings through repeated experiences and reflection on those 
experiences. Though meanings exist in the mind of the individual, we can only construct 
models of expressed meanings. We do this by analyzing the individual’s written and oral 
communications about mathematical ideas. We offer conceptual analyses of productive 
meanings for AROC and EG against which we compare the conveyed meanings of the grad-
uate students in our study.  

An individual constructs a productive meaning for average rate of change when he concep-
tualizes a hypothetical relationship between two varying quantities in a dynamic situation 
(Thompson, 1994). Namely, given covarying quantities A and B, and a fixed interval of 
measure of quantity A, the AROC of quantity B with respect to quantity A is the constant 
rate of change (CROC) that yields the same change in quantity B as the original relationship 
over the given interval. In order to understand this idea meaningfully, an individual must 
first conceptualize two quantities changing together and then apply the idea of CROC to ap-
proximate the rate of change of the two covarying quantities on a specified interval. 

Since exponential growth is sometimes expressed as a percent increase or decrease of 
some amount that is repeatedly iterated for some specified interval of the independent 
quantity, a productive meaning for exponential growth includes the ability to represent iter-
ations of a percent change over multiple intervals of the independent quantity. An individual 
may conceptualize equal changes in the input quantity corresponding to consistent multipli-
cative changes in the output quantity. The factor by which the output quantity increases for 
each 1-unit interval of the independent quantity is called the growth factor. An individual’s 
meaning is more robust if he can imagine an n-unit growth factor as the scale factor for the 
output quantity for any n-unit change in the input quantity and all possible values of n (i.e., 
n is a positive real number). The individual must have strong, foundational meanings for 
quantity, multiplicative comparisons, and exponentiation in order to construct a well-
connected scheme for EG.  

The goal of the intervention was to prepare future mathematics faculty to teach effectively 
by supporting them in developing rich and connected mathematical meanings of central 
ideas they are teaching in undergraduate precalculus and calculus. Participants respond to 
problems designed to perturb their meanings and improve their meanings during an initial 2- 
or 3-day workshop. Workshop leaders repeatedly asked participants to provide a conceptu-
ally oriented explanation of their solutions, including explanations that reference quantities 

                                                                                                                                                         
1 We define highly effective teachers as ones who: i) exhibit strong mathematical conceptions in their interac-
tions with students; ii) attempt to understand their students’ thinking; iii) make instructional moves and pose 
questions for the purpose of supporting students in constructing meaningful conceptions and connections.  
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and justification for their approach. During the semester when teaching they attend weekly 
90-minute seminars concurrent with using a research-based curriculum.  

We gathered data from 84 mathematics graduate students or instructors at three public, 
PhD-granting universities within the United States. The graduate students’ teaching experi-
ence varied between 0 and 11 years at the K-12 and tertiary levels. Participants responded 
to mathematical tasks and hypothetical teaching scenarios both in writing and during semi-
structured clinical interviews. Portions of the workshops were recorded. Members of the 
research team analyzed videos and written data through an iterative process of identifying 
and refining themes relative to our conception of a productive expressed meaning for AROC 
and EG (Strauss & Corbin, 1990). 

Participants’ meanings for AROC before experiencing the intervention predominantly fell 
into two categories: computational (e.g., “delta 𝑦 divided by delta 𝑥”) or geometric (e.g., 
“steepness of a graph”). More interesting to note, however, is that these meanings were 
extremely resistant to change, as was the graduate students’ fluency in speaking about 
AROC using quantitative descriptors (e.g. “as 𝑥 increases” instead of “as 𝑥 goes”). Table 1 
contains sample responses that demonstrate the various levels of fluency in describing 
AROC at various stages of the intervention: from pre-intervention to mid-workshop to post-
teaching AROC.  

Pre-Workshop Day 2 of Workshop Post-Teaching AROC to Class 

• A straight line between two 
points on a graph.  

• As one variable changes for 
every unit, how much is the 
other variable changing. 
Slope. 

• Steepness of a graph, like 
how steep or how flat it is.  

• It’s the predictive effect of 
changing one variable and the 
amount and how it’s going to 
affect the other variable. One 
quantity affecting change in 
another quantity.  

• The AROC is the secant vec-
tor between two points on a 
graph connected by some 
function.  

• The CROC one would go to 
achieve the same change of 
function in question. 

• The CROC needed to achieve 
the same change in the 𝑦-
value over the same change 
in the 𝑥-value.  

• A way of describing a change 
in your 𝑦-value in terms of 
CROC of 𝑥-value. 

• The CROC to have traveled 
the same amount distance 
in the same amount of time.  

• The CROC that you have to 
apply to your variable to get 
a fixed value of your an-
swer. 

• The CROC required to cover 
the same change in the de-
pendent variable over the 
same change in the inde-
pendent variable. 

• Sum all the rate of change, 
then divide by the total 
number.  

Table 1: Responses to “What is the meaning of AROC?” 
 
Early on, geometric interpretations range from true but limited (“slope”) to strictly false 
(AROC is “a straight line”). Mid-workshop, participants struggled to move away from think-
ing about the geometric object they visualize (“the secant vector between two points”) to 
which property of that object is described by AROC. Post-teaching, most participants correct-
ly communicate that AROC is the CROC needed to satisfy some condition; however, the ver-
biage used in describing that condition often entails a sense of motion (“CROC required to 
cover…”) or is restricted to describing the special case of average speed (“CROC to have 
traveled…”). Surprisingly, two of the graduate students post-intervention persisted in mak-
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Figure 1: Exponential Growth Task 

ing a common student error of confounding AROC with arithmetic mean (“Sum all the rate[s] 
of change…”).  

A student was asked to write a function g to determine the number of bacteria in a culture for any 
number of seconds that have elapsed, as elapsed time increases continuously. She was told that the 
number of bacteria in the culture increased by 23% every 12 seconds. The student defined x to repre-
sent the number of seconds the culture has been growing. What answer do you want your students to 
provide and what thinking do you expect students to engage in to produce a correct answer? 

 

Similarly, participants struggled significantly pre- and post-intervention to discuss the idea of 
exponential growth. In particular, participants relied heavily on procedural knowledge to 
solve tasks and had difficulty explaining the meaning behind the symbols or to offer concep-
tual explanations. On the task in Figure 1, over 30% of graduate students did not produce a 
correct response prior to participating in the intervention. Many of those who produced a 
correct answer were unable to explain why their solution was correct. Table 2 shows the 
distribution of responses from pre-intervention graduate students on this written task. 

Response Properties Sample Response Response Count  

Valid formula and 
notation 

g(x) = n (1.23) t/12, where A is initial amount of 
bacteria and x is the number of elapsed seconds 14 

Valid formula but 
other issues g = n (1.23) t/12 

13 

Invalid formula g(x) = Ae 0.23x 5 

Did not provide for-
mula 

I would help [students] think how much increased by one 
second and how many seconds it needs to increase by  
1%.  

7 

 Total 39 

Table 2: Pre-intervention responses to task in Figure 1 
 
Participants with at least one semester of teaching experience were interviewed and given 
the same exponential growth task framed in the context of a teaching scenario. All inter-
viewees gave procedural responses, though several participants reflected on this and ex-
pressed discontent.  

Our analyses point to weaknesses in future faculty’s meanings for foundational concepts. As 
an instructor’s meanings impact the nature of his teaching practices and the scope of what 
he is able to do with his students, it is necessary to address these gaps among future faculty 
to make mathematically rich and meaningful experiences possible for students.  
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Limit of a sequence, limit of a function at a point and limit of a function at infinity are often introduced 
at different times in the undergraduate curriculum, can have different definitions and yet have near 
identical symbols. In many cases, few explicit connections between them are revealed by the teach-
er, and existing research either treats them separately or fails to distinguish between them. Our study 
examined what, if any, links are made by students exposed to stimuli designed to represent these 
notions. Participants engaged with two different types of card sorting task to expose the personal 
categorizations and connections between these different types of limit. Results suggest that few 
participants made connections that fit an overarching notion of limit. 

The problem of limit(s) 
Oehrtmann (2008) neatly encapsulates some of the problems which students encounter 
with the teaching of limits. He notes that one of the probable rationales for the teaching of 
limits is the exposure to formal definitions and proofs, perhaps in a rigorous treatment of 
the development of calculus – presumably as an example of the definition-theorem-proof 
approach to developing much university level pure mathematics. He also considers a second 
rationale as developing an intuitive understanding of the limit concept, but recognizes that 
the problems with doing so (and with co-ordinating the intuitive with the rigorous) leads 
many to de-emphasizing limits in developing calculus. 

Much of the existing literature points to a key problem in understanding and co-ordinating a 
dynamic notion of a limiting process with a static limit (e.g. Sierpińska, 1987; Cottrill et al., 
1996). Some even argue that limit is necessarily thought of as co-ordinated dynamic se-
quences (Lakoff and Nüñez, 2000) seemingly unaware of infinitesimal approaches which 
both are mathematically rigorous and, at least for some, can be psychologically stable (Ely, 
2010; Borovik and Katz, 2012). 

However, one area which is often ignored is that elementary limit notions can be introduced 
three times, potentially in three different ways, but with near identical compound symbols: 
limit of a sequence at a point (lim𝑛→∞ 𝑎𝑛) , limit of a function at a point (lim𝑥→𝑎 𝑓(𝑥)) and 
limit of a function at infinity (lim𝑥→+∞ 𝑓(𝑥)). Existing research has tended to treat these 
notions separately (McDonald, Mathews, and Strobel, 2000 vs. Güçler, 2013 vs. Kidron, 
2011) or to examine two or more variants in the same study without discussion of their 
connections (e.g. Tall and Vinner, 1981; Elia, Gagatsis, Panaoura, Zachariades, and Zoulinaki, 
2009). 

In the usual UK university calculus and analysis curriculum, at least, these three notions are 
introduced separately. In some cases (e.g Bryant, 1990) limits of functions at a point are 
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defined in terms of limits of sequences, but in other cases (e.g. Spivak, 2006) each elemen-
tary limit notion is defined separately and with no reference to the others. 

The study reported here investigated the extent to which students who had experienced 
this kind of disconnected limit curriculum did, or did not, make links between these different 
limit notions. Constraints of space mean that we only briefly outline the methods and give 
illustrations of responses before explaining the categories of response seen in the data. 

Methods and Participants 
Given that the aim of the study was to uncover potentially implicit links students may have 
between concepts that have been presented separately, the methods needed to provide a 
mechanism for participants to bring those connections to the fore spontaneously and to give 
them a stimulus to discuss them. We thus developed a card sorting activity in which partici-
pants were presented with 20 cards (see screenshot in figure 1) which were designed to 
draw attention to elementary limit concepts, generally using expressions the participants 
could be expected to understand. 

 

Figure 1: The Card Sorting Activity stimuli set 
 
Students in their second year of their degree at a research-intensive UK university were 
recruited to take part in the study. Fourteen participants worked one-to-one with a re-
searcher on the tasks, for which they were allowed as much time as they wished. In fact, 
the tasks took between forty minutes and one hour. To aid recording, the card stimuli were 
represented on a computer screen as click-and-drag icons and the sessions were videoed 
(as piloting showed that information was lost unless we could record participants’ gesturing 
to cards when they referenced them). 

The participants were asked to complete two tasks – the first (and the only one reported 
here) was open sorting and the second was to talk about pairs or groups of cards highlight-
ed by the researcher. For the open sorting task, they were asked to sort the cards according 
to any criterion they liked and were encouraged to do this as many times using as many 
different criteria as they could. 
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Illustrative Results 
The most common first response to the sorting task was to categorize according to the core 
expression within the compound symbol, ignoring the limit aspects of each card. For exam-
ple: 

S9: These are all the same because they all involve the sine function. 

S3: They’ve got constants to some power … then here we’ve got reciprocal func-
tions. 

However, as participants went through cycles of categorizing, criteria which we might see 
as more or less analytic appeared. The distinction between limits of functions and limits of 
sequences was often early to emerge. In many cases, this was because participants at-
tempted to classify according to the variable names in the compound symbol. Note that, in 
the design of the task, no attempt was made to specify the reference set for 𝑛 and 𝑥, but 
every participant took the convention that expressions involving 𝑛 were sequences and 
those involving 𝑥 were (real) functions.  

S14: … to begin with … separate the ‘𝑛’s and ‘𝑥’ … there are so many obvious dif-
ferences between the cards, this is one of them. 

The final ‘surface’ feature which was used was the limit point – we categorise this as ‘sur-
face’ as it appears as though the criterion was determined as simply as being the symbol 
appearing after the arrow on each of the cards 

S11: We’ve got limits as ‘𝑥’ or ‘𝑛’ approaches infinity in one group … as ‘𝑥’ ap-
proaches zero … as ‘𝑥’ approaches come constant. 

As students focused more on the limit properties of the expressions, it became clear that 
many did not make appropriate connections or distinctions between types of limit. For ex-
ample, in considering the cards lim𝑥→+∞ 𝑠𝑖𝑛(2𝜋𝑥) and lim𝑛→∞ 𝑠𝑖𝑛(2𝜋𝑛) some students 
saw them as interchangeable 

S8: It looks different because that’s ‘ + ∞’ and that’s ‘∞’. But I think that [∞] im-
plies positive infinity, so they’re the same…. It's the same thing, we could just 
say “ let ‘𝑥’ equal ‘𝑛’ ” and then it becomes the same. 

However, others had more connection: 

S7: This [ 𝑙𝑖𝐼𝑛→∞ 𝑠𝑖𝑛(2𝜋𝑛)] is a subsequence of this [ 𝑙𝑖𝐼𝑥→+∞ 𝑠𝑖𝑛(2𝜋𝑥)]. 

There was also some emerging use of implicit notions of neighbourhood when students 
were comparing cards: 

S11: [Looking at 𝑙𝑖𝐼𝑥→+∞ 𝑠𝑖𝑛 �1
𝑥

� and  𝑙𝑖𝐼𝑥→0 𝑠𝑖𝑛 �1
𝑥

�]  

So, when that tends to infinity. I know you shouldn’t split it up but, 1
𝑥
 has a 

limit as 𝑥 tends to infinity, which we know is going to be zero and we know 
that sine is defined at zero, whereas sine isn’t defined at 1

0
 , which is unde-

fined. So we can always say that this has a limit, because we know what sine 
is defined at, at zero, zero, whereas sine doesn’t have a definition as, as 𝑥 
gets very small, so if we say that 𝑥 isn’t equal to zero, 𝑥 is very very small, 
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𝑠𝑖𝑛(𝑥) could be anything between plus and minus one because it’s an oscil-
lating function. 

Discussion 
In such a short space we cannot illustrate the full richness of the students’ responses, but 
we found that, after an initial focus on surface features of the compound limit symbol, stu-
dents were able to make some links across elementary limit notions. However, these did not 
always fit the formal mathematics: for example functions of 𝑥 as 𝑥 tends to infinity were 
simply equated with limits of functions in 1/x as 𝑥 tends to zero and some equated the limit 
of a function at a point with the function evaluated at the point (despite being second year 
students with three full courses in analysis including notions of continuity behind them). 
There was only very occasional reference to a neighbourhood notion. 

We believe the full analysis of our study shows that teachers might give more attention to 
the issue of working with a compound symbol and, particularly with making connections 
between the elementary limit concepts. Moreover, by discussing elementary limit concepts 
together and explicitly drawing out the idea that each is an example of neighbourhoods 
mapping to neighbourhoods (with some suitable interpretation of neighbourhood), teachers 
may help decrease the problems Oehrtmann (2008) saw in connecting the rigorous with the 
intuitive in the context of limit. 

References 

Borovik, A., & Katz, M. G. (2012). Who gave you the Cauchy-Weierstrass tale? The dual history of 
rigorous calculus. Foundations of Science, 17(3), 245-276.  

Bryant, V. (1990). Yet another introduction to analysis. Cambridge: Cambridge University Press.  
Cottrill, J., Dubinsky, E., Nichols, D., Schwingendorf, K., Thomas, K., & Vidakovic, D. (1996). Understand-

ing the limit concept: Beginning with a coordinated process scheme. The Journal of Mathematical 
Behavior, 15(2), 167-192.  

Elia, I., Gagatsis, A., Panaoura, A., Zachariades, T., & Zoulinaki, F. (2009). Geometric and algebraic ap-
proaches in the concept of “limit” and the impact of the “didactic contract”. International Journal of 
Science and Mathematics Education, 7(4), 765-790.  

Ely, R. (2010). Nonstandard student conceptions about infinitesimals. Journal for Research in Mathe-
matics Education, 41(2), 117-146.  

Güçler, B. (2013). Examining the discourse on the limit concept in a beginning-level calculus class-
room. Educational Studies in Mathematics, 82(3), 439-453.  

Kidron, I. (2011). Constructing knowledge about the notion of limit in the definition of the horizontal 
asymptote. International Journal of Science and Mathematics Education, 9(6), 1261-1279.  

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: How the embodied mind brings 
mathematics into being. New York: Basic books.  

McDonald, M. A., Mathews, D. M., & Strobel, K. H. (2000). Understanding sequences: A tale of two 
objects. Research in Collegiate Mathematics Education, IV, 77-102.  

Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. In 
M. Carlson & C. Rasmussen (Eds.), Making the connection: Research and teaching in undergraduate 
mathematics (Vol. 73, pp. 65-80). Washington, DC: Mathematical Association of America Washing-
ton, DC.  

Sierpińska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational 
Studies in Mathematics, 18(4), 371-397.  

Spivak, M. (2006). Calculus, corrected third edition. Cambridge: Cambridge University Press.  



khdm-Report, Nr. 05, 2017 

309 

 

Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular 
reference to limits and continuity. Educational Studies in Mathematics, 12(2), 151-169. 



khdm-Report, Nr. 05, 2017 

310 

 

What level of understanding of the derivative do students of 
economics have when entering university? – Results of a 

pretest covering important aspects of the derivative 64F
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The concept of the derivative plays a major role in economics, for example in cost theory. A proper 
understanding of the concept and its aspects is therefore necessary for being able to deal with the 
concept in economics in a reflective manner. To get an idea which level of conceptual understanding 
first-year students of economics have at the beginning of their studies, a pretest on the derivative 
was submitted to beginner students of economics at the University of Paderborn. Some results of the 
pretest and possible consequences for teaching are presented here. 

Background  
The concept of the derivative is very important for economics and has many applications 
there, for example in production and cost theory.  Therefore, an appropriate understanding 
of the concept and its applications in economics is essential for students of economics. The 
study presented here is part of a larger research project “Understanding of the derivative by 
students of economics” (my PhD-Thesis, supervisor: Prof. Dr. Rolf Biehler), in which the fol-
lowing research questions are addressed: 

1) Which understanding of the concept of derivative do students of economics need to 
have? 

2) Which understanding of the concept of derivative do students of economics have be-
fore attending any mathematical course at university?  

3) Which understanding of derivative do students of economics have after the math 
course, especially concerning its use in economics in the example of marginal cost? 

The study presented here is a pretest, administered to students of economics at the univer-
sity before their math course, with the aim to find out what pre-knowledge concerning the 
concept of the derivative the students have when entering university (Question 2). 

Theoretical Framework 
According to Zandieh (2000) the concept of derivative is connected with three other math-
ematical concepts that she calls layers of the derivative: 

1. The concept of ratio/rate (relevant for understanding the difference quotient 
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
 as he first step for getting from a function 𝑓 to its derivative) 

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 

http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121


khdm-Report, Nr. 05, 2017 

311 

 

2. The concept of limit (relevant when taking the limiting process lim𝑥→𝑥0
𝑓(𝑥)−𝑓(𝑥0)

𝑥−𝑥0
) 

3. The concept of function (relevant for the transition from a single value of the deriva-
tive 𝑓′(𝑥0) to the derivative function 𝑓′) 

Each of the concepts can be seen as a process-object pair. For the layer of the limit for ex-
ample, the process is the limiting process, and the object is the value of the limit. Further-
more Zandieh (2000) mentions multiple representations for the derivative that students 
ought to know: a) graphically as the slope of the tangent line at a point, b) verbally as the 
instantaneous rate of change, c) physically as speed or velocity, or d) symbolically as the 
limit of the difference quotient. 

For students of economics an additional aspect of major importance has to be added: the 
economic interpretation of the derivative, which is not represented in the framework. In 
economics, the derivative is often interpreted as the absolute change of the values of the 
function when the independent variable increases or decreases by one unit. In case of a cost 
function 𝐾 with the independent variable 𝑥 representing the output, for example, the deriv-
ative 𝐾’(𝑥) is often interpreted as the additional cost while increasing the production from 𝑥 
to 𝑥 + 1 units. This interpretation of the derivative is very practical in economics because 
economic functions often have discrete units, but it differs from the view on the derivative 
as local rate of change or as slope that students learned at school. No rate and no limit are 
involved in the economic interpretation. The connection between the mathematical concept 
of the derivative and the economic interpretation, however, is often not made clear in books 
of economics. To understand the interpretation properly the limiting process behind the de-
rivative has to be deencapsulated (Asiala et al., 2000) and the approximation aspect of the 
limit has to be used when approximating the difference quotient with the derivative and 
vice versa (Çetin, 2009; Williams, 1991). Nevertheless, knowing the derivative as a rate is 
still necessary to explain the unit of 𝐾’(𝑥), which is Euro per unit (if the cost 𝐾(𝑥) for an 
output 𝑥 is given in Euro) and not Euro like the economic interpretation would suggest.  

Structure of the test  
The pretest consists of seven subtests. Most of the subtests cover one of the aspects of the 
derivative mentioned in the above framework by Zandieh (2000) (process-object layers and 
representations). In addition, two further subtests were added: one containing tasks to dif-
ferentiate functions because of the assumption that students of economics also lack of this 
procedural knowledge, and one part concerning the economic interpretation of the deriva-
tive and related mathematical background knowledge (use of the derivative for approxima-
tion).  

The seven subtests were the following: 

1. The aspects of the slope of a linear function (6 items) 

This subtest contains tasks about the students’ understanding of the slope of a linear 
function based on the different aspects of slope mentioned by Nagle, Moore-Russo, 
Viglietti, & Martin (2013)  

2. Understanding of the difference quotient (7 items) 
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Goal of this subtest was to see if the beginner students know at least one interpreta-
tion of the difference quotient (e.g. as average rate of change, as growth factor, or 
as mean of equidistant growths (Malle, 1999)). It also contains questions addressing 
misconceptions of the difference quotient like interpreting it as the absolute change 
or the arithmetic mean (Carlson, Oehrtman, & Engelke, 2010; Thompson, 1994). 

3. The interpretation of the derivative as rate of change in a context (10 items) 

In this subtest the students have to solve tasks involving the interpretation of the 
derivative in a context and requiring covariational reasoning, for example tasks in-
volving graphs of filling processes (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002) 

4. The geometric interpretation of the derivative as slope of the tangent line (11 items) 

This is a very important aspect of the derivative and must be known to the students.  
The tasks of that subtest mainly focus on the slope/height-confusion (Leinhardt, 
Zaslavsky, & Stein, 1990). 

5. The analytical tangent line (8 items) 

This subtest covers aspects and misconceptions of the analytical concept of the tan-
gent line. The misconceptions mainly occur because of no extension of the concept 
of the tangent line at a circle (Biza, 2007; Vinner, 1982).  A proper understanding of 
the tangent line is important to understand the geometric interpretation of the deriv-
ative. 

6. The algebra of the derivative (6 items) 

In this subtest the ability of differentiating elementary functions by applying certain 
differentiation rules is tested. 

7. The economic interpretation of the derivative and directly related background 
knowledge (5 items) 

This subtest covers a possible interpretation of the derivative in economics.  It was 
included to find out if the students know about the economic interpretation as the 
absolute change of the values of the function while increasing the production by one 
unit that is used in many books of economics, e.g. Pindyck and Rubinfeld (2009) or 
Wöhe and Döring (2002), or if they can intuitively give another suitable economic in-
terpretation of the derivative. 

It also contains tasks involving the usage of the derivative for the approximation of 
values of a function (underlying idea: the derivative 𝑓’(𝑥) as the slope of the linear 
function that is the best linear approximation of the function 𝑓 in a neighborhood of 
𝑥 (Blum & Kirsch, 1979; Danckwerts & Vogel, 2006), which is important to under-
stand why the derivative 𝐾’(𝑥) of a cost function 𝐾 (𝑥 the output of a product) is an 
approximation of the additional cost 𝐾(𝑥 + 1) − 𝐾(𝑥). 

Altogether the test consists of 53 items. 38 items are multiple-choice questions, each hav-
ing exactly one correct answer, 15 items are open-ended questions. Except for two open-
ended questions, for which 2 points were given in total with the option of partial credit of 1 
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Figure 1: Distribution of the achieved points in the pretest (N = 143) 
 

point, each correct answer yielded one point. Therefore a maximum of 55 points could be 
reached. 

Data Collection 
The test was administered to students of economics at the University of Paderborn in Sep-
tember 2015 in the bridging-course before any math-course (N = 143). The topics of the 
test had also not been covered in the bridging course yet. The duration of the test was 45 
minutes. No calculators were allowed in the test. 

Data Analysis 
The data was analyzed with classical test-theory. The Cronbach’s alphas of the subtests 
were mostly good (table 1).  

Subtest Alpha 

The aspects of the slope of a linear function 0.703 

Understanding of the difference quotient 0.593 

The interpretation of the derivative as rate of change 0.706 

The geometric interpretation of the derivative as slope of the tangent line 0.755 

The analytical tangent line 0.688 

Algebra of the derivative 0.708 

The economic interpretation of the derivative and directly related back-
ground knowledge 

- 

Table 1: Values for Cronbach’s alpha of the subtests of the pretest concerning the understanding of 
the derivative by students of economics 
 
For the subtest “Economic interpretation of the derivative and directly related background 
knowledge” no value for Cronbach’s alpha is given in table 1 because this subtest is hetero-
geneous and not one-dimensional and therefore, Cronbach’s alpha is not a reasonable esti-
mator for the reliability of this subtest. 

Results 
On average the freshmen students of economics received 25.44 out of the maximal 55 
points, a little bit less than 50% 
(median: 26 points). The stan- 
dard deviation with 7.96 points 
is pretty high, which means a 
very high heterogeneity in the 
pre-knowledge concerning the 
understanding of the derivative 
among the students. The distri- 
bution of the achieved points is 
shown in figure 1.   
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The pre-knowledge concerning the derivative is not only heterogeneous among the stu-
dents but also among different aspects of the derivative represented by the subtests of the 
pretest. The normalized means of the subtests can be seen in table 2. 

Subtest Normalized Mean 

The aspects of the slope of a linear function 0.61 

Understanding of the difference quotient 0.16 

The interpretation of the derivative as rate of change 0.57 

The geometric interpretation of the derivative as slope of the tangent line 0.56 

The analytical tangent line 0.57 

Algebra of the derivative 0.40 

The economic interpretation of the derivative and directly related back-
ground knowledge 

0.22 

Table 2: Normalized means of the subtests (the normalized mean of a subtest is the mean of the 
achieved points divided by the maximal number of points attainable in the subtest) 
 
From the means it can be seen that the students’ pre-knowledge concerning the geometric 
interpretation of the derivative and the interpretation as rate of change is not bad.  Many of 
the students are able to interpret the derivative as slope correctly. The majority of the stu-
dents do not have the slope/height confusion (Leinhardt et al., 1990) as can be seen from 
the results of two sample items from the test (figure 3).  

 

Figure 2: Percentage of correct answers for two items concerning the geometric interpretation of 
the derivative (N = 143) 
 
As can be also seen in table 2 many students are able to deal with the concept of the deriv-
ative in contexts involving the interpretation as local rate of change and covariational rea-
soning. As an example the results on a tasks about filling graphs (based on the bottle prob-
lem from Carlson et al. (2002)) are shown in figure 3. 
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Figure 3: Students’ answers on a task concerning rate of change and covariational reasoning  
(N = 143) 
 
If the detail that the inflection point does not have slope zero is not taken into account even 
76.6% of the students were able to choose a suitable filling graph (answers 1 and 5). 

However, most of the students do not have an understanding of the difference quotient 
(see table 2).  But this understanding is very important for being able to understand the de-
rivative as the limit of the difference quotient that is necessary for understanding the con-
nection between the derivative as a mathematical concept and its economic interpretation, 
like it was presented above (page 2). The results of one sample item can be seen in figure 4. 
 

 

Figure 4: Categorized answers on a task concerning the interpretation of the difference quotient in 
a context (N = 143) 
 
Another problem for students of economics is the calculation of derivatives (see table 2). 
The results for the six functions of the subtest “Algebra of the derivative” can be seen in 
table 3. 
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Table 3: Results for the tasks to differentiate functions from the subtest “Algebra of the derivati-
ve” (N = 143) 
 
It can be clearly seen that if the function is not a polynomial, only a minority of students is 
able to differentiate it correctly. Especially the low percentage of correct answers concern-
ing the product rule is problematic because the product and the quotient rule are important 
for students of economics when changing between cost and average cost (average cost for 
an output 𝑥 is the cost for the output 𝑥 divided by the output 𝑥 itself). 

A last important result from the pretest is related to the economic interpretation of the de-
rivative.  The interpretation of 𝐾’(𝑥) of a cost function 𝐾 (𝑥 is the output of a product) is 
neither known by the students from school nor is it as intuitive that the students would 
state it spontaneously. This can be clearly seen from the results of task, in which the stu-
dents were asked to give an interpretation for the derivative in an economic context  
(figure 5). 

 

 

Figure 5: Categorized answers on a task concerning economic interpretation of the derivative  
(N = 143) 
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The first column represents the economic representation, which obviously very seldom 
mentioned. Instead the students seem to try to interpret the derivative with the idea of 
slope (third column) or of rate (fourth column). In addition, misconceptions like the 
slope/height-confusion can be seen. 

Consequences for teaching and prospects for further research 
One main result of the study is that the pre-knowledge concerning the concept of the deriv-
ative is very heterogeneous among the students of economics. However on average the 
beginner students bring a pretty solid knowledge base concerning the geometric interpreta-
tion of the derivative and the interpretation of the derivative as rate of change. However, 
the understanding of the difference quotient is very poor, which is very important for being 
able to understand the economic interpretation of the derivative properly (see second page 
of this paper). Therefore, a stronger emphasis has to be put on this in the lecture. Further-
more the students’ procedural knowledge in differentiation is also not satisfactory. So dif-
ferentiating cannot be taken as a prerequisite and has to be practiced in the math course. 
Concerning the economic interpretation of the derivative the pretest clearly shows that the 
interpretation is not known from school and that the interpretation does not evolve intui-
tively from the students’ pre-knowledge.  Therefore, the economic interpretation has to be 
introduced carefully in the course and has to be connected carefully to the students’ previ-
ous knowledge and the previous understanding of the mathematical concept of derivative.  

Concerning further research in the PhD-Project “Understanding of the derivative by students 
of economics” the result concerning the students’ difficulties to use their pre-knowledge to 
give an adequate interpretation for the derivative in economics clearly leads to the question 
to what extent the students’ are able to understand the common economic interpretation of 
the derivative 𝐾’(𝑥) of a cost function 𝐾 (𝑥 is the output) as additional cost 
𝐾(𝑥 + 1) − 𝐾(𝑥), while increasing the production from 𝑥 units by one unit after the math 
course at university (Research question 3 of my PhD-Thesis, see page 1 of this paper). 
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Inquiry oriented instruction in abstract algebra 65F
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Hans Freudenthal (1973) argued that that “groups are important because they arise from structures 
as automorphisms of those structures.” (p. 109). This perspective was presented as an alternative to 
the traditional instruction treatment in which one starts by defining group and then proceeds formally 
and deductively proving theorems that follow from this definition. Burn (1996), following Freuden-
thal, argued that permutations and symmetries (and not the formal definition of group) should be 
regarded as the fundamental concepts of group theory. The purpose of this talk will be to share some 
results from a series of designed-based research projects focused on developing a course in introduc-
tory group theory that takes as its starting point the symmetries of geometric shapes.  

Introduction 
The Teaching Abstract Algebra for Understanding project (Larsen, Johnson, & Weber, 2013) 
is an ongoing effort to design and “scale up” an inquiry oriented group theory course. The 
design of the course was guided by the instructional design theory of Realistic Mathematics 
Education (RME). The course features a core of three instructional sequences, each focused 
on a fundamental concept. The point of departure for the course is an investigation of the 
symmetries of an equilateral triangle that features the guided reinvention of the group con-
cept. The second reinvention sequence results in a definition of isomorphism as a formaliza-
tion of the intuitive idea that if one simply changes all the names of the elements of a group 
one does not change the group. Finally, the quotient group concept is reinvented beginning 
with the intuitive notion of parity (even/odd) applied to the group of symmetries of a 
square. I will briefly describe each of these reinvention sequences. The instructional ap-
proach is inquiry-oriented in the sense that the students engage in authentic mathematical 
inquiry and the instructor must engage in inquiry into the students’ thinking in order to sup-
port their mathematical activity. With this in mind, I will highlight key insights we gained 
while working with students and how these fed into the instructional design of each se-
quence.  

Reinventing the group concept 
The reinvention of group begins in the context of the symmetries of a geometric figure 
(Larsen, 2013). Students identify, describe, and symbolize the set of symmetries of an equi-
lateral triangle. The group structure begins to emerge as a model-of the students’ mathe-
matical activity (Gravemeijer, 1999) as they begin to analyze combinations of pairs of sym-
metries. The transition of the group concept to a model-for more formal mathematical activ-
ity (Gravemeijer, 1999) is a long-term process that unfolds throughout the course. The first 
substantial step is a shift to working algebraically with the symmetries. The first key insights 
we gained from our own inquiry into students’ activity were related to this shift. 
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Key insights: developing a system of computational rules  
In our first design experiment, the students happened to develop a set of symbols for the 
symmetries of a triangle that included composite symbols (e.g., FCL represented a flip across 
the vertical axis of symmetry followed by a clockwise rotation of 120 degrees.) When they 
used these composite symbols and tried to analyze a combination of two symmetries, they 
wrote down expressions like F (FCL) that begged to be calculated using associativity, invers-
es, and the identity property: F (FCL) = (F F) CL = N CL = CL. Going into this first design study, 
we were unsure how the group axioms could arise from the students’ mathematical activity 
because we expected the students to “compute” combinations by manipulating a physical 
triangle we provided. However, the pair of students we worked with spontaneously transi-
tioned to paper-and-pencil calculations that anticipated the group axioms. Thus we learned 
two things from working with them and analyzing their activity. First, was that this activity 
of performing rule-based calculations was something that could be leveraged to develop the 
formal group concept. Second, was that this activity was promoted by their use of compo-
site symbols. Drawing on this insight, the instructional design now includes tasks that pro-
mote the use of composite symbols and then engage the students explicitly in creating a 
rule-based computational system. This system of rules then becomes the subject matter for 
further (vertical) mathematizing, eventually leading to a definition of group.  

Reinventing the isomorphism concept 
The design of the isomorphism reinvention sequence began with a major misstep (Larsen, 
2009). Consistent with the approach of “theory guided bricolage” (Gravemeijer, 1998), we 
attempted to implement a recommendation of Thrash and Walls, (1991). Thrash and Walls 
note that, because in a group table each element must appear exactly once in each 
row/column, there are only four ways to complete an operation table for a group of four 
elements. They observe that students can rename elements and rearrange the tables to 
verify that three of these tables represent isomorphic groups, and that by engaging in this 
activity they can understand isomorphism right away. The idea of initiating the reinvention 
of isomorphism by having students determine the number of groups of order four makes 
sense in light of the RME heuristic of didactic phenomenology (Gravemeijer and Terwel, 
2000) because this problem presents a phenomenon that can be organized using the con-
cept of isomorphism. Put simply, this is the kind of problem one needs isomorphism to 
solve, so it makes sense as a starting point. However, in our first design experiment, we 
found this staring point to be disastrous and our analysis of the students’ activity revealed 
that there were important ways in which such a starting point does not align with the princi-
ples of RME. 

Key insight: abstractly represented groups were not experientially real  
The first pair of students we worked with could make no sense of the question of whether 
two groups (abstractly represented by 4x4 tables featuring the symbols A, B, C, and D) were 
“the same”. And they could not determine what kinds of manipulation of these symbols and 
tables would change the group significantly and which would not. For example, they argued 
that since all of the groups used the same set they must all be different because the opera-
tion tables were different. We realized during our retrospective analysis, that these rather 
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abstract tables did not represent groups to the students. In particular, the tables did not rep-
resent any system that was real to them in the way that the triangle symmetry group exist-
ed as a real thing that was represented by the symbolic system they developed. As a result 
of this insight, we redesigned the starting point, this time engaging the students in the task 
of determining whether a given “mystery table” could represent the symmetries of an equi-
lateral triangle. This resulted in the students meaningfully manipulating symbols in a way 
that anticipated the isomorphism concept. In fact the procedure students use to address this 
question readily becomes new subject matter to be further mathematized eventually result-
ing in a definition of isomorphism.  

Reinventing the quotient group concept 
The reinvention of the quotient group concepts begins with the students considering the 
parity of the integers (Larsen & Lockwood, 2013). This was a starting point advocated by 
Burn (1996) as an easily understood example of a quotient group. Dubinsky et al. (1996) 
however argued that there is a significant difference between understanding parity of inte-
gers and understanding quotient groups. In our design work, our goal was to find a way to 
support students in leveraging their understanding of parity to reinvent the quotient group 
concept in all (or most of) its complexity. Students are asked to consider the group of sym-
metries of a square and identify something like parity (evens and odds) in that group. They 
eventually determine that there are three ways to partition this group into two subsets that 
interact like evens and odds. For example, one can consider the rotations of a square to be 
“even” and the reflections to be “odd” and produce a table that mirrors the behavior of the 
even/odd integers (i.e., Rotation Rotation = Rotation, Reflection Reflection = Rotation, Rota-
tion Reflection = Reflection Rotation = Reflection.)  The students are then asked whether 
these partitions form groups (of two elements that are themselves subsets) and are en-
gaged in attributing meaning to operation given by this 2x2 table. Typically this operation is 
described as “set multiplication” in the sense that multiplying two of these sets means (left) 
multiplying every element of the first set by every element in the second set. Next students 
are asked to form a larger group by partitioning the group of symmetries of a square into 
smaller subsets. One of the key insights of our early design work has to do with focusing 
students’ activity in a way that supports them in realizing what is needed in order for a par-
tition of a group to form a group of subsets (a quotient group).  

Key insight: focusing on the identity subset 
Because the set of subsets is supposed to form a group, one of the subsets must act as the 
identity element of this group of subsets. In our first design experiment focused on quotient 
groups, we learned that students could figure out what needs to be true of this subset by 
focusing on how it must behave in order to be the identity element. For example, because 
the identity element is always idempotent (ee = e), the identity subset must be closed un-
der the original group operation. This means that (in the finite case) this subset must be a 
subgroup. Further, focusing on the identity property (ge = e) can support students in invent-
ing a procedure for completing a partition after selecting a subgroup to act as the identity. 
This procedure can be formalized to define “coset”. Then the fact that the identity com-
mutes with every element (eg = ge) can support students in developing the idea of normali-
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ty. This property means that left-multiplying a group element by the subgroup (left coset 
formation) must yield the same subset as right-multiplying the group element by the sub-
group (right coset formation). This process of analyzing partitions that work (and those that 
do not) with a focus on the identity subset can yield a set of necessary conditions for a par-
tition to form a quotient group (namely that it must consist of cosets of a normal subgroup). 
These conditions can then be shown to be sufficient, resulting in a formal theory of quotient 
groups. This entire process is made possible by the fact that the group concept has (at this 
point in the course) transitioned to a model-for more formal activity. Here the group concept 
is being used to support the new (more formal) activity of developing new kind of group 
made up of subsets of a group. Simply put, at this point in the course, the students are able 
to us the group concept as a tool for analyzing the structure of a new object, the set of sub-
sets of a group. 

Conclusions 
Over the course of several years and a number of design experiments we have attempted 
to realize Freudenthal’s (1973) idea, of taking geometric symmetry as the starting point for 
an inquiry oriented approach to group theory. Along the way, the design of the course ma-
terials and the corresponding instructional theory was profoundly influenced by key insights 
gained by paying careful attention to the mathematical activity of participating students. In 
this way, our inquiry into students’ activity made it possible to design a course that supports 
students in reinventing fundamental concepts of group theory by engaging them in authen-
tic mathematical inquiry.  
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Modern algebra as an integrating perspective on school 
mathematics – an interactive genetic and visual approach 66F

  
Timo Leuders 

Pädagogische Hochschule Freiburg 
(Germany) 

Mathematics teacher education requires concepts of modern mathematics to be understood from an 
epistemologically rich standpoint. For the case of modern algebra it is demonstrated how in a univer-
sity course processes of horizontal and vertical mathematization can lead to a deeper understanding 
of the algrebraic structures underlying core topics of school mathematics. 

Looking back at modern algebra 
Groups, rings and fields as elements of so called „higher“, „modern“ or „abstract“ algebra 
are considered a relevant topic for mathematics teacher education (Conference Board of the 
Mathematical Sciences, 2012). The learning opportunities for modern algebra encountered 
at university are often „looking ahead“, providing tools and concepts for future mathemati-
cians. For future mathematics teachers, however, they should also be „looking back“ (Wu, 
1997): They should reveal how abstract mathematical concepts originate from concrete 
problems and how they facilitate a unified view on ideas from school mathematics. 

This is the guiding principle for a course in mathematics teacher education (Leuders, 2016), 
in which students can develop central concepts of modern algebra in a genetic, interactive 
and visual way, supported by instructional computer software (based on Cinderella and Ge-
ogebra, see http://digitales.leuders.net for download). Students find answers to the follow-
ing questions: 

• What are the problems that give rise to central algebraic concepts? (horizontal mathe-
matization) 

• Which phenomena/situations/examples (also from school mathematics) can be under-
stood in a universal way? (vertical mathematization) 

• Which are the core ideas and the mental models connected to these concepts? (sense-
making, mathematical meaning) 

• What can be learned about the development of mathematical knowledge? (epistemic 
reflection) 

The concept of the course draws on the theory of genetic mathematics learning (Freuden-
thal, 1991), on a subject matter analyis with respect to mathematical knowledge for teach-
ing (Klein, 1908; Rowland & Ruthven, 2008), on research on learning processes in higher 
algebra (Asiala et al., 1997; Clark et al., 1997; Larsen et al., 2013) and on principles of visu-
alization of group structures (Carter, 2009). Some of the core aspects are explained in the 
following. 
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Horizontal and vertical mathematization processes 
The ability to solve mathematical problems depends on the inviduals’ use of mental models 
(van den Heuvel-Panhuizen, 2003). These mental models can be developed during the solu-
tion of appropriately chosen ‚genetic’ problems, a process called horizontal mathematization 
(Treffers, 1978; Freudenthal, 1991, 41). On the other hand one can distinguish processes of 
vertical mathematization, which abstract from the concrete examples, focus on structural 
aspects, and are characterized by schematization and generalization (ibid.).  

Abstract algebra is a well suited example for these categories: It is a conceptual framework 
that can be constructed in several distinct ways by horizontal mathematization and it re-
quires a crucial step of integrating the concepts by vertical mathematization. For example, 
problems from arithmetics, geometry or combinatorics all give rise to concepts that can ul-
timately be integrated into the group concept (Leuders, 2015). 
 

 

Of course, the categories „horizontal“ and „vertical“ are by no means unequivocally defined, 
as Freudenthal already conceded (1991, 42): „To be sure, the frontiers of these worlds are 
rather vaguely marked. The worlds can expand and shrink – also at one another’s expense. 
Something may belong in one instance to the world of life and in another to the world of 
symbols [...] For the expert mathematician, mathematical objects can be part of his life in 
quite a different way but for the novice. The distinction between horizontal and vertical 
mathematising depends on the specific situation, the person involved and his environment.“  

Nevertheless the categories can be helpful as a backbone for teaching modern algebra: 
They can guide the lecturer to generate a course that displays the inner logic of the devel-
opment of mathematical concepts and also to make these processes explicit to the students. 
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This way they are prompted to actively construct mathematics and to reflect on the episte-
mological processes of the genesis of mathematical concepts. 

Example problems and student work 
To exemplify this, the threefold way towards the group concept, as implemented in the 
course (Leuders, 2016), is shown below.  

(1) The problem of understanding the effect of multiple iso-
metric transformations is explored by using an interactive 
simulation, resulting in a Cayley table. Some group properties 
arise in a natural way (inverse and neutral elements, closed-
ness, non-commutativity), some may remain “undiscovered” 
(assocativity). 

 

 

 

 

  

 

 

 

 

 

(2) The exploration of the remainder after addition or multiplication of natural numbers 
yields the structure of arithmetic residue classes, which again show properties already en-
countered in the previous situation.  

 

 

 

 

 

 

 

 

 

regrouping 
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(3) A third exploration is triggered by the question if 
and how a two dimensional “magic cube” can always 
be solved. An interactive programms allows for ex-
tensive explorations. This leads to permutation struc-
tures, which are interpreted also in a geometrical 
way.  

 

 

 

 

  

 

 

The urge to conceptually integrate the recurring phenonema gives rise to a more formal 
definition of a group and leads to the question of how to mathematically define the appar-
ent isomorphy of seemingly different structures. In this step horizontal mathematization 
motivates to (re)create the conventional definitions of groups, subgroups and cosets.  

(4) Students are asked to use these new conceptual tools in order to explore groups on an 
abstract level, using Cayley tables and Cayley diagrams using an interactive computer tool 
‘group explorer’ (top of the following figure).  
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Cayley diagrams are not very commonly found in agebra courses, but they can help to gain 
a graphically induced an intuitive insight into group structures. The following excerpt from a 
student’s diary shows the point when she discovers that coset structures may or may not 
lead to block diagrams – thus opening the door to the definition of normal subgroups.  

 
 

 

 

 

 

 

 

 

 

Other topics such as rings and fields are dealt with in a similar manner, so that at the end of 
the course even a glance at Galois theory is possible. 
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Subgroup from <1,s1>: 

 always two elements are connected 
 4 cosets of same size, each consisting of 2 elements 

Question: Why doesn’t a structure like in the group table above exist? [i.e. a structure table in 
which cosests are arranged in quadratic blocks] 
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A guided reinvention workshop for the concept 
of convergence  

Laura Ostsieker 
Universität Paderborn 

(Germany) 

This study sketches the design of an additional workshop on a deeper understanding of the concepts 
of sequences and limits, which some of the students of the class “Analysis 1” attended (experimental 
group). It also presents the evaluation of the workshop. Therefore a “pre-test” and a “post-test” are 
used in order to compare the results of the experimental group with them of control groups. 

Introduction 
German first-year mathematics students usually attend a lecture called “Analysis 1”, which 
differs from calculus lectures. The content is very formal and there is a focus on definitions, 
theorems and their proofs. This raises the question of whether the misconceptions that are 
known from secondary students or college students also appear when regarding German 
university students. Another question is how one can avoid the known misconceptions. To 
answer these questions I developed a workshop as an optional choice for the students at-
tending the lecture “Analysis 1” for the first time. To evaluate this workshop and to investi-
gate the knowledge of the concept of limits, all students attending the lecture took two 
tests: one test assessed the previous knowledge relevant for the concept of limit and the 
second one consists of items regarding sequences and limits. Hence, it is not a real pre-test-
post-test design. Therefore, I write “pre-test” and “post-test” with quotation marks. 

Some of the studies on students’ understanding and their misconceptions of the concept of 
limit state difficulties with sequences that are not defined by one single formula, errors aris-
ing out of the quantifiers, the absolute value and an inequality in the formal definition (Tall & 
Vinner, 1981; Dubinsky et al., 1988; Cottrill et al., 1996). Many students when first seeing 
the formal definition intuitively think they have to determine the error ε for a given index N 
and there is a discrepancy between mathematical language and everyday language (Mona-
ghan, 1991; Roh, 2005). There exist misconceptions that converging sequences have to be 
monotone, the limit is a lower or upper bound, the limit must not be reached and a se-
quence can have more than one limit and there is a missing understanding of the difference 
between the concepts of limit and of cluster point (Davis & Vinner, 1986; Roh, 2005). 

Theoretical Background 
Tall and Vinner (1981) call the concept definition the definition a person uses for a concept. 
In contrast, the concept image describes all images, examples, counterexamples etc. a per-
son connects with a concept. Their study shows that learners are highly influenced by the 
first examples they see of a new concept. These first examples serve as prototypical exam-
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ples. Therefore they should be carefully chosen in a course so they can cover the whole 
range of the concept in order to build a wide and proper concept image. 

Research Methodology 
All students attending the course “Analysis 1” took part in the “pre-test”, which took place 
before sequences and limits were covered in class. Again all students took part in the “post-
test” some weeks later after sequences and limits had been treated in detail. The tests were 
anonymous but by using a code it was possible to match the tests. In between some of the 
students took part in the workshop in addition to the classes. The rest of the students who 
attended the class for the first time serve as a control group. Since the workshop was op-
tional and the students had to apply for it, there still can be another possible difference be-
tween the two groups: the motivation. Therefore I randomly picked half of the applicants. 
The ones who were not chosen should serve as a second control group. 

The Concept of the Workshop 
The workshop consists of two parts: an “introductory part” before sequences and their limits 
were treated in class and a “follow-up part” afterwards. The aims of the workshop are to 
build a suitable concept image (Tall & Vinner, 1981) and to prevent the known misconcep-
tions. In the introductory part of the workshop the main aspect is an activity where the stu-
dents are to reinvent the definition of convergence of a sequence in group work. This exer-
cise is a modification of a teaching sequence for secondary school by Przenioslo (2005). She 
suggests eleven sequences with limit 1 and one sequence with cluster points 1 and 2, with-
out telling these features to the students. The activity for students is to construct a common 
property of the eleven sequences that the other sequence does not have. These eleven se-
quences are well chosen so they include sequences with different characteristics. There are 
sequences that do not belong to the common (wrong and limited) concept images of con-
vergent sequences but are still convergent in the mathematical sense. The information that 
the 11 series have a “common property” that 12th series does not have is a strong guid-
ance, a so-called “intentional problem” in the sense of Hußmann (2001) that should en-
hance the likelihood of correct concept construction. In addition Przenioslo provides some 
virtual discussions of students regarding the same activity, which can be used to help the 
students overcome barriers or to focus their attention on certain aspects (Przenioslo, 2005). 
I adapted this activity to the different situation in the workshop. The task description was 
changed because most of the participants already knew the terms convergence and limit 
before from learning calculus at school level, yet they had not seen the formal 𝜀-𝑁-
definition. Therefore, if I had used the formulation suggested by Przenioslo, the students 
could have answered the common property is that the sequences have the limit 1. Hence, I 
added to the task description that the common property is called “convergence to 1”. Fur-
thermore, I reduced the number of the convergent sequences from eleven to six in order to 
not overburden the participants by considering too many sequences at the same time. Yet 
the sequences are manifold and the known misconceptions are respected. I did not only 
translate the virtual discussions but I also revised them. Another difference to the sugges-
tion of Przenioslo is that in her class all students discussed together with the teacher. Since 
the participants of the workshop are heterogeneous, I decided to let the students discuss in 
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groups of four. This enabled me to assist the different groups with different virtual discus-
sions depending on their intermediate result. At the end of the preliminary part of the work-
shop the students see the formal 𝜀-𝑁-definition of the limit of a sequence if they have not 
constructed it themselves. 

In the follow-up part of the workshop the participants work with manifold examples and the 
relations between the concept of limit and other concepts are reviewed. One issue of the 
workshop is the reflected appliance of several different methods to check if a sequence 
convergences and if so, to which limit. These methods are not only stated and used but are 
discussed and additional information such as common difficulties are given. Another activity 
is the collection of manifold examples and counterexamples of convergent sequences by 
the participants. An additional issue is working on some simple proofs relating to the con-
cept of limit. The aim of the follow-up part of the workshop is to reflect and strengthen the 
contents of class learning and to support the wide and proper concept image intended by 
the introductory part of the workshop. 

“Pre-test” and “Post-test” 
There are a lot of multiple choice items but in order to get more information and to avoid 
randomly made decisions explanations of choices were required mostly. The aim of the 
“pre-test” is to assess previous knowledge relevant for the concept of limit. In my view this 
contains in particular the concept of function, infinite sets, the handling of terms with frac-
tions and absolute values, inequalities, real numbers and general mathematical argumenta-
tion skills. So the “pre-test” contains items to each of these topics. In addition there are 
items where they have to describe the behavior of a sequence when n becomes large. The 
“post-test” has to cover all aspects of the concepts of sequences and their limits and it has 
to assess the aims of the workshop in particular. So items were constructed where the stu-
dents have to decide if simple sequences in different representations converge and if so, 
what the limit is. Furthermore there are several items regarding a deep understanding of the 
concept of limit and in particular the definition and some items assess connections between 
the concept of limit and other concepts covered in class. 

The sample size was 164 for the “pre-test” and 124 for the “post-test”. There are a lot of 
items where the rating is stepped, for example multiple choice items with required explana-
tion and open-ended items. The answers to all open-ended questions are assessed by two 
raters. The inter-rater reliability given by Cohens’ Kappa lies between 0.617 and 1.000 and 
can be denoted as acceptable to good. The tests are evaluated according to Item Response 
Theory and are scaled separately. For the “pre-test” and the “post-test” I chose a one-
dimensional partial credit model and a two-dimensional partial credit model respectively. 
The analysis of model fit makes good results in each case. 

Results 
My aim here is to evaluate the workshop by comparing the experimental with the control 
groups. Due to breaking up, illness and other reasons there were only ten students who at-
tended both parts of the workshop and also took both tests. In the small control group the 
loss of members is even higher: only six of the applicants who were not picked wrote both 
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tests. For this reason it is not possible to establish an effect of the workshop when compar-
ing the results of the tests of the small control group and the experimental group. So for 
exploring an indication of an effect of the attendance at the workshop I compare the partici-
pants of the workshop with all other students of the class who took part in both tests. By 
excluding the students who attend the class for the second time there remains a control 
group of 77 students. When regarding the whole “post-test”, it is not possible to establish a 
significant effect. One could reason that the workshop had no success measurable by the 
test. However, as mentioned before the “post-test” was constructed not only with the aim 
to evaluate the workshop but it also had to cover all aspects of sequences and their limits, 
even those that were not discussed in the workshop. Therefore, I constructed a subtest con-
sisting of those items of the “post-test” that directly assess the known misconceptions re-
garding the concept of limit, which the workshop aimed at. When regarding the subtest, in 
fact there is a significant effect even though it is much smaller than the influence of the pre-
vious knowledge tested by the “pre-test”. 

Discussion and Future Research 
This study presented a guided reinvention workshop for the concept of convergence. It was 
possible to show a small but significant effect of the attendance. Why is it so hard to 
achieve an effect?  Disregarding the problem of the shrinking of the groups another problem 
is the distance of several weeks between the two tests. Apart from the workshop there are 
many other things which take place in between and influence the students’ performance in 
the “post-test”. 

All discussions recorded during the workshops will be analyzed in order to get more insight 
in the students’ development of understanding of the concept of limit while exploring the 
formal definition, their misconceptions and their knowledge after the engagement with the 
concept. At this analysis the method used by Oehrtman et al. (2011) will be adapted. 
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Undergraduates' attempts at reasoning by equivalence in 
 elementary algebra  

Chris Sangwin 
University of Edinburgh 

(United Kingdom) 

Reasoning by equivalence is a formal symbolic procedure where an algebraic expression is manipu-
lated to generate a new and equivalent expression. Reasoning by equivalence is a particularly im-
portant algebraic activity in elementary mathematics. This paper reports results from a study in which 
147 students attempted to solve two equations in which there are “traps” for the unwary. Few stu-
dents used any logical connectives, few students checked their answer, and few students showed 
awareness of domain conventions. Based on an analysis of students' work, I discuss implications of 
these findings to the design of technology which enable algebraic symbolic manipulation.  

Introduction 
My experience as a teacher strongly suggests that university students’ written work in al-
gebra typically (i) contains no logical connectives or little other justification and (ii) entirely 
ignores natural domain conventions. When solving an equation students work line-by-line, 
but each line is apparently disconnected from the previous lines. Despite this experience 
there was very little research evidence available reporting students’ attempts at solving 
algebraic problems. 

Reasoning by equivalence is a formal symbolic procedure where an algebraic expression is 
manipulated to generate a new and equivalent expression, e.g. a term within an algebraic 
expression is identified and then replaced by an equivalent term. Reasoning in this way we 
generate a new problem having the same solutions, and we continue until a “solved” form 
is reached. A recent survey (Sangwin & Kocher 2016) looked at the extent to which the as-
sessment of current examinations could be automated using the STACK assessment soft-
ware, see (Sangwin, 2013). One result from this research is that approximately a third of the 
method marks for current final high school mathematics examinations, such as the Interna-
tional Baccalaureate (IB), are awarded for reasoning by equivalence. There are other forms 
of reasoning, e.g. using calculus operations to find extreme values, or estimation and impli-
cation arising from working with inequalities, but reasoning by equivalence is of central im-
portance. Furthermore, reasoning by equivalence forms the basis of formal proof, e.g. proof 
by induction and some proofs in real analysis contain reasoning by equivalence. 

One underlying motivation for this research is the desire to extend the range of questions 
which can be automatically assessed in a valid way. Examples of existing software which 
facilitate reasoning by equivalence are described in (Nicaud, Bouhineau, & Chaachoua, 
2004), and (Heeren & Jeuring, 2014). This software doesn’t quite manage to capture current 
practice. For example, in MathXpert (Beeson, 1989) a student indicates what they would 
like to do and a computer algebra system (CAS) undertakes the calculation for them. A fur-
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ther longer term aim of my research is to design a CAS which supports effective algebraic 
reasoning. Currently, most CAS promote working line by line in traditional ways. This is prob-
lematic because elementary algebra contains a number of subtle “traps”. These traps in-
clude division by zero, or gaining/loosing solutions by squaring/square rooting both sides of 
an equation. Often CAS do not alert a user to the potential for these problems letting the 
user proceed regardless. Many of these problems are related to the natural domain of defi-
nition of the expression being manipulated, e.g. see (Sangwin, 2015) for a selection of ex-
amples. 

To what extend do students use (and correctly use) logical connectives between lines of 
algebraic working? What other justification is evident other than “implied equivalence”? To 
what extent do students check domain constraints? These are the questions the research 
reporeted here sought to investigate. 

Methodology 
First year undergraduate students were asked to solve the following two equations, both of 
which contain algebraic traps. 

  Question 1: solve x
x

x
x

−
−

=−
−
+

13
4045

7
5

 

Question 2: solve 2243 ++=+ xx  

The cohort were a group of 175 students taking an engineering programme at a good Unit-
ed Kingdom university. The methodology relied on students solving these two equations 
and writing answers on a pro-forma containing only the question at the top of each side of 
an otherwise blank page. It is standard practice in university mathematics to ask incoming 
students to sit a short mathematics test as part of normal teaching in the first week at uni-
versity. The two questions were presented to students as part of such a testing process. 
Participation was compulsory as part of normal teaching and hence an authentic experience. 
After the task was completed students were asked if they would volunteer to participate in 
this study and reasons for participation fully explained. 147 students (84%) agreed to do so 
and submitted their worksheets for analysis. There was no deception involved, since these 
tasks are appropriate for these students and full worked solutions were provided to the 
whole cohort as part of feedback to the whole test. 

The first question, taken from (Northrop, 1945, pg. 81), involves the potential for division by 
an algebraic term which later turns out to be zero. The second task, taken from (Newman & 
et.al., 1957, pg. 8), involves the potential for spurious roots which arise from squaring both 
sides of an equation. 

Results 
All students’ work was assessed by hand and assigned a code which described the form of 
the main argument. Further codes recorded any use of logic, natural domains of definition 
and any evidence of checking. Each script was assigned a unique number and the codes, 
together with the number of lines of working used for each problem, were entered into be-
spoke software for analysis. Table 1 shows achievement data, both the number of students 



khdm-Report, Nr. 05, 2017 

336 

 

(and percentage), for question 1 and question 2. The majority of students eventually got 
correct (C) final answers. Incorrect final answers (I) were more common for question 2. A 
small number of students left their answers unfinished (U) or omitted question 2 (O). The 
totals for each question are also given. The mean number (#) of lines of working used #µ 
together with the standard deviation of the number of lines #σ are also listed. 

 
Table 1: Achievement data for both question 1 and question 2 
 
For question 1, of the 113 correct responses, 53 (46.9%) cross multiplied, expanded out all 
brackets and solved the resulting equation correctly to get the unique answer 𝑥 = 10. None 
of these students had the opportunity to cancel the term 4𝑥 - 40 on both sides. Multiplying 
out in this way before gathering terms on one side of an equation is an entirely safe way to 
proceed, but in other situations higher powers would make such a procedure infeasible. A 
further 25 (22%) of students started by writing the left hand side as a rational expression. 
Of these 22 had the clear opportunity to cancel a factor, but chose not to do so. Instead they 
cross multiplied and expanded out the brackets. Note that in a previous pilot with more ex-
perienced students (and staff), a higher proportion of people seemed to cancel 4𝑥 - 40 and 
hence end up with the contradiction 7 = 13. Perhaps this is a mistake only experts make? 

For question 1, only 14 (9.5%) of students showed any evidence of logical connectives be-
tween algebraic statements. Only 2 students wrote any evidence of having performed a 
check, and only 1 student explicitly considered domains of definition of the rational expres-
sion by excluding 𝑥 = 7 and 𝑥 = 13 from the domain of definition for the equation. There is 
no intersection between the coding, so only 17 (11.6%) of students wrote any evidence of 
more than algebraic symbolic manipulation. 

For question 2, the modal answer for this question consisted of squaring both sides, rear-
ranging and squaring again before solving the resulting quadratic to derive the roots 𝑥 = 7 or 
𝑥 = -1. Students who did only this were judged as correct (C) even though it is incomplete, 
and 88 responses took this approach. Only 24 students also checked that their values satis-
fied the original equation, giving complete and correct solutions by only 16% of the cohort. 
For question 2, only 4 students showed any evidence of checking domains of definition and 
only a further 3 students used any logical connectives. The most common mistake was 

squaring a binomial term incorrectly, e.g. baba +=+ 2)( . The following solution oc-
curred 18 times: 

1
2443
2243

=
++=+
++=+

x
xx
xx
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Discussion/Conclusion 
Even for comparatively elementary problems, students are taking on average 10 or 14 lines 
respectively to achieve a correct solution. This number of lines argues for the need for some 
working to be captured by automatic assessment systems. This strongly suggests that 
online assessment systems, such as STACK, need to assess more than the final answer, par-
ticularly in a formative setting. 

Over the last five hundred years there has been a gradual increase in the use of algebraic 
symbolism. This has enabled very efficient computation, and for complex ideas to be com-
pressed. George Boole, (Boole, 1847) carried this programme forward into reasoning and 
logic. Note, before these developments calculations and reasoning where rhetorical. Rea-
soning by equivalence is an important activity which combines both symbolic calculations 
and logical reasoning, and yet our results provide evidence that students concentrate on the 
symbolic calculation and almost entirely ignore the reasoning. 

One argument in favour of using CAS is that it relieves students from “tedious calculations” 
and frees up cognitive load for monitoring. However, few students provided much evidence 
of monitoring. Students may have never been taught to consciously write their reasoning. If 
so, and if such reasoning is agreed to be important, then teaching practice would need to 
shift to teach this activity explicitly. Note, however, that about a third of the marks in cur-
rent IB examinations are already given for reasoning by equivalence and so high-stakes ex-
aminations do already reward this activity. Marks for evidence of using a correct method are 
not necessarily awarded for explicit evidence of reasoning, such as a correct justification for 
each line, instead examinations condone equivalence reasoning implied by correct adjacent 
lines of working as the students here have used. 

The appropriate use of logical connectives, such as implication and equivalence symbols, link 
individual algebraic expressions into a single complete entity: a mathematical argument. A 
single entity could contain domain information and logical connectives. In elementary alge-
bra it is possible to automatically establish the correctness of such arguments. However, 
computer algebra design mirrors contemporary practice: both enable line by line working 
with no explicit connection. This style both facilitates errors and makes such errors hard to 
spot. Both problems might be ameliorated through better CAS design. It will require a close 
collaboration between school teachers, CAS designers and teachers in higher education, to-
gether with their students, to achieve any substantial changes in this situation. 
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A comparison of proof comprehension, proof construction, 
proof validation and proof evaluation  

Annie Selden, John Selden 
New Mexico State University 

(United States of America) 

This paper considers how proof comprehension, proof construction, proof validation, and proof evalu-
ation have been described in the literature. It goes on to discuss relations between and amongst 
these four concepts—some from the literature, some conjectural. Lastly, it considers some related 
teaching implications and research. 

Introduction 
In the mathematics education research literature on proof and proving, there are four relat-
ed concepts: proof comprehension, proof construction, proof validation, and proof evalua-
tion. There has been little research on how these four concepts are related. We first briefly 
describe these four concepts, then we consider how they are related. That is, how are they 
the same? How are they different? Finally, we discuss some related teaching implications 
and research. 

The four concepts as described in the literature 
Proof comprehension means understanding a textbook or lecture proof. Mejia-Ramos, Fuller, 
Weber, Rhoads, and Samkoff (2012) have provided an assessment model for proof compre-
hension, and thereby described proof comprehension in pragmatic terms. Their model in-
cludes both local comprehension and holistic comprehension. Local comprehension includes: 
Writing the theorem statement in your own words. Knowing the definitions of key terms. 
Knowing the logical status of the statements in the proof. Knowing the kind of proof frame-
work (e.g., direct, contrapositive, contradiction, induction). Knowing how/why each state-
ment follows from previous statements (e.g., making implicit warrants explicit). Holistic 
comprehension includes: Being able to summarize the main, or key, ideas of the proof. Iden-
tifying subproofs and how they relate to the overall structure of the proof. Instantiating dif-
ficult parts of the proof with an example to aid comprehension. Providing a summary of the 
proof. Using the ideas from the proof in another proof. 

Proof construction (i.e., proving) means attempting to construct correct proofs at the level 
expected of university mathematics students (depending upon the year of their program of 
study). What is needed for successful proof construction? To date, more is known in the re-
search literature about difficulties that often prevent students from proving a theorem (e.g., 
Selden & Selden, 2008; Weber, 2001) than about interventions that would help students’ 
proving.  

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
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Proof validation has been described as the reading of, and reflection on, proof attempts to 
determine their correctness. Some validation studies have been conducted with undergrad-
uates and mathematicians (e.g., Inglis & Alcock, 2012; Selden & Selden, 2003; Weber, 
2008). The broad general finding is that undergraduates check “surface features” of proofs 
such as equations, whereas mathematicians look for the logical structure and the correct-
ness of implied warrants. 

Proof evaluation has been described by Pfeiffer (2011) as determining whether a proof is 
correct and “also how good it is regarding a wider range of features such as clarity, context, 
sufficiency without excess, insight, convincingness or enhancement of understanding.” (p. 
5). However, in order to distinguish proof evaluation from proof validation, we will put aside 
the portion referring to validation and concentrate on features of proofs including clarity, 
context, convincingness, beauty, elegance, and depth (e.g., Inglis & Aberdein, 2015). We 
would also like to separate proof evaluation from the use of adjectives that we have found 
with student validations, where terms like “wacky” and “confusing” were used when evalu-
ating other students’ proof attempts (Selden & Selden, 2015). 

The paucity of research on the interrelationships 
To date, there does not seem to have been much research attempting to relate the four 
concepts. Here is what we have found: Pfeiffer (2011) conjectured that practice in proof 
evaluation, as she defined it, could help undergraduates appreciate the role of proofs and 
also help them in constructing proofs for themselves. She obtained some positive evidence, 
but her conjecture needs further investigation. Selden and Selden (2015) obtained some 
evidence that improving undergraduates’ proof construction abilities would not necessarily 
enhance their proof validation abilities and suggested that proof validation needs to be ex-
plicitly taught. 

Relationships between and amongst these four concepts 

Proof comprehension 
Mejia-Ramos, et al. (2012), in their assessment model, considered both local comprehen-
sion/understanding and holistic understanding of a proof. By local comprehension, they 
meant knowing the definitions of key terms, knowing the logical status of the statements in 
the proof, knowing the proof framework, and knowing how/why each statement followed 
from previous statements. Such local comprehension is also needed for proof validation as 
described by Selden and Selden (2003); see below.  

By holistic comprehension, Mejia-Ramos, et al. (2012) meant being able to summarize the 
main ideas of the proof, identifying the modules [subproofs] and how they relate to the 
proof’s structure, being able to transfer the ideas of the proof to other proving tasks, and 
instantiating the proof with examples. Being able to summarize the main ideas of a proof 
and identifying modules [subproofs] are also useful for proof validation, but instantiating 
parts of a proof with examples to check a result is rarely done by students. However, in this 
regard, Weber (2008) found that some mathematicians did so when checking congruences 
in number theory proofs. Also, being able to transfer the ideas of a proof to other proving 
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tasks has more to do with generalization of a proof’s techniques—something not needed for 
proof validation. 

Weber (2015) found five strategies that good 4th year university mathematics students use 
to foster proof comprehension. These are “(i) trying to prove a theorem before reading its 
proof, (ii) identifying the proof framework being used in the proof, (iii) breaking the proof 
into parts or subproofs, (iv) illustrating difficult assertions in the proof with an example, and 
(v) comparing the method used in the proof with one’s own approach” (p. 289) and sug-
gested there might be more. Also, in a larger, internet follow-up study reported in the same 
paper, it was found that most mathematicians wanted their students to implement these 
five strategies.  

Can students be taught these strategies? Samkoff and Weber (2015) attempted to teach 
these five strategies, using reciprocal teaching, and found a qualified “yes”. Instantiating a 
theorem statement with an example helped students understand its proof. Students were 
also able to identify proof methods, especially if they looked at the proof’s assumptions and 
conclusions. However, students did not instantiate a line of a proof with a specific example. 
In addition, Samkoff and Weber found that simply asking students to “know the definitions 
of the terms in the theorem” was not enough. Moreover, simply asking students how to 
prove a theorm before reading its proof lead to superficial responses (e.g., “use epsilons”).  

Furthermore, it seems that how one reads a proof depends on what one wants to “get out 
of it” (Rav, 1999). Indeed, Mejia-Ramos and Weber (2014) found that mathematicians 
commonly read published proofs to gain insight, not to check their correctness, and addi-
tionally, that mathematicians consider refereeing a proof to be a substantially different ac-
tivity. 

Proof construction 
We limit our consideration to situations in which undergraduates are asked to prove theo-
rems, not to conjecture them, as this is the more common situation in U.S. undergraduate 
mathematics education. What is needed for successful proof construction? It is not clear that 
this has been discussed much in the mathematics education research literature. However, 
the kinds of difficulties that can stop students from proving a theorem have been re-
searched. These include: Difficulties interpreting and using mathematical definitions and 
theorems. Difficulties interpreting the logical structure of a theorem statement one wishes 
to prove. Difficulties using existential and universal quantifiers. Difficulties handling symbolic 
notation. Knowing, but not bringing, appropriate information to mind. Knowing which (previ-
ous) theorems are important (e.g., Selden & Selden, 2008: Weber, 2001).  

One overlap of proof construction with both proof comprehension and proof validation 
seems to be in knowing and using definitions and theorems appropriately. For proof con-
struction, one needs to bring definitions and theorems to mind at an appropriate time so one 
can use them. However, in proof comprehension and proof validation, definitions and theo-
rems have already been invoked, so one does not have to think of them, rather one only 
has to decide if they have been used appropriately. In general, it would seem that creating a 
new proof oneself, would be harder than merely comprehending what has already been 
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done by someone else or checking its correctness, provided it is not a “garbled” student 
proof attempt. 

Proof validation 
While proof validation has been described briefly as the reading of, and reflection on, a 
proof attempt to determine its correctness, much is involved. Selden and Selden (2003) 
elaborated on what it might take to validate a proof attempt, suggesting that doing so is 
more complex than simply reading from the top-down:  

• Validation can include asking and answering questions, assenting to claims,  
constructing subproofs, remembering or finding and interpreting other theorems  
and definitions, complying with instructions (e.g., to consider or name something), 
and conscious (but probably nonverbal) feelings of rightness or wrongness.  

• Proof validation can also include the production of a new text—a validator-constructed modi-
fication of the written argument—that might include additional calculations, expansions of 
definitions, or constructions of subproofs. 

• Towards the end of a validation, in an effort to capture the essence of the argument in a 
single train-of-thought, contractions of the argument might be undertaken (p. 5). 

If one compares this statement on proof validation with the Mejia-Ramos, et al. (2012) as-
sessment model for proof comprehension, there seem to be several possible common fea-
tures: Knowing the definitions of key terms. Checking the logical status of statements. 
Knowing which proof framework was used. Constructing subproofs. Perhaps summarizing 
the proof. But, the relation to considering examples is not so clear. However, in this regard, 
Weber (2008) found that his eight mathematicians used example-based reasoning in proof 
validation, that is, they often checked the truth of an implied warrant through use of a care-
fully chosen example. It may be that many mathematicians, through experience, have de-
veloped implicit knowledge of which examples are likely to be useful. 

One big difference between proof comprehension and proof validation might be that in most 
proof comprehension situations one can reasonably assume a proof is correct, especially if it 
appears in a lecture or textbook. Indeed, one’s skepticism about the validity of a proof may 
depend greatly upon its source—whether from a textbook, a journal, a colleague, or a stu-
dent. On this issue, Samkoff and Weber (2015) concluded, “It would not be surprising if 
strategies for [proof] validation differed from those of [proof] comprehension.” 

Proof evaluation  
As described above, proof evaluation seems more like making value judgments about a fin-
ished proof or a published proof text. When a student’s proof attempt is being examined by 
another student, such judgments can be about not understanding what is written, rather 
than about its beauty, clarity, elegance, or depth. In the recent Selden and Selden (2015) 
validation study, students said they found parts of the proof attempts “confusing”, “convo-
luted”, or “a mess”. One student found the notation “wacky”. Other student validators said 
too much or too little information was given in a proof. Thus, for students, it seems that 
“making sense” of (i.e., understanding/comprehending) a proof attempt (as written) is a 
prerequisite for proof validation to begin. 
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In an internet study, Inglis and Aberdein (2014) asked 255 mathematicians to consider 
whether a proof of their own choosing was “elegant”, “insightful”, “explanatory”, “pol-
ished”, and so forth. The mathematicians were provided 80 such adjectives. The authors 
concluded that mathematicians’ adjective choices could be classified along four dimensions: 
aesthetics, intricacy, utility, and precision. Additionally, we conjecture that evaluations such 
as those made by these mathematicians would require a certain familiarity with, and com-
petence with, proof comprehension and proof construction. We feel one would need to have 
seen (i.e., comprehended) and constructed many proofs in order to make value judgments 
on characteristics such as elegance, insightfulness, and depth.  

While naïve student judgments about whether a is proof “confusing” are often personal and 
idiosyncratic, these might sometimes also be a characteristic of how a proof was written. 
Proofs are written in a certain genre (Selden & Selden, 2013) and advice is often given to 
both student and mathematician authors on how to write them (e.g., Tomforde, n.d.). In our 
“proofs” course (Selden, McKee, & Selden, 2010), we first validate students’ proof attempts, 
then go over them again to comment on their style (i.e., their adherence to the genre of 
proof). 

In sum 

There are more questions here than answers. One can not only ask, how are proof compre-
hension, proof construction, proof validation, and proof evaluation related, but also how 
does one teach them? Which should be taught first or should they be taught in some combi-
nation? What is the effect of doing so?  

It would seem that students’ proof comprehension would benefit from their attempts at 
proof construction and vice versa--suggesting these two concepts/skills should be taught 
together. Indeed, reading comprehension researchers (e.g., McGee & Richgels, 1990) state 
that reading and writing taught together result in better learning. In addition, before submit-
ting a proof, whether for homework or a journal, one needs to validate it for oneself to en-
sure its correctness. Finally, it would seem that one should have a good grasp of the first 
three--proof comprehension, proof construction, and proof validation--before attempting to 
evaluate proofs as beautiful, elegant, insightful, obscure, and so forth. 

Related teaching implications and research 
What do mathematicians consider when preparing pedagogical proofs? What do students 
“get out of” proofs presented in lectures or textbooks? How can one teach proof compre-
hension? 

There has been some research on each of the above. While clearly informative, this research 
has not specifically considered the relationship of proof comprehension to proof construc-
tion, proof validation, or proof evaluation. For example, Lai and Weber (2014) found that 
mathematicians said that they considered both the intended audience and medium, whether 
lecture or textbook, in their proof presentations. However, they also found that although 
mathematicians valued pedagogical proofs featuring diagrams and emphasizing main ideas, 
they did not always incorporate these into the pedagogical proofs they constructed or re-
vised.  
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Researchers are interested in proof comprehension because mathematics undergraduates, 
at least at the upper-division level in the U.S., spend a lot of time watching and listening to 
proofs being demonstrated in lectures and are also assigned proofs to read in their text-
books. The question is: What do, and what should, students “got out of this”? To begin to 
answer this question, Fukawa-Connelly, Lew, Mejia-Ramos, and Weber (2014) examined 
what students “got out of” one real analysis professor’s proof of the theorem that if a se-
quence has the property that the distance between any two consecutive terms 𝑥𝑛  and 𝑥𝑛−1 

is less than 𝑟𝑛, where 0 < 𝑟 < 1, then it converges. The professor’s lecture was much more 
detailed than what he wrote on the blackboard, but most students only copied down what 
was on the blackboard, and did not pay attention to the professor’s added oral remarks. As a 
result, the students did not comprehend much of what the professor intended to convey. 
Apparently, the students, unlike the professor, did not see the professor’s oral explanations 
as important. 

In order to investigate the feasibility of teaching proof comprehension using self-
explanation training, Hoods, Alcock and Inglis (2014) conducted three experiments. Their 
self-explanation training was designed to focus students’ attention on logical relationships 
within mathematical proofs. The first two experiments were small scale. Students who had 
the self-explanation training tended to generate higher quality explanations and performed 
better on a comprehension test constructed according to the assessment principles of Mejia-
Ramos, et al. (2012). The students also increased their cognitive engagement. Experiment 3, 
with 107 students in a lecture situation, showed that 15 minutes of reading a self-study 
intervention booklet, describing self-explanation, also improved students’ proof comprehen-
sion, and this improvement persisted over time, suggesting proof comprehension can be 
taught effectively. 
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Proof construction perspectives: 
structure, sequences of actions, and local memory  

John Selden, Annie Selden 
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This theoretical paper considers several perspectives for understanding and teaching university stu-
dents’ autonomous proof construction. We describe the logical structure of statements, the formal-
rhetorical part of a proof text, and proof frameworks. We view proof construction as a sequence of 
actions, and consider actions in the proving process, both situation-action pairs and behavioral sche-
mas. We call on several ideas from the psychological literature and introduce the concept of local 
memory – a subset of memory that is partly activated during prolonged consideration of a proof. 

Introduction 

Question 
What should be taught to university students who want to learn proof construction? One 
answer is: The content of some subfields of mathematics, such as linear algebra or real 
analysis. That is, theorems, explanations of their proofs, plus some intuition about those 
subfields, with student proving relegated mainly to homework and tests. We suspect this 
answer is close to how many mathematicians themselves were taught, and this itself is evi-
dence that such teaching is sometimes, perhaps often, effective. There is another reason the 
above answer might be favored. We recall proving a nice result in field A using a result from 
an “unrelated” seminar in field B. This kind of serendipitous proof experience probably hap-
pens often enough to suggest it is valuable for students to take courses covering a wide 
variety of mathematical content. However, students just learning to construct proofs are not 
in a position to use such serendipitous experiences. For many students the teaching of 
mathematical content contains too little proving practice to be adequate for developing be-
ginning proof construction skills.  

A second answer to the above question comes from observing students’ proof construction 
attempts and noting what prevents them from succeeding. Of course, mistakes can, but 
what else about the proof construction process, other than the content of mathematics, can 
prevent success? What follows describes perspectives that elaborate this second answer. 
These perspectives might contribute to a “content of proof construction” that will provide an 
alternative approach to teaching and learning proving. These perspectives will often be ab-
stracted above the level of mathematical content--for example, difficulty with definitions, as 
opposed to difficulty with the meaning of normal subgroup. Before describing the perspec-
tives, we describe the course from which some of the ideas emerged. 
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The course 
The theoretical perspectives described below emerged from the past ten years of teach-
ing/designing a course for beginning mathematics graduate students who felt they needed 
help with proving. We saw, and still see, autonomous proof construction as an activity, like 
learning a sport, that is mastered largely through doing it, perhaps with some coaching. 
Thus, in our “proofs course” we maximized student proof construction experiences. We and 
several mathematics education graduate students collected field notes and videos of these 
classes and analyzed them. We were looking for ways to help students learn to autono-
mously construct proofs, and the mathematical content involved was only a means to that 
end. In order to include a variety of kinds of proofs that students might write in subsequent 
courses, we included sets, functions, a little real analysis, some abstract algebra (semi-
groups), and if there was time, some topology. There were no lectures and the 4-10 stu-
dents, presented their proof attempts at the board in class. For each proof attempt, we pro-
vided a, sometimes extensive, critique. Occasionally there were explanatory side comments, 
such as on logic. For more information, see Selden, McKee and Selden (2010, p. 207). 

The proof text 

The genre 
There are distinctive features that commonly occur in proofs and reduce unnecessary dis-
tractions in validation (reading/reflecting on proofs to judge their correctness). These fea-
tures increase the probability that any errors will be found, thereby improving the reliability 
of the corresponding theorems. Proofs are not reports of the proving process, contain little 
redundancy, and contain minimal explanations of inferences. They contain only very short 
overviews or advance organizers and do not quote entire statements of previous theorems 
or definitions that are available outside of the proof. Symbols are generally introduced in 
one-to-one correspondence with mathematical objects. For example, one does not say, “Let 
𝑥 𝜖 𝑅. Now let 𝑦 = 𝑥.” Finally, proofs are “logically concrete” in the sense that, where pos-
sible, they avoid quantifiers, especially universal quantifiers. Their validity is often seen to 
be independent of time, place, and author. Details can be found in Selden and Selden 
(2013). 

The logical structure of statements  
Statements, such as theorems or definitions, have a logical structure that can be described 
as formal or informal. A statement is formal if the variables are named; quantifiers are ex-
pressed explicitly and typically written first; and logical operators are just the most com-
monly used ones: and, or, not, if-then, and if-and-only-if. In addition, a formal statement 
should not be logically reducible to a shorter one. Otherwise, a statement is informal. Exam-
ples are: “Differentiable functions are continuous”, and in a semigroup context, “A group has 
no proper left ideals”. A formal version of the later in a semigroup context is: “For all semi-
groups S and for all left ideals L of S, if S is a group, then L=S ”, which removes the hidden 
double negative, “no proper”. For more information, see Selden and Selden (in press). 

Informal statements are often used to state theorems, perhaps because they are memora-
ble, often short, and psychologically combine easily with other information. However, we 
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have found that beginning university students of proof construction are not likely to be able 
to reliably unpack them into formal statements (Selden & Selden, 1995). Such unpacking is 
important for both proof construction and validation (Selden & Selden, 2003). Thus, to build 
student self-efficacy (Bandura, 1995), it is better at the beginning of a proof construction 
course to state theorems and definitions formally. 

A structure of proof texts 
A completed proof text can be divided into a formal-rhetorical part and, its complement, a 
problem-centered part. The formal-rhetorical part is the part that depends only on the logi-
cal structure of the statement of the theorem, earlier results, and associated definitions. It 
does not depend greatly on intuition about, or a deeper understanding of, the concepts in-
volved or genuine problem solving in the sense of Schoenfeld (1985, p. 74). The problem-
centered part does depend on problem solving, intuition, heuristics, and a deeper conceptual 
understanding of the concepts involved (Selden & Selden, 2011). We suggest that beginning 
university students of proof construction are likely to benefit most from constructing proofs 
that have large formal-rhetorical parts and more advanced university mathematics students 
are likely to benefit most from those that have large problem-centered parts. 

Proof frameworks 
A major structure that can contribute to construction of the formal-rhetorical part of a proof 
text is a proof framework (Selden & Selden, 1995) of which there are several kinds. A proof 
framework is roughly the logical parts of the theorem statement placed in the approximate 
position they would occur in the completed proof text. Here is an example. Suppose the 
statement of a theorem has the form “For all 𝑥 ∊ 𝑋, if 𝑃(𝑥) then 𝑄(𝑥).” Then a proof 
framework would start: “Let 𝑥 ∊ 𝑋. Suppose 𝑃(𝑥). … Then 𝑄(𝑥).” where the ellipsis repre-
sents a blank space to be filled. In many cases, a (second-level) framework can be con-
structed for the proof of 𝑄(𝑥) and placed in the blank space of the first framework. In this 
way, a proof framework is constructed from the top and bottom of a proof towards the 
middle. The “Let 𝑥 ∊ 𝑋  ” above means 𝑥 will be treated as a fixed, but arbitrary constant, 
rather than a variable, so that the proof construction will depend only on propositional calcu-
lus, rather than the harder predicate calculus. For some time students may not feel that do-
ing this is appropriate. (See the case of Mary, described in Selden, McKee, and Selden, 2010, 
p. 209). 

Operable interpretations 
In writing the formal-rhetorical part of a proof, it can be helpful to associate definitions and 
previously proved results with operable interpretations. These interpretations are similar to 
Bills and Tall’s (1998) idea of operable definitions. For example, given a function 𝑓: 𝑋 → 𝑌 
and 𝐴 ⊆ 𝑌, we define 𝑓-1(𝐴) = { 𝑥 ∊ 𝑋 | 𝑓(𝑥) ∊ 𝐴}. An operable interpretation would say, “If 
you have 𝑏 ∊ 𝑓-1(𝐴), then you can write 𝑓(𝑏) ∊ 𝐴 and vice versa.” One might think that this 
sort of association of a definition with an operable form would be unnecessary. However, 
we have found that for some students doing so is not easy. Indeed, we have also noted in-
stances in which students have had both a definition and an operable interpretation availa-
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ble, but still did not act appropriately. Apparently, actually implementing an operable inter-
pretation is distinct from knowing that one could implement it.  

We suggest that students, or small groups of students, can and should develop some opera-
ble interpretations independently of a teacher. However, if or when this should be done in a 
particular course is a design problem. 

Psychological considerations 
Much of proof construction and its teaching and learning can be explained, or even guided, 
by psychological considerations. Here are a few ideas/structures we call on. Working 
memory includes the central executive, the phonological loop, the visuospatial sketchpad, 
and an episodic buffer (Baddeley, 2000) and makes cognition possible. It is involved in 
learning and attention and has limited capacity which, when exceeded, produces errors and 
oversights. There are several kinds of consciousness but we will always mean phenomenal 
consciousness -- approximately, awareness of experience. There are (at least) two systems 
of cognition that operate in parallel. S1 cognition is fast, unconscious, automatic, effortless, 
evolutionarily ancient, and places little burden on working memory. In contrast, S2 cognition 
is slow, and conscious. It requires attention, is effortful, evolutionarily recent, and burdens 
working memory (Stanovich & West, 2000). System 2 may monitor System 1 and may 
sometimes take over. The idea includes that S1 and S2 have some underlying causal struc-
ture/mechanism. Furthermore, S1 is probably a system of systems (Stanovich, 2009).  

Proof construction as a sequence of actions 
Proof construction can be seen as a sequence of actions which can be physical (e.g., writing 
a line of the proof) or mental (e.g., changing one’s focus or trying to recall a relevant theo-
rem). A sequence of all of the actions that eventually leads to a proof is usually considerably 
longer than the final proof text itself and often proceeds in a different order. For an example 
of how circuitous this can be, see Dr. G s’ ultimately successful proving episode in Selden 
and Selden (2014). This fine-grained action approach facilitates noticing which beneficial 
student proving actions to encourage, and which detrimental student proving actions, to 
discourage.  

Each action in a proof construction arises from a situation in the partly completed proof. The 
situation may be interpreted by the prover by drawing on information from long-term 
memory and a warrant for the acton may be developed. Interpreted situations are mental 
states and so are unobservable. However, a teacher can often infer an interpreted situation 
from observing the partly completed proof. 

Behavioral schemas 
If, during several proof constructions in the past, similar situations have corresponded to 
similar reasoning/warrants leading to similar actions, then, just as in classical associative 
learning (Machamer, 2009), a link may be learned between them, so that another similar 
situation evokes the corresponding action in future proof constructions without the need for 
the earlier warrant or intermediate reasoning. Using such situation-action links strengthens 
them, and after sufficient practice/experience, they can become overlearned, and thus au-
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tomated (Morsella, 2009). We call automated situation-action links behavioral schemas 
(Selden, McKee, & Selden, 2010). 

A person executing an automated action, such as a behavioral schema, tends to: (1) be un-
aware of any needed mental process; (2) be unaware of intentionally initiating the action; 
(3) executes the action while putting little load on working memory; and (4) finds it difficult 
to stop or alter the action (Bargh, 1994). We see behavioral schemas as part of S1, rather 
than S2.  

We also view behavioral schemas as belonging to a person’s knowledge base. They can be 
considered as partly conceptual knowledge (recognizing and interpreting the situation) and 
partly procedural knowledge (the action), and as related to Mason and Spence’s (1999) idea 
of “knowing-to-act in the moment”. In using a situation-action link or a behavioral schema, 
both the situation and the action (or its result) seem always to be at least partly conscious. 

Here is a hypothetical example of one such possible behavioral schema that could conserve 
resources. One might be starting to prove a statement having a conclusion of the form 𝑝 or 
𝑞. This would be the situation at the beginning of the proof construction. If one had encoun-
tered this situation a number of times before, one might readily take an appropriate action, 
namely, in the written proof assume not 𝑝 and prove 𝑞 or vice versa. While this action can 
be warranted by logic (if not 𝑝 then 𝑞, is equivalent to, 𝑝 or 𝑞), there would no longer be a 
need to bring the warrant to mind. 

It is our contention that, by forming behavioral schemas, large parts of proof construction 
skill can be automated, that is, that one can facilitate university students in turning what has 
been regarded as parts of S2 cognition into S1 cognition. Doing this would make more re-
sources, such as working memory, available for such high cognitive demand tasks as the 
truly hard problems that need to be solved to complete many proofs. 

The idea that much of the deductive reasoning that occurs during proof construction could 
become automated may be counterintuitive because many psychologists (e.g., Schechter, 
2012), and (given the terminology) probably many mathematicians, assume that deductive 
reasoning is largely S2. We think that for successful students this change now sometimes 
happens naturally and implicitly, but with teaching, could be greatly enhanced. 

It appears that consciousness plays an essential role in triggering the enactment of behav-
ioral schemas for constructing proofs. This is reminiscent of the role consciousness plays in 
reflection. It is hard to see how reflection, treated as selectively and approximately re-
presenting past experiences in a new order, could be possible without first having had the 
experiences. We have developed a six-point theoretical sketch of the genesis and enact-
ment of behavioral schemas (Selden, McKee, & Selden, 2010, pp. 205-206). (1) Behavioral 
schemas are immediately available. They do not normally have to be remembered, that is, 
searched for and brought to mind before their application. This distinguishes them from 
most conceptual knowledge and episodic and declarative memory, which generally do have 
to be recalled or brought to mind before their application. (2) Behavioral schemas operate 
outside of consciousness. One is not aware of doing anything immediately prior to the re-
sulting action – one just does it. Thus, a behavioral schema that leads to an error is not under 
conscious control and merely being shown a counterexample might not prevent future reoc-
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currences. (3) Behavioral schemas tend to produce immediate action. One becomes con-
scious of the action resulting from a behavioral schema as it occurs or immediately after it 
occurs. (4) One might reasonably ask, can several behavioral schemas be “chained togeth-
er” outside of consciousness, as if they were one schema? For most persons, this seems not 
to be possible. If it were so, one would expect that a person familiar with solving linear 
equations could start with 3𝑥 + 5 = 14, and without bringing anything else to mind, imme-
diately say 𝑥 = 3. We suggest that very few (or no) people can do this. (5) An action due to 
a behavioral schema depends on at leat some conscious input. In general, a stimulus need 
not become conscious to influence a person’s actions, but such influence is normally not 
precise enough for doing mathematics. (6) Behavioral schemas are acquired (learned) 
through (possibly tacit) practice. That is, to acquire a beneficial schema a person should ac-
tually carry out the appropriate action correctly a number of times – not just understand its 
appropriateness. Changing a detrimental behavioral schema requires similar, perhaps longer, 
practice.  

Feelings and proof construction 
The words “feelings” and “emotions” are often used more or less interchangeably. Both 
appear to be conscious reports of unconscious mental states, and each can, but need not, 
engender the other. We will follow Damasio (2003) in separating feelings from emotions 
with emotions expressed by physical states, such as temperature, facial expression, blood 
pressure, pulse rate, perspiration, and so forth, while feelings are not (Damasio, 2003, pp. 
67-70). That is, feelins are conscious mental states, rather than physical states. Feelings 
such as a feeling of knowing can play a considerable role in proof construction (Selden, 
McKee, & Selden, 2010). For example, one might experience a feeling of knowing that one 
has seen a theorem useful for constructing a proof, but not be able to bring it to mind at the 
moment. Such feelings of knowing can guide cognitive actions; for example, they can influ-
ence whether one continues a search or aborts it (Clore, 1992, p. 151). We call such feelings 
that can influence cognition cognitive feelings. When we speak of feelings here, we mean 
non-emotional cognitive feelings.  

For the nature of feelings, we follow Mangan (2001), who has drawn somewhat on William 
James (1890). Feelings seem to be summative in nature and to pervade one’s whole field of 
consciousness at any particular moment. For example, to illustrate what it might mean for a 
feeling to pervade one’s whole field of consciousness, consider a hypothetical student tak-
ing a test with several other students in a room with a window. If, at a particular time, the 
student looks at his test, then towards the other students, and finally out of the window, at 
each of the three moments he or she perceives external information from only that mo-
ment. But if the student feels confident (i.e., has a feeling of knowing) that he or she will do 
well on the test during one of these moments, then he or she will also feel confident during 
the other two. This suggests that feelings are widely available to be focused on and can 
directly influence action.  

Additional nonemotional cognitive feelings, different from a feeling of knowing, are a feel-
ing of familiarity and a feeling of rightness. Mangan (2001) has distinguished these. Of the 
former, he wrote that the “intensity with which we feel familiarity indicates how often a 
content now in consciousness has been encountered before”, and this feeling is different 
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from a feeling of rightness. It is rightness, not familiarity, that is “the feeling-of-knowing in 
implicit cognition”. Rightness is “the core feeling of positive evaluation, of coherence, of 
meaningfulness, of knowledge”. In regard to a feeling of rightness, Mangan has written that 
“people are often unable to identify the precise phenomenological basis for their judgments, 
even though they can make these judgments with consistency and, often, with conviction. 
To explain this capacity, people talk about ‘gut feelings’, ‘just knowing’, hunches, [and] intui-
tions”. Often such quick judgments (i.e., the results of S1 cognition) can be correct, but they 
sometimes need to be checked, that is, S2 cognition needs to “kick in” and override such 
incorrect quick judgments.  

Finally, we conjecture that feelings may eventually be found to play a larger role in proof 
construction than they as yet have. They provide a direct link between the conscious mind 
and the structures and possible actions of the unconscious mind, which has not been well 
studied in the proving context. 

Local memory 
One might think that proof construction consists mainly of communication with others or 
oneself using speech, vision, etc., or their inner versions (Sfard, 2010). That is, it is mainly 
conscious. We take a somewhat different view. There appears to be a very large amount of 
memory maintained outside of consciousness. Conscious information can sometimes influ-
ence the activation of related information in memory (i.e., bring something to mind) and 
sometimes cannot do so (Selden, Selden, Mason, & Hauk, 2000). In constructing a proof, 
often much more relevant information can be activated than can be simultaneously held in 
mind. When information that cannot be held in mind is lost from consciousness, it seems not 
to be returned to its original state, but to a state of partial activation, and hence can be easi-
ly recalled. Often, in attempting a long proof, a considerable amount of information is gen-
erated and partially activated. We call such partially activated information local memory. We 
have found that we can easily recover such local memory even a day or so after putting 
aside a proof construction session, provided we have not engaged in some other cognition 
similar to proving. That is, we can easily “pick up where we have left off”. 

Memory activation may itself provide a useful flexibility. When information is activated and 
then returned to memory, it may be slightly altered. After the same information is activated 
several times, somewhat different information may, seemingly serendipitously, be activated 
in the next iteration, and consequently, produce new proof ideas. 

We hope others will extend and improve these ideas, especially those that call on psycholo-
gy, which we think has developed in ways useful in mathematics education since the cogni-
tive revolution around the mid 20th century. 

References 

Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sci-
ence, 4(11), 417-423. 

Bandura, A. (1995). Self-efficacy in changing societies. Cambridge: Cambridge University Press. 

Bargh, J. A. (1994). The four horseman of automaticity: Awareness, intention, efficiency and control in 
social cognition. In R. Wyer & T. Srull (Eds.), Handbook of social cognition, Second Edition, Vol. 1 (pp. 1-
40). Mahwah, NJ: Lawrence Erlbaum Associates. 



khdm-Report, Nr. 05, 2017 

353 

 

Bills, L., & Tall, D. (1998). Operable definitions in advanced mathematics: The case of the least upper 
bound. In A. Olivier & K. Newstead (Eds.), Proceedings of the 22nd Conference of the International 
Group for the Psychology of Mathematics Education, Vol. 2 (pp. 104-111). Stellenbosch, South Africa: 
University of Stellenbosch. 

Clore, G. L. (1992). Cognitive phenomenology: Feelings and the construction of judgment. In L. L. Martin & 
A. Tesser (Eds.), The construction of social judgments (pp. 133-162). Hillsdale, NJ: Lawrence Erlbaum 
Associates. 

Damasio, W. (2003). Looking for Spinoza: Joy, sorrow, and the feeling brain. Orlando, FL: Harcourt. 

James, W. (1890). The principles of psychology. New York: Holt. 
Machamer, P. (2009). Learning, neuroscience, and the return to behaviorism. In J. Bickle (Ed.), The Oxford 

handbook of philosophy and neurosciences (pp. 166-176). Oxford: Oxford University Press. 

Mangan, B. (2001). Sensation’s ghost: The non-sensory ‘fringe’ of consciousness. Psyche, 7(18). Re-
trieved September 29, 2009, from http://www.theassc.org/files/assc/2509.pdf 

Mason, J., & Spence, M. (1999). Beyond mere knowledge of mathematics: The importance of knowing-to-
act in the moment. Educational Studies in Mathematics, 28(1-3), 135-161. 

Morsella, E. (2009). The mechanisms of human action: Introduction and background. In E. Morsella, J. A. 
Bargh, & P. M. Goldwitzer (Eds.), Oxford handbook of human action (pp. 1-34). Oxford: Oxford Universi-
ty Press. 

Schechter, J., (2013). Deductive reasoning. In H. Pashler (Ed.), Encyclopedia of the mind. Los Angeles, CA: 
SAGE Publications. 

Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press. 
Selden, A., McKee, K., & Selden, J. (2010) Affect, behavioural schemas, and the proving process. Interna-

tional Journal of Mathematical Education in Science and Technology, 41(2), 199-215. 
Selden, A., & Selden, J. (2016). An example of a linguistic obstacle to proof construction: Dori and the hid-

den double negative. In (Eds.) T. Fukawa-Connelly, N. Infante, M. Wawro, and S. Brown, Proceedings of 
the 19th Annual Conference on Research in Undergraduate Mathematics Education. Pittsburgh, Penn-
sylvania. 

Selden, A., & Selden, J. (2014). The roles of behavioral schemas, persistence, and self-efficacy in proof 
construction. In. B. Ubuz, C. Hasar, & M. A. Mariotti (Eds.), Proceedings of CERME-8 (pp. 246-255). An-
kara, Turkey: Middle East Technical University. 

Selden, A., & Selden, J. (2013). The genre of proof. In M. N. Fried & T. Dreyfus (Eds.), Mathematics and 
mathematics education: Searching for common ground (pp. 248-251). New York: Springer. 

Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether 
an argument proves a theorem? Jounal for Research in Mathematics Education, 34(1), 4-36. 

Selden, J., & Selden, A. (2011). The role of procedural knowledge in mathematical reasoning. In B. Ubuz 
(Ed.), Proceedings of the 35th Conference of the International Group for the Psychology of Mathematica 
Education, Vol. 4 (pp. 145-152) Ankara, Turkey: Middle East Tech. University. 

Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in 
Mathematics, 29(2), 123-151. 

Selden, A., Selden, J., Hauk, S., & Mason, A. (2000). Why can’t calculus students access their knowledge to 
solve non-routine problems? In A. H. Schoenfeld., J. Kaput, & E. Dubinsky, (Eds.), Research in collegiate 
mathematics education. IV. Issues in mathematics education: Vol. 8. (pp. 128-153). Providence, RI: 
American Mathematical Society. 

Sfard, A. (2010). Thinking as communicating: Human development, the growth of discourses, and mathe-
matizing. Cambridge, UK: Cambridge University Press. 

Stanovich, K. E. (2009). Distinguishing the reflective, algorithmic, and autonomous minds: Is it time for a tri-
process theory? In J. Evans, & K. Frankish (Eds.), In two minds: Dual processes and beyond (pp. 55-88). 
Oxford, UK: Oxford University. 

Stanovich, K. E., & West, R. F. (2000). Individual differences in reasoning: Implications for the rationality 
debate? Behavioral and Brain Sciences, 23, 645-726. 

http://www.theassc.org/files/assc/2509.pdf


khdm-Report, Nr. 05, 2017 

354 

 

A coherent approach to the fundamental theorem of calculus 
using differentials  
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We describe an approach to introductory Calculus that supports students in connecting their 
conceptions of derivatives and integrals by incorporating the FTC as a central idea from the first day 
of the course. To accomplish this goal we re-conceptualize the idea of differential, introducing it 
before the notion of derivative in the context of constant rate of change in linear variation. In doing 
so, we view changes in variables happening continuously, as opposed to happening in increments. 

Several authors have built introductory calculus courses based on the concept of 
infinitesimal as introduced in Robinson’s (1966) nonstandard analysis. Three prominent 
examples are Henle (1979), Rogers (2005), and Keisler (2012). They argued, and we agree 
to a certain extent, that an approach to calculus based on infinitesimals is more intuitive for 
students than is the more common approach that is based on limits.  

Another point of entry into the calculus is through the use differentials in place of 
derivatives (e.g., Dray & Manogue, 2010; Rogers, 2005). Rogers’ meaning of a differential 
seems, to us, to be very much like Robinson’s infinitesimal. Dray and Manogue’s use of 
differentials seems to be driven by notational simplicity that they provide. We cannot tell 
with certainty what Dray and Manogue mean by a differential, but it seems they meant 
differential to be a small change in a quantity. Regarding common meanings of differential 
in calculus textbooks, we surveyed 17 classic and contemporary calculus textbooks; most of 
them do not mention differentials at all for single variable calculus, and the few that do, 
define differential after having fully developed the derivative, and they define the 
differential 𝑑𝑦 as 𝑑𝑦 = 𝑓’(𝑥)𝑑𝑥. 

Existing approaches to calculus based on the ideas of infinitesimals, limits, or differentials 
fail to address an important common shortcoming in calculus students’ thinking: students 
tend to think of variables statically. To them, variables do not vary. Calculus, to students 
who conceive variables statically, is divorced from ideas of variation, covariation, 
accumulation, and rate of change—the very ideas that the inventors of the calculus intended 
to address. White and Mitchelmore (1996), Jacobs (2002), Carlson et al. (2002), and 
Trigueros and Jacobs (2008) demonstrated the insidious effects on students’ understandings 
of and ability to model dynamic situations and pointed to students’ static conceptions of 
variables as being at the root of their difficulties. 

Our final concern with approaches that support students’ tendencies to think about variables 
statically is that the Fundamental Theorem of Calculus (FTC) is fundamental neither to 
students’ understandings of derivatives nor to their understandings of integrals. Instead, 
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derivatives are about slopes of tangents, integrals are about areas bounded by a curve, and 
the FTC, coming after both derivatives and definite integrals, is about neither slopes nor 
areas. There is nothing fundamental about the FTC in students’ thinking. 

Here we outline our approach to developing the calculus so that it (i) explicitly addresses 
students’ problematic, static meaning of variables, and (ii) supports students in connecting 
their conceptions of derivatives and integrals by incorporating the FTC as a central idea from 
the first day of the course. To accomplish this goal we needed to re-conceptualize the idea 
of differential.1 

The fundamental theorem of calculus frames our entire course. We explain to students at 
the outset that the entirety of calculus addresses two foundational problems, namely: 

1. You know how fast a quantity is changing at every moment; you want to know how 
much of it there is at every moment. 

2. You know how much of a quantity there is at every moment; you want to know how 
fast it is changing at every moment. 

We found that US college students and Israeli high school students are not prepared to think 
about these foundational questions profitably. Their image of function is typically a one-
number-in one-number-out function machine, and they cannot use function notation 
representationally. Also, in line with earlier research, students think of variables statically. To 
them, a variable’s value varies by substituting different numbers in its place—one number at 
a time. Accordingly, their understanding of the continuum (the real number line) is that it is 
composed of integers, a smattering of rational numbers, and 7-10 irrational numbers. 
Finally, their understandings of quantity are limited largely to lengths, areas, and volumes, 
where areas and volumes are conceptually one-dimensional (Thompson, 2000). As such, 
continuous variation is not part of their image of a real-valued variable and it requires a 
concerted effort on students’ part to construct continuous variation as a way of thinking. 

We address students’ ill-preparedness in many ways, focusing on their conceptions of the 
continuum and on envisioning variables as varying continuously. The image of continuous 
variation also is an important part of our materials on the concept of function. We also 
develop the idea of constant rate of change in the guise of linear variation. It is in the 
context of linear variation that we introduce the idea of differential. When two quantities 𝑥 
and 𝑦 change at a constant rate with respect to each other, then changes in 𝑦 vary in 
proportion to changes in 𝑥. Or, 
𝑑𝑦 = 𝐼𝑑𝑥. That is, we view changes in 
variables happening continuously, as 
opposed to changes in variables 
happening in increments. To this end, 
we talk about ∆𝑥 as the length of 
intervals that partition the 𝑥-axis, but 
we speak of the value of 𝑥 varying 

                                                 
1 Background for this approach may be found in (Kouropatov & Dreyfus, 2013, 2014; Thompson, 1994; 
Thompson, Byerley, & Hatfield, 2013; Thompson & Silverman, 2008). 
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continuously through any ∆𝑥-interval. The value of 𝑑𝑥 is the difference between the 
“current” value of 𝑥 and the beginning (denoted left(𝑥)) of the ∆𝑥-interval that contains the 
current value of 𝑥. That is, a differential in 𝑥 is a variable whose value varies through the 
interval (0, ∆𝑥], repeatedly. Therefore, 𝑑𝑦 is a variable whose value varies through the 
interval (0, 𝐼𝑑𝑥], where 𝐼 is the constant rate of change that relates changes in 𝑦 with 
changes in 𝑥 within the ∆𝑥-interval that contains the current value of 𝑥 as it varies. 

We hasten to point out that we introduce the idea of differential as soon we introduce linear 
variation. We do not base the idea of differential on the idea of derivative. 

We then define the concept of a moment of a variable as a small interval containing a value 
of the variable. The idea of a moment is best illustrated by the case where the variable is 
time: taking a photo with the shutter being open for a small interval of time – a moment. 
Anything moving within the camera’s range of view will create a small blur, and this will be 
true no matter the shutter’s setting. The generalization to variables other than time is that 
all variation is blurry. Thus, a moment in a variable’s variation is an interval.  

We dwell on the idea of a moment in a variable’s variation to introduce the idea of rate of 
change at a moment, meaning that a function has a rate of change that is essentially 
constant over a small interval of the function’s independent variable. Since the rate of 
change is essentially constant over an interval, the change in the function over that interval 
is essentially equal to 𝑑𝑦, where 𝑑𝑦 = 𝐼𝑑𝑥, as 𝑑𝑥 varies through that interval. It is with this 
image that we introduce the idea of a rate of change function 𝑟𝑓 for a function 𝑓, meaning 
that every value of 𝑟𝑓 gives the rate of change of 𝑓 at a moment of 𝑓’s independent 
variable. With the concept of rate of change functions, we are positioned to build a function 
whose values approximate values of 𝑓 by accumulating changes in 𝑑𝑦 as 𝑥 varies, starting 
from a reference point. We use the term accumulation function for functions that arise by 
their values having accumulated at some rate over small intervals of their independent 
variable. 

It should be obvious that our approach entails developing integrals as accumulations from 
rate of change functions as the first major concept of the calculus. It is in this respect that 
we see the FTC as being at the core of the course from the outset. With this entry it is 
intuitively immediate that the rate of change of an accumulation function at any moment of 
its independent variable is the value at that moment of the rate of change function from 
which it is built. 

The idea of integral becomes crystalized for students when we introduce the idea of a value 
of one function being essentially equal to the value of another—that making ∆𝑥 so small 
that making it smaller produces no practical change in the estimate of the function’s value. 
“Practical”, of course, depends on context. 

The second fundamental problem of calculus, knowing how much of a quantity you have at 
every moment and wanting to know how fast it is changing at every moment, entails 
reversing the process of creating accumulation functions from rate of change functions. The 
major insight that is required is to realize that any value of a function that gives an amount 
of a quantity at every moment must have accumulated at some rate over moments of the 
function’s independent variable. That is, if 𝑓(𝑥) is an amount, then that amount accumulated 



khdm-Report, Nr. 05, 2017 

357 

 

from some reference point 𝑎, and therefore 𝑓(𝑥) = 𝑓(𝑎) + ∫ 𝑟(𝑡)𝑑𝑡𝑥
𝑎  for some rate of 

change function 𝑟. Put another way, the FTC becomes the motive for finding a method of 
deriving rate of change functions from accumulation functions.  

This course evolved at Arizona State University over the past five years, and an electronic 
textbook for it now exists. The ideas have also been experimented with high school 
students in Israel. During the current academic year, a controlled experiment was carried out 
at ASU to compare students’ learning in our and traditional approaches. In Fall 2015 two full-
time faculty taught sections of Math 270T, traditional Calculus 1 (n = 180, 68) while one full-
time faculty and one graduate student taught two sections of Math 270R, our revised 
Calculus 1 (n = 114, 35). The sections were undifferentiated in the schedule of courses so 
we believe that there was no selection bias among students. Thompson met with the 
instructors in summer 2015 to construct a 12-item pre-post test. All instructors agreed that 
the final set of questions addressed a broad spectrum of important understandings that 
students should have at the course’s end. Students took the pretest in their first recitation 
meeting. The pretest was embedded in each instructor’s final exam; thus, all students who 
took a 270 final exam took the pretest a second time. 

Table 1 shows that there were no significant differences in pretest scores between students 
in 270R and 270T (p < 0.23) and a highly 
significant difference in their posttest scores 
(p < 0.001). Scheffe post-hoc tests showed 
no difference between traditional sections 
and no difference between revised sections, 
but each traditional-revised comparison 
showed a significant difference (p < 0.001). 
There were no significant differences among sections in terms of percent of students who 
passed the derivatives mastery test. 

Individual interviews of students in both treatments also showed distinct differences in the 
quality of their understandings. Also, students who dropped 270R did so largely because its 
emphasis on meaning and meaningful reasoning did not fit their expectations of a 
mathematics class. Star and Smith (2006) reported a similar result in the University of 
Michigan’s implementation of Harvard Calculus. Addressing students’ expectations in 270R 
will be an important goal in the future. 

We close by pointing out that our meaning of differentials 𝑑𝑦 and 𝑑𝑥, as changes in 
quantities that are related linearly, is at the heart of our approach. It is by establishing 
powerful meanings of constant rate of change, linearity, and differentials that we 
incorporate the FTC in deriving accumulation from rate of change and in deriving rate of 
change from accumulation.  
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Building and measuring mathematical sophistication 
in pre-service mathematics teachers  
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We advocate that fostering mathematical sophistication should be a main role that advanced mathe-
matics contents courses play in the university education of pre-service teachers. 

Mathematical sophistication – a desired outcome of advanced mathe-
matics courses 
University mathematics teacher education programs face a fundamental problem of what 
Felix Klein (1924) called the Doppelte Diskontinuität (double discontinuity). The first discon-
tinuity occurs with the transition from school to university mathematics, and the second 
discontinuity concerns whether this university education has the desired impact on their 
future work as mathematics teachers. (See Hefendehl-Hebeker (2013) for an overview of 
the problem and of contemporary efforts to tackle it). At issue with the second discontinuity 
is whether pre-service teachers are provided opportunities in their university coursework to 
learn the mathematics content knowledge (MCK), mathematics pedagogical content 
knowledge (PCK), and pedagogical knowledge (Shulman 1986) required for the work of 
teaching. Within the domain of PCK, Bass and Ball (2004) have identified and developed 
instruments to measure what they have termed Mathematical Knowledge for Teaching, 
which includes knowing which concepts best support students’ understanding, and recogniz-
ing the nature of students’ various conceptions and misconceptions. This knowledge is spe-
cific to the content of school mathematics, and is likely not to be fostered directly through 
advanced mathematics coursework. Therefore, an important issue within the domain of MCK 
is the role that advanced mathematics coursework has in developing the mathematics con-
tent knowledge that teachers actually need to teach school mathematics.  

Szydlik and Seaman (2007) have identified specific aspects of MCK that are not content-
specific, but rather knowledge of how to do mathematics, when they proposed the con-
struct of Mathematical Sophistication. This construct refers to a person’s mathematical be-
havior – the avenues of doing mathematics that one has at their disposal – and consists of 
an internalization of the values, behaviors, and habits of mind of the mathematical commu-
nity that are powerful in learning new mathematics. The concept is rooted in a sociocultural 
perspective on mathematics learning (Bauersfeld 1979; Resnick 1989; Schoenfeld 1992): 
Through a process of enculturation in what it means to do mathematics, the learner aquires 
a mathematical point of view – thus “seeing the world in ways like mathematicians do” 
(Schoenfeld 1992). 
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The development of the mathematical sophistication concept (along with a framework of 
norms characterizing it) by Seaman and Szydlik (2007) was motivated by their study in 
which a majority of pre-service elementary teachers were unable to use a teacher resource 
to make sense of an unfamiliar mathematical concept – a failure that the authors attributed 
to the participants not being able to think and act like mathematicians would have. This sug-
gests that the pedagogically powerful forms of mathematical content knowledge intersect 
to a considerable extent with the forms of knowledge that allow mathematicians to create 
new mathematics. We agree with Seaman and Szydlik that building mathematical sophisti-
cation is critical not only for prospective research mathematicians, but for anyone engaged 
in mathematical learning – it should therefore be the main role that mathematics course-
work plays in the preparation of teachers.  While the mathematics content of advanced uni-
versity mathematics courses might not have an obvious counterpart in school mathematics, 
an explicit goal of this coursework should be to allow students to acquire traits of mathe-
matical behavior that empowers them to do and make sense of mathematics, and be able to 
enculturate these behaviors in their own future classrooms. 

Building mathematical sophistication 
Motivating students to value mathematical sophistication.  A survey carried out by the first 
author (unpublished) indicates that a large portion of pre-service teachers is interested in 
university mathematics only as far as it is visibly related to their future jobs as teachers, 
rather than as an interesting scientific endeavor in and of itself. It is therefore important to 
convince students that mathematical sophistication is in fact useful – and in many situations 
even a requirement – for successful teaching. One approach in this direction are interface 
activities („Schnittstellenaktivitäten“) (Bauer und Partheil 2009; Bauer 2013a,b), which con-
sist of specific homework problems (“Schnittstellenaufgaben”) discussed in special recitation 
sections (“Schnittstellenübungen”), designed to establish connections between school 
mathematics and university mathematics – such as problems that highlight the use of ad-
vanced techniques from university mathematics in order to gain deeper insight into topics 
appearing in school mathematics (category C in Bauer 2013a and Bauer 2013b).  

Designing advanced courses that help students gain mathematical sophistication.  Mathe-
matical behavior is a facet of mathematics knowledge that is rarely made explicit in mathe-
matics content courses – perhaps it is often assumed that students will notice them implicit-
ly. However, we argue: 

(1) Mathematics content courses should make mathematical behavior more explicit. 
(2) Mathematics content courses should involve students in more activities that require  
         authentic mathematical behavior. 

Here (1) entails showing avenues of knowing that the mathematical community has devel-
oped in general, but also “disclosing” the mental models and strategies used by the educa-
tor concerning the currently studied concepts and problems, respectively, in order to foster 
cognitive apprenticeship (Collins et al. 1989). The lecturing tradition in mathematics so far 
does not put much emphasis on these aspects – the focus is predominantly on the finished 
products (expressed in definitions, theorems and proofs) rather than on the acting mathe-
matician’s behavior. As for (2), reactions on the part of university educators might vary in a 
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wide spectrum between the statements “We do this anyway” and “This is too difficult for 
the average student”. While it is true that challenging “Prove that ...” problems can involve a 
variety of mathematical activities, it should be noticed that they do not cover the whole 
spectrum of mathematical behavior as con-
ceptualized by the list of traits of mathemati-
cal sophistication from Seaman and Szydlik 
(2007). We argue that such activities are 
very well possible at every stage of mathe-
matical education. (See also Bauer 2013c, 
where a case is made that this applies to 
school mathematics as well.) The example 
below, which involves the activities of con-
jecturing and defining, is given to support this 
point of view. We agree with Belnap and 
Parrot (2013) that conjecturing is a valuable 
mathematical activity for students, as it ap-
pears to involve many of the traits of mathematical behavior that Seaman and Szydlik as 
well as Schoenfeld (1992) identified. The example (see the box) shows an exercise problem 
from a course of the first author on Elementary Algebraic Geometry, which encourages ex-
perimenting with examples, verbalizing expectations, as well as stating and proving conjec-
tures. Compare it to a version of type “Prove that for every curves of degree d, the intersec-
tion with a line ...” – the same theorem is being proved, but the mathematical activities dif-
fer substantially.  

Measuring mathematical sophistication 
Szydlik, Kuennen and Seaman (2009) developed a 25-item multiple-choice instrument that 
attempts to measure a student’s level of mathematical sophistication with items designed 
for the following traits: 1) find and understand patterns, 2) classify and characterize objects 
based on structure, 3) make and test conjectures, 4) create models of mathematical objects, 
5) value precise definitions, 6) value an understanding of why relationships make sense, 7) 
value logical arguments as sources of conviction, 8) have fine distinctions about language, 
and 9) value symbolic representations and notation. We were interested in answering the 
following questions: 

1. What kind of adaptations are necessary for use of the items with German students? 

2. Is this instrument, which was designed for use with elementary and middle school 
preservice teachers, also meaningful when used with pre-service Gymnasium teach-
ers? 

3. In which ways do beginning students show different mathematical sophistication 
than ending students (novice-expert comparison)? 

As for 1), we found that few adaptations beyond mere language translation were neces-
sary. (This should be seen in contrast with Delaney et al. 2008, where a number of changes 
accounting for cross-cultural differences were deemed necessary.) Preliminary results for 2) 
suggest that the items work well with pre-service Gymnasium teachers. This might be ex-
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plained by the fact that the items are by design not bound to specific mathematical content, 
as they aim at measuring behavior that results from coursework rather than content that 
occurs in coursework. As for 3) we found in a subset of the items a significant difference 
between novices and experts (i.e., beginning and ending students), while little difference for 
a second subset. Further research is necessary in order to explain these findings – in particu-
lar it would be extremely interesting to uncover which of the findings can be attributed to 
the different nature of the chosen items (e.g. level of difficulty), and which to differing im-
pact of university education on specific facets of mathematical sophistication. 
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After describing the actual situation at the University of Hannover and our primary motivation for 
establishing a math education course as bridge from school to university mathematics we sketch a 
few basic ideas for designing the course. A crucial point is the intention to make the difference be-
tween school and university mathematics more explicit to first year students. This goal will be real-
ized by making use of concepts and theory elements from research in math education that involve for 
example learning and epistemological analyses of mathematical topics in the transition from school to 
university. According to these ideas it seems important that the basic math courses remain essentially 
unchanged in form and substance.  

Introduction 
In most of the German universities students who want to become upper secondary teachers 
have to attend the same basic mathematics courses as students of pure mathematics, phys-
ics or other subjects. There are several reasons for this. On the one hand, in earlier times the 
focus was more on the subject than on the professional career, and the requirements w.r.t. 
mathematics were high also for the future teachers. So it was not uncommon that following 
a “Staatsexamen” a PhD thesis in mathematics was written. This idea still lives on, while the 
situation has become quite different in the meantime. The increasing number of high school 
pupils aiming for the “Abitur” requires an increasing number of mathematics teachers, and 
often these students are less focused on mathematics compared to those who took this 
career path in earlier decades.  

With the introduction of the Bachelor/Master system in Germany, the traditional route to-
wards becoming a teacher changed in most states. In Hannover, like in many other places, a 
polyvalent interdisciplinary Bachelor was introduced; it was designed to leave open both 
possibilities: that of a subsequent Master of Education for future teachers and that of a Mas-
ter in the chosen major subject area. But trying to fulfill both needs at the same time is not 
optimal for both, in particular for mathematics where the courses build on each other and 
the students are familiarized with abstract concepts already in the first year. For many 
teachers to be – who often form the majority in the basic mathematics courses – it is a big 
problem to participate in courses that are primarily targeted towards future mathematicians 
(and physicists) without any accompanying reflection of the contents with respect to the 
topics treated in high school.  Indeed, until this semester there was no course in the first 
year that took up explicitly and solely educational questions, i.e., mathematics teaching on 
its own.  
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Also, the studies by (Pieper-Seier et al., 2002) confirm the impression held by many German 
mathematics departments: the different groups of students attending the same basic math-
ematics courses have very different attitudes towards mathematics; their findings make 
more precise where the differences are and how this may affect the students’ success.  Be-
sides that it is known that the transition from school mathematics to university mathematics 
is problematic for most students.  Main reasons are the “advanced mathematical thinking”, 
and the different learning culture that is also related to new mathematical practices like giv-
ing proofs, see for an overview (Hoppenbrock et al. 2015). This leads to a situation where 
the potential of challenging math courses in the professionalization process of teachers is in 
general not realized. This problem also exists at the University Hannover regarding other 
science studies but also other philosophical studies. Therefore a joint proposal of nine differ-
ent disciplines is taken up in the context of the German “Qualitätsoffensive Lehrerbildung“. 

Initiated by the regular reassessment of the study courses, the Faculty of Mathematics and 
Physics at Leibniz University Hannover decided to introduce a new course for students who 
want to become teachers in the first year that improves the situation from several points of 
view. The goal is to acquaint the students with math education ideas early on, and it should 
provide an explicit bridge between school mathematics and university mathematics.  

Basic Ideas for Designing the Course 

Overcoming Defensive Learning 
We assume that the challenging contents and tasks in the first year courses Analysis and 
Linear Algebra show potentials for professionalization processes of students becoming math 
teachers. But often these potentials cannot effectively be realized.  Instead students’ learn-
ing is more or less dominated by the goal to pass the exams and shows facets of obstructed 
instead of motivated learning. Within Holzkamp’s subjective scientific approach (Holzkamp, 
1993) such a kind of learning is conceptualized as defensive learning in opposition to expan-
sive learning. A prerequisite that is to some extent necessary but in general not sufficient 
for overcoming defensive learning is that students transform potential learning topics to 
actual learning topics on their own. According to the thematic and operational dimensions of 
learning topics this includes not only to intensify students’ experiences of differences be-
tween their actual knowledge and possible knowledge but also to let qualitative differences 
become conscious and explicit. This means to strengthen students’ self-awareness, for ex-
ample in form of self-explanations during learning and doing mathematics.  

Smoothing or Explicating Felix Klein’s first Discontinuity? 
In (Klein, 1933) Felix Klein proposed a course on school mathematics from a higher point 
that concludes the math courses and takes also into account the second discontinuity, i.e., 
the transition from university to school. Klein’s course implies that students already have 
rather advanced math knowledge and can operate with this knowledge in a flexible and 
mathematically competent way, in particular that they do not only know facts and tech-
niques but possess adequate, networked and critical ideas for validating and evaluating their 
significance. Nowadays, it might be doubted whether the average upper secondary teacher 
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student shows this expertise after finishing the mathematical courses.  This may be the 
main reason why such courses in the spirit of Klein are seldom proposed today.  

Instead the typically proposed course or measure to support teacher students in building 
relations between university mathematics and school mathematics is established in the first 
or second semester and tries somehow to smooth out the ruptures between school and 
university (Hefendehl, 2013; Winslow et al., 2014). For reaching this goal there are princi-
pally two approaches at hand which may come mixed. A first one that adds aspects of the 
new university discourse slowly and step by step and a second one that develops university 
like problems starting with school mathematics.  Following (Job et al., 2014) and massaging 
their arguments concerning the transition from calculus to analysis a little bit, smoothing the 
gap shows at least a tendency to blur the distinction between the different discourses which 
“tends to reinforce the empirical positivist attitude as an epistemological obstacle to learn-
ing“ (ditto; p. 641). Additionally the smoothing-approach implies a massive intervention in 
the basic math courses which could be considered problematic since they are also attended 
by students of other studies like major mathematics or physics.  

This does not mean that the existing math courses cannot and/or should not be optimized. 
But we intend to highlight the difference between the school and the university discourse 
and to clearly communicate that the latter does not constitute a completion of the first one 
and the former does not represent an essentially deficit discourse without relevant valida-
tions and justifications. We propose to explain and to accept the respective foundations and 
goals of these discourses and finally to provide conceptual tools for understanding students’ 
own learning difficulties and ideas for their overcoming in the spirit of “expansive learning”. 
This is the point where pedagogical content knowledge might play an important role. 

The Role of Pedagogical Content Knowledge 
The difficulties in the first year at university show on the one hand, that students mostly 
possess some willingness and motivation. But often they are (conscious-unconscious) am-
bivalent towards university mathematics. On the other hand the high dropout rates in math-
ematics (besides the students who leave the university or change their study one should not 
forget those students, who only pass the written exams without really mastering university 
mathematics) show that there are serious content related hurdles, since one should expect 
that ambivalence of willingness and motivation is a phenomenon in the first year of study 
independent of the field. 

Our approach is grounded in the conviction that ideas and concepts from didactics can be 
helpful in clearing up students’ own experiences and in developing strategies to overcome 
learning problems. Exemplarily we mention the praxeology concept in the Anthropological 
Theory of Didactics (Chevallard, 1999) that allows to characterize practices in their institu-
tional existence and approaches in math education research for characterizing proofs (Bo-
ero, 1999), their cultural framing and differences to argumentation as such.  

Making use of didactical concepts for self-explaining processes regarding personal learning 
experiences and emerging difficulties enforces to some extent a change in the perspective 
with respect to which those concepts are formulated and developed. This transformation is 
strongly related to something that is systematically conceptualized in the subject-scientific 
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approach as reinterpretation or reconstruction of nomological theories in psychology, re-
spectively the transition from the cause discourse, the discourse within which typically di-
dactical theories are formulated, to the reasoning discourse, the discourse within which the 
psychological moment of human acting lives (Holzkamp, 1993).  By introducing didactical 
concepts in view of the indicated change of perspective we also hope for positive learning 
effects with regard to didactical topics.  

Outlook  
In view of Shulman’s (1986) fanning out of professional teacher competences the proposed 
bridging course focuses on content knowledge as part of the so called pedagogical content 
knowledge. The course should provide multifaceted mathematical knowledge that is helpful 
for explaining, representing and in particular validating mathematics in upper secondary 
school and aims at a more effective learning of basic higher mathematics. In terms of the 
Anthropological Theory of Didactics (Chevallard, 1999) it considers didactically reflected and 
deeply in mathematics grounded “technology” and “theory” aspects of mathematical prac-
tices, which typically do not become thematic in school and are so far usually only implicitly 
included in the first year mathematics courses at university.  Moreover the course focuses 
on making available concepts and results from research in mathematics education, in partic-
ular on the transition from school to university, to support students regarding their self-
understanding learning mathematics for becoming math teacher. We will accompany the 
introduction of the new course and its impact on students’ learning by quantitative and qual-
itative oriented research. About the results we will report elsewhere. 
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Designing examinations for first year students  
Oliver Deiser 

Technische Universität München 
(Germany) 

In my presentation I will discuss a new approach to the "examination problem" for first year students 
of mathematics. Characteristic is a competence oriented framework enabling valuable feedback for 
both students and instructors, as well as research in mathematics education at the university level. 
This approach has been developed and tested at the School of Education of the Technical University 
of Munich for teacher students of mathematics, but it is general enough to be adapted for bachelor of 
science students and many other studies involving mathematics. 

An examination in its simplest form is, mathematically speaking, just a function returning a 
“passed” or “not passed” value, or a slightly more detailed grade on a linear scale. At a 
more sophisticated level, an examination can 

• give a detailed and informative feedback for both students and instructors 

• be a powerful instrument to change attitudes and habits of learning 

• play an important role in course-design and determination of educational objectives 

• provide custom-fit material for empirical studies and research 

With respect to the transition problem, assessments in mathematics at the beginning uni-
versity level are particularly challenging. One might speak of an “examination problem” for 
first year students. The traditional practice in mathematics gives an easy but unsatisfactory 
answer: Select some of the written homework exercises reflecting the scientifically most 
important contents of the course and use them in modified form for the final examination. 
The attitude is: “If and only if a student understood the lecture, then he or she will pass the 
exam.” Inherent in this attitude is that the course is an isolated, self-contained construct, 
and that individual transformation processes are, in the end, of little interest. The method 
works well in identifying a group of “good students” (comprising about 25% – 33% of all 
students). Additional selection processes finally produce a group of students which are con-
sidered to be fit to do a PhD in mathematics and thus have a chance to become a researcher 
at the university or at a mathematical institute. This underpins an understanding of mathe-
matics where “mathematician” is almost identical with “research mathematician”. With a 
more comprehensive notion of becoming and being a mathematician inside a complex sci-
entific and nonscientific human community, the examination problem is much more difficult 
and, from a didactical perspective, much more interesting. Various groups have to be con-
sidered: science students, teacher students for many kinds of different schools, engineers, 
computer scientists, etc. In the following, I will concentrate on teacher students at the sec-
ondary level, as this group is at the center of my work. Again, the traditional answer is easy: 
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As there is only one mathematics, teacher students are not to be treated differently than 
science students. 

In contrast to the traditional approach, a fundamentally redesigned and highly specific cur-
riculum for teacher students of mathematics started in the Winter Term 2014/15 at the 
Technical University of Munich (I presented this at the precursor to this conference, the 
Oberwolfach meeting in December 2014). The mathematics courses of the first year now 
consist of two modules “Introduction to mathematics I/II” instead of the traditional distinc-
tion in “Analysis” and “Linear Algebra”. The courses are specifically designed for teacher 
students and include topics from Analysis and Linear Algebra as well as many other topics 
including Number Theory, Geometry, Graph Theory, and Set Theory. Methodically, individual 
transformation processes and the future profession as a teacher are central. Structurally, the 
courses have five main parts: 

• Lecture (4 hours per week) 

• Homework tutorial (2 hours per week) 

• Teacher specific training (2 hours per week) 

• Discussion and additional training (2 hours per week) 

• Competence oriented examination 

As with the other parts, the examinations have been redesigned and the new concept is 
currently evaluated. Two important aspects are: 

(1) The examination is an integrative part of the course, not something which “has to be 
done at the end”. Students are informed at the very beginning about the structure of 
the examination; a mid-term examination is used to acquaint the students with the 
type of questions and the details of correcting and grading the answers; the results 
are discussed in class and individually using examples of answers as well as a 
detailed statistical analysis. 

(2) The traditional mathematical examination model described above – which I would 
like to call the “linear model”, as it walks through the lecture content by content, is 
replaced by a “non linear model”: Instead of reflecting the development of the 
course from the first to the last lecture, items of different types are selected. The 
types themselves are given by the educational objectives of the course. Some 
examples of types are: 

• stating mathematical definitions 

• stating mathematical theorems 

• calculus and algorithms 

• visualization and diagrams 

• school mathematics from an advanced point of view 

• arguing and proving 

• reproducing or summarizing known proofs 
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In my talk, I will discuss the examination model and some of the types in more detail, to-
gether with a statistical analysis of correlations. 
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Students’ perceptions of and conclusions from their first 
assessment experience at university  

Robin Göller 

Universität Kassel 
(Germany) 

As the perceived characteristics of assessment seem to have a considerable impact on students’ ap-
proaches to learning, the way we assess has the potential to drive and to support students’ learning. 
Therefore, this paper aims to give an insight into first year university students’ perceptions of their 
first examination of an Analysis I-course and consequences which arise from these perceptions on 
the basis of interviews. First results show that students perceive “calculation tasks” to be dominant 
over proofs in this assessment, whereby some students start to learn from selectively chosen tasks 
which are perceived to be relevant for the exam. For a development of assessment tasks that sup-
port students’ learning, the embedding of those tasks in the context of lecture and exercise sheets 
and especially students’ perception of the tasks have to be taken into account. 

Introduction 
The perceived characteristics of assessment seem to have a considerable impact on stu-
dents’ approaches to learning (Miller & Parlett, 1974; Snyder 1971; Struyven, Dochy, & 
Janssens, 2003). Therefore, the way we assess has the potential to drive and to support 
students’ learning (Brown, 2004; Gibbs & Simpson, 2004). In terms of the distinction be-
tween a surface approach (memorizing, reproducing etc.) and a deep approach (understand-
ing, relating etc.) (Marton & Säljö, 1984; Entwistle & Entwistle, 1991; Entwistle & Ramsden, 
1983), impacts of different assessment types on students’ approaches to learning have 
been investigated. Thereby it seems to be easy to provoke a surface approach and hard to 
encourage a deep approach. Entwistle & Entwistle (1991) found that multiple-choice for-
mats provoke a surface approach, while open, essay-type questions tend to encourage a 
deep approach. Generally, assessment methods which are perceived to be inappropriate 
ones are likely to provoke a surface approach (Struyven, Dochy & Janssens, 2005). Howev-
er, it has to be considered that these findings do not stem from the context of mathematics 
at university and it is not clear to what extend they apply in different contexts (Joughin, 
2010). In the context of mathematics it seems that oral assessments can encourage a deep 
approach (Iannone & Simpson, 2014). 

In a survey of assessment in UK mathematics departments Iannone and Simpson (2011) 
found that assessment is (at least in UK) dominated by closed-book examination. Besides, 
students perceive closed-book examinations to be the best discriminator of mathematical 
ability although they perceive assessment of memory to be dominant over assessment of 
understanding for closed-book examinations (Iannone & Simpson, 2013).  

In addition to the outer form of the assessment, students’ perceptions and expectations on 
which skills, contents and concrete tasks will be assessed are likely to influence students’ 
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approaches to learning. Smith et al. (1996) developed a taxonomy of skills needed to com-
plete a given mathematical task with the categories (A1) factual knowledge and fact sys-
tems, (A2) comprehension, (A3) routine use of procedures, (B1) information transfer, (B2) 
application in new situations, (C1) justifying and interpreting, (C2) implications, conjectures, 
and comparisons, and (C3) evaluation, mainly to assist lecturers in writing examination 
questions. They found that most of the examination papers they analyzed were biased to-
wards Group A tasks (see also Ball et al., 1998). Analyzing questions of examinations be-
tween 2006 and 2012, Darlington (2014) found that about one half (54.1 %) of the average 
number of marks available for each examination needed Group C skills, while 33.6 % could 
be completed with Group A skills. 

Using a framework of Lithner (2008), Bergqvist (2007) analyzed the 212 tasks collected 
from all introductory calculus courses offered at four different Swedish universities during 
the academic year of 2003/2004. She found that about 70 % of the tasks were solvable by 
imitative reasoning, i.e. by copying algorithms or recalling facts. Tallman et al. (2016) coded 
3735 exam items of 150 Calculus I final exams (using a framework they developed) and 
found that 78.7 % of the items required students to recall and apply a rehearsed procedure, 
while only 14.72 % of the exam items required students to demonstrate an understanding 
of an idea or procedure. Interestingly, 68.18 % of all instructors who submitted exams indi-
cated that they frequently require their students to explain their thinking on exams.  

Such frameworks have several limitations. Answering one particular question may involve 
more than one skill and may call on different skills from different students (Darlington, 
2014). Also, the categorization of a task might depend on its embedment in the context of 
lecture and previously practiced tasks, especially with regard to categories which include 
terms like “routine”, “new” or “known”. A seemingly routine procedure task may be novel 
and challenging for students who don’t know the procedure and tasks that might appear to 
require an understanding of a particular concept are amenable to being proceduralized 
(Tallman et al., 2016). Finally, the skills necessary to complete a task might be interpreted 
differently by different persons. One example is that the interpretation of Tallman et al. 
(2016) does not align with the instructors perceptions relative to the extent to which stu-
dents are required to explain their thinking. 

With regard to the potential of assessment to support students’ learning, students’ interpre-
tation of the examination tasks is of particular interest. Therefore this paper aims to give a 
first answer to the following questions:  

• How do students experience their first examinations at university? 

• Which consequences arise from these experiences? 

Methodology 
To investigate these questions interview data of eight students which attended their second 
semester at university at the time of the interview were analyzed. The sample comprises 
five female preservice teachers, two (one female, one male) students heading for a bache-
lor’s degree in mathematics and one female student heading for a bachelor’s degree in 
physics. All of them had participated in a (definition-theorem-proof-based) Analysis I - 
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course and the written closed book exam at the end, which has been their first or second 
examination in mathematics at university. To pass the module it was required to achieve at 
least 50 percent of the attainable points of weekly exercise sheets as well as passing the 
exam.  

The analysis of the data did not follow any systematic methodology. Parts with direct refer-
ence to the questions were excerpted and compared. Therefore, the first results given be-
low should be seen as examples only. 

The participation in the interviews was voluntary and not compensated. The interviews 
were led, audio taped and transcribed in German language. The parts being cited in this pa-
per were translated by the author. 

The Exam 
I try to give a short description of the Analysis I exam using the categories of Smith et al. 
(1996): About 1/6 of the achievable points could be reached with “factual knowledge and 
fact systems” (A1), such as stating a definition, or a necessary and non-sufficient condition 
for the convergence of a sequence of real numbers. About 1/5 of the points could be 
reached by (A2) “comprehension”, such as deciding whether a given statement is true or 
false. About ¼ of the points could be reached by solving tasks classified as (A3) “routine use 
of procedures”, such as determining limits of sequences, radii of convergence of power se-
ries, or Taylor polynomials of functions. Thus, about 62 % of the points could be attained 
with Group A skills. Group B skills were needed for 15 % of the points, which come from 
tasks categorized as (B1) “information transfer”, such as finding the derivative of a piece-
wise defined function. The remaining 23 % of the points belong to Group C tasks, with 4 % 
for (C1) “justifying and interpreting” (e.g. the composition of two injective functions is injec-
tive) and 19 % for (C2) “implications, conjectures, and comparisons” (e.g. comparison of 
definitions, construction of examples or counterexamples). 

I would like to stress that for many of the tasks, the categorization is not obvious and un-
ambiguous, due to the above mentioned limitations of such frameworks. 

First Results 
To have a first insight into students’ perceptions of the assessment tasks, we look at the 
following excerpt.  

But then I have seen the first examination. And it was composed originally of the 
tasks we have done on the exercise sheets. There was nothing additional. Well, may-
be sometimes there was a function defined differently or so. Right, but it was original 
the exercise sheets, and the definitions. There didn’t appear anything else. And a 
simple proof, but it was also in the exercises, we did before, at least similar. And then 
I thought to myself, I will learn only from the exercises. 

Here, the assessment tasks are perceived to be very close to the tasks of the exercise 
sheets. A consequence of this perception is to focus on the exercise tasks when preparing 
for the exam. One step further goes the next excerpt, which distinguishes those tasks of the 
exercise sheets to be relevant for the assessment, which are “calculation tasks”. 

Well, for me, for example in Analysis the lecture didn’t really have a lot in common 
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with the exam. Therefore I said to myself this year, I only work on by myself or try to 
understand those tasks of the exercise sheets which are relevant for the exam, thus 
all calculation tasks, such as derivatives and such things. Because all those proof 
tasks, nary of them appeared (in the exam). And I was a bit angry, because I was 
stressed out the entire half year: “Oh god, I cannot solve the exercise sheets, I will 
flunk the exam”, and in the end it was only calculations, what we needed to know. 

The opinion that especially the “calculation tasks” of the exercise sheets are relevant for the 
assessment, while proofs would appear hardly and only on a simple level could be found by 
every interviewee. As a consequence of this perception some students’ tend to be engaged 
in selectively chosen tasks which are perceived to be “relevant for the exam, thus all calcu-
lation tasks”. Some students start to completely omit proofs. On the other hand, on the basis 
of the experience that the assessment is feasible a decline of stress and increase of motiva-
tion could be observed by some students in the second semester. 

I feel good about my study because I passed the examinations. And the knowledge 
that complex proofs and such things do not appear in the exam is good for the exer-
cise sheets too. However, I try to do the proofs of the exercise sheets, but I know I 
can pass the exam nevertheless. In fact I had heard before that they cannot pick the 
really difficult proofs for the exam. But now, when I really saw it, it is a kind of emo-
tional motivation.   

Discussion 
It seems that students distinguish essentially two categories of tasks, namely “calculation 
tasks” and “proof tasks”. It is not clear how these categories relate to the categories of 
Smith et al. (1996) or categories of the other authors mentioned above. However, it seems 
likely that there is an overlap of the categories “calculation tasks” and “routine use of pro-
cedures” (A3), as well as of the categories “proof tasks” and “justifying and interpreting“ 
(C1) or generally Group C respectively. According to the categorization above, one forth the 
points could be achieved by “routine use of procedures”, which is indeed the highest scoring 
category, but this categorization does not align with the perception that “it was only calcula-
tions, what we needed to know”.  

The opinion that especially the “calculation tasks” of the exercise sheets are relevant for the 
assessment, while “proof tasks” would appear hardly and only on a simple level could be 
found by every interviewee. An explanation might be that the proportion of “calculation 
tasks” in the exam was higher than it was on the exercise sheets. Anyway, the interviewees 
seemed to have had expected different tasks in the assessment. This shows how important 
the embedding of the assessment tasks in the context of the lecture and the exercise sheets 
is, especially, if we are interested in consequences of the assessment tasks on students’ 
approaches to learning.   

It is worth mentioning, that primarily the tasks of the exercise sheets were experienced to 
be relevant for the examination by the interviewees, while the actual content of the lecture 
took a back seat: According to the first excerpt, the examination “was composed originally 
of the tasks we have done on the exercise sheets”, while “the lecture didn’t really have a 
lot in common with the exam”, as the second excerpt puts it.  

The consequences of students’ experiences of the examination are straightforward: Prepar-
ing for an examination, students plan to focus on the tasks of the exercise sheets, especially 
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those tasks, which are perceived to be relevant for the examination, thus the “calculation 
tasks”. This tends to end in a selective learning of some separate tasks by some students, 
which is a rather surface approach to learning. Such an approach is unlikely to provide a 
proper understanding of the lecture content. Furthermore, it might affect negatively stu-
dents’ motivation and confidence (Göller, 2015). According to Struyven et al. (2003) a turn 
towards a surface approach is to expect if students perceive the assessment tasks to be 
inappropriate. 

To evaluate students’ actions, it seems to be necessary to take their emotional condition 
into account. It seems that being “stressed out the entire half year: ‘Oh god, I cannot solve 
the exercise sheets, I will flunk the exam’” is a predominant feeling of many students. In this 
respect, the drift towards a surface approach doesn’t necessarily have to be seen as a fun-
damental attribution, but rather as the only way to cope with the requirements. The fact 
that the interviewees seemed to have had expected different tasks points to difficulties of 
first semester students to define their learning goals. So, the examination defines what is 
important and what is less important. This clarification of the learning goals may imply a 
decline of stress and increase of motivation for some students, as the third excerpt shows.  

We have seen how the assessment influences students’ approaches to learning. Thus, a 
proper choice of examination tasks has the potential to drive students’ learning towards a 
deep approach. Besides the assessment tasks, the embedding of those tasks in the context 
of lecture and exercise sheets and especially students’ perception of the tasks play an im-
portant role for students’ approaches. Therefore, a good alignment of lecture, exercise 
sheets and assessment, as well as a better understanding of students’ perceptions of as-
sessment, tasks, lecture content, and their interplay seem to be crucial for the development 
of such tasks. 
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Fit for the job – The expertise of high school teachers and how 
they develop relevant competences in mathematical seminars  

Joachim Hilgert, Anja Panse 

Universität Paderborn 
(Germany) 

In this report we present our teaching concept for mathematical seminars. The concept is geared to-
wards helping teachers in training to increase their reading competence. This is achieved by training 
them to overcome difficulties in understanding through relevant questions and to design their own 
exercises. The topics of the seminar are chosen to be suitable for high school students. We also report 
on our first observations and share some results obtained during the pilot phase of the seminar 
(summer term 2015). 

Theoretical aspects and motivation 
High school teachers in training want two things: “We would like courses specifically 
designed for us.” and “We would like courses that add value to our future job as teachers.” 

Lecturers mostly agree with the second wish and are confronted with the problem to decide 
what constitutes the specific knowledge a teacher must acquire. In order to give a (partial) 
answer to this question we use the categories introduced by Shulman (1986, 1987), who 
classifies teacher knowledge by distinguishing content knowledge, pedagogical content 
knowledge, pedagogical knowledge and curricular knowledge. 

In German teacher training programs pedagogical and curricular knowledge is addressed in 
specific courses. Thus they do not play an important role in the content oriented 
mathematics courses. Therefore we will concentrate on content and pedagogical content 
knowledge. 

The importance of content knowledge was underlined as follows by Ball/Lubienski/ 
Mewborn (2001, p. 440): “The assertion that teachers’ own knowledge of mathematics is 
an important resource for teaching is so obvious as to be trivial.” 

Shulman (1986, p. 9) describes pedagogical content knowledge as “the particular form of 
content knowledge that embodies the aspects of content most germane to its teachability”. 
As a part of pedagogical content knowledge he counts knowledge of “the ways of 
representing and formulating the subject that makes it comprehensible to others” and 
furthermore “an understanding of what makes the learning of specific topics easy or 
difficult: the conceptions and preconceptions that students of different ages and 
backgrounds bring with them to the learning of those most frequently taught topics and 
lessons. If those preconceptions are misconceptions, which they so often are, teachers need 
knowledge of the strategies most likely to be fruitful in reorganizing the understanding of 
learners”. 
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We consider it important to point out that teachers also need tools to deal with their own 
pre- or maybe misconceptions before they can competently judge the level of 
understanding of learners. Teachers also need to be able to familiarize themselves with new 
mathematical contents and decide in what form the material is suited for classroom 
presentation. This is closely related to the teachers’ competency in reading 
mathematical texts, which is important for their training in itself. Furthermore, teachers 
also have to design worksheets and exercises for their students in such a way that the 
material  

• really helps their students to understand the content,  

• provides helpful exercises and  

• allows for the students to assess their progress.  

At German universities, courses for teachers in training tend not to offer much 
purposeful practice in the above-named skills. Rather it is assumed that certain 
competences in reading and the necessary skills for dealing with misconceptions are 
automatic by-products of the mathematical training. 

Design of the course 
Since the summer term 2015, we have been offering an additional seminar at Paderborn 
University that addresses the two student demands mentioned above and offers 
training in some of the relevant competences. 

German universities in general offer two different types of courses: lectures and seminars. 
In a seminar each participant is assigned a topic on which he or she works individually. 
Students are supposed to prepare a 90 minute talk in advance. During the term, instruction 
is centered around these talks. 

Our concept basically works with the seminar structure that we combined with extra 
consultation elements. Prior to the start of the term an initial workshop is held to clarify 
organizational matters and introduce students to the method of reading with stumbling 
blocks (Hilgert/Hoffmann/Panse 2015). Here each student can choose his or her individual 
topic for the 90 minute talk. It is very important for us that the topics are closely related to 
school curricula. 

Throughout the semester, the participants work on their talks and on an elaborated written 
version of their topic. During this process they are supported in obligatory biweekly 
meetings with the lecturer, who helps them to structure the work by giving them detailed 
work assignments. Apart from the mathematical content, the elaborated written version has 
to contain contents a worksheet for pupils and a quiz with yes/no-items. For extra guidance, 
students are offered a consultation with their lecturer once a week. Towards the end of 
term the real seminar takes place, during which every participant gives his or her talk. 

Research questions 
We investigate the seminar concept in the context of “Design-Based Research” and we 
also consider the following questions: “What are the difficulties future teachers 
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encounter when they read mathematical texts?”, “To what extent is it possible to 
influence the reading behavior of the teachers in training?”, “What are their main 
difficulties in designing effective mathematical exercises?”, “To what extent is it 
possible to increase their skills in designing mathematical exercises?”, and “What are the 
difficulties they face when preparing and giving talks?”, “To what extent is it possible to 
help them increase their skills in preparing and giving talks?” 

Observations 
• In the pilot phase of our study we conducted interviews with students who actually 

gave presentations. We could not get hold of the ones who dropped out during the 
preparatory work. Concerning their individual reading routines no great changes 
were reported. This is not surprising, since those students had already a minimum of 
2 years study experience and had already developed successful individual reading 
routines, often similar to the stumbling block method. 

• We would like to mention that students who discontinued the seminar did so after 
they were asked to precisely name the difficulties they had in reading the mathe-
matical text and to formulate concrete questions for a discussion with their supervi-
sor. 

• With regard to the creating of mathematical exercises and yes/no-quizzes it turned 
out that students did not prepare those in the way intended by the lectures. Instead 
of basing them on stumbling blocks and difficulties they had encountered them-
selves, the students said they had searched the internet. Interestingly, however, 
they realized that subconsciously they had chosen exercises that were related to 
their own stumbling blocks. 

• With regard to the given talks we would like to point out that although it is true that 
almost every talk can be improved, the participant’s talks were never less than satis-
factory, many of them were very good. A typical weakness of the presented talks 
was an emphasis on mathematical trivialities while more subtle points were glossed 
over. 

Participants received a lot of constructive and helpful feedback for instance 
concerning their roles as teachers and their classroom presence, but in the 
interviews they seemed to focus on feedback on technicalities like the use of the 
black board. 

• Finally we want to say that the students found the seminar very helpful and empha-
sized that this is a valuable course for their future job as teachers. 

Outlook 
We placed two competencies in the center of our attention: Being able to set up adequate 
exercise sheets and quizzes as well as being able to adequately present mathematical con-
tent. In both respects specific deficits were identified, and the obligatory creation of stum-
bling blocks shows potential to deal with them. The next round of this design-based re-
search will have its focus on these deficits as well as methods of improvement. 
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Mathematics students’ perceptions of summative assessment: 
the role of epistemic beliefs  

Paola Iannone  

University of East Anglia 
(United Kingdom) 

The assessment diet of mathematics students in the UK is very uniform, with closed book examina-
tion being by far the most used method of assessment and oral assessment being largely absent. This 
picture sits against the backdrop of calls in the general higher education literature to move away from 
traditional assessment towards innovations to facilitate the shift away from a testing culture and 
better prepare students for the workplace. In this paper I will report findings from projects aiming at 
investigating mathematics students’ perceptions of summative assessment and some early indica-
tions of the role that epistemic beliefs have in shaping these perceptions. I will then explore the sig-
nificance of these findings for mathematics assessment and curriculum design. 

Introduction: Students’ perceptions of summative assessment 
Marton and Saljo (1997) were amongst the first researchers to show a close connection 
between what students perceive summative assessment to require and the way in which 
they engage with their subject of study. This is to say that if students perceive an item of 
summative assessment to require understanding, they will try to engage with the subject in 
a way that fosters understanding, or with understanding as their goal. Likewise if they per-
ceive assessment to require just memorization of facts they will engage with the subject at 
a surface level. Although this relationship is not always straightforward and changing as-
sessment type does not always lead to a change in the way in which students engage with 
learning (Baeten, Dochy and Struyven, 2008) it is nevertheless important to investigate un-
dergraduate students’ perceptions of summative assessment. 

Indeed there is a large body of higher education literature that does just this (Scouller, 1998; 
Birenbaum, 2007, just to cite two examples) and a comprehensive review article by Struy-
ven et al. (2005) summarises just what these perceptions are. The picture emerging is that 
of a student body disenchanted with the role of traditional assessment which they perceive 
as hoops to jump in order to obtain marks and detrimental to their learning.  The students on 
the other hand praise the learning opportunities afforded by what they call innovative as-
sessment believing this is better at testing capabilities in their subject and preparing them 
for the workplace. This position resonates with much of the literature related to summative 
assessment and assessment policy (Medland, 2014) which calls for a radical change in the 
way in which students are assessed. Indeed it is often suggested that summative assess-
ment should move towards assessment for learning and leave the current testing culture 
behind (Brown, 2004).  
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First study: Mathematics students in the UK 
A close look at the literature mentioned above and a meta-analysis of the studies reviewed 
in Struyven et al. (2005) reveals that there is a strong sample bias towards the social sci-
ences (mostly education and psychology) and medicine in the studies included in the review 
(Iannone and Simpson, 2014). Indeed only a very small study (with 6 participants) involved 
physics students, and none involved mathematics students. Therefore we decided to repli-
cate methods used in the general literature to find out mathematics students’ perceptions of 
summative assessment. We adopted a mixed methods design with a survey (N = 148) aim-
ing at ascertain how students wish to be assessed and what methods they perceive to be 
best discriminator for academic ability, followed by semi-structured interviews (12 students) 
with volunteering students. This study was carried out in two high-ranking research-
intensive universities in the UK. A complete description of the study and its findings is in 
Iannone and Simpson (2014) but here we focus on two findings: 1) mathematics students 
prefer to be assessed by assessment methods they perceive to be good at discriminating for 
academic ability, and 2) mathematics students believe that the best assessment method to 
discriminate for academic ability and the fairer method is the closed book examination (with 
some caveats). Mathematics students would like, however, to see a little more variety in 
the way in which they are assessed when the whole assessment pattern across the 3 years 
is considered. These findings are in contrast with what is reported in the general literature 
and the question arises as to whether the context (the discipline and the instructional con-
text) is playing a role in shaping these perceptions. Indeed in the qualitative part of the 
study students often refer to what they perceive mathematics to be when they explain their 
assessment preferences: 

I assume if they’re doing really well in the exam [...] if you’re going to get a really 
high mark, it’s being able to really understand it, because they could throw any 
question at you and you have to be able to apply the knowledge to that question, 
[...] So I think if someone’s doing really well in maths exams, they’re actually just got 
really, really good understanding.                   (Tina) 

Maths isn’t really the sort of thing you put into your own words, like an arts, or a 
social science.                     (Tanja) 

We then made the hypothesis that the way in which students perceive their discipline could 
be an influencing factor on their perceptions of assessment, and that the reason why our 
findings are in contrast with much of the general literature is that the voice of the students 
in the hard/pure sciences (in the sense of Biglan, 1973) has not been heard. In order inves-
tigate whether the way in which students perceive their discipline (their discipline-based 
epistemic beliefs) is an influence on students’ perceptions of summative assessment we 
replicated the study in the same institutions but with education students.  

Second study: Education students in the UK 
In order to test out hypothesis we carried out a second study (Iannone and Simpson, submit-
ted) in the same institutions, but with education students. We choose education as this dis-
cipline is soft/applied in Biglan’s classification – the opposite of mathematics. We selected 
the same higher education institutions to keep some of the context similar. We used the 
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same tools and design of the previous study with the same survey (N = 57) followed by 
semi-structured interviews (6 students). Note here that the cohorts of education degrees in 
the two participant institutions are much smaller than that of mathematics degrees and this 
partly accounts for the difference size of the two data sets. The results were much more in 
line with what is suggested by the general education literature. We found that 1) also edu-
cation students prefer to be assessed by assessment methods which they perceive to be 
good discriminator of academic ability and 2) they perceive closed book examinations (and 
generally traditional assessment methods) to be inadequate to assess the academic capabil-
ities needed for educations and prefer to be assessed by innovative methods. The reason 
the students give in the qualitative part of the study are again linked to their own under-
standing of what constitutes knowledge in education: 

So I think academically, exams don’t actually really show the person’s own intelli-
gence. It’s just how much you can remember something on a piece of paper, whereas 
coursework you can get out back and research, find your own personal experience 
[…] So I think academically ... academically exam shows off the person’s memory, but 
coursework shows off the personal input and things like that.           (Mary) 

… it is quite easy to kind of just memorise it for the exam and then, two weeks later 
you have probably forgotten most of it. But you know what you’re going to write, 
you. ... it’s almost more formulaic, while an essay is much more … you can put much 
more of your personal style into it because you’ve got the time.          (Georgiana) 

The results of the two studies seem to indicate that the students’ preferences and percep-
tions of summative assessment are influenced by the way in which they perceive their sub-
ject and what they think constitute knowledge in their subject. This finding has important 
implications for the way in which we design curriculum and assessment in mathematics. 

Discussion and concluding remarks: back to mathematics students and 
assessment for learning 
I have discussed at the start of this short paper how the general literature strongly advises 
to move towards assessment for learning. Birembaum et al. (2006) highlight the need to 
shift from assessment of learning, characterised by a feed out function when summative, to 
assessment for learning, characterised by a feed in function and rich feedback. Such as-
sessment for learning is also authentic, namely it connects to situations that could arise in 
the workplace. This is a particularly relevant dimension for the UK, where the employability 
discourse is dominating higher education debates at the moment.  While it is clearly desira-
ble to offer mathematics students rich feedback and closed book exams is not a type of 
summative assessment which facilitate rich feedback (in many universities in the UK stu-
dents are not allowed to see their exam papers and only receive a mark at the end of the 
summer term), this shift cannot be conducted without keeping students’ perceptions and 
preferences in mind. Curriculum designers and assessment setters need to take into account 
students’ preferences and their desire to see a little more variety to their assessment diet. 
Recently in the UK some assessment variety has been (albeit slowly) introduced. Most de-
gree courses in mathematics now have a compulsory project in their third year (with or 
without a presentation component) and are introducing problem-solving modules in their 
first year – which are typically assessed by coursework only.  These assessment methods 
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have the potential to be rich in feedback and, if paired with oral presentations, could offer 
mathematics students the opportunity to practice communication and oral skills.  

The direction of future research is two-fold. On the one hand, given that students epistemic 
beliefs play an important role in their perceptions of assessment, we ought to investigate 
how these beliefs are formed and how to best measure them. Qualitative methods (as 
started in Perry’s work, 1970) are appropriate and accurate but much time consuming; tools 
adopted for quantitative methods are still under debate and most instruments available 
have been subject close scrutiny and some criticism (DeBacker et al. 2008).  

On the other hand the introduction of new assessment methods should be evaluate not only 
for validity and reliability, but also to monitor the impact that the introduction of the new 
assessment has on mathematics students’ perceptions and engagement with learning. While 
it is certainly necessary to re-think the way in which we assess students, if only to introduce 
a little more variety in their assessment diet and think of suitable methods to introduce as-
sessment for learning in university mathematics, this cannot be done without listening care-
fully to the students’ voices.  
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Pre-service teachers’ abilities in constructing 
different kinds of proofs  

Leander Kempen 
Universität Paderborn 

(Germany) 

The University of Paderborn offers the course “Introduction into the culture of mathematics” for first-
year pre-service teachers to help them transition to higher mathematics, especially to deal with 
mathematical proofs. This course is framed by different studies to evaluate and to refine it in a de-
sign-based research scenario. During the fourth offering of the course in 2014/15, we investigated 
students’ benefits concerning proof competencies, acceptance and understanding in detail. In this 
contribution, I will discuss students’ proof productions at the end of the course. 

Introduction 
The University of Paderborn offers the course “Introduction into the culture of mathematics” 
to ease students’ transition to the tertiary level. This inquiry-based transition-to-proof 
course has been developed by Rolf Biehler and was held for the first time in 2011/2012 as 
a requirement for the first-year secondary (non grammar schools) pre-service teachers. 
During this course, the students explore mathematical issues (e.g., figurate numbers) and 
learn to construct generic proofs and formal proofs. During the fourth offering of the course 
in 2014/15, we investigated students’ benefits concerning proof competencies, acceptance, 
understanding, self-efficacy and beliefs in detail. In this contribution, I will point out some 
findings concerning students’ proof construction at the end of the course. The analysis is a 
part of a larger empirical study that forms the core of the Ph.D. project of the author. 

Theoretical Background 
In the field of mathematics education, different kinds of proofs have been introduced and 
discussed by educators and mathematicians (Dreyfus et al., 2012). The concept of generic 
proofs has become an especially prominent pedagogical tool at the secondary and tertiary 
level (e.g., Rowland, 2002; Stylianides, 2010). Here, I refer to the concept of generic proof 
that has been developed by Kempen and Biehler (2015): A generic proof consists of a ge-
neric argument illustrated by concrete examples and a written argumentation about its va-
lidity and generality.  

Additionally, different (geometrical) representations are said to be useful both for construct-
ing and understanding mathematics proofs (e.g., Flores, 2002). Following the recommenda-
tions from the literature, we made use of four different kinds of proofs in our course: the 
generic proof with numbers, the generic proof in the context of figurate numbers, the proof 
in the context of figurate numbers making use of “geometric variables” and the so-called 
formal proof (see Kempen & Biehler, 2015).  
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Research Questions 
Despite the prominent status of the different kinds proofs mentioned above, learners’ ability 
to construct these kinds of proofs on their own has not yet been investigated in detail. The 
research questions are: (1) How do the students formulate arguments at the end of the 
course, when they are asked to construct the four different kinds of proofs mentioned 
above? (2) Do the students succeed in constructing general valid verifications when using 
the different kinds of proofs? 

Methodology 
We investigated students’ abilities in constructing the different kinds of proofs in the final 
exam of the course. There, the students had to construct the four different kinds of proofs to 
prove one single statement (see below.). 

Task and possible solutions 
The statement to be proven is: “The sum of six consecutive natural numbers is always odd”. 
Possible solutions for constructing the four different kinds of proofs are shown below. 

Generic proof with numbers: 

1 + 2 + 3 + 4 + 5 + 6 = 21 is an odd number; 4 + 5 + 6 + 7 + 8 + 9=39 is an odd number 

In every sum of six consecutive natural numbers, you will always have (exactly) three odd 
and three even numbers. The sum of the three odd numbers will always be an odd number. 
After adding the three even numbers, the result will always still be an odd number. 

Formal proof: 

Let n be a natural number. We have: n + (n+1) + (n+2) + (n+3) + (n+4) + (n+5) = 6n+15        
= 2𝑞 + 1, where 𝑞: = 3n + 7 ∈ Ν. So by definition, the result is an odd number. 

Generic proof in the context of figurate numbers: 

In the representation of the sum of six consecutive natural numbers by figurate numbers, 
one always obtains the same shape of stairs on the right side. By transforming these stairs 
(taking the edge at the bottom right and putting it above ) one always obtains two equal 
parts. But after this division by two, one al-
ways obtains the remainder three. So the sum 
will always be an odd number.                                                      

Fig. 1: The sum of six consecutive numbers repre- 
sented by figurate numbers. 
 

 

Proof with geometric variables 

Fig. 2: A proof with “geometric variables” and figurate numbers. 
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Set of categories 
In order to analyze and compare the proofs produced, a set of categories was needed that 
could be applied to all four kind of proofs and to any proofs produced. We used a modified 
version of the set of categories presented in Kempen and Biehler (2014) to accomplish 
these needs. Since it is not possible, to give concrete examples here for every category con-
cerning all for kind of proofs, I will only clarify the categories concerning the generic proof 
with numbers. However, addition information about the categories concerning the other 
kinds of proofs will be given. 

(1) n. p.: not processed 

 

(2) empirical: The truth of the statement is inferred from a subset of (concrete) examples. 
[See figure 3.] 

 

Fig. 3: A student answer, which belongs to 
the category “empirical”. 
 

(3) pseudo: The answer is given by 
merely stating or paraphrasing the statement that the sum is always odd/ wrong solutions/ 
irrelevant information/ construction of figurate numbers without a geometrical or useable 
arrangement. [See figure 4.] 

 

Fig. 4: A student answer, which belongs to the category 
“pseudo”. 
 

(4) fragmentary: only fragmentary information are giv-
en/ meaningful arrangement of figurate numbers without further information. 
[See figure 5.] 

 

Fig. 5: A student answer, which belongs to the category 
“fragmentary”. 
 

(5) argumentation with gap: The students derives 
the conclusion by a connected argument and from generally agreed facts of principles. Just 
because of (minor) inaccuracies the explanation 
is not a complete verification. [See figure 6.] 
 

Fig. 6: A student answer, which belongs to the 
category “argumentation with gap”. 
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(6) complete explanation: The student derives the conclusion by a connected argument and 
from generally agreed facts of principles without doing (formal) mistakes. [Examples of 
complete proof productions have been given above.]  

Results 
The results concerning students’ abilities in proof construction are shown in figure 7. After 
attending our course, 58% of the students succeed in constructing a complete generic proof 
with numbers. Overall 82% (“arg. with gap” + “compl. expl.”) construct a meaningful rea-
soning. Concerning the formal proof, 44% accomplish this proof without (formal) mistakes. 
And meaningful attempts are given in 84% (“arg. with gap” + “compl. expl.”). To construct 
the proofs in the context of figurate numbers seems to be harder for our students. Only 
20% succeed in constructing 
the generic proof with figur-
ate numbers and only 38% 
in the case of geometric 
variables.  

In the context of figurate 
numbers, the percentage of 
answers belonging to the 
categories “pseudo” and 
“fragmentary” are astonish-
ing. It seems that the work 
in this notational system is a 
hurdle for our first-year stu-
dents. 

Final Remarks 
In this contribution, I presented some results concerning students’ abilities in constructing 
different kind of proofs. After attending our course, the majority of our pre-service teachers 
were able to use the symbolic mathematical language to construct a formal proof for a 
theorem of elementary number theory. Most of them were able to construct a generic proof 
with numbers. But concerning the use of the notational system of figurate numbers, stu-
dents’ responses display various difficulties. Here, the high percentage of the category 
“pseudo” illustrates students’ problems in using figurate numbers as a (geometrical) repre-
sentation. It becomes clear that the use of figurate number does not necessarily support the 
learning of proofs. Its use and interpretation has to be considered as an additional learning 
subject. 
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Relating content knowledge and pedagogical content 
knowledge in the mathematics teacher education  

Jürg Kramer 

Humboldt-Universität zu Berlin 
(Germany) 

In the mathematics teacher education the various dimensions of professional competencies should be 
treated in an integrated way to help the students to build up their own network of content, pedagogi-
cal content, and general pedagogical knowledge. At Humboldt-Universität zu Berlin we introduced 
courses that explicitly integrate content knowledge with pedagogical content knowledge. In our 
presentation, we will illustrate two examples of such courses, namely the course “Stochastics and its 
didactics” as well as “Algebra/number theory and its didactics”. 

The general situation 
The professional competencies of mathematics teachers should be characterized by an enti-
ty of content knowledge, pedagogical content knowledge, and general pedagogical 
knowledge. Our experience documents that teacher students, in general, are not able to 
acquire this entity of knowledge by themselves during their university studies. An indicator 
for this is, for example, the conclusion of students that the mathematics taught at universi-
ties is irrelevant for their later teaching at schools. In contrast to that the students overem-
phasize their personal role as teachers for the learning success of their perspective high 
school students. To summarize, we are here confronted with “Klein’s double discontinuity” 
in the mathematics teacher education: Beginner students perceive the mathematics taught 
at universities as totally different from the mathematics that they are planned to teach at 
schools after completion of their university studies. In fact, they have serious doubts that 
the mathematical knowledge acquired at the university has any impact for their future 
teaching at school. These doubts are to some extent justified, if the instruction of the math-
ematical content knowledge at the university remains isolated and does not become inter-
connected with the other dimensions of the students’ future professional knowledge. More-
over, most students will primarily focus on the personality traits of a successful teacher and 
thus orient themselves just on the mathematical knowledge, which is needed at school. 
Therefore, an important task of the university educators is to provide assistance to over-
come this attitude. In this direction, we cite Georg Pólya who said in 1961 (see section 14.9 
of “Die Einstellung des Lehrers”): “Damit das Lehren des Lehrers zu dem Lernen des Schülers 
führt, muss irgendein Kontakt, irgendeine Verbindung zwischen beiden bestehen; er muss 
imstande sein, sich in die Lage des Schülers zu versetzen.” It is, of course, too naive to as-
sume that the relationship demanded by Pólya will be automatically implemented between 
the teacher students and the professors through the teaching of mathematics. Experiences 
and beliefs of the students as well as content knowledge, pedagogical content knowledge, 
and general pedagogical knowledge have to be taken into account by the university teach-
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ers and interconnected with the perspective profession of the students. The universities 
have to create the respective educational environment taking into account these various 
dimensions under the given constraints. As a consequence for the mathematics teacher stu-
dents education, we are convinced that a thorough mathematical content knowledge should 
form the basis for the teaching of mathematics upon which and in synchronization with 
which the subsequent didactical, methodical, and pedagogical skills are then being built.  

Based on this approach, we introduced at Humboldt-Universität zu Berlin courses that ex-
plicitly integrate content knowledge with pedagogical content knowledge. These courses 
consist of four-hour lectures in mathematics and one-hour lectures in the didactics of math-
ematics with two-hour and one-hour tutorials, respectively. In general, these courses are 
taught in cooperation of a mathematician and a didactician jointly planning the course as a 
whole. In these courses, the students reflect mathematical contents for the school from a 
higher viewpoint and are thus strongly motivated to construct their individual network of 
content, pedagogical content, and general pedagogical knowledge.  

We will now illustrate two examples of such courses, namely the aims and contents of the 
courses “Stochastics and its didactics” as well as “Algebra/number theory and its didactics”.  

The course “Stochastics and its didactics” 
The mathematical part of the stochastics course is designed along the corresponding school 
curricula as well as the nationwide educational standards (“Bildungsstandards”) for the sto-
chastics education at schools. Thus, the main focus is on discrete probability spaces. This is 
in contrast to the corresponding course for the mathematics majors, which incorporates 
measure theory from the very beginning. Furthermore, the course encompasses distribu-
tions with densities with a main emphasis on the normal distribution. In particular, the 
teacher students experience the normal distribution as an approximation arising from the 
binomial distribution. Finally, the students are introduced to the concept of statistical testing. 
In summary, in this course, the teacher students should adopt fundamental competencies in 
the modelling of random phenomena by acquiring the basic notions as well as insights and 
conclusions characterizing stochastics.  

The pedagogical content part of the stochastics course now builds upon these mathematical 
foundations. Along the keywords 

• data and chance 

• introduction to the notion of probability 

• Laplace probability and basic principles of combinatorics 

• multi-stage processes and path rules 

• simulation and stochastic modelling 

• conditional probability, independence and random variables 

• binomial distribution and applications  

• testing of hypotheses 
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teacher students are confronted with the prerequisites, the goals as well as with the plan-
ning and possible obstructions of instruction. The students are asked to develop sequences 
for teaching and to evaluate teaching material. Furthermore, they learn how to deal with 
possible reactions from high school students and to evaluate the students’ performance. 
They are asked to analyse and interpret basic notations and to understand these in the con-
text at large. As a concrete example, we mention the notion of the “expected value” of a 
discrete random variable. In the mathematical part of the course there is barely time to go 
beyond the definition and basic properties of this notion. However, in the didactical part of 
the course, we now expect the teacher students to reflect, for example, on the following 
questions: 

a) Work out the definition of the “expected value 𝐸(𝑋)” of a discrete random variable 
𝑋 with a finite range of values. Which information of the distribution of 𝑋 contains 
𝐸(𝑋), which information gets lost? Illustrate three different examples by using a 
graphical representation of the distribution of 𝑋. 

b) Let 𝐸(𝑋) = 3. Interpret this value by switching from the level of a mathematical 
model to the real world level. To which previous knowledge do you have to connect 
to? 

c) Under http://matheguru.com/stochastik/166-erwartungswert.html one can find the 
following introduction of the concept of “expected value”: 

 

Assess the approach of this online mathematics learning platform to introduce the 
concept of “expected value”. 

d) Give a sketch of your ideas for the introduction to the concept of “expected value”. 
e) How is the concept of “expected value” connected to the education of using a critical 

reasoning? Where are the limits of the concept and its necessity to complement it by 
further concepts? 

The course “Algebra/number theory and its didactics” 
The mathematical part of the algebra/number theory course is again specifically designed 
for the education of teacher students. Here, the main focus consists in providing sound 
foundations for the arithmetical and algebraic contents to be taught at school from a higher 
point of view. Starting with the basics of elementary number theory and about algebraic 
structures, the teacher students are given a systematic treatment of the build-up of the 
number systems from the natural to the real and complex numbers. Alongside, the students 
learn about applications such as the RSA-cryptosystem or, more on the theoretical side, for 
example the transcendence of π. The course is designed according to the recommendations 
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of the German Mathematical Society (DMV), the Society for the Didactics of Mathematics 
(GDM), and the Society for the Instruction of Mathematics and the Sciences at Schools 
(MNU) from 2008, in fact, it goes even beyond these recommendations. 

In analogy to the stochastics course, the content knowledge part is complemented by a cor-
responding pedagogical content knowledge part, which provides an overview on the didac-
tical concepts for the treatment of the following topics in primary school and on the lower 
secondary level: 

• number systems – from the natural numbers to the reals 

• algebra – variables, terms, equations, functions. 

In particular, the course addresses the following questions: 

• What are the pre-concepts of the learning pupils on the respective level (in particu-
lar, pre-school experiences and beliefs)? 

• Which conceptions for the respective mathematical objects should the pupils devel-
op? Which are important aspects in this respect? 

• Which are standard obstacles in understanding? Which are frequent sources for er-
rors? How can these be didactically handled? 

• Which are canonical approaches, paradigmatic examples, and possibilities to connect 
these various aspects? 

• Which of the overarching didactical concepts have proven to be meaningful? 

The topic “construction of the number system” is prototypical for the conception of content-
oriented learning. Wittmann (2014) describes it as follows: “The content-oriented building-
up of learning is nothing but to bring to bear the established structures of mathematics on a 
long-term scale and across the various school levels. Thereby it has to be taken into account 
that mathematical structures are not only objects that hinder the learning process, they in 
fact provide at the same time the strongest support for learning since they stimulate the 
understanding.” However, mathematical structures deploy their supportive impact only, if 
the becoming teachers have well understood them and apply them in a goal-oriented way 
in class. Thus, the pedagogical content knowledge component of the course is devoted to 
use the knowledge that has been acquired in the mathematical part of the course in order to 
develop class concepts for a constructive mathematical learning process at school. Moreo-
ver, related methodological and pedagogical questions are also pursued in this context. The 
teacher students are thus requested to reflect in a goal-oriented way about the interrela-
tionship of the content-oriented facets using the methodical and pedagogical dimensions of 
their knowledge. 

References 

Pólya, G. (1961): Vom Lösen mathematischer Aufgaben, Band 2. Basel, Boston, Stuttgart: Birkhäuser, 
1983, Original: New York: John Wiley & Sons. 

Humboldt-Universität zu Berlin (2014): Fachspezifische Studien- und Prüfungsordnung für das Ba-
chelorstudium im Fach Mathematik, Monostudiengang: https://gremien.hu-
berlin.de/de/amb/2014/99/99_2014_AMB_MonoB.Sc._Mathematik_DRUCK.pdf 

https://gremien.hu-berlin.de/de/amb/2014/99/99_2014_AMB_MonoB.Sc._Mathematik_DRUCK.pdf
https://gremien.hu-berlin.de/de/amb/2014/99/99_2014_AMB_MonoB.Sc._Mathematik_DRUCK.pdf


khdm-Report, Nr. 05, 2017 

396 

 

Humboldt-Universität zu Berlin (2007): Fachspezifische Studien- und Prüfungsordnung für das Ba-
chelorstudium im Fach Mathematik, Kernfach und Zweitfach im Kombinationsstudiengang mit 
Lehramtsoption:gremien.hu-berlin_2015_AMB_Mathematik_KombiBA  

DMV, GDM, MNU (2008): Standards für die Lehrerbildung im Fach Mathematik. Empfehlungen von 
DMV, GDM, MNU: madipedia.de/images/2/21/Standards_Lehrerbildung_Mathematik 

Wittmann, E. Ch. (2014): Von allen guten Geistern verlassen: Fehlentwicklungen des Bildungssystems 
am Beispiel Mathematik. http://bildung-wissen.eu/wp-content/uploads/2014/06/Von-allen-
guten-Geistern-verlassen.pdf 

https://gremien.hu-berlin.de/de/amb/2015/23/23_2015_AMB_Mathematik_KombiBA_DRUCK.pdf
http://www.madipedia.de/images/2/21/Standards_Lehrerbildung_Mathematik.pdf
http://bildung-wissen.eu/wp-content/uploads/2014/06/Von-allen-guten-Geistern-verlassen.pdf
http://bildung-wissen.eu/wp-content/uploads/2014/06/Von-allen-guten-Geistern-verlassen.pdf


khdm-Report, Nr. 05, 2017 

397 

 

Oral examinations in first year analysis: 
between tradition and innovation  

Carl Winsløw 

University of Copenhagen 
(Denmark) 

We present the institutional and didactic rationales, as well as some results, from an intervention in a 
second semester course on real analysis at the University of Copenhagen, focused on improving the 
alignment between the course and its oral exam. 

The problem: assessing theoretical knowledge in mathematics 
Common introductory courses on calculus and linear algebra often focus on computational 
techniques, and are given in a variety of educational programs, from engineering to busi-
ness. The average calculus text book is dominated by explanations of calculation methods 
and (especially) worked examples; they reflect a focus on technical knowledge, with stand-
ard techniques to be mastered and applied in a variety of tasks. Students get credit on the 
course if they demonstrate such technical knowledge (e.g. on finding extrema for a func-
tions of two variables), usually during written tests with exercises that are “similar” to 
worked examples or exercises from the course. Such tests can be graded with a high level 
of consistency, and while the educational value of skills such as the one mentioned is open 
to debate, the assessment practice is well aligned with common teaching practices in such 
courses. 

Students in pure mathematics may well take such “calculation oriented” courses at the be-
ginning of their studies, but eventually they get more theoretical courses with titles like “ab-
stract algebra”, “topology” and “real analysis”. In such courses, theoretical structures, built 
by definitions, theorems and proofs, form the core of the study material (textbooks, lecture 
notes etc.). There is little research on the common ways of assessing students’ work with 
theoretical structures, on their effects, and on possible alternatives (cf. e.g. Grønbæk, Mis-
feldt and Winsløw, 2009). In some institutions, closed-book written exams are reported to 
be the norm, with questions like “State and prove 𝑋’𝑠 theorem” (see e.g. Conradie and Frith, 
2000, 225). In other institutions, such as Danish universities, the common form of assess-
ment for theoretical knowledge in mathematics is the oral exam, based on questions of the 
same type (questions drawn at random from a list known in advance, with some prepara-
tion time between drawing and the actual examination). The two forms share major poten-
tial drawbacks, including a disproportionate effort by students to memorize proofs, and diffi-
culties to provide and practice transparent criteria for grading. To counter these challenges, 
alternative ideas have been proposed for written and oral examinations in theoretical math-
ematics, focusing on students’ proof comprehension (Cnop and Gransard, 1994; Conradie 
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and Frith, 2000; Mejia-Ramos et al., 2012) or even proof production (Grønbæk and Winsløw, 
2007).  

In this paper, we outline a number of specific and interrelated challenges which we encoun-
tered while investigating and developing the alignment between student work and exami-
nation practices in a first course on real analysis at the University of Copenhagen. We use 
basic terms and ideas from the anthropological theory of the didactic (those unfamiliar with 
the theory could consult Winsløw, Barquero, de Vleeschouwer, Hardy, 2014). 

Institutional conditions and constraints  
Our work is motivated in part by several years of experience with the common form of oral 
examination in post-calculus analysis that was outlined above. But there was also an institu-
tional condition which fostered the project reported on here: at the level of the University 
(not even the Faculty, let alone Department) a wider development initiative to strengthen 
the quality of education by drawing on its basis in research (for a discussion of this general 
theme, see Madsen and Winsløw, 2007). At the Faculty of Science, four courses were se-
lected to participate in this project, among them “Analysis 0”, a second semester course on 
real analysis, which has had various operational problems including relatively high failure 
rates. Together with a colleague (who, like myself, is not involved in teaching the course), 
we observed five oral examinations at the conclusion of the course in 2014, which con-
firmed impressions from similar exams at this and other Danish universities: the examination 
format seems to work quite well for high performing students, who are able to deliver a 
presentation of a topic (such as “The Riemann integral”) that is quite similar in autonomy 
and clarity to the lectures which are given in the course. However, the vast majority are not: 
they generally get stuck because they do not remember the “script” they have rehearsed, 
and whether they pass or fail depends then on the interaction with the examiner and in par-
ticular the degree to which they are able to pick up on his questions and “hints” as they 
struggle to formulate a proof (or even a basic definition). Doing a light search on the inter-
net, I easily found a couple of pdf-documents giving a script for each of the exam questions, 
complete with advice on what to say and emphasize (anonymous, but most likely formulat-
ed by high-performing students). It thus appeared a likely hypothesis that many students 
relied on such “scripts” as much (if not more) than on their own reading of the official cur-
riculum (text book, lectures etc.). 

At the same time, during a later meeting with course teachers, we became aware of anoth-
er problem the course has had for some years. While the lectures and exercise sessions are 
all well attended, the latter – conducted by teaching assistants – suffer from the fact that 
students do not prepare for the tutorials in the sense of even attempting to solve the exer-
cises posed there. These exercises come from the text book and are theoretical, but accord-
ing to the teaching assistants, students focus on rehearsing for the oral exam (on which all 
of their course grade is based), and they do not see the direct relevance of the exercises for 
this purpose; another obstacle lies, according to the teaching assistants, in the sheer difficul-
ty of the exercises. In fact, several of the teaching assistants – who are some years further 
into the mathematics program – told us that they did not solve exercises when they, them-
selves, had the course as students. This means that the exercise sessions degenerate, to a 
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large part, into lecture style presentations of solutions by the teaching assistants, with very 
minor contributions from the students and no visible impact on their final grade. 

In a more advanced analysis course, we had previous, positive experiences with a variation 
of the oral examination, based on so-called thematic projects done as exercises (Grønbæk 
and Winsløw, 2007). However, other constraints – including the course responsible lecturer’s 
concern about the high failure rates, and central role of the course in the first year curricu-
lum for mathematics students – excluded such more drastic changes in examination format. 
We were left with the opportunity to redesign part of the exercises for the exercise ses-
sions, to connect more directly to the exam questions. Moreover, it was decided that these 
new “F-exercises” (“F” being the first letter in the Danish word for “research”) should pro-
vide experiences of research-like activities in relation to the exam question, and be declared 
“supplementary questions you may get at an exam on the corresponding question”.  

Relating calculus techniques and analysis theory 
The contents of Analysis 0 can globally be characterized as supplying theoretical blocks cor-
responding to mathematical practices already worked on in the preceding calculus course 
and in secondary school (and going well beyond this as well). One of our strategies for de-
signing F-exercises was thus to reinforce the links between these theoretical blocks and 
what could be assumed to be “old” knowledge of a more technical nature (cf. also Winsløw 
et al., 2014). Two assumptions motivate this choice: first, trying to mobilize old knowledge 
could be expected to provide a more realistic entrance level to the exercises, and thus re-
duce the previous experience of excessive difficulty. Secondly, theoretical blocks always 
draw their meaning and motivation from practical blocks.  

We now outline a simple example illustrating these points. The second of the 12 exam ques-
tions is: “Taylor’s formula in one variable”. Corresponding F-exercises include: 

F2.1. What is the Taylor series of order 𝑛 for 𝑓(𝑥)  = 𝑒𝑥  at the point 𝑎? How can this be 
used to find a formula for 𝑒? 

F2.3. Sketch a graph for a function 𝑔 which satisfies (4.6) [referring to an equation in the 
proof of a theorem in the notes, CW] : 𝑔(𝑎) = 𝑔´(𝑎) =  … = 𝑔(n‐1)(𝑎) = 𝑔(𝑏) = 0, when: 
𝑎 = 0, 𝑏 = 1, 𝑛 = 1; and when 𝑎 = 0, 𝑏 = 1, 𝑛 = 2. 

In both cases, students’ knowledge of familiar practices, such as computing derivatives and 
explaining their meaning in relation to a function graph, could be invested into the study of 
the meaning and proof of the theorem in question (the last exercise refers to the crucial 
step in the proof of Taylor’s formula, in which Rolle’s theorem is applied repeatedly). 

Inducing research like activities among students 
As already mentioned, the exercises also aimed to induce research-like activities in stu-
dents’ work. A basic one of these is to investigate simple questions, device hypothetical 
answers, and prove them; in the context of the question “Taylors formula”, one F-exercise 
ask students to find out if the Taylor polynomial for 𝑓 + 𝑔 and 𝑓𝑔 can be computed from the 
Taylor polynomial of 𝑓 and 𝑔 (with appropriate assumptions). Another research like activity 
is to generalize a known result. Associated with the exam question “The fundamental theo-
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rem of calculus”, such an F-exercise was to try to extend that theorem to the case of func-
tions 𝑓: 𝐼 →ℝk, where 𝐼 is an interval and 𝑘 > 1, as well as to piecewise continuous func-
tions. Other examples relate more closely to the proofs given in the textbook, for instance to 
identify where an assumption is used or whether it is necessary, to elaborate on analogous 
cases omitted in proofs (“similarly it can be shown…”), devise alternative proofs in special 
cases, etc. Some of these exercises are actually close in nature to previous proposals men-
tioned in the introduction, although we had to consider the specific constraints related to the 
oral exam.  

Outline of observed results 
As part of an MSc-thesis work by Gravesen (2015), all exercise sessions in one class were 
videotaped and transcribed, and the oral exams of 32 (out of 300) students were observed; 
moreover, a focus group of students was followed more closely, for instance through the 
collection of homework during the course, and interviews after the exam. Moreover, a ques-
tionnaire on the F-exercises was filled by some students, and we have some evidence from 
exam statistics. Here, we can only provide some overall tendencies of the results. 

Students’ work before and during exercise sessions. 

The problem of students’ non-preparation for the exercise sessions was partly solved. Based 
on observation and questionnaires, we estimate that an average of about 40% of the stu-
dents had worked on any given F-exercise before the sessions, in the sense that they 
brought notes for that exercise with at least a partial solution. It should also be noted that 
less technical parts of the F-exercises, like the second question of F2.1 cited above, fre-
quently get oral contributions even from non-prepared students, based on what is present-
ed in class. In the example, once the Taylor series has been developed on the blackboard, it 
is not so difficult to get the idea of choosing 𝑥 = 1 and 𝑎 = 0 to produce an approximation 
of 𝑒 and to discuss how the error can be estimated using Taylor’s formula. During the exer-
cise sessions, time pressure led instructors to do almost all blackboard presentation of solu-
tions, with only oral contributions requested from participants; the students who had pre-
pared solutions at home were therefore not able to present more than oral indications of 
them. This emphasizes a more general challenge with the role of TA: frequently, the stu-
dents and the TA both expect that it is the job of the TA to present solutions. There is a clear 
need for deliberate orientation (if not training) of the TAs if this should change significantly. 

Students’ point of view on F-exercises  

According to interviews during the course and a survey at the end of the course, students 
are somewhat divided on whether the F-exercises represent a positive addition to the 
course. Naturally, they cannot compare with exercises given in previous editions of the 
course; so they sometimes refer to what older students, including teaching assistants, may 
have told them (which could be quite imprecise).  

Most of the negative reactions seem to arise from the impression that the new exercises 
are “more difficult” or “weird”. The difficulty is in fact experienced by many: only 16% 
agree that ”I could solve almost all the F-exercises before the sessions” while 41% agree 
that ”I normally try to solve all F-exercises before the sessions”. We should recall, however, 
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that in previous years, almost no students solved exercises before sessions, and there is 
good reason to believe a part of the reason was the experienced difficulty of the assigned 
exercises. There are also many (39%) who find the workload in the course excessive, and 
among those, we find relatively many students who see F-exercises as an unwelcome ”ex-
tra burden” (”additional syllabus”) rather than as a support measure. There is no doubt that 
the indication of the F-exercises as a “supplementary question” for the exam plays a role 
here – while it may increase the motivation to actually work on them, it is a double-edged 
sword. 

On the positive side, students like that it is often possible to solve F-exercises ”partly”. At 
interviews, students also indicated that they were ”suitable for discussion” both with fellow 
students and in class, even in cases where the students had not tried or been able to solve 
the exercises beforehand. While preparing for the exam, the students who were inter-
viewed all worked with F-exercises in relation to each question, ”reflecting on which to use 
or prepare for”. At this point, they are particularly interested in those F-exercises which fo-
cus on dissecting a proof which appears in one of the exam questions, such as F2.3 given 
above. 

In general, students are divided on the utility of F-exercises in the course, in particular on 
the extent to which they see them as a research-like experience. 

Students work and results at the exam 

At the exam, the inclusion of F-exercises seemed to be most helpful for students who 
passed. Examiners included F-exercises more often in the examination of students who 
ended up with passing grades. Some exercises, like F2.1 above, were frequently used at the 
exam by students and examiners.  

Students who end up with low or failure grades do not get to be asked F-exercise related 
questions. They often display a highly retrocognitive relationship to knowledge (they actual-
ly use the verb ”remember” frequently). As several of these students get stuck with the 
statement of even basic definitions, more F-exercises focusing on the meaning and motiva-
tion of definitions might be helpful.  

By contrast, well-performing students often (implicitly or explicitly) use observations or ex-
amples which are related to F-exercises, without being prompted to do so by the examiners. 
This and other observation gives reason to believe that the F-exercises could be a partial 
explanation for the (compared to earlier years) significantly higher average of grades re-
ceived by students who passed, while we find it less likely that they would be an important 
cause for the slightly higher passing rates (cf. Fig. 1). But it is impossible to measure the 
causal power of the F-exercises in relation to other changed factors, for instance that the 
lecturer published pen casts of selected proofs.  
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Examiners make use of certain F-exercises frequently while others are never evoked. Most 
popular are F-exercises filling some ”gap” in the material (like showing how to generalize 
the proof of Gauss’ theorem from rectangles to more general regions). 

Conclusions 
In this paper, we have posed and outlined a first investigation of the following question: 

1. How to assess theoretical knowledge (e.g. related to continuous functions: defini-
tions, results, proofs or at least ”proof ideas”) in ways that do not simply lead to a 
pointless attempt at memorization for many students?  

2. And, if the “traditional reproduction format” is given and cannot be changed, what 
can be done to avoid students getting trapped in the ”memorization trap” (working 
little during the course, and failing on last-days rehearsal to the exam)? Could new 
forms of 𝑋𝑄, with more explicit link between familiar practice and theory blocks, be 
viable? 

Our first results with the last-mentioned strategy were reasonably positive, while we have 
pointed out the need for teachers of the exercise sessions (in our case, student assistants) 
to be much better prepared for leading and motivating the students’ presentation of their 
work. We also believe that in working with the above questions, a crucial strategy – or even 
a major research programme – is to work on the design of student assignments, with the 
double aim of strengthening students’ command of theoretical knowledge (in formal set-
tings) and providing a better basis for the assessment of students’ knowledge than the sim-
ple “official” text (giving definitions, proofs and theorems). 

References 

Conradie, J. & Frith, J. (2000). Comprehension tests in mathematics. Educational Studies in Mathemat-
ics, 42, 225-235. 

Cnop, I. & Grandsard, F. (1994). An open‐book exam for non‐mathematics majors. International Jour-
nal of Mathematical Education in Science and Technology, 25(1), 125-130. 

Gravesen, K. (2015). Forskningslignende situationer på et førsteårskursus i matematisk analyse. M.Sc. 
dissertation, University of Copenhagen (in Danish). 

Grønbæk, N., Misfeldt, M. & Winsløw, C. (2009). Assessment and contract-like relationships in under-
graduate mathematics education. In O. Skovsmose et al. (eds), University science and Mathemat-
ics Education. Challenges and possibilities, pp. 85-108. New York: Springer Science. 

Number of students 

No-show Fail Pass 

Pass grade 
average: 
2013: 8,12 
2014: 7,84 
2015: 8,57 

Pass rate: 
2013: 70% 
2014: 70% 
2015: 78% 

Figure 1. Exam results in Analysis 0, 2013-2015. 
 



khdm-Report, Nr. 05, 2017 

403 

 

Grønbæk, N. & Winsløw, C. (2007). Developing and assessing specific competencies in a first course 
on real analysis. In F. Hitt, G. Harel, & A. Selden (Eds.), Research in collegiate mathematics educa-
tion VI, pp. 99-138. Providence, RI: American Mathematical Society. 

Madsen, L. & Winsløw, C. (2009). Relations between teaching and research in physical geography and 
mathematics at research intensive universities. International Journal of Science and Mathematics, 
Education, 7, 741-763. 

Mejia-Ramos, J., Fuller, E., Weber, K., Rhoads, K. & Samkoff, A. (2012). An assessment model for proof 
comprehension in undergraduate mathematics. Educational Studies in Mathematics, 79, 3-18. 

Winsløw, C., Barquero, B., de Vleeschouwer, M., and Hardy, N. (2014). An institutional approach to 
university mathematics education: from dual vector spaces to questioning the world. Research in 
Mathematics Education 16(2), 91-111. 

  



khdm-Report, Nr. 05, 2017 

404 

 

 

 

 

 

 

 

 

 

 

 
8. THEORIES AND RESEARCH METHODS 

 



khdm-Report, Nr. 05, 2017 

405 

 

Theoretical approaches of institutional transitions: the af-
fordances of the Anthropological Theory of Didactics  

Michèle Artigue 

Paris Diderot University – Paris 7 
(France) 

In this contribution, I discuss the affordances of the Anthropological Theory of Didactics (ATD) for 
approaching transition issues in mathematics education: transition between secondary education and 
university, or along mathematics university courses. For developing this discussion, after a brief intro-
duction to ATD, I especially use three doctoral theses I have supervised in this area, those of Frederic 
Praslon on the transition regarding the concept of derivative and its environment between high 
school and university in France, of Analia Bergé on the evolution of the relationship to the field of real 
numbers and completeness along university mathematics courses in Argentina, of Ridha Najar on the 
transition regarding functions between high school and selective university courses in Tunisia. 

ATD and transition issues  
Several reasons make a priori promising the use of the Anthropological Theory of Didactics 
(ATD) to approach issues of institutional transition and diversity, among with the three fol-
lowing reasons: 

• From the first presentations of ATD by Chevallard (Chevallard, 1992), emphasis has been 
put on the institutional nature of relationships to mathematics knowledge, and their sub-
sequent relativity. In any institution, identifying a particular object as an object of 
knowledge, let us say for instance complex numbers or differential equations, knowing 
this object means something specific. For any subject of this institution, knowing this ob-
ject means showing a personal relationship close enough to this institutional relationship, 
which is generally partially differentiated according to the different positions that sub-
jects may occupy in the institution (for instance, student and teacher position).  

• Through the modeling of human practices in terms of praxeologies (Chevallard, 2002), 
(Chevallard & Sensevy 2014), ATD provides operational tools to investigate what the dif-
ferences of institutional relationships exactly consist of, at the level of both praxis (gen-
res and types of tasks and techniques) and logos (technological and theoretical dis-
course) and of their relationship, and to question how these differences are treated in 
transition processes.  

• ATD also pays particular attention to the diversity of conditions and constraints which, at 
very different levels, shape what can be taught and learnt in a given institution, and 
how. The idea of hierarchy of levels of didactic codetermination operationalizes this sen-
sitivity (Chevallard, 2002).  

The use of ATD thus a priori helps us to question the priority often given to cognitive ap-
proaches and interpretations when studying the difficulties of institutional transitions in 
mathematics education, and instead to envisage students’ difficulties as the sign of unno-

                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
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ticed or underestimated institutional breakdowns. Doing so often opens the way to original 
and effective educational strategies. A pioneering work in that area, the doctoral thesis re-
garding the transition between vocational and general education by Grugeon (1995), al-
ready showed this twenty years ago. Since that time, various pieces of research confirmed 
the potential of ATD for the study of institutional transitions. In this contribution, after briefly 
presenting the concept of praxeology and the hierarchy of levels of codetermination, I will 
especially use the reflective analysis of three doctoral theses that I have supervised regard-
ing teaching and learning processes at university or at the transition between high school 
and university to discuss ATD affordances.  

Praxeologies and hierarchy of levels of didactic codetermination 

Praxeologies 
In ATD, as pointed out above, mathematical practices, as any kind of human practice, are 
modeled in terms of a four-component structure called praxeology. The first component is a 
type of task, for instance, 𝑓 being a real valued function, and 𝑎, 𝑏, 𝑐 real numbers, to prove 
that the equation 𝑓(𝑥) = 𝑐 has a unique solution on the interval 𝐼 = [𝑎, 𝑏]. The second 
component is a technique, a way of performing the task. For the type of task just men-
tioned, a technique taught in high school is the following: To show that 𝑓 is continuous and 
strictly monotonic on 𝐼 and that 𝑐 belongs to [𝑓(𝑎), 𝑓(𝑏)] (resp. to [𝑓(𝑏), 𝑓(𝑎)]). The third 
component is the technology, a discourse explaining and justifying the technique. In our 
case, for instance, the Intermediate Value Theorem is part of this technological discourse. 
The fourth component is the theory which justifies the technology itself, here the theory of 
functions of one real variables or a part of it. This structure describes the most elementary 
form of mathematical praxeology also called punctual praxeology, but these coalesce into 
local praxeologies sharing a common technological discourse, and the local praxeologies 
themselves into regional praxeologies sharing some common theoretical ground, to build 
complex mathematical organizations.  

Hierarchy of levels of didactic codetermination 
As mentioned above, the hierarchy of levels of didactic codetermination helps us to better 
understand the complex system of conditions and constraints which condition the ecology 
of mathematical and didactical praxeologies. Nine levels are distinguished, situated above 
and below the discipline level (in our case mathematics). Any mathematical object whose 
teaching and learning is at stake in a given institution situates within one domain of mathe-
matics, which itself is divided into several sectors made up of different themes or topics, 
that can be separated into different subjects. In the French high school curriculum for in-
stance, the topic of the variation of exponential functions is part of the sector of functions, 
which is part of he domain of elementary analysis, and this influences the corresponding 
praxeologies. However, these praxeologies are also shaped by a diversity of conditions and 
constraints, beyond the inscription of the topic in these particular sector and domain. Hence, 
in the hierarchy, the existence of levels above the discipline level, the respective levels of 
pedagogy, school, society and civilization. In (Alves et al. 2010), comparing the respective 
expectations regarding the learning of sequences and functions at the end of high school 
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between Brasil and France, we have shown the potential offered by this conceptual tool to 
describe the respective mathematical organizations and to understand the “raisons d’être” 
of the important differences observed.  

Frederic Praslon’s thesis: the concept of derivative in the transition be-
tween high school and university 
Praslon’s thesis (2000) was the first thesis using ATD to study the secondary-university 
transition. Praslon approached this transition by focusing on the concept of derivative and its 
environment, being it the core concept in high school elementary analysis. As had been the 
case for Grugeon, he used ATD as a macro-theoretical framework to question the vision of 
the secondary-university transition prevailing at that time, which naturally led him to study 
and compare the praxeologies involving the concept of derivative in the two last years of 
scientific high school and in the first university year. As was also the case in Grugeon’s the-
sis, he combined this macro-theoretical framework with constructs such as the distinction 
between the tool and object dimensions of mathematical objects1 due to Douady (1986), 
the idea of semiotic register due to Duval (1995), and the ideas of procept and mathemati-
cal world of Tall (2004). These helped him to build on already established knowledge re-
garding the teaching and learning of Calculus and Analysis. The praxeological analysis he 
developed followed a standard methodology based on the quantitative and qualitative anal-
ysis of a diversity of curricular resources (syllabuses, textbooks, student worksheets, as-
sessment tasks, etc.).  

This praxeological analysis first showed that a substantial universe around the notion of de-
rivative already developed in high school, but that a dramatic enlargement of the landscape 
was taking place in the first six months at university. Praslon visualized this phenomenon 
through the use of insightful concept maps. He also showed that, contrary to what was 
often said at that time, the secondary-university transition in this area was no longer, at 
least in France, a transition from the proceptual world to the formal world, or from intuitive 
to rigorous approaches. The difficulties of the transition resulted more from an accumulation 
of “micro-breaches”, less visible and not appropriately taken in charge by the institution. 

These breaches affected particularly the balance between the tool and object dimensions of 
the derivative, between the study of particular objects and objects defined by general 
conditions, and between algorithmic techniques and techniques having more the status of 
general methods to be adapted to each particular case. Results were more systematically 
proved, and proofs were no longer “the cherry on the cake” but took the status of mathe-
matical methods. Shifts also resulted from the increased autonomy given to students in the 
choice of appropriate mathematical settings and semiotic registers, and more globally in the 
development of the solving process. He also observed an impressive diversification of tasks 
and techniques, and acceleration of the didactical time.  

From an institutional culture organized around the mastery of a restricted number of 
punctual praxeologies that could become reasonably familiar, students moved to a culture in 

                                                 
1 A mathematical entity may be considered as a tool used to solve different types of tasks, and also as an object 
which is part of a structured set of mathematical objects. 
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which praxeological diversity was the norm and the acceleration of didactical time made 
routinization much more difficult. The conjunction of these breaches created a substantial 
gap but university teachers were not aware of it in their great majority and tended thus to 
under-estimate the cognitive charge induced for their students. I would like to point out that 
in this pioneering research results are expressed by using a language not strongly tied to 
ATD. The difference is evident when one compares with the research developed by Bosch, 
Fonseca and Gascón (2004) on close issues. In my opinion, this difference illustrates the fact 
that in this thesis, used as a macro-theoretical framework, ATD guides the questioning but 
still moderately instrumentalizes research praxeologies (Artigue, Bosch & Gascón 2011). 

For making university teachers and students sensitive to these changes, Praslon designed a 
set of tasks in the gap between the two institutional cultures, and revealing main facets of 
the differences between these. For instance, none of the tasks required the use of ε − δ 
formalizations. They were proposed to the students before their entrance to university or at 
the beginning of the academic year, and were used as a base of discussion with university 
teachers. We give below an example of such a task, explaining why it situated in the gap 
between the two institutional cultures at that time. 

Let us consider the periodic function 𝑓 with period 1 defined by 𝑓(𝑥) = 𝑥.(1 − 𝑥) on [0, 1[.  

 
 
The first question (Q1) asks: Is this function continuous? Differentiable?  
The second question (Q2) formally introduces the notion of symmetric derivative at a point 𝑥 for a 

function 𝑓 as the 𝑙𝑖𝐼ℎ→0
𝑓(𝑥+ℎ)−𝑓(𝑥−ℎ)

2ℎ
 . Then students are asked to compute the derivatives and 

symmetric derivatives of 𝑓, if they exist, at points ½, ¼ and 0, and to compare these. 
The third question (Q3) asks them to say if the following three conjectures are true or false and to 
justify their answers: 
 

• Every even function defined on 𝐼𝑅 has a symmetric derivative at 0. 

• Every even function defined on 𝐼𝑅 has a derivative at 0. 

• If a function defined on 𝐼𝑅 has a derivative at 𝑎, it has also a symmetric derivative, and 
the two are equal.  

At the time Praslon was working on this thesis, a French student entering the University 
after a scientific baccalauréat (Bac S) a priori has been taught the mathematics required for 
solving this task. Nevertheless this task was not part of the high school culture in France. For 
instance, 𝑓 is defined by pieces and the students have to understand that the given 
expression can only be used on [0,1[. They have certainly already met such functions but 
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these have remained marginal objects. Question Q1 is not a new question, all the more as 
the students are given a graphical representation for supporting their reasoning, but this is 
not at all a routine question. In question Q2, a new notion is introduced through a formal 
definition and the students are asked to make sense of this definition. Question Q3 
proposing three general conjectures is also rather unusual even if answers to previous 
questions give important hints.  

Ridha Najar’s thesis: the concept of function in the transition between 
high school and university 
The thesis by Najar (2010) also regards the transition between high school and university, 
with students for whom a priori the transition should be easier, as they were top-level stu-
dents in high school, are confident in their capabilities and very committed. They study in 
the selective program of “Classes Préparatoires Scientifiques” (CPS) in Tunisia. Once again, 
ATD is the main theoretical framework, and its constructs are used to elucidate the change 
in the relationship with the notion of function. What Praslon’s thesis could not show and is 
made clear by Najar’s research is that a main source of discontinuity in institutional relation-
ships regarding functions in the secondary-university transition is the move from praxeolo-
gies mobilizing functions of one real variable for solving Calculus tasks to praxeologies in-
volving functions conceived as set theoretical objects or homomorphisms between algebraic 
structures. The detailed analysis carried out shows the huge distance separating these 
praxeologies, the techniques, the modes of reasoning and of using semiotic resources, they 
respectively engage. The type of task “Proving that a function is a bijective mapping” well 
illustrates this difference, when one compares the technique favored in high school, based 
on the study of variations of the function and the technological property that a continuous 
function 𝑓 strictly monotonous on an interval 𝐼 of 𝐼𝑅 is a bijective mapping from the interval 
𝐼 onto the interval 𝑓(𝐼), and those used in set theory or abstract algebra, coming back to the 
definition or using specific characteristics of homorphisms in abstract or linear algebra. 

The example below is a typical example of task proposed to students in the first worksheet 
on set theory and functions. It illustrates this difference. 

𝐸, 𝐹, 𝐺 and 𝐻 are sets and 𝐻 has two elements at least, 𝑓 is an element of 𝐴(𝐹, 𝐺), the set of appli-
cations from 𝐹 to 𝐺; prove the following equivalences: 

𝑓 − surjective ⇔  [∀𝑔, ℎ ∈ 𝐴(𝐺, 𝐻), (𝑔 ∘ 𝑓 = ℎ ∘ 𝑓 ⇒  𝑔 = ℎ)] 

𝑓 − injective ⇔  [∀𝑔, ℎ ∈ 𝐴(𝐸, 𝐹), (𝑓 ∘ 𝑔 = 𝑓 ∘ ℎ ⇒ 𝑔 = ℎ)] 

In it, not only new techniques must be used based on the definition of injective and surjec-
tive mappings, but to this adds the complexity of the statements to be proved. These are 
two equivalences whose second term is itself an implication universally quantified, which 
highly increases the difficulty of the technical work to be developed to implement these 
techniques successfully. 

As shown by Najar, contrary to France, in Tunisia even if the main habitat for functions in 
high school is Calculus, set theoretical perspectives are already present in the teaching of 
geometrical transformations. However associated praxeologies consist just of a few isolated 
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and rigid punctual praxeologies and their technological-theoretical block is exclusively in the 
teachers’ topos, in other word under the teachers’ responsibility. Comparing with CPS makes 
the praxeological breakdown clear. In CPS, crucial importance is given to the technological-
theoretical block, and a diversity of techniques are suddenly associated to the same type of 
tasks. This is in line with the analysis of institutional transition provided in (Bosch, Fonseca & 
Gascón 2004). Najar shows that curricular resources and teaching practices pay little atten-
tion to these changes, to the associate development of set theoretical language and math-
ematical symbolism, and more globally to what Castela (2008) calls the practical component 
of the technology. As was the case in Praslon’s thesis, the results of this praxeological anal-
ysis are reinvested in a didactical engineering, in that case very much constrained by the 
specific context of CPS classes. Emphasis is put in it on the blind points that the institutional 
study has revealed.  

As was the case in Praslon’s thesis, Najar combines ATD with other theoretical constructs, 
for instance those developed by Tall already mentioned, and those developed by Robert 
(1998) for the analysis of tasks distinguishing between different levels of use of mathemat-
ical knowledge and different types of adaptation required by the solving of these. However, 
a careful look at Najar’s thesis shows that he makes a more advanced use of the construct 
of praxeology than Praslon, including the distinction between punctual, local and regional 
mathematical praxeologies, the reference to the idea of completeness of local praxeologies 
introduced in (Bosch, Fonseca & Gascón 2004) and the use of associated criteria. This more 
advanced use is visible both in the organization of the research work, and the expression of 
its results.  

Analia Bergé’s thesis: conceptualization of completeness along univer-
sity teaching  
Bergé’s thesis (2004, 2008) studies students’ evolution in the conceptualization of the field 
of real numbers and completeness along university mathematics courses at the University of 
Buenos Aires. ATD is used in the institutional part of this research work, also supported by a 
deep historic-epistemological study leading to a Mathematical Panorama complemented 
then by a Cognitive Panorama structured around six axes of development with a common 
origin (an initial state where completeness is considered an evident property of the Real 
number field). This cognitive panorama is used as an analytic tool for the praxeological anal-
ysis and that of students’ questionnaires and interviews.  

The praxeological analysis shows that in the first university course dealing with real num-
bers, completeness remains in a pre-construction state; it lives encapsulated in powerful 
theorems such as the Intermediate Value Theorem, and is implicit in the use of graphical 
representations. A radical change occurs when students enter the course “Analysis I” where 
graphical representations are no longer allowed as support for argumentation. However the 
praxeological analysis shows that the tasks involving completeness remain essentially the 
same with, as a consequence, the fact that students interpret this change merely as a 
change in the didactic contract. In “Complements of Analysis II”, completeness becomes an 
official objet of study through the notions of supremum and infimum, and in “Advanced Cal-
culus” the idea of completeness is further deepened in the context of metric spaces. As 
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pointed out by Bergé, these different courses function as isolated institutions, and connec-
tions between the perspectives they offer on completeness are left to the students’ private 
work. Her praxeological analysis also reveals that two axes of development are not explicit-
ly addressed in the institutional offer, and also let to the students’ private work. Question-
naires and interviews with students having successfully passed these different courses al-
low Bergé to describe their personal relationship and its evolution along university courses. I 
will not enter into the results of this analysis but it clearly shows that these courses do not 
allow students, in their great majority, to understand the role of completeness for develop-
ing mathematical analysis.  

Final comments 
In these three examples, ATD is used as the main theoretical framework. As they make 
clear, this theoretical choice shapes the way research questions are articulated and the 
methodologies used to work them out. Difficulties in transition processes are mainly ap-
proached in terms of discontinuities in institutional relationships to mathematical 
knowledge. In the search for such discontinuities, the analysis of mathematical praxeologies 
is given a fundamental role, with equal importance given to the praxis and logos dimensions 
of praxeologies, particular attention paid to the way these two dimensions are related, and 
to the respective topos of students and teachers. The three examples show that such an 
approach can be insightful, attract the attention on blind points of the transition process, and 
inspire effective didactic strategies. These examples also show that the use of ATD as a 
global theoretical framework can be productively combined with the use of theoretical con-
structs of a different origin at a more local level. These theoretical combinations visibly help 
researchers to take into account the affordances of educational research on the specific 
mathematical domains at stake and the results of their epistemological analyses. Carefully 
managed, they contribute to the operationalization of research practices piloted by ATD.  

They three theses show an evolution in the use of ATD as far as the theory itself and its use 
for addressing transition issues progresses. However, in these theses ATD is only used as a 
descriptive theory. The more recent developments of ATD oriented towards design, in term 
of Activity of study and research, and Paths of study and research (PSR), which play an es-
sential role in the theses by Barquero (2009) and Oliveira (2015) for instance, are not in-
vested in the didactic engineering work developed by Praslon and Najar. In the first case, 
this is normal as the design dimension of ATD did not exist at that time, and for Najar the 
strong institutional constraints of Classes préparatoires certainly made difficult if not impos-
sible the organization of a PSR, a form of didactic intervention so distant from the traditional 
ones. These theses also show researchers that situate themselves in a user relationship to 
ATD, and make the choice of combining ATD with constructs external to it to fulfil their spe-
cific needs, instead of envisaging contributing to the development of the theory itself. One 
can understand that doctorate students do not necessarily feel themselves legitimate to 
envisage such an authorship position with respect to well established theories as ATD is, but 
I would like to mention that this limitation can be overcome, as shown by the doctoral thesis 
of Romo Vazquez that I supervised together with Castela (Romo Vazquez 2009). What cer-
tainly made the move possible in that case was the position of Castela herself with respect 
to ATD. 
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epistemology and didactics  
Marianna Bosch1, Ignasi Florensa1, Josep Gascón2 

1IQS School of Management, Univ. Ramon Llull, Barcelona 
2Universitat Autònoma de Barcelona 

(Spain) 

During this past decade, many investigations conducted in the Anthropological Theory of the Didactic 
have focused on the design and analysis of a new teaching proposal—study and research paths, 
SRP—linking inquiry-based activities with the study of contents. SRPs have also been recently used in 
teacher education as a way to provide teachers with new epistemological models of the mathemati-
cal domains and topics that are to be taught. In this context, SRPs appear as both teaching devices 
and analytic tools to question and reconstruct curricular mathematical contents. The links between 
SRPs and the construction of alternative epistemological models of the contents to be taught open 
new research questions at the edge between epistemology and didactics. 

In the research tradition of Didactics of Mathematics promoted in the 1980s by the Theory 
of Didactic Situations (Brousseau 1997) and followed by the Anthropological Theory of the 
Didactic (ATD) (Chevallard 1992, 2014), the epistemological dimension has always been at 
the core of the study of teaching and learning phenomena. By this we mean not only the 
consideration of the knowledge that is taught and learnt, but a real questioning of it, to 
avoid assuming the viewpoint provided by the institutions where the production, develop-
ment and dissemination of this knowledge take place. We here present three investigations 
in ATD at university level that show different aspects of the researchers’ detachment from 
the institutions where teaching and learning processes take place and, more especially, from 
the “scholar” one, responsible of the production and conservation of knowledge.  

From “Workshops of practice” to “study and research paths”  
In the 1990s, the first investigations in university mathematics education carried out by our 
group of research focused on the implementation of a new teaching device called “Work-
shops of practice” (WoP) in a Mathematics degree, aiming at overcoming the two-fold clas-
sical organization of university teaching in “lectures” and “problem sessions” (Bosch & Gas-
cón 1993). A WoP consists in 3 or 4 weekly sessions of 3 hours proposed to deeply study a 
single type of problems taken from the problem sessions, containing a set of several cases 
all similar but presenting their own specificity. Its main goal is to give visibility to the “tech-
nical work”, which is crucial to mathematics creativity. Students explore by themselves a set 
of problems they initially know how to solve but that now and then require a slight or im-
portant variation of the technique. This kind of work produce new theoretical needs related 
to the scope of the technique and the limits of the type of problems approached. In a sense, 
the WoP connects lectures to problem sessions in a reverse way: instead of “applying” new 
                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
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knowledge to new types of problems, it is the deep exploration of a single type of problems 
that opens new questions and new theoretical needs.  

WoPs were experimented during several academic years in different mathematical subjects, 
from linear algebra or calculus to complex analysis, and their design required a real decon-
struction and reconstruction of the traditional organisations of contents based on the logic of 
concept construction. One has to identify the main types of problems that constitute the 
core of each subject and choose a set of problems of a given type that can show the func-
tionality of the knowledge introduced. For instance, the Jordan decomposition of matrices 
was “practiced” through the general problem of finding the n-th power of a set of matrices; 
the power series development of functions through the resolution of ordinary differential 
equations; limits through the ranking of functions according to their convergence speed; etc.  

WoPs produced many disruptions in the normal university didactic contract. However, they 
preserve the main features of the paradigm of “Visiting works” (Chevallard 2012) that pre-
vails in university teaching: students are introduced to a well-chosen sample of mathemati-
cal “monuments” they are supposed to learn, the rationale of which remains implicit: why 
calculating the power of a matrix, why ranking functions or finding isomorphisms between 
finite groups? Teachers pose problems, students solve them. 

SRPs “covering” first courses of Mathematics as service subject 
From 2005 on, the developments of the ATD head towards the new paradigm of “Question-
ing the world” by studying the conditions for and effects of introducing another teaching 
device called “Study and research path” (SRP) in different school settings, and especially at 
university. In this case, the aim was to reverse the priority given in the traditional paradigm 
of “Visiting works” based, at university, in the presentation of new contents (lectures) be-
fore their practice (problems solving sessions). SRP propose a completely different and 
complementary activity focused on a long inquiry study of a problematic question that is to 
be run in parallel with the ordinary lessons and motivate the need of new knowledge. A SRP 
starts with the consideration of a problematic generating question and follows a complex 
sequence of derived questions and provisional partial answers, including both the construc-
tion of appropriate experimental milieus (in the sense of non-intentional systems), and the 
access to previously available knowledge works. The paradigm of “Visiting works” can be 
subsumed into the general frame of SRP in its study dimension: during the inquiry process, 
some piece of knowledge may seem useful (or at least usable), and a specific lecture can be 
the best way to make it available in order to let the research progress (Winsløw et al, 2013). 

The implementation of SRP with first-year university students has been tested in two insti-
tutional settings and under different conditions. The first one (Barquero et al 2008, 2011, 
2013) was experimented during five academic years (from 2005/06 to 2009/10) in the 
one-year ‘Mathematical Foundations of Engineering’ course of a technical engineering de-
gree (a 3-year programme). The SRP consisted in a workshop of 2-hour weekly sessions 
and was ran in parallel with the usual lectures (three 1-hour sessions per week) and prob-
lem sessions (1-hour session). The generating question (𝑄0) consisted in predicting a popu-
lation dynamics given its size over some previous periods of time. It also supposed to won-
der about the assumptions on the population, its growth and its surroundings that should be 



khdm-Report, Nr. 05, 2017 

415 

 

made. In all its implementation, the workshop focused on this initial problematic question 𝑄0 
to which students had to provide a complete answer during the entire academic year. 𝑄0 
was presented using different populations: pheasant, fish, and yeast populations. To provide 
some answers to 𝑄0 and to the sequence of derived questions that followed it, the con-
struction of different mathematical models was required. Depending if time was considered 
as a discrete or continuous variable, different types of models were developed. Due to offi-
cial curricula conveniences, the lecturer assured that during the inquiry process questions 
about discrete models with mixed and independent generations, as well as continuous mod-
els were tackled, which were respectively approached during each of the three terms of the 
course. At the end, this sequence of modelling activities required the activation of most of 
the contents of the course: one-variable calculus, linear algebra, ordinary differential equa-
tions and their systems. Moreover, this activation took place in a functional way, that is, to 
provide answers to the questions raised during the inquiry process. 

Following the same design, other SRPs are being implemented since 2006 in a Mathematics 
course of a first year degree in Business Administration and Management (Serrano et al 
2011; Serrano 2013). The course is divided in three terms: one-variable calculus, two-
variable calculus and linear algebra, and the contents are organised following a modelling 
perspective: families of functions, rates of change, optimisation, etc. In this case, the SRP is 
carried out during a 90 minutes weekly workshop and is more “organically” connected to 
the two other 90 minutes lecture-and-problem-solving sessions: it is always the same 
teacher who is responsible of all the sessions and the problems approached outside the 
workshop are more similar to the questions raised and studied in it. In a sense, the SRP con-
sists in taking “more seriously” and in a more professional context one of the main problems 
that are studied in the course. The generating questions approached vary from one year to 
the other (sales forecasts, urban bike business, social networks, credits and loans, etc.). 
They share certain invariants in order to avoid going far away from the course contents: 
search for empirical data and forecast using functional modelling (first term); several varia-
ble formulae (second term); evolution of Markov processes or linear multidimensional phe-
nomena (third term). 

Study and research paths for teacher education (SRP-TE) 
SRPs have also been recently used in pre-service and in-service teaching education as a 
way to provide teachers with alternative models of school mathematical activities (Barquero 
et al 2015). In this context, a SRP-TE appears as both a possible teaching device to be im-
plemented under special conditions and an epistemological tool to question the established 
knowledge and reconstruct it as a dynamical process of questions and answers. We can thus 
consider them at the core of the so-called “mathematical content for teaching”. The starting 
point of a SRP-TE is an open question related to the teaching of a given piece of knowledge. 
The second stage consists in presenting a SRP related to the initial teaching question ap-
proached: for instance a SRP on savings plans related to the open question “How to teach 
proportionality?”. After carrying out the SRP as students, teacher-students are asked to de-
scribe the mathematical process followed and the specific didactic conditions that made it 
possible or hinder its development. This epistemological and didactic analysis is followed, 
when possible, by the adaptation of the SRP to real school conditions and a posteriori analy-
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sis of its implementation. What appeared to us as especially important in the few experi-
mentations of SRP-TE carried out is the possibility for the teachers to use the description of 
SRP in terms of sequences of questions and answers to provide and alternative description 
of a whole block of mathematical contents and, furthermore, to relate domains that usually 
appear as disconnected in school mathematics (statistics and functions, for instance). 

Open issues 
When trying to adapt SRP to school curricula, the knowledge to be taught, which is usually 
conceived as a well-structured organisation of concepts and problems, needs to be com-
pletely reformulated in terms of an arborescence of possible questions and provisional an-
swers. This tree-maps of questions and answers constitute the skeleton of potential SRPs to 
be carried out with students. We are thus at the core of the epistemological analysis of de-
construction and reconstruction of mathematical knowledge, based on a clear detachment 
from the dominant (scholar and school) conceptions of what mathematics is and how it 
should be organised. However, what appears as a powerful tool for the analysis becomes at 
the same time one of the main weaknesses of SRP as teaching and learning activities. The 
experimentations carried out, mainly by researchers acting as teachers or teacher educators, 
show a shortfall of available epistemological resources, not only to design and manage SRP 
(How to find the generating questions? How to motivate their study?) but even to talk about 
the inquiry work that is done and the results produced. This work cannot always be de-
scribed in the traditional terms used in lectures and problem solving sessions: the specific 
derived questions and partial answers obtained during the process need to be named, classi-
fied, structured, and the official mathematical resources are not always appropriate. Teach-
ers, together with students, need to invent their own terminology and propose a specific 
organisation of the different conceptual and technical tools that are used, as well as of the 
results obtained, which cannot always be located in the universe of shared scientific works. 
This is one among the many problematic issues that this new approach opens, in a research 
field where epistemological and didactic questions become more and more difficult to extri-
cate. 
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When praxeologies move from an institution to another: an 
epistemological approach to boundary crossing  
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The issue of vocational mathematics education is commonly approached through a vigotskian lens 
focusing on the individual development within different socio-cultural contexts: how does one stu-
dent tackle the experience of crossing boundaries between mathematics, engineering sciences, voca-
tional training? In my presentation, I take the opposite yet complementary point of view, that of the 
anthropological theory of the didactic, which emphasises the social and institutional dimensions. 
Drawing on the notion of praxeology as a model for socially acknowledged cognitive resources of 
institutions, I develop this model to address an epistemological issue: how are mathematical praxe-
ologies transformed when crossing institutional boundaries? Examples refer to mathematics and au-
tomatic control.  

Introduction: The Anthropological Theory of the Didactic  
The anthropological theory of the didactic (hereafter ATD) is at the same time a theory and 
the most prominent dimension of a research program in mathematics education. This pro-
gram has been initiated by Yves Chevallard (1985) with the study of didactic transposition 
processes, the anthropological perspective being introduced in 1992 (Chevallard 1992). A 
socio-cultural conception of humans underpins the ATD, with a focus on institutions (stable 
social organisations) as absolute precondition for humanity’s development and social activi-
ties. Institutions foster collective processes for facing and solving human problems. They 
favour the dissemination of innovations and more widely provide the necessary resources 
(material and cultural) for activities to take place. Conversely each institution constrains the 
different types of activities that it expects people to carry out in the social environment it 
builds. An individual has to satisfy the institutional expectations, to a certain extent at least, 
depending on the institution; that is why he is considered as an institutional subject (from 
Latin sub-jectus: literally thrown under) when acting within this institution. Hence, the ATD 
considers that human activities are institutionally situated and, consequently, so is 
knowledge about these activities. When a fragment of social knowledge, produced within a 
given institution 𝐼, moves to another one 𝐼𝑢  in order to be used, the ATD’s epistemological 
hypothesis states that such boundary crossing most likely results in some transformations of 
knowledge, called transpositive effects. Any didactical institution 𝐼𝑑  that intends to train stu-
dents to meet 𝐼𝑢’s demands should be aware of these changes from 𝐼 to 𝐼𝑢 ; otherwise they 
will leave the full responsibility of knowledge adaptation up to the students. Moreover, let 
us recall that the specific nature of activities within 𝐼𝑑, under specific constraints, results in 
other transpositive effects, the so-called didactic transposition. 
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Praxeology 
The key notion of praxeology is the basic unit proposed by ATD to analyse the institutionally 
acknowledged capitals of practices and knowledge (see Chevallard 2006, p.23). A praxeolo-
gy entails two interrelated components, praxis and logos. The practical block (or know-how) 
associates a type of tasks 𝑇 and a technique 𝜏. 𝜏 is a “way of doing” which is endowed with 
certain efficiency for a certain subfield within the set of 𝑇 tasks. The logos block contains 
two levels: the technology of the technique (𝜃) gathers the whole rational knowledge refer-
ring to the technique; the theory (𝛩) is a second level of more general knowledge support-
ing the technological discourse. 

To exemplify the praxeological model and give an idea of its potential to analyse the trans-
positive effects of boundary crossing, I will consider a mathematical type of tasks encoun-
tered in strictly mathematical contexts as well as engineering sciences: Breaking up a ra-
tional function into partial fractions.  

Mathematics praxeologies for breaking up a rational fraction into partial fractions 
Let me emphasise that by mathematics praxeology I mean a praxeology that is acknowl-
edged in the current institution of research in mathematics. Hence we will refer in this part 
to the mathematics’ norms for proof. The following technological elements are derived from 
the analysis of a calculus online textbook1. 

Description of the technique in the general case: (1) Make the denominator monic (leading 
coefficient 1), and use the Euclidean algorithm to reduce to a problem where the degree of 
the numerator 𝑟 is less than the degree of the denominator 𝑑. (2) Factorise the denominator 
as a product of powers of distinct monic irreducible polynomials. (3) Write the fraction as a 
sum of partial fractions of the form 𝑅/𝑄𝑘, where 𝑄 is one of the irreducible factors, 𝑘 is at 
most equal to the multiplicity of 𝑄 in 𝑑 and the degree of R is less than the degree of 𝑄. (4) 
The coefficients of every 𝑅 need to be determined. One way of doing this is to take a com-
mon denominator, multiply out, equate coefficients and solve the resultant system of equa-
tions. 

Example: We want to express 3𝑥+1
(𝑥−1)²(𝑥+2)

 as the sum of its partial fractions 𝐴
(𝑥−1)

+ 𝐵
(𝑥−1)²

+ 𝐶
𝑥+2

. 

 3𝑥+1
(𝑥−1)2(𝑥+2) = 𝐴

(𝑥−1)+
𝐵

(𝑥−1)2+ 𝐶
𝑥+2

  ⇔  3𝑥 + 1 = (𝐴 + 𝐶)𝑥² + (𝐴 + 𝐵 − 2𝐶)𝑥 − 2𝐴 + 2𝐵 + 𝐶 

⇔  A + C = 0, A + B − 2C = 3, −2A + 2B + C = 1  ⇔  A = 5
9

, B = 4
3

, C = −  5
9
 

Several theorems are necessary to validate this technique, that is, to prove without further 

checking that 3𝑥+1
(𝑥−1)²(𝑥+2)

 = 5
9(𝑥−1)+

4
3(𝑥−1)2 − 5

9(𝑥+2)
. 𝜃1: two rational functions with the same 

denominator are equal if and only if their numerators are equal; 𝜃2: two polynomials are 
equal if and only if they are of same degree and have the same coefficients; 𝜃3: theorem 
about equality of rational numbers; 𝜃4: theorems about equivalent systems of equation. 

                                                 
1 Partial fractions: an integrationist perspective. Math 153 Section 55. Vipul Naik. University of Chicago. 
http://www.indabook.org/d/Integrating-Rational-Functions-by-Partial-Fractions-Using.pdf  
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Several mathematical theories, “theory” being used in the usual meaning of the word, are 
necessary to prove these theorems. 

Appraisal of the technique: This technique is tedious in some cases without proper software 
because there are many coefficients to find. In fact, mathematicians are aware of the heavi-
ness of the technique and look for alternatives. For example, another technique consists in 
plugging in several appropriate values of 𝑥 depending on the pole order. The technique is 
based on necessary conditions, so you have to check the equality, unless you have an exist-
ence theorem, deriving from a rather extended part of the polynomials arithmetic theory. 

Motivation of one step of the technique: Now, as a transition to the corresponding praxeol-
ogy in automatics, we can ask the following question: why is it important to make the de-
nominator monic? The fact that linear monic polynomials have 1 as a derivative and that the 
antiderivative of rational functions 1/(𝑥 − 𝑎)k is easy to calculate is one motive for the re-
striction to monic factors.  

The automatics praxeology for breaking up a rational fraction into partial fractions 
The following example is based on a study of how Laplace transform is taught in an on-line 
course for higher technicians (see Castela & Romo Vázquez 2011 for more details). Hence 
the mathematics praxeologies have crossed two boundaries: from mathematics to automat-
ic control and then to an automatic course. 

Some elements about the automatics’ issues are necessary. The problem at stake is auto-
matic regulation of systems: if a quantity is to be kept constant, an electronic gauge 
measures its value; when variation is recorded, an appropriate regulation process is trig-
gered to go back to the desired value. The less time needed to get the quantity back to this 
value, the more efficient the control system. The evolutions of the different systems in-
volved are described by differential equations, turned to algebraic ones by the Laplace 
transform and easily solved, with a rational fraction 𝐹(𝑝) as a solution. To inverse the La-
place transform, the online textbook recommends using a table of Laplace transforms. The 
type of tasks Breaking up a rational fraction into partial fractions appears when complicated 
𝐹(𝑝) are involved. In what follows, I give an idea of the technique and technology proposed 
by the textbook. 

Description of the technique: Assuming that the mathematical techniques are familiar to the 
students, the author only specifies that 𝐹(𝑝) denominator must be written under the follow-
ing canonical form 𝑘(1 + 𝜏1𝑝) (1 + 𝜏2𝑝) … with decreasing values of the 𝜏𝑖. E.g. 3𝑝 + 2 is 
transformed into 2(1 + 1.5𝑝), not into 3(𝑝 + 2/3). This is a significant change to the math-
ematical technique. 

Motivation (raison d’être) of this special factorisation: If 𝐹(𝑝) = 1
1+1.5𝑝

 , the corresponding 

original function is 𝑓(𝑡)  =  𝐾(1 − 𝑒−𝑡/1.5). 1.5 is called the time constant of this function. 
The system reactivity, and therefore its quality, is directly dependent on the higher value of 
the time constants. Hence, this value must clearly appear in the calculation. This means that 
the boundary crossing has changed the type of tasks and thus the technique.  
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Explanation of the relation between time constant and reactivity: if 𝑓(𝑡) represents the con-
trolled quantity and 𝐾 its desired constant value, it is known that after 7𝜏  , here 7 × 1.5 sec-
onds, the exponential will be equal to 0, that is, considered as negligible in Automatics. 
Hence, the transitional regime lasts 7 × 1,5 seconds.  

Validation of this claim: 𝑒−𝑡/𝜏 < 0.01, hence 𝑡/𝜏 > 100, 𝑡 > 𝜏𝑙𝑛(100) ≈ 7 𝜏. 

What needs does the technology of a technique intend to satisfy? 
(Castela & Romo Vázquez 2011) analyses the Laplace transform chapter in one mathematics 
and two automatics textbooks from tertiary vocational courses for engineers and higher 
technicians. The first one, in a classical mathematics style, is focused on the comprehensive 
accurate presentation of concepts, theorems and proofs. The Laplace transform technique to 
solve non-linear differential equations is alluded to, without any examples related to engi-
neering sciences. As shown in the above example, the automatics textbooks are very differ-
ent. They give a lower priority to mathematical proofs and instead, they develop another 
kind of knowledge about techniques, strongly correlated with the vocational context. Actu-
ally there are many things to know about Laplace transform and the derived techniques, but 
all these technological elements satisfy diverse needs. Drawing on the aforementioned 
textbooks, Castela and Romo Vázquez (2011, pp. 88-90) differentiate six of them: describ-
ing the technique, validating it i.e. proving that this technique produces what is expected 
from it, explaining the reasons why this technique is efficient (knowing about causes), moti-
vating the different gestures of the technique (knowing about objectives), making it easier 
to use the technique and appraising it (with regard to the field of efficiency, to the using 
comfort, relatively to other available techniques). Such technological elements are present 
in both previous examples of mathematics and automatics praxeologies. This list should not 
be taken as exhaustive. For instance, I currently consider one more need: controlling the 
technique implementation by the individuals, that is making sure they have correctly used 
the technique.  

The technological analysis as a relevant tool for transition issues 
This approach is an incentive for vocational institutions to analyse the nature and extent of 
the transpositive effects on mathematics praxeologies within the scientific and professional 
fields included in their curriculum. As seen in the example above, each component of the 
praxeology may change or develop for rational reasons that take into account the specific 
conditions of activities. Educational institutions should consider the motives and legitimacy 
of these evolutions. 

Furthermore, the analysis grid of the technological component is also relevant when the 
issue of transition to advanced mathematics is addressed. Advancing in mathematics not 
only consists in learning new theories, it also means facing tasks that get closer to the 
mathematicians’ activities. According to the ATD, any human activity contains elements of 
genericity. Hence, mathematics researchers, even if they have to be creative, also draw on 
previously developed praxeologies with a technological component that satisfies practical 
needs within problem solving and generally derives from experiencing the technique im-
plementation, in other words, not from a mathematical theory. Most of this practical part of 
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mathematics praxeologies is not taught. Yet students need such knowledge, in France at 
least as of high school (for detailed argumentation, see Castela 2009). So the responsibility 
for building this practical knowledge lies on the students, and this may be an important 
cause of failure. Therefore, the challenge for tertiary education would be to organise the 
students’ training to praxeological development from their own mathematical experiences, 
especially for maths majors. 

Modelling the praxeological inter-institutions dynamics 
In the foregoing, we have considered one praxeology produced by a research institution in 
mathematics. The online textbook designed by a college lecturer to teach this praxeology 
reveals that the technology of the technique contains fragments of knowledge substantiat-
ed by mathematical proofs deriving from mathematical theories, as well as other practical 
elements, empirically developed by mathematicians as they use the considered technique. 
This part of the technology, being very much linked to the concrete conditions of mathema-
ticians’ activities, may appear within a mathematical education setting. However, it will be 
generally considered of low interest by mathematicians when the dissemination of the 
mathematical praxeologies to other non educative institutions is at stake. This hypothesis 
sustains the following modelling of the transpositive effects on a praxeology produced by a 
research institution and crossing a boundary, that is to say moving from one institution to 
another in order to be used or taught. 

 

  

Figure 1. From 𝑰𝒓 to 𝑰𝒑 , the transposition model 
 
Let us consider the different symbols in this figure which generalises the mathematics case. 

The original praxeology 
𝐼𝑟 is a research institution, namely an institution socially in charge of producing new praxe-
ologies to address certain types of tasks and organising systematic processes of validation 
in order to substantiate their legitimacy and institutionalisation. The arrow between the 
praxeology and the institution represents these institutional processes, which have both an 
epistemological dimension and a social one.  

This research institution may be a scientific one or a technical one. But the category is much 
extended: the crucial point is that 𝐼𝑟 is not directly interested in addressing tasks of the type 
𝑇. For instance, in the French IREM (Instituts de Recherche sur l’Enseignement des Mathé-
matiques), teachers meet to develop collective thinking, design teaching sequences they 
implement in their classes, assess and if necessary consider afresh. They take some distance 
from their daily teaching practices and assume the role of researcher. 

It should be underlined that the validation processes depend on the specific paradigm of 𝐼𝑟. 
In the case of mathematics, the technology is proved by demonstrations, sustained by theo-
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ries that are assessed by the mathematics community. But we know that in physics, the 
relation between claims and theories is very different, not to mention human sciences and 
mathematics education.  

Finally, let us note that the symbol 𝐼𝑟 is a simplification. In fact, a whole hierarchy of embed-
ded institutions are involved in the research activities: laboratories, mathematics journals, 
congresses, etc.  

The transposed praxeology 
An institution, some subjects of which have to address tasks of the type 𝑇, imports the orig-
inal praxeology produced and warranted by 𝐼𝑟. In Figure 1, this institution is represented by 
the symbol 𝐼𝑝 underlining the fact that this institution has only pragmatic relations to the 
praxeology and its development. This 𝐼𝑝 (or hierarchy of embedded institutions) could be a 
research institution of the same domain, using the technique to address other types of tasks 
(e.g. breaking up a rational fraction to integrate it), or of another domain (e.g. Automatic in 
the first part of this text). It could also be a professional institution or an educative institu-
tion (about didactic transposition, see Chevallard 1985, 1989). 

The asterisks express the idea that every component of the original praxeology may evolve. 
This transformation is an object of institutional transactions completed in a specific institu-
tion 𝐼*r , created and controlled by 𝐼𝑟 and 𝐼𝑝. 𝐼*r  is more or less vanishing, the transactions 
are more or less difficult and controversial, depending on several factors: the extent of the 
transformations (e.g. no transformation if 𝐼𝑝  is a mathematics laboratory), the distance be-
tween the two institutional epistemologies (e.g., 𝐼𝑟 is mathematics and 𝐼𝑝 is an experimental 
science), the importance for 𝐼𝑝 that 𝐼𝑟 validates the new technique (e.g., if 𝐼𝑝 is a profession 
such as nursing, with high security requirements, it will be of great importance for this pro-
fessional institution that, the technique remains valid despite the changes), and the im-
portance for 𝐼𝑟 that the transposed praxeology not be too far from the original one (in 
France, it is common for mathematicians to have a critical look on what is taught when 𝐼𝑝 is 
an educational institution).  

At last, this diagram says that a practical technology 𝜃𝑝 is developed and acknowledged by 
𝐼𝑝 on specific empirical bases, possibly sustained by a discourse of second level, which ac-
cording to the ATD is considered as a theory. Hence the symbol 𝛩𝑝 represents a true oxy-
moron, a pragmatic theory. Such object has not yet been thoroughly investigated within ATD 
framework; Castela and Elguero (2013) suggest that the technologies of the validation 
praxeologies developed in the institution 𝐼𝑝  could contribute to such theory. However, the 
extent of this theoretical discourse depends very much on the institution’s nature and may 
be quite limited. Let us notice that this model puts forward, not only the institutional 
knowledge formulated in the technological and theoretical discourse, but also all the social 
processes of validation and acknowledgment (represented by the arrows) which represent 
objects of interest for an anthropological epistemology of institutional praxeologies. For in-
stance, in his PhD dissertation, Morel (2013) shows that during the second half of the 18th 
century, the mining administration in Saxony creates a mining academy in Freiberg to train 
the mine officials and imposes, from 1797, that a mathematics teacher becomes in charge 
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of a geometrical course for surveyors (Markscheider), whereas before, qualified surveyors 
were responsible of the teaching of the practical praxeologies for mining, within the training 
program. Morel substantiates that, at that time, the change does not take place smoothly. 
Such an educative decision from this professional institution is a social acknowledgement of 
the geometrical praxeologies produced by mathematicians. We may assume that organising 
the dissemination of a given praxeology relating to a type 𝑇 for the subjects concerned by 𝑇 
is one of the more primitive and more frequent ways of institutionally acknowledging the 
legitimacy of this very praxeology. 

Other dynamics 
So far, we have only considered a specific case, namely a praxeology produced by a re-
search institution, moving to another institution in order to be used or taught. Yet, even with 
the very broad meaning given to the notion of research institution, we cannot assume that 
the praxeological production is exclusively operated in such institutions. Occupational and, 
more broadly, social settings may develop their own original praxeologies, [𝑇, τ, 𝜃𝑝, 𝛩𝑝], 
within the empirical context of working and of social life. These praxeologies move to other 
institutions in order to be used with possible transpositive effects. Another possibility is that 
a research institution, created by the occupational one or not, investigates [𝑇, τ, 𝜃𝑝, 𝛩𝑝] 
with the objective of improving it and more systematically substantiating its validity. As an 
example, refer to Castela and Elguero (2013) who examined the case of custom dressmak-
ing in Argentina, with various sized institutions involved. We won’t detail this situation any 
further within the limits of this text. 

Conclusion 
In this paper, I have addressed the issue of transitions between secondary and tertiary edu-
cation and between general and professional oriented programs from an epistemological 
point of view. This proposal is centred on the notion of praxeology, an ATD key concept, 
with two directions: a grid to investigate the technology of a technique, based on an analy-
sis of the different needs created by the technique used in a given institutional context and 
a model for the transpositive effects of inter-institutional praxeological dynamics. I think 
that the first tool is especially interesting for mathematics majors’ higher education. In fact, 
it introduces an organisation of mathematical knowledge that gives as much importance to 
types of problems and techniques as to concepts and theories. It also acknowledges the 
necessity of some mathematical practical knowledge as a component of the mathemati-
cians’ expertise. Hence, it may support the design of modules aiming at training the students 
not only to solve problems, but also to draw fragments of this practical knowledge from 
their experience as well as from the proofs given in lectures. 

Furthermore, I believe that the second part of the text is a relevant tool for addressing the 
issue of choosing the appropriate mathematics for professional oriented higher education. 
To tackle this problem, mathematicians need to take some distance with their own culture, 
with their mathematical alma mater, as Chevallard is wont to say. They have to reconsider 
the following questions: which mathematical praxeologies are useful for such engineering or 
professional domains? What needs would be satisfied? Which discourse makes the mathe-
matical technique intelligible? This is actually an epistemological investigation that we con-



khdm-Report, Nr. 05, 2017 

425 

 

sider as a prerequisite to the design of mathematics syllabi for professional training pro-
grams. Mathematics researchers and lecturers are too often not aware of the necessity and 
of the complexity of such an investigation; they are not necessarily prepared for it by their 
mathematics education. This should be accomplished collectively with researchers and pro-
fessionals of the domains using the mathematics at stake in the program. I assume that the 
text’s proposals could first introduce this epistemological problematic and then support the 
investigations.  
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The theory of banquets: epistemology and didactics for the 
learning and teaching of abstract algebra  

Thomas Hausberger 

University of Montpellier 
(France) 

I will sketch in this short communication the main features of an epistemological, didactical and cogni-
tive framework for algebraic structuralism together with an activity, the “theory of banquets” (a 
“banquet” is an invented structure simpler than group theory, still quite rich semantically), which has 
been designed using the methodology of didactical engineering. This activity aims at operating the 
fundamental concrete-abstract and syntax-semantic dialectics and at clarifying the meta-concept of 
mathematical structure using the meta lever. Empirical results obtained from a classroom realization 
of the engineering and also laboratory sessions will be discussed. These investigations lead to a bet-
ter understanding of students' difficulties in abstract algebra which are inherent to structuralist think-
ing. 

Epistemological, didactical and cognitive framework for algebraic 
structuralism 
The structuralist algebra is the result of the abstract mathematics that developed in the first 
third of the 20th century in the German school of Hilbert and Noether. Classical algebra has 
been completely rewritten in terms of abstract concepts: 

This image of the discipline turned the conceptual hierarchy of classical algebra up-
side-down. Groups, fields, rings and other related concepts, appeared now at the 
main focus of interest, based on the implicit realization that all these concepts are, in 
fact, instances of a more general, underlying idea: the idea of an algebraic structure 
(Corry, 2007). 

In other words, the systematization of the axiomatic method by structuralists led to the van-
ishing of concrete mathematical objects in favor of hovering abstract structures. This in-
duces the following didactical problems: the teaching of abstract algebra tends to present a 
semantic deficiency regarding mathematical structures, which are defined by abstract axi-
omatic systems and whose syntactic aspects prevail. How does the learner build an “ab-
stract group concept”? Indeed, what kind of representations can he rely on to do so when 
the purpose is to discard the particular nature of elements, in other words the mathematical 
context? Moreover, the investigation of the didactic transposition of the notion of structure 
shows that it is a meta-concept that is never mathematically defined in any course or text-
book (and cannot be so at this learning stage): 

As a consequence, students are supposed to learn by themselves and by the exam-
ples what is meant by a structure whereas sentences like “a homomorphism is a 
structure-preserving function” is supposed to help them make sense of a homomor-
phism (Hausberger 2013). 
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French philosophers Lautman and Cavaillès have carefully analyzed the thought processes 
engaged in structuralist thinking in terms of fundamental dialectics (form and content, con-
crete and abstract) and two movements, idealization and thematization, that operate 
transversely and lead to different levels of objects-structures, as structures may them-
selves be taken as objects (see Hausberger 2015b for details). Our purpose is to turn these 
epistemological dialectics into didactical dialectics. Moreover, according to Bourbaki (1950), 
“each structure carries with it its own language, freighted with special intuitive references 
derived from the theories from which the axiomatic analysis has derived the structure”. This 
supports Freudenthal's thesis that structures organize phenomena and are connected to 
mental objects: 

Our mathematical concepts, structures, ideas have been invented as tools to organize 
the phenomena of the physical, social and mental world. Phenomenology of a math-
ematical concept, structure, or idea means describing it in its relation to the phenom-
ena for which it was created, and to which it has been extended in the learning pro-
cess of mankind (Freudenthal 1961). 

We shall consider, in abstract algebra, two levels of phenomena/mean of organization: 

• the level of the structure (group, banquet) which organizes phenomena related to 
objects of lower level (principle of organization 1, PO1) 

• the level of the meta-concept of structure, which plays an architectural role in the 
elaboration of mathematical theories using the structuralist methodology (PO2) 

PO1 is related to the movement of abstraction-idealization and implies a dialectical relation 
between the structure and the objects that it formalizes, generalizes and uniformizes. On a 
syntactical point of view, abstraction-idealization amounts to isolating the formal properties 
of the relations between objects in order to produce the system of axioms that describes 
the “logic of relations”. On a semantic point of view, abstraction-idealization leads to the 
identification of all the models (in different domains of phenomena) that share the same 
structure, that is which are isomorphic (principle of abstraction on the basis of a relation of 
equivalence). Therefore, the concrete-abstract dialectic involved in abstraction-idealization 
is carrying a syntax-semantic dialectic and the isomorphism classes appear as intermediary 
between the semantic domain of concrete objects and the syntactical abstract structure. The 
price to pay is the transition from objects to classes. We argue that the reification of these 
classes, that we call structural objects, is important in the conceptualization process of an 
abstract structure, in a similar manner as standard mathematical objects are conceptualized 
by the mean of different semiotic representations which refer to the same object since they 
may be related to one-another by suitable transformations preserving the object. These 
structural objects should be related to mental objects that may be investigated through the 
semiotic representations produced by a learner engaged in the task of classification of mod-
els.  

PO2 is concerned with abstraction-thematization and requires a meta-cognitive point of 
view on the first movement of idealization. The relational point of view is extended from 
the elements (a structure encodes relations) to sets of elements through the notion of ho-
momorphism (whose kernel defines distinghished sets) and leads to a combinatorial of 
structures (sub-structures, quotients, products of structures, canonical decompositions into 
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simple sub-structures, in other terms structural theorems). Understanding the structural di-
mension of abstract algebra thus requires the consideration of different structures and some 
form of reflexive thinking. 

The theory of banquets 

Our approach bears some similarities with the exercises of mathematization elaborated by 
Steiner at the secondary school level in the context of the New Math reform (Steiner 1968) 
and his “spiral approach” to algebraic concepts. It is also inspired by Freudenthal's didactical 
phenomenology of mathematical structures. As a piece of didactical engineering (Artigue 
2009), it relies on the epistemological analysis of algebraic structuralism sketched above 
and on Brousseau's theory of didactical situations (Brousseau 1997). 

A banquet is a set 𝐸 (the objects) endowed with a binary relation 𝑅 (encoding the relations 
between objects) which satisfies the following axioms: 𝐴1. No object fulfills 𝑥𝑅𝑥 𝐴2. If 𝑥𝑅𝑦 
and 𝑥𝑅𝑧 then 𝑦 = 𝑧 𝐴3. If 𝑦𝑅𝑥 and 𝑧𝑅𝑥 then 𝑦 = 𝑧. 𝐴4. For all 𝑥, there exists at least one 𝑦 
such that 𝑥𝑅𝑦. The banquet structure benefits from a very interesting diversity of models 
that may be constructed in a diversity of mathematical frameworks using different semiotic 
representations: an empirical setting (“wedding banquets”), models built in set theory or 
using matrix theory, graph theory, function theory or permutation theory. One framework 
may be more adequate than the other depending on the task and different treatments may 
be described to convert from a setting to another (see Hausberger 2015a). 

As an activity, the banquet theory is divided into three main sub-activities: the construction 
and classification of models, an activity of definition by axioms of “tables” (an abstract char-
acterization of the configurations of people sitting around round tables), and an activity of 
theoretical elaboration (definition of a sub-banquet, an irreducible banquet, the banquet 
generated by an element, and finally the statement and proof of the structural theorem of 
banquets of finite cardinal: any finite banquet is the disjoint union of tables). These sub-
activities aim respectively at developing among learners the semantic aspects of abstrac-
tion-idealization, its syntactical aspects and finally the process of abstraction-thematization. 
The full banquet worksheet is available in Hausberger (2015b) and the first sub-activity is 
discussed in Hausberger (2015a). 

Meta discourse (for instance the relational point of view provided by abstract systems of 
axioms) is introduced in the milieu throughout the worksheet. The adaptation of the learner 
sought for in this game against a milieu dedicated to the learning of structuralist thinking 
implies reflective abstraction: the analogy between banquet theory and group theory shall 
entitle the learner to thematize such notions as a sub-banquet or an isomorphism of ban-
quets, for instance, and facilitate the task of classification of models. A finite banquet is 
nothing but a permutation without fixed points and isomorphism classes of banquets corre-
spond to conjugacy classes of permutations, which explains why the theory of banquets is 
mathematically interesting yet wouldn't be found in any textbook. Nevertheless, this analo-
gy is quite hidden since a binary relation appears quite different from a composition law. Our 
point is also to allow the development of a mental image of union of circles underneath the 
banquet structure (which correspond mathematically to the canonical decomposition of a 
permutation into cycles), in order to implement Freudenthal's idea. 
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Summary of empirical results 

A classroom implementation of the banquet activity has been carried out at Montpellier Uni-
versity with third year students having a background in group theory before teaching ring 
and field theory. Students' preconceptions regarding the meta-concept of mathematical 
structure had previously been collected through a questionnaire. Interestingly, our data 
(Hausberger 2015b) confirm an interrelation between the state of development of the me-
ta-concept of structure and the ability to accomplish the tasks proposed in the banquet ac-
tivity. For instance, students who do not clearly distinguish the level of objects and the level 
of structure develop a semi-empirical banquet theory or classify banquets using syntactical 
methods without articulation of syntax and semantics, whereas the integration of both prin-
ciples OP1 & OP2 seem to allow students to use the organizing dimension of concepts in the 
proofs. These findings support the pertinence of our approach as a lever for the learning of 
abstract algebra. 

The classroom sessions with small groups of students and two laboratory sessions with pairs 
of students both illustrated the important role played by the phenomenological mental im-
age of wedding banquets as an anchor point to syntactical reasoning on the axioms and to 
the classification task. Different levels of intertwining between this mental image and math-
ematical symbolism are visible in the students' procedures, in particular the introduction of 
graph theory for a synthetic representation of relations and the recognition of isomorphism 
classes through visual patterns. 

Laboratory sessions also shed light on a persistent erroneous conception in the abstraction-
idealization process induced by the algebraic symbolism: the banquets defined by 𝑥𝑅𝑦, 𝑦𝑅𝑧, 
𝑧𝑅𝑥 and 𝑥𝑅𝑧, 𝑧𝑅𝑦, 𝑦𝑅𝑥 are considered as two different classes within an abstract classifica-
tion because algebraic symbols may represent any element and the relation is unspecified. 
Overcoming this obstacle requires the isomorphism concept as a one-one correspondence 
which coordinates related elements. The mental image of a permutation of people around 
the table and the extension to a coordination of “chains” of related elements helped stu-
dents to build a concept of isomorphism on its etymology of structure-preserving transfor-
mation, in coherence with visual patterns. 

Obstacles related to abstraction-thematization were also identified: for instance, working 
out the analogy between the cyclic banquet on the set 𝒁/4𝒁 and the group (𝒁/4𝒁,+) re-
quires to abstract the type of the relation and focus on the process of its iteration, which is 
conceptually demanding. Group Theory may appear both as an anchor point and as an ob-
stacle. 
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Towards the reconstruction of reasoning patterns in the 
application of mathematics in signal theory  

Reinhard Hochmuth1, 2, Stephan Schreiber1 

1Leibniz Universität Hannover, 2Leuphana Universität Lüneburg 
(Germany) 

This contribution discusses a possibility for conceptualizing didactically relevant aspects of advanced 
mathematical subject matter in such a way that fits with subject scientific categories considering 
mathematically learning as a societal mediated process according to Holzkamp (1993). Our concern 
requires analyzing subject matter, teaching and “university” not as conditions that cause reactions but 
as meanings in the sense of generalized, societal reified action possibilities. In particular we are argu-
ing on a view reconstructing cognitive relevant aspects of recognition rules (in the sense of Bern-
stein). Such aspects could inform the analysis of specific selection processes between discourse pos-
sibilities and the difficulties students may have in recognizing whether a task has to be understood as 
a mathematical or an electrotechnical one. 

Introduction 
This paper contributes to an ongoing major research project that describes and analyzes 
form and content of advanced mathematics and its teaching and learning from a “subject 
scientific” point of view. This approach grounds in the so called “Critical Psychology”, 
worked out in Holzkamp (1985), see also Tolman (1991). Recently this theory becomes in-
ternationally more known within the mathematics education community due to Roth & Rad-
ford (2011), who value “German Critical Psychology” as a further development of the cul-
ture-historical approaches by Leontjev (1978) and Vygotsky (1978).  

The main features of “Critical Psychology” and its subject scientific point of view are well 
elaborated psychological categories for describing and analysing subject related experienc-
es, in particular thoughts, actions and learning, in such a way that major societal aspects are 
inherently incorporated. Within this framework there is so far not much (if any) research 
done that relates to mathematical learning in the context of higher education. 

The structure of the paper is organized as follows: At first we sketch concepts from the sub-
ject scientific theory that are relevant for an embedding of our observations concerning the 
use of mathematics in signal theory (Hochmuth & Schreiber, 2015b); in particular we de-
scribe shortly the subject scientific concepts of meaning and reasoning patterns. Then we 
demonstrate in the following, how elements of Bernstein’s theory could contribute to work-
ing out basic facets of meanings and reasoning patterns. A short outlook concludes the pa-
per. 

Subject Scientific Approach (“Critical Psychology”)  
Critical Psychology claims to present a scientific discussable and criticizable elaboration of 
basic psychological concepts (categories). The starting point is a historical-empirical investi-
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gation of general historical-specific characteristics of relations between societal and individ-
ual reproduction.  

Within the context of this paper there are two important points to notice: First, the actual 
historical-specific form of subjectivity is characterized by the so called “possibility relation” 
with respect to the societal reality, which gives and includes in particular the basic experi-
ence of intentionality and makes consciousness to a prerequisite for the societal reproduc-
tion. Second and connected to the first, the specific modality of subjective action experienc-
es comprises a certain discourse form (“I” speak about my “own” actions in terms of subjec-
tive reasonable actions and of premises in the light of “my” living interests.) that character-
izes to some extent the specific subject scientific standpoint. 

According to this modus, world conditions are given in terms of meanings in the sense of 
generalized societal action possibilities. Meanings of reality aspects, which are relevant for 
“me”, become premises. Consequently, subject scientific considerations are essentially giv-
en by premises-reasons-relations. 

In “Critical Psychology” meanings and their mediation role do not only represent social-
interactive but also societal aspects grounded in relations between production and repro-
duction. Via meanings, human activities, like teaching and learning, can be thought as socie-
tal mediated. An analysis of subject activities regarding its societal mediation requires an 
adequate conceptualization of the objective situation of the subject. As representations of 
subjectively relevant objective conditions they have to be describable and analyzable as 
generalized action possibilities, hence meanings. 

Since meanings appear (via objective-subjective premises) to some extent as the medium 
within which subjective action reasoning is grounded, their study is a prerequisite for de-
scribing and analysing related cognitive, motivational and emotional processes as aspects of 
subjective activities like learning under concrete societal conditions.  

Meanings in the indicated sense are relevant for acting and thinking, but do not determine 
them. Furthermore, they are not only of linguistic-symbolic nature, but objective-societal 
objects, to which symbols relate. Of course, in particular in mathematics and science, sym-
bols are objects by their own and acting with them underlies rules that are epistemologically 
and institutionally determined and are also determined as elements of a scientific or peda-
gogical discourse. 

The Issue “Recognition Rules” 
Embedded in the presented subject-scientific approach we applied (amongst others) some 
basic ideas from Bernstein’s (1996) theory (in particular the concepts classification, recogni-
tion- and realization-rules) for the reconstruction of how students handle the different 
mathematical praxeologies in solving typical signal theory tasks. Within our framework the 
goal is to figure out so called reasoning patterns and in particular the conscious-unconscious 
setting of premises. An important dimension in those analyses is the differentiation be-
tween ostensive and conceptual thinking and its relation to recognition-rules. Following 
Holzkamp (1985) the opposition between ostensive und conceptual thinking represents (to 
some extent) the historic-specific societal character of the cognitive aspect of human ac-
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tions, that is the concretization of the general historic-specific opposition between restricted 
and generalized action potence with respect to “thinking”.  

According to our observations (Hochmuth & Schreiber, 2015a) about the epistemological-
philosophical background of the use of mathematics in signal theory and corresponding 
analyses within the framework of the Anthropological Theory of Didactics, the students 
have somehow to accept a certain type of inconsistencies and to “learn” that they should 
neglect specific aspects from discourses, for example they have to ignore concept defini-
tions and at the same time, they have to realize aspects from them, for example specific 
parts of “concept images” (Hochmuth & Schreiber, 2015a, b). In other, Bernstein’s (1996) 
words: The students have to understand the context specific principles of knowledge classi-
fication (recognition rules) and to apply correctly related “realization rules” in view of solv-
ing tasks.  

Our further empirical investigations show that sometimes tasks send “wrong” signals, that 
is, they look like mathematical tasks from higher mathematical courses for engineers. Nov-
ices in the field then try to apply arguments and techniques from the mathematical dis-
course but often fail in solving the tasks because of the arising complexity. It requires time 
and experiences until the students recognize that the electrotechnical discourse establishes 
some different but subject dependent more efficient techniques (realization rules) that leads 
to more satisfactorily results. Recognition and realization rules are obviously in strong rela-
tion to the selection of premises as well as to contents and structure of reasoning processes. 

An Example from Signal Theory 
A typical signal theory task looks at follows1: Let be given a low-pass-bounded signal 𝑠(𝑡) 

with Fourier transform 𝐹{s(t)} = � 1, for
 0, for 

  ∣ 𝑓 ∣ ≤  𝑊
∣ 𝑓 ∣ > 𝑊   

. Considering  𝑠(𝑡) as input signal classify 

the following assertions as true or false and justify your answer: i) The band-with of the 
output signal generated by a linear system is always less or equal to W.  ii) The band-with of 
the output signal generated by a linear time-invariant system is always less or equal to W.  

Ad i) A solution based on the premise that the task is to understood as mathematical looks 
as follows:  

The system function 
0 02 2

0( ) cos2
2

i f t i f te eh t f t
π π

π
−+

= =  gives for 𝑠(𝑡) by 

{ }02
0( ) ( )i f tF e f f fπ δ= − and 

 

the output signal with spectrum which represents a sig-

nal with a shifted band-with. Hence the assertion i) is false.  

                                                 
1 The authors are grateful to Prof. Dahlhaus (University of Kassel) for placing the task and student solutions at 
our disposal.  
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An answer that interprets the task as signal theoretical would be: In a general linear system 
the transfer function changes in time, which could induce new frequencies and change the 
band-with. 

Ad ii) “Mathematical solution”: For a linear and time-invariant system the output signal of 
the input signal 𝑔(𝑡) is given by  

𝐹{𝐿(𝑔)(𝑡)}(𝑓) = 𝐻(𝑓)𝐹(𝑔(𝑡)}(𝑓). 

This relation implies that the assertion is true, since supp 

            𝐹{𝐿(𝑔)(𝑡)} ⊆ supp 𝐹{𝑔(𝑡)}. 

“Signal theory solution”: Since the transfer function does not change in time, no new fre-
quencies arise. 

Checking the approaches presented in the course lectures and the course material we ex-
pected in part ii) that both types of solutions arise in the students’ homework. In fact mainly 
solutions that fit into the mathematical-type were given. In the subsequent observational 
study also signal-theory-type solutions were presented.  

All reasoning trials to part i) are of mathematical type. While the students’ homework solu-
tions are far from being correct and complete, the answers in the observational study 
(shortly after the exam) were mainly correct. Despite the complexity of the mathematical-
type solution no student tries a signal-theory-type solution.  

Outlook 
In a next step one has to reconstruct typical premises-reasons-connections as part of the 
general causes-reasons-connections including the differentiation between ostensive and 
conceptual thinking, which will enclose further empirical research questions regarding tasks 
and solution processes and where among others video and interview data will be used. 
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In-depth interviews as a tool in didactics of mathematics  
Walther Paravicini1, Jörn Schnieder² 

1Wesfälische Wilhelms-Universität Münster, 2Universität zu Lübeck 
(Germany) 

We aim at characterizing what mathematical experts and novices think about scientific learning and 
research: about the epistemology of their subject, about relevant skills and about beneficial attitudes, 
as well as biographical features (dis)advantageous for prolific scientific work. To gain significant quali-
tative data we adopt techniques for in-depth interviews that include associative and projective meth-
ods stemming from systemic and person-centred counselling. One long-term goal is to obtain evi-
dence-based recommendations on how to establish adequate propaedeutics in secondary and ter-
tiary science education in the STEM fields.  

Person-centered methods in didactics  
Why is it that mathematicians do mathematics? And how do they conceptualise what they 
are doing? To an outside observer, the behaviour of researchers in, say, pure mathematics 
might be somewhat puzzling: they struggle with mathematical problems, sometimes for 
weeks or months, sometimes all by themselves, and mostly with intangible outcomes at 
best.  

A detailed and evidence-based answer to such questions might have consequences for how 
we teach mathematics, especially on university level, and how we counsel our students 
with respect to their learning on a cognitive, meta-cognitive as well as emotional level. But 
there appears to be very little known about these questions in the bold generality in which 
we have formulated them, apart from occasional anecdotes there seems to be mainly the 
study of Burton (2004). 

There are several equally legitimate points of view on this type of questions, most notably 
the psychological, concentrating on the individual and what she experiences, and the socio-
logical or ethnographic, focussing on mathematicians as a group with shared narratives and 
a particular “culture”. From both points of view, a quantitative large-scale study1 should be 
preceded by a phase of thorough exploration to provide the necessary categories and the 
necessary theoretical background, and we suggest that person-centered methods are par-
ticularly well-suited for this task. 

Person-centered methods have a long history in both fields, psychology and ethnography: 
Person-centered interviews provide a way to treat the interviewee not only as an “inform-
ant” who might be asked why he thinks mathematicians do mathematics, but also as a “re-
spondent” who is him- or herself an object of study – observed as she speaks as freely as 
possible about her own relevant experiences, beliefs and attitudes (Levy and Hollan 1998, 
Rogers 1957, Langer 2000). 
                                                 
In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
urn:nbn:de:hebis:34-2016041950121 
1 This article is partially based on discussions in the context of a (projected) cooperation with Aiso Heinze, Anke 
Lindmeier and Irene Neumann, IPN Kiel. 

http://nbn-resolving.de/urn:nbn:de:hebis:34-2016041950121
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What makes person-centered methods interesting in a didactical setting is the fact that they 
lend themselves quite easily to being applied in counselling and learning environments 
(Cornelius-White & Harbaugh 2007). In this presentation, we will highlight person-centered 
methods as both, empirical and didactical tools.  

The importance of narratives of scientific learning and research 
A central part of person-centered interviews is the choice of questions and stimuli designed 
to help the interviewee to make contact with her inner experience and to freely talk about 
relevant events, attitudes, beliefs, feelings etc. For us, the most relevant aspects are the 
internal self-concept of the interviewee as a scientist and how he or she experiences the 
process of doing mathematics. 

In the case of scientists and their individual motivation, there is some evidence that the self-
concept is of paramount importance compared to other motivational factors. Indeed, a study 
of James C. Ryan (2014) on the work motivation of UK-based research scientists (N = 405) 
working in the chemical, biological and biomedical research domains suggests that internal 
self-concept motivation is a key factor for the work motivation of scientists; this source of 
motivation is one of five compared in the study and “represents an individual’s motivation 
to adhere to their [sic!] internal standards of traits, competencies and values”. The other 
four are (in descending order of their measure of importance) goal internalisation motiva-
tion, intrinsic process motivation, external self-concept motivation, and instrumental motiva-
tion. 

These rather general findings do not clarify what the self-concept of a mathematician might 
actually look like (and it is of course likely that it is not stable over time). The self-concept 
might be approached by analysing the narratives that scientists tell about their learning and 
their research. Of course, one should not necessarily take these narratives at face value, but 
they are of ethnographical interest in their own right and might serve as a starting point for 
an interview that opens up a space for the interviewee to talk about his or her inner experi-
ences more deeply. 

Narratives of scientific learning and research 
One type of narrative that can be found in preambles and other parts of school and universi-
ty curricula is the narrative of mathematics as an instrument to achieve goals that are out-
side of mathematics, e.g. mathematics as a tool to be used in other sciences or as a means 
of enhancing argumentative competencies to be employed in other contexts. 

We can supplement these narratives with dissenting stories that seem to be highly relevant 
for the self-concept of prolific scientists.  

An archetypical example 
Richard Feynman, the world renowned theoretical physicist, gave the following account of 
his attitude towards his research at Cornell University; there, he had taken up a job in the 
late 1940ies after having spent several years at Los Alamos, working diligently on the con-
struction of the atomic bomb (Feynman 1985, emph. In original): 
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Then I had another thought: Physics disgusts me a little bit now, but I used to enjoy 
doing physics. Why did I enjoy it? I used to play with it. I used to do whatever I felt 
like doing – it didn't have to do with whether it was important for the development of 
nuclear physics, but whether it was interesting and amusing for me to play with. […] 

So I got this new attitude. Now that I am burned out and I'll never accomplish any-
thing, I've got this nice position at the university teaching classes which I rather en-
joy, and just like I read the Arabian Nights for pleasure, I'm going to play with physics, 
whenever I want to, without worrying about any importance whatsoever. 

Feynman went on to not only ponder upon the physics of how flying dinner plates wobble 
when rotating, but he also did the work on quantum electrodynamics that finally won him 
the Nobel Prize. 

Feynman was, in many ways, not the typical scientist. But this story presents us with an 
archetype of the kind of rhetoric many scientists might use to describe their perspective on 
research: The allusion to the polarity of work and play, combined with the expressed belief 
that this polarity is not a complete description of what is going on in research as play is sup-
posed to be an integral part of how a (pure) scientist might actually work. 

Of course, also Feynman would surely admit that play is not the only way to do research – 
after all, he has been part of the Manhattan project, an endeavour where all means were 
directed to a single goal, the atomic bomb, and no bit of research was supposed to be an 
end to itself. But to us, it is an interesting question where eminent scientists position them-
selves with respect to the relation of work and play in research and how their attitude to-
wards play is related to their very eminence. 

Rhetorics of play 
The narrative of play that we have just met is surely worth to be analysed a little further. In 
his seminal book “Homo Ludens” (“Man the Player”), Johan Huizinga paints the image of 
play as a driving force behind most if not all human culture (Huizinga 1955). Building on his 
work, Roger Caillois provides the following, now classic characterisation of play (Caillois 
2001):  

Play is free, not obligatory; it is separate – circumscribed within limits defined and fixed in 
advance; it is uncertain, and some latitude for innovation is left to the player’s initiative; it is 
governed by rules; it is accompanied by a special awareness of a second reality; it is unpro-
ductive in that it creates no wealth and ends as it begins. 

If you replace “play” with “pure scientific research” in this definition then one could argue 
that you get a reasonably good description of the kind of research Feynman seems to have 
had in mind (at least if you interpret “unproductive” as “not being intended to be produc-
tive”).  

A more subtle and more diverse image of play can be obtained by considering various rhet-
orics of play as was done by Brian Sutton-Smith (1997) – he lists seven of them. Feynman’s 
narrative evokes what Sutton-Smith calls the Rhetoric of Self: it interprets “play in terms of 
subjective experiences of the player […]; it is an optimal experience, an escape, a release; it 
is intrinsically motivated […].” This rhetoric has its natural counterpart in a Rhetoric of Fri-
volity that denigrates play as a “waste of time, as idleness, as triviality, and as frivolity”, 
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rooted in what might be called a puritan work ethic. The opposition of work and play can 
itself be analysed as a rhetorical figure and appears to be closely connected to Western cul-
ture. So putting Homo Ludens, in opposition to Homo Faber (“Man the Worker”) is itself part 
of a narrative. 

Methods to gather narratives and to facilitate self-clarification 

Person-centered interview methods 
“Person-centered interviews are a mixture of informant and respondent questions and 
probes. A probe is an intervention to elicit more information, not necessarily in the form of a 
question.” (Levy and Hollan 1998). The corner stones of person-centered methods are the 
accepting attitude of the interviewer towards the interviewee and their relationship (Rogers 
1957, Langer 2000). “Probes” that might be used in a person-centered interview on the 
self-concept of mathematicians could comprise: 

• A “mathematical fever chart”: The interviewee is asked to map his “mathematical 
biography” on a sheet of paper, as a graph that resembles a fever chart; the time 
frame could include the time spent at school and university. The particular meaning 
of “high” and “low” can remain somewhat ambiguous when the task is assigned to 
the interviewee, the idea being to leave as much space as possible to the interview-
ee. The interviewee is then asked to name and describe critical points of the graph, 
giving the interviewer some insight in some emotions and narratives connected to 
relevant events in the interviewee’s biography. 

• A collection of narratives is offered to the interviewee. This could take the form of 
short texts, each on a single card, or even of drawings or other images. The narra-
tives could be taken from Sutton-Smith’s list of narratives of play, a list that could ac-
tually be read as a list of ways to (consciously or unconsciously) justify acts in gen-
eral, together with ways to denounce certain acts as immoral or frivolous. The inter-
viewee is now asked to choose cards that he or she considers relevant (for example 
in light of the biographical information provided in the chart described above). She 
can now elaborate on how she relates to the narratives on the cards and how her 
own narratives differ. It is important to include some blank cards to allow the inter-
viewee to substantiate further narratives; more confident interviewees can be asked 
to draw their own drawings on a card, turning this method into a projective method.  

• To increase the authenticity of the situation, the interviewee might first be asked to 
attack a brain teaser (e.g. a mathematical problem) and to comment on it. It has be-
come apparent that mathematicians quite often react quite strongly and emotionally 
on mathematical problems that they consider interesting (for further information and 
a more thorough didactical analysis see (Friedewold & Nicolaisen & Schnieder 
2015)). This method could replace the “mathematical fewer chart” in that it provides 
occasions to talk about narratives of doing mathematics. 

These and further person-centered methods can be used in an interview setting – ideally, 
not only is the audio of the interview transcribed afterwards, but also the relevant para-
verbal and nonverbal communication is monitored.  
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Quite obviously, such an interview can be transformed into a learning environment to en-
hance the self-awareness of the client by simply replacing the roles of interviewer and in-
terviewee with the roles of teacher/counsellor and student/client.  

A pedagogical workshop 
The workshop we have planned together with Frauke Link, HTWG Konstanz, is aimed at 
mathematics lecturers who are ready to examine their mathematical biography. The work-
shop proceeds on two different levels: First, we try to offer the participants a framework for 
biographical self-clarification and to ponder on the question: “Why do I do mathematics?” 
Second, we want to investigate whether the participants’ answers contain objectifiable nar-
ratives.  

The twofold objective of the workshop raises a dilemma: the dilemma between free explo-
ration and structured self-examination. The workshop wants to offer help in a very personal 
area of self-clarification, in which every participant can explore him- or herself freely and to 
the depth of his or her choice; the categories to describe this exploration should be found, 
formulated and explored autonomously. 

The subjective diversity that is associated with free self-exploration could of course be 
avoided by a structured self-examination, in which the categories of self-clarification and 
self-description are specified in advance and thinking and perception are thus objectively 
channelled, for instance in the course of a very explicitly structured interview. There does 
not seem to exist any guideline, any universally approved principles, factors or terminology 
on which autobiographically oriented attempts to examine oneself could be based and that 
could be used to separate significant, i.e., transforming experiences in the transition to being 
a mathematician from “Erfahrungskitsch” (“experience kitsch”, Mollenhauer 2008). 

The didactical point of our workshop – our attempt to bypass this dilemma – consists in es-
sentially reducing the question “Why do I do mathematics?” to the examination of the fol-
lowing five groups of questions: 

• Where did you first encounter mathematics unbraked/unretarded? Which values and 
which social role was presented to you in the process? 

• To you, how was mathematics represented in school/university? How was mathe-
matics communicated and taught to you there? 

• How self-determined were you in developing and contributing your mathematical in-
terests in school/university? When did you become the autonomous subject of your 
learning of mathematics? 

• How much was expected of you as a student? Could it have been more? When was 
the first time you solved mathematical problems autonomously? 

• Do these experiences still have an impact on your mathematical identity today? To 
what extend? 

The point of these five groups of questions is their orientation towards general pedagogical 
theories (Mollenhauer 2008, Benner 2012). According to these approaches, upbringing and 
education (“Bildung”) are constitutive for how human beings become humans, i.e., for what 
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then realizes itself as (mathematical) personality and identity. Hence, personality as a result 
of educational processes can be reconstructed as the integration of experiences of an indi-
vidual with presentation, with representation, as an autonomous subject of its own learning 
(“Bildsamkeit”), with self-regulated learning (“Selbsttätigkeit”) and with identity. 

In this respect, they span the elementary topics of the process of biographic self-assurance. 
If, therefore, Kant (1900) states in the introduction of his lecture on education: “Man can 
only become man by education. He is merely what education makes of him. It is noticeable 
that man is only educated by man—that is, by men who have themselves been educated.“, 
then we conclude from this: human identity forms itself in relation with and delimitation of 
educational processes faced by the individual. And these processes have an objectifiable 
basic structure that we try to capture by the five groups of questions that we have given 
above. 

Given the generality but limited number of these questions, we remain this side of a semi-
structured interview; we thus avoid the perspective on the individual plurality of biograph-
ical formations to be prematurely constricted by predetermined categories. Then again, we 
should not present the abovementioned questions without comment: we make it clear that 
the coarsely prestructured questions are meant to partially release the participants from 
preliminary conceptualizing and analyzing.  

First categories found in an explorative study 
At a conference on tertiary mathematics education, Frauke Link conducted a workshop, 
along the above-mentioned lines, with mathematicians (N = 15) from several universities in 
Germany who had varying degrees of experience as lecturers or teachers. The qualitative 
(written) data that we gathered at the workshop was complemented by three in-depth in-
terviews. From this data, we have extracted a first list of categories that we wish to refine 
by further qualitative research: 

1) Applications to the real world: This narrative is characterised by the allusion to real 
world or scientific applications of mathematics that lie outside mathematics itself. 
The mathematical language or mathematical results are highly relevant for other 
fields such as physics, engineering etc. and the relevance of mathematics lies in 
both, how it increases our capability to understand the world and how it enables us 
to design products such as computers, cars, etc. Typical examples of statements in-
clude “mathematics is the language of reality”. 

2) Reliability of logic: The characterizing feature of this narrative is that doing mathe-
matics is perceived as something positive because it allows the mathematician to 
take part in a pure and reliable world. This world is experienced as being supportive, 
clear, reliable and therefore enjoyable. One is lead to contrast it to the real world 
which is perhaps perceived as unreliable, unpredictable or obscure. An archetypical 
example is reproduced below (“I sense happiness when I reconstruct/comprehend 
proofs and I perceive mathematical structures as capable of bearing.”). 
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3) Epistemic curiosity: This narrative highlights the curiosity of the researcher and her 
wish to better understand mathematical structures. It embeds into the ancient and 
venerable narrative of the epistemic curiosity of scientists (“Men pursue science in 
order to know, and not for any utilitarian end.” – Aristotle, cited after Posnock 
(1991)), but the objects of curiosity have a very particular, abstract form. “Even to-
day, to recognize and to understand structures is my main motivation when dealing 
with mathematics.” 

4) Meanings and bonds: One interviewee summarized this narrative as follows: He re-
ported that he was fascinated by mathematical problems and by giving meaning to 
the mathematical contents he encountered to add: “And that was, many times, a 
love-hate relationship that […] only develops if you are very closely connected to 
something. This is, I think, similar as it is in interpersonal relationships.” 

5) (Frivolous) play: This is the narrative mentioned above and exemplified by a quote 
by Richard Feynman. It was much less prominent than expected when we collected 
our data in the rather non-directive way described above, but our interviewees could 
sympathize with it when it was offered to them directly after the actual interview. 
This may hint to the fact that narratives that may seem socially undesirable are un-
derrepresented in such an open format of inquiry. In a quantitative follow-up to this 
study, this issue will have to be addressed. 

6) Talent for mathematics: A narrative that is not typical for mathematics as a science 
or, in fact, scientific pursuit in general, but can potentially be found in most profes-
sions is the narrative of talent. It can take a rather self-determined form (“Because I 
can do it better than anything else.”), but there are variants that allude to a certain 
lack of autonomy (“It was like sliding into [mathematics] via physics.”). 

7) Immediate gratification / flow: The narrative of mathematical problem solving 
providing flow experiences (with the solution being immediately gratifying) might 
seem to be very unspecific at first glance, but there are some special features to it: 
In school, students might encounter many mathematical tasks that provide clear and 
immediate feedback (in contrast to tasks in other subjects such as art or history), 
which could make mathematics gratifying for high-performing students. And you can 
suspect mathematical problems to allow for flow experiences in a particularly wide 
range of circumstances (while riding your bicycle, late at night in bed, while painting 
your walls, etc.).  

The audience of the talk kindly suggested two additional narratives that did not show up in 
our data set so far: Mathematics as a (competitive) sport and the wish to teach mathemat-
ics. The first of the two might be underrepresented as it might have some socially undesira-
ble aspects (at least in a German context). We are curious whether the second of the two 
will eventually show up as a primary narrative with a sizable number of interviewees, or 
whether it might have a mostly secondary nature, relying on some other narrative (“… and I 
would like to pass this on to other people.”). 
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Outlook 
Several questions arise naturally from this first part of our study:  

• How are the narratives related to the actual experiences of students in school and at 
university? In what sense might they be “true” and how relevant is this “truth” to 
the self-image of a person doing mathematics? 

• How can we turn this analysis into a valid quantitative tool that can tell us something 
about the distribution of motivating factors among a population of students? 

• If we want our schools and universities to “produce” capable graduates in the STEM-
subjects, (how early) should we take the motivational structure of scientists into ac-
count? 

• Is our list “complete” in the sense that it captures all the relevant narratives? 

• If we reframe our research tools as tools of self-clarification, are person-centered 
methods effective and how much can already be accomplished in a workshop set-
ting? 

Next, we are going to focus on the final two questions: A “complete” and accurately defined 
list of narratives seems to be of value in its own right, and we regard self-clarification as so 
fundamental for learning a subject that providing effective tools to facilitate it is certainly 
worthwhile. 
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From high school to university mathematics: 
The change of norms  
Kristina Reiss, Kathrin Nagel 

Technische Universität München 
(Germany) 

There are important differences between high school and university mathematics e. g. with respect 
to language, modes of argumentation, or ways of presentation. These differences can be regarded as 
representing different norms in the high school and in the university classroom. The contribution will 
provide a theoretical embedding of these ideas. Moreover, we will present data, which support the 
hypothesis that this change of norms is an important challenge for university students.  

Transition from school to university mathematics 
The transition from high school to university mathematics is challenging for many students 
(e. g. Hoyles, Newman, & Noss, 2001). Large dropout rates in mathematics, science, and 
engineering programs demonstrate that many students fail in overcoming the gap between 
high school and university (Heublein, Richter, Schmelzer, & Sommer, 2014) particularly with 
respect to mathematics. A major problem might be the change of norms between high 
school and university mathematics. Norms valid at school are possibly not valid at the uni-
versity level (Beitlich, Moll, Nagel, & Reiss, 2015), and new norms may emerge in the math-
ematics class yet unknown from high school mathematics. In particular, norms for using lan-
guage to express mathematical statements or explanations, norms for arguing mathemati-
cally, the norms for presenting results change between high school and university classes. 

Changing norms during school and university mathematics 
The phenomenon – namely students’ problems with mathematics particularly in their first 
year of university studies – is in principle, well known. We will argue in the following that it 
can be described based on different theoretical lines. On the one hand, we will refer to 
Bruner (1966) and his notion of different modes of representation of knowledge and his 
proposition of a spiral curriculum as a consequence. On the other hand, we will refer to Oser 
and colleagues and their theory of negative knowledge (Oser & Spychiger, 2005).  

With respect to the theories of Bruner (1966), children e. g. at the primary school level will 
not be able to solve problems in the same way and at the same level as students at high 
school, but they will probably be able to perform in the same context and get an adequate 
solution but at a different level. His theory is based on the idea that children are able to 
learn everything at a level appropriate for their stage of development. This can be illustrated 
with the example of reflection across a line in the plane. At primary school, the appropriate 
level might be folding paper, drawing a geometrical figure, or using a geoboard in order to 
discover the symmetry of a figure. At the lower secondary level, the concept of the reflec-
tion is introduced in a more abstract way. Accordingly, students should be able to identify 
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the reflection of an arbitrary geometrical object through construction with circle and ruler. At 
the university level, this concept becomes even more abstract: now a reflection is repre-
sented as matrix, and students are supposed to express a reflection as function, to design 
the matrix, and to calculate a specific image. The methods used at the different stages of 
development represent valid aspects of knowledge with respect to the underlying concept 
and the scope of the concept.  

Though the aspects may be regarded as representing valid mathematics knowledge, at the 
university level e. g. paper folding is generally not accepted as solution of a problem. Ac-
cordingly, students will not only learn which strategies will solve a problem but whether 
they are assessed adequate. Understanding the lack of adequacy may be seen as negative 
knowledge, a concept introduced by Fritz Oser (e. g. Oser & Spychiger, 2005). Negative 
knowledge is usually described as knowledge of errors, however Gartmeier, Bauer, Gruber 
and Heid (2008; p. 89) extend it to “nonviable knowledge that is heuristically valid”.  

Taking into account these theoretical perspectives, norms for doing mathematics may be 
regarded as changing in particular between high school and university level. High school 
mathematics will usually include less formalism. Moreover, it is less important to use the 
exact terminology. Mostly, the results can be described in everyday language, especially 
when they are discussed in the classroom. At the university level, the correct use of math-
ematical language plays an important role, especially in reasoning problems where an exact 
argumentation is necessary. Also the modes of argumentation are different at the university 
level. At the high school level, statements are often explained more empirically and narra-
tive and/or with the help of examples. In contrast, at the university level the typical argu-
mentation is driven by an axiomatic-deductive approach and the presentation of arguments 
is formal. As a consequence, students are not acquainted to high formalism and might 
struggle with it at the beginning of their studies. 

Research Focus 
Norms in the mathematics class should particularly address use of language, modes of ar-
gumentation, and ways of presentation. It is assumed that there are important differences 
between high school and university level. Accordingly, answers of first-year students will be 
analyzed with respect to their (1) correct use of mathematical formalism and terminology, 
(2) modes of argumentation and, (3) ways of presenting the answers. 

Method 
To analyze these three aspects, students’ solutions of mathematical reasoning problems 
were examined. The items were related to the high-school curriculum so that students had 
the prerequisites for solving them correctly.  

Participants 
In this study, N = 439 (N = 353 male) first-year students of engineering (e. g. mechanical 
engineering, chemistry engineering) took part. The study was part of a transition course in 
mathematics before the winter term 2014/15 at a university in Germany. Participation in 
the transition course was voluntary but recommended by the university. The participants’ 
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mean high school grade was 1.7 (SD = 0.58), which is above the national average. In Ger-
many, grades vary between 1 and 6 with 1 being the best grade. Students’ mean age was 
19 years (SD = 1.6). 

Instrument and Coding 
The paper-pencil test consisted of five tasks with four subtasks each resulting in a total of 
20 items. Each task encompassed four items related to four school-related geometrical con-
cepts, two of which are introduced at the lower secondary level and two of which are intro-
duced at the upper secondary level: perpendicular bisector of a triangle’s side, isosceles tri-
angle, vector, and linear dependence. The items had an open-ended response format and 
thus the students’ answers could be analyzed in depth. The students had 30 minutes for 
completing the test. The item selection followed a rotation design: every student solved 
three out of four items of each task. Moreover, mathematical argumentation was tested 
with a specific task. The results of the analysis of this task are presented in this article. In 
task 5a N = 243 students were asked to prove that the perpendicular bisectors of the sides 
of a triangle intersect at one point. In task 5b N = 287 students were asked to prove the 
Thales’ theorem. In task 5c N = 284 students were asked to prove that the addition of two 
vectors in 𝐼𝑅2 is commutative. 

For these three items we analyzed the language, especially when formalism was used cor-
rectly (no formalism/ wrong use/ correct use) and when terminology of the concepts was 
used correctly (no notions/ wrong use/ correct use). The coding “no notions” was given, for 
example, if students only worked with drawings. Furthermore, the modes of argumentation 
were analyzed by using a simplified model of the coding scheme of Harel and Sowder 
(1998): no argumentation/ external/ empirical/ analytical. External argumentation meant 
that a student was convinced of the truth of the theorem but could not explain why. Here 
also answers referring to external authorities were included, for example “Because Thales 
said that”. The analytical argumentation contained axiomatic reasoning typical for mathe-
matics. In addition, the way of presentation of results was analyzed (no arguments/ narra-
tive/ narrative and formal/ formal). 

Results 
The results – according to the three research questions – were highly dependent of the con-
tent of the tasks.  

Language 
In task 5a (intersection of perpendicular bisectors) most of the students did not use formal-
isms at all (90%). Furthermore, 37% did not use any terminology related to the content, 
28% used wrong terminology: for example they used expressions like “hypotenuse” in a 
triangle, which was not right-angled. In contrast, a third of the students (35%) used correct 
terminology. For proving the theorem in task 5b (Thales’ theorem), 49% used formalisms 
whereas 10% of them used them incorrectly and 39% correctly. In this task 76% of the 
students used correct terminology and only 15% wrong. The results of task 5c (vector addi-
tion) were similar to them of task 5b: 35% did not use any formalism and 59% used formal-
ism correctly. Only 12% used wrong terminology, 52% correct. 
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Modes of argumentation 
The modes of argumentation were similar in tasks 5a and 5b: About a third of the students 
(5a: 37%, 5b: 29%) did not argue at all, another third (5a: 28%, 5b: 30%) used external 
arguments, and another third (5a: 35%, 5b: 39%) argued analytically. Surprisingly, in task 
5c even 71% reasoned analytically. 30% argued externally and 29% did not argue at all. 

Way of presentation 
In task 5a even 57% expressed their answers only with words (narrative). Only 5% used 
words and some formal expressions like variables or formulas, and also 5% answered only 
formally. In task 5b 42% of the students argued narratively, 29% narratively and formally, 
and 20% only formally. In task 5c the results were similar: 33% gave a narrative answer, 
29% a narrative and formal one, and 36% a formal one. 

Discussion 
The fact, that the results differ in the three items, shows that the content of the item was 
highly relevant. It was obviously important at which school level the content was taught. If 
content was part of the curriculum only in lower secondary classes, students had more prob-
lems in presenting their answers in a formal way. The results of task 5a demonstrated that: 
Most of the students did not use any formalism (90%) and they also gave mainly narrative 
answers without any formulas (57%). Content, which had been introduced in the upper sec-
ondary classroom (vectors) showed other results: more students used formalism (65%) and 
gave answers that include formulas or variables (36%). These effects might be explained 
using the theory of the spiral curriculum: The higher the level on which content was taught, 
the more familiar students were with formalism and terminology. Accordingly, also stu-
dents’ methodological knowledge develops with concrete examples and cannot easily be 
transferred to other content. Moreover, the large number of missing arguments (5a: 37%, 
5b: 29%) may indicate substantial negative knowledge. Students have a rough understand-
ing what may not be used in the mathematics classroom but are not able to use this 
knowledge for a (positive) solution of problems. This finding is in line with the one stated 
above thus confirming this statement in the light of different theoretical considerations.  
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Interpretations of equations and solutions in an 
introductory linear algebra course  
Michelle Zandieh1, Christine Andrews-Larson² 

1Arizona State University, 2Florida State University 
(United States of America) 

Over the past ten years the IOLA project team has been involved in a series of studies and an ongoing 
curriculum development project regarding the teaching and learning of linear algebra at the tertiary 
level in the United States. The study presented here highlights student difficulties in interpreting solu-
tions to systems of equations with emphasis on frameworks to clarify the difficulties and point to-
ward curriculum development aimed at addressing these difficulties.  

Literature and Theoretical Framework 
The origins of linear algebra lie in efforts to solve systems of linear equations and under-
stand the nature of their solution sets. In our experience, instructors of linear algebra tend to 
see the work of teaching students to solve linear systems as the more straightforward and 
procedural portion of the course. We speculate that solving linear systems and interpreting 
their solution sets in fact entails hidden and significant challenges for students that are im-
portant for their later success in linear algebra, as well as their work in related STEM cours-
es. In particular, students will encounter and need to make sense of systems of linear equa-
tions that have infinitely many solutions throughout an introductory linear algebra course: 
for instance when making sense of linearly dependent sets of vectors, when dealing with 
linear transformations whose null spaces are non-trivial, and when making sense of eigen-
vectors. 

The existence of student struggles in linear algebra is well-documented (e.g., Dreyfus, Hillel, 
& Sierpinska, 1999; Harel, 2000; Stewart & Thomas, 2009; Larson & Zandieh, 2013). Re-
searchers have speculated that the formalization of ideas such as span, linear independence, 
null spaces, basis, and eigenvectors is problematic for students for a variety of reasons in-
cluding their preference for practical rather than theoretical thinking (Dorier & Sierpinska, 
2001) and struggles shifting among modes of representation (e.g., Hillel, 2000; Dorier & 
Sierpinska, 2001). Our own research has focused on the importance of symbolizing (Zan-
dieh, Wawro, Rasmussen, 2015) and the power of making connections across different con-
texts, metaphors or interpretations for a particular concept (Zandieh & Knapp, 2000; Selinski 
et al., 2014). In addition our work has pointed to metonymy as a way to describe how we 
shorten, or condense information in ways that provide efficiency but can also cause confu-
sion (Zandieh & Knapp, 2006). 
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In Larson and Zandieh (2013) we developed a framework specific to making sense of stu-
dent connections across multiple interpretations by identifying three important interpreta-
tions of the matrix equation 𝐴𝒙 = 𝒃 where 𝐴 is an nxm matrix, 𝒙 is in 𝑹𝒎 and 𝒃 is in 𝑹𝒏. We 
especially note how the role of the vector 𝒙 shifts across those interpretations. Namely, 
𝐴𝒙 = 𝒃 can be interpreted as a system of equations (where 𝒙 is a point of intersection), a 
linear combination of column vectors (where 𝒙 is a set of weights on the column vectors of 
𝐴), or as a transformation from 𝑹𝒎 to 𝑹𝒏 (where 𝒙 is an input vector corresponding to the 
output vector 𝒃). In this paper, we expand this framework to the context of augmented ma-
trices – where the literal symbol 𝒙 disappears completely from the algebraic representation 
[𝐴|𝒃]. 
 

Interpretation of 
𝐴𝒙 = 𝒃 

Symbolic Interpretation Geometric Interpretation 

System of equations 
interpretation 

𝑎11𝑥1 +  𝑎12𝑥2 = 𝑏1 

𝑎21𝑥1 + 𝑎22𝑥2 =  𝑏2 

𝐴: rows viewed as coeffi-
cients (𝑎11, 𝑎12, 𝑎21, 𝑎22) 

𝒙: solution (𝑥1, 𝑥2) 

𝒃: two real numbers (𝑏1, 𝑏2) 

 

 

Augmented Matrix in-
terpretation 

[𝐴|𝑏]  

𝐴: coefficient matrix entries  

𝒙: Does not appear! 

𝒃: entries of far right (aug-
mented) column 

No unique 

geometric 

representation 

 
Figure 1. Part of Larson & Zandieh’s (2013) framework for views of 𝑨𝒙 = 𝒃 
 
Figure 1 illustrates the systems of equations and augmented matrix interpretations in the 
case where 𝒙 is a vector in 𝑹𝟐 and there is one unique solution. The augmented matrix can 
be seen as a metonymy for the system of equations. It reduces the information stated for 
efficiency, but as we will see in the Findings section, this reduction in information can be a 
source of confusion. 

Data Sources and Methods of Analysis 
In this work, we draw on data taken from the final exams of 68 students enrolled in two 
introductory linear algebra classes at a large public university in the southwestern United 
States.  Both sections were taught by the same instructor, who was a seasoned linear alge-
bra instructor. Course topics included systems of linear equations, span and linear independ-
ence, linear transformations, determinants, eigenvectors, eigenvalues, and diagonalization. 

(𝑥1, , 𝑥2) 
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We examine student responses to four questions, two on each of two final exams.  One final 
exam asked students to determine the intersection of four and then three equations of lines 
(Version L) and the other asked students to determine the intersection of four and then 
three equations of planes (Version P). Open-coding was initially used to categorize the solu-
tion strategies of students.  Once codes were established, the two authors of this paper re-
analyzed the data to come to consensus for each student on how their response should be 
coded.  Major categories and the number of students in each category are presented in 
Figure 2. 

Findings 
In this section we illustrate a few sample results focused around (1) student use of multiple 
symbolic and graphic interpretations to correctly solve systems of equations of lines, and (2) 
student misinterpretation of the condensed (metonymic) form of the augmented matrix 
when not properly coordinated with other information given in the problem.  

Solutions leveraging both systems of equations and augmented matrices 
Students who solved the systems of equations that were lines were more likely to be cor-
rect: 60% and 59% for lines versus 35% and 42% for planes (see Figure 2).  In addition 
they were much more likely to solve a systems of equations or use information from the 
system of equations to aide in their solution.  Figure 3 illustrates examples of each of these 
approaches.  In Figure 3a the student abandoned the augmented matrix to provide a de-
tailed account of the solution by rewriting the equations of the lines.  In Figure 3b, the stu-
dent created a smaller augmented matrix based on their interpretation of the lines, and cor-
rectly row reduced it. 

Figure 2. Categorization of student responses 
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Figure 3a & 3b. Abandoned augmented matrix for a correct systems approach (version L) 

The role of variable in using augmented matrices 
When students implement a solution strategy using augmented matrices, the variables are 
temporarily removed from the equations for the purpose of row reduction.  When the varia-
bles reappear in students’ solutions, they sometimes reappear in strange ways.  Of the 20 
students who solved version P, part a incorrectly, 11 (55%) changed the variable names 
and/or the number of variables.  Of the 18 students who solved version P, part b incorrectly, 
10 (55%) changed the variable names and/or the number of variables.  No students who 
correctly solved P and only one student who correctly solved version L renamed variables.  

Figure 4. Correct row reduction (rref), but changed names and/or number of variables. 

Curriculum Development 
This brief report focuses on leveraging connections across different ways of interpreting 
systems of equations and their solutions as well as the challenges inherent in using con-
densed (metonymic) symbolizations such as augmented matrices.  In our ongoing curriculum 
design work, we have developed and are testing new in-class activities to help students 
leverage their early work with vectors (Wawro et al., 2012) to better understand solutions 
to systems of equations (iola.math.vt.edu). 
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Studying mathematics at university – 
Views of first year engineering students  

Christer Bergsten1, Eva Jablonka2 
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As part of a larger project investigating the transition from secondary to tertiary mathematics educa-
tion in Sweden, interviews with 60 engineering students at the end of their first year of study sug-
gest that shifts during the transition from individualised to collective study approaches and from de-
pendent to apprenticed student positions, as well as student life, contribute to students’ views on 
university studies as a generally highly valuable experience. 

Introduction 
A range of issues have been raised that relate to different types of problems students expe-
rience during their beginning undergraduate mathematics studies (e.g De Guzman, Hodgson, 
Robert & Villani, 1998; Gueudet, 2008), evidenced at many places in low participation and 
pass rates (e.g. Vollstedt, Heinze, Gojdka, & Rach, 2014). In their review, De Guzman, et al. 
(1998) pointed to epistemological and cognitive, sociological and cultural, and didactical 
issues connected to the transition from secondary to tertiary mathematics education. As 
observed by Gómez-Chacón et al. (2015), most studies exploring problems during this tran-
sition focus on cognitive aspects, such as the “abstraction shock” or cognitive parameters: 
“what we certainly can claim is that the success depends, in great measure, on the robust-
ness of certain parameters in secondary education (attitude, motivation, approach towards 
work, and, in particular, learning styles and cognitive models) that might need to be signifi-
cantly modified” (Clark & Lovric, 2009, p. 759). In their literature review, Bergsten and Ja-
blonka (2015) show that the research on what sometimes has been termed the transition 
problem (e.g. Brandell, Hemmi, & Thunberg, 2008) addresses a wider range of critical issues: 
pass rates and participation; misalignment of curricula; changes in level of formalization and 
abstraction; unclear role of mathematics for the career path; differences in teaching and 
classroom organization; change in expected learning habits and study organization; differ-
ences in atmosphere and sense of belonging; and differences in pedagogic awareness of 
teachers. In this paper, focus will be on students’ experiences of some issues related to the 
last four of these dimensions, using empirical data from a study of the transition problem in 
the context of engineering education in Sweden.  

While in most studies the transition from secondary to tertiary mathematics education is 
framed as a problem, Hernandez-Martinez et al. (2011) see it “as a question of identity in 
which persons see themselves developing due to the distinct social and academic demands 
that the new institution poses” (p. 119), that is, as something potentially positive for future 
opportunities. Though conceived in different ways, the notion of identity has received an 
increased attention in mathematics education research, including the undergraduate level, 
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and has been seen as decisive for capturing levels of participation in mathematical practices 
(Boaler & Greeno, 2000; Sfard & Prusak, 2005; Solomon, 2007). For the purpose of our 
study, we will here shortly discuss some recent research on identity in terms of student au-
tonomy and individual learning strategies in relation to the institutional setting of university 
mathematics. In a study focusing on university mathematics students’ perceived autonomy 
during first semester studies, Liebendörfer and Hochmuth (2015) conclude that autonomy 
depends on both the person, including competence, and the environment, and that learning 
strategies and institutional norms are critical. While “university expects students to work 
autonomously where students expect to be guided” (p. 9), the authors suggest that in-
creased explicitness in demands on students may support their autonomy. Stadler et al. 
(2013) compared novice and experienced undergraduate mathematics students in Sweden 
and found that “beginners rely heavily on the teacher, while experienced students re-orient 
themselves from the teacher to other kinds of mathematical resources” (p. 2436), including 
their peers. The authors interpret this shift as an adaption to the “new learning environ-
ment”. Similarly, Sikko and Pepin (2013) found, in a study conducted in Norway and the UK, 
that students learn more from collaboration with peers in tutorial or informal groups than 
from lectures.  

Methodology 

Sample and methods 
The study presented here is part of a Swedish project (funded by Vetenskapsrådet) integrat-
ing the exploration of mathematical, didactical and social aspects of the transition from sec-
ondary to tertiary mathematics education. The project draws on data including different 
types of documents and interviews with engineering students and mathematics lecturers at 
two Swedish universities, including students’ results from all mathematics exams during the 
first year of study. A total of 60 students, selected to represent different study programmes 
within engineering education as well as different mathematical achievement levels, were 
interviewed individually at three different points of time during their first year of study. In 
the third interview, conducted at the end of the year, students were asked to review their 
experiences from their first year mathematics studies and compare these to upper second-
ary school (high school). These audio-recorded semi-structured interviews lasted for around 
half an hour. The transcribed interviews were analyzed using a thematic approach (Bryman, 
2004), with themes developing from students’ responses to the prompts used in the inter-
view guide. The following themes will be discussed in this paper: mathematics-related study 
habits at university and upper secondary school; differences between studying mathematics 
and other university subjects; expectations versus experiences of university mathematics; 
the role of mathematics teachers; the balance between study and student life; and the first 
year of study in retrospect.  

Analytical framework 
The analysis draws on the changes of student identities as learners of mathematics that are 
indicated by their responses to the interview prompts, organized as themes in our presenta-
tion of the findings. Discussing student/teacher identities in different schools, Dowling 
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(2009) observes that “students […] were either individualised or organised collectively by 
teacher and/or student strategies” (p. 181). Teachers and students are in what Dowling 
(2009) describes as a “pedagogic relation”, as opposed to an “exchange relation”. The for-
mer can be recognised by the establishment of an author, an audience and a privileged 
“content”, that is, a hegemonising practice/discourse aiming at closure, the evaluation prin-
ciples of which are controlled by the author. Two distinct levels of subjectivity (or agency) 
attributed to “unauthorised positions” are “apprenticeship” (high level) and “dependency” 
(low level), which may amount to different hierarchical positions in relation to access to the 
principles of the hegemonising practice/discourse (Dowling, 2009, p. 244). We will use this 
distinction when discussing what our participants say about differences between being a 
high school student and a student at university. 

Findings 
The presentation of the findings will be organised by short summaries of the six themes 
mentioned above along with student quotes which, while being spread across engineering 
programmes and study result levels, are selected to be illustrative with respect to the 
themes. The findings will then be discussed in the final section of the paper. 

Differences in mathematics-related study habits at university and upper secondary 
school 
Most of the students report a change from a predominantly individual study approach at 
high school, with only little time spent outside lesson time, to a more collective approach 
working together with a group of peers after lectures at university or at home:  

I study more with my peers than I have done earlier  

At high school I never studied with friends and not so much at home almost only at 
school, now I sit a lot with friends and at home, that’s the difference 

Some students link university studies to doing things more on your own initiative: 

Here you have to do everything on your own initiative, the teacher just presents it, 
you can ask but they are not present the same way 

At high school everybody is a little negative towards studying, here you have chosen 
yourself to do it, you have a more serious attitude 

Another comment concerns a difference in the separation of types of study activities: 

Here it is more that you have a lecture and then there is lunch and then you do some 
math … so it is more separated [than at high school] 

Several students report that over the year their study approach has become more focused 
on preparing the exam:  

It has changed during the year, there is more cram for the exam now than in the be-
ginning, then you did more exercises from the textbook and you followed the text-
book carefully  
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Differences between studying mathematics and other university subjects 
Compared to other subjects in the engineering programme, studying mathematics is pre-
sented as different: 

It is like night and day … the textbook in economy I read almost like fiction but the 
math books I rarely open … more like an encyclopedia 

It [mathematics] is very different from all the technical subjects 

The difference is sometimes expressed by the students in terms of coherence and their own 
understanding:  

Math is quite smooth, other subjects can be pretty messy with broad facts that don’t 
build up, do not require so much that you understand 

In math you must understand so math has been somewhat heavier than the other 
subjects  

Several students describe mathematics as more difficult than other subjects: 

I focus mainly on math because math is harder 

High pace, more difficult to hang on, in math new things appear all the time until the 
exam, in other subjects you do a part and then you can let it go 

A common comment is that mathematics is more time consuming than the other subjects, 
for different reasons:  

[Mathematics] takes a lot of your time maybe because you don’t respect the other 
subjects as much yeah economics [laughter] you spend a lot more time on mathe-
matics, it feels like it is more serious  

Expectations versus experiences of university mathematics 
Regarding mathematics studies at university as compared to high school, it is commonly 
seen as more time consuming than expected and more demanding, both in terms of pace 
and effort:  

The math studies are much more difficult than expected, much more to do … you just 
have to pass the math, it’s not fun 

Maybe a little more than expected … one is almost fed up sometimes 

I was a little chocked the first period about how quickly it all ran … one week at high 
school is about two days here at most or even one day … it was very much higher 
pace  

Roughly [as expected] yes moves on a little quicker, you spend quite a lot of time for 
it  

There are many students who say they did not have any specific expectancies about study-
ing at university, as pointed out also generally in research (Briggs, Clark, & Hall, 2012). Even 
then, however, the time issue is often raised: 

Had no particular expectations, spending a lot of time on mathematics 

Some students who had expected mathematics to be rather difficult do confirm their expec-
tations: 
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I heard that math is rather tough and had rather high expectations and that’s where 
about it is 

Had heard that many had problems with math, had tuned myself to that it might be-
come tough and go for it from the start 

The role of mathematics teachers 
The university teachers are generally considered knowledgeable and helpful even if their 
pedagogical ability varies.  

Knowledgeable … some teachers are able to explain so that difficult things become 
more easy to understand … if not one has to work more on it at home 

They know more … some teachers are pretty bad some great 

More helpful than expected 

They do all they can to help you … their pedagogical ability varies 

They are above expectations most of them I must say 

That the contact with the university teachers is less personal seems to be less important as 
it is more efficient.  

Maybe a little less personal now, a little more efficient here 

Still the same [as at high school] willingness [to help] and it is just that one does not 
know each other that much 

That university teachers are being less available than the high school teachers may be seen 
as negative, though this may be balanced by other advantages. 

As expected … not so much contact with the teachers … not quite the same as at high 
school 

Not as much contact like at high school but very nice, more on your own initiative, if 
you don’t ask they will not explain 

No demands from the teachers, they are here to help you, more whip at high school, 
more your own responsibility here 

The balance between study and student life 
Social aspects of life at university, which offers special opportunities (‘student life’), are 
generally appreciated. While for some students, peer organized activities outside the studies 
risk to take over, others emphasise them as an important part of being successful:  

I like it here, one of the reasons why it has run well, you are forced to learn to know 
more people to study at university, is among the best there is 

Has been good, lots of fun, great socially, have managed it through this year, studied 
on and tried to have some fun 

It’s time to stop being that super social all the time and start living a more regular life  
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The first year of study in retrospect 
Not many students, including those with low exam results, express thoughts of dropping out 
from their studies. However, some see mathematics as potentially contributing to such a 
decision: 

Math is probably a big part of it if you drop out but it’s not all 

Most students are generally positive about the first year mathematics studies, even if it 
sometimes has been a struggle: 

It has been a good year, learnt a lot 

It has been like a roller coast [laughter] … it has been interesting and fun, did well so 
far 

I still think it is quite good that we have all of it [the mathematics] during the first 
year even if it has been tough 

guess it is a kind of needle’s eye one has to go through somehow … it will be fine 

Can be nice to make your own decisions, this is quite good 

Incredibly rewarding to study at university, socially as well 

One student expresses a hope that the struggle he has experienced during the first year 
mathematics studies eventually will pay off: 

What a feeling a mountain to climb ... it's probably worth it because it will be good 
once you get out on the other side 

Discussion and conclusion 
The outcomes indicate that studying mathematics stands out as different compared to other 
subjects regarding the large amount of time and effort that has to be invested, partly due to 
the specific character of mathematics courses that construct verticality in terms of generali-
zation and specialization. It appeared to the students as more coherent (one student use the 
word “smooth”) than other subjects; they framed this as a necessity to “understand” math-
ematics. In terms of identity, this can be interpreted as being apprenticed into the principles 
of the discourse. This they contrast to the situation at high school, where they did not need 
to study hard but only reproduce standard tasks, learned through exemplars to get a feel for 
the criteria for what counts as legitimate mathematics, without accessing the principles: 
they remain in a dependent unauthorised position. At university, as one student expressed 
it, there are “no demands from the teachers, they are here to help you, more whip at high 
school, more your own responsibility here”. Students thus experience that they are ex-
pected to exhibit a increased degree of autonomy when starting to study at university (cf. 
Liebendörfer and Hochmuth, 2015). In a group interview conducted with some of the un-
dergraduate mathematics teachers of these students (Bergsten & Jablonka, 2015), a similar 
interpretation of the pedagogic relation emerged: while at school the students are con-
structed as dependent learners, training a range of techniques using calculators and formu-
laries with no authorship in original knowledge production, at university students are grant-
ed authorship to create mathematics at their level of competence by mathematical tech-
niques and arguments acceptable by mathematicians. Such view of the need for more au-
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tonomy during the transition was also found in a study reported in De Guzman et al. (1998), 
as expressed by one lecturer: “they [the students] graduate high school feeling that learning 
must come down to them from their teachers. […] That the students must also learn on their 
own, outside the classroom, is the main feature that distinguishes college from high school” 
(pp. 751-752). This need for autonomy was also implied by the way the students expressed 
the role of their teachers at university: although they were seen as being less available and 
“less personal” than at upper secondary school, teachers were described as very knowl-
edgeable and there to help, based on the students’ initiative. 

Regarding study habits and learning strategies, for these students the transition to universi-
ty mathematics constitutes a shift from an individualised to a collective approach, including 
informal group studies on their own initiative (cf. Sikko & Pepin, 2013; Stadler et al., 2013). 
They pointed out that individualised learning dominated at school. Despite the extra invest-
ment required for managing the mathematics courses in terms of time and effort, some-
times making the first year “like a roller-coaster” or “tough”, most students found it “re-
warding”. One part of this appreciation seemed to be related to student life and that they 
were “forced” to get to know more people. Of these students, including all achievement 
levels, only a few appeared to have experienced the transition as a problem. To study at a 
university was by most students described as a generally highly valuable experience (cf. 
Hernandez-Martinez et al., 2011). Even though the transition might for some have consti-
tuted what one student termed “a kind of needle’s eye”, their appreciation of moving from 
a dependent to an apprenticed position appears to have contributed to this experience. 
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Studifinder: Developing e-learning materials for the transition 
from secondary school to university  
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For the platform Studifinder, we are developing interactive e-learning materials for mathematics in 
order to support students during the transition from secondary school to university. These interactive 
courses will be offered to prospective students from a wide range of disciplines and are designed to 
revise contents of school mathematics while introducing the notation and accuracy expected at uni-
versity level. For each of the twelve topics a short and a long e-learning course have been developed. 
The material focuses on promoting a thorough understanding and also offers a wide range of exercis-
es. In this paper we will present examples from these materials in order to illustrate our didactical 
design concept and describe how the course is embedded into the platform. 

Introduction 
In many fields of study mathematics plays an important role, but it is also a great challenge 
for beginners to handle. The students have to fill (often huge) gaps of their previous 
knowledge from secondary school to what universities expect them to know. Additionally, 
the transition from secondary school mathematics to university mathematics is difficult (c.f. 
de Guzman, Hodgson, Robert, Villani, 1998; Gueudet, G, 2008). 

Therefore, most universities offer a bridging course to ease this transition and to prepare 
students for their course of study. Nowadays, bridging courses are often (but not exclusive-
ly) provided as online material because the students live far away from the university or 
have a job until they begin their studies. 

To prepare all students independently from their chosen university the ministry for innova-
tion, science and research as well as the universities and the colleges of higher education in 
North Rhine-Westphalia started a platform called Studifinder. It is an online platform where 
prospective students can get information about studying in North Rhine-Westphalia and also 
find an e-learning course called Studikurse for mathematics and the German language com-
bined with knowledge and personal preference tests. 

The Studifinder website 
On the welcome page of the project Studifinder (http://www.studifinder.de), prospective 
students can get answers to four questions that they might ask when they want to take up 
studies. The first question is “Which field of study fits my skills and talents?” where the stu-
dents can take the Studitest to find out what their aptitudes are. 
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The second question students can get answers to is “what courses of study are offered by 
which universities in North Rhine-Westphalia?” The Studisuche part of the website has an 
overview of which universities offers their favorite course of study. 

If the students already know what and where they want to study they can take the 
Studicheck to test their skills in mathematics and the German language. After taking the 
Studicheck they get feedback in form of a traffic light. Each university can individually de-
cide what percentage is necessary for the green or the yellow light. They can then take the 
Studikurs to repeat the relevant topics in mathematics and the German language to prepare 
themselves for their studies at the university. Each Studikurs is tailored to the results of the 
Studicheck. 

The Studikurs and its constituent parts 
Our working group is responsible for the development of the mathematics Studikurs for the 
Studifinder platform. The new learning material is based on the VEMINT course that has 
been used by several universities for over a decade to offer a blended-learning bridging 
course in mathematics (c.f. Bausch et al, 2014). 

One requirement was that the Studikurs had to harmonize with the Studichecks, which have 
been developed by a team at the RWTH Aachen, as well as the standards of education in 
mathematics for the secondary schools in North Rhine-Westphalia (c.f. standards of educa-
tion North Rhine-Westphalia 2012) and the COSH-Catalogue (c.f. COSH-Catalogue 2014) to 
define which topics have to be covered in the material. The material provides information on 
twelve different topics, namely: 

 
Released in September 
2015 

Expected release in March 
2016 

Expected release in August 
2016 

Basic functions Linear systems of equations Geometry 

Power, roots and logarithm Basic arithmetic Trigonometry 

Terms and equations Integral calculus Vectors and analytic  
geometry 

Differential calculus Higher functions Stochastic 

Table 1. Overview of the courses and the related release dates 
 
We develop a long course and a short course for each topic to satisfy two major needs. The 
short course is designed to give a quick overview of a topic and the long course is designed 
to convey detailed information about the topic. It takes about 45 to 90 minutes in a short 
course and about six hours in a long course to work through the material. 

Outline of a short course 
In the short course the topic is motivated with the help of an introductory exercise often 
from another field of study, for instance physics or economics, to demonstrate where the 
mathematical content can be applied. It also provides short and concise information about 
the topic to get an overview of what is required to solve the exercise. Within the introducto-
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ry exercise, it is possible to stop at certain points and lookup the mathematical background 
via cross-references. In order to easily navigate through the material, tabs are supplied on 
top of the content area to switch between the introductory exercise and the mathematical 
input. At the end of a mathematical input we place a button to jump back to the introductory 
exercise. 

The short course also offers an opportunity for the students to see if they can work with 
online-materials successfully. The short course includes (besides the interactive exercises) 
applets, animations and short videos to motivate the students to work through. At the end 
of a short course there is a preview about what they can expect from the respective long 
course. 

Outline of a long course 
In the long course the topics are explained in detail on a level between school mathematics 
and university mathematics. In this part of the course, we emphasize the importance of cor-
rect notation and accuracy in mathematics as will be expected at university. So the students 
can repeat their school knowledge from an elevated perspective on the one hand and gain a 
thorough understanding of the topic on the other. 

Therefore, the long course is divided in up to six separate subchapters which are built-up 
step by step. The subchapters are once more divided into an overview, introduction, expla-
nations, exercises, applications and (optional) supplements. The students are motivated to 
learn with the interactive exercises and Geogebra applets in the material. We typically use 
animations and videos in the long course to explain some issues. You can find two examples 
in fig. 1. Throughout the contents, interactive elements like videos are offered to create 
possibilities for varied learning paces and hence keep up the learning motivation in the long 
run. 

 

Fig. 1. On the left a step by step interactive explanation of how to square a binomial. On the right a 
Geogebra applet to visualize the principle of differentiation. 
 
Each course includes a glossary of mathematical symbols and an introduction of how to use 
the formula inputs in the interactive material correctly. 

With our material the students can decide which topics and how fast they want to learn. This 
creates an environment of self-guided learning. Especially for designing an effectively indi-
vidual learning path in self-regulated learning, it is important to know the individual 
strengths and weaknesses (c.f. Niegemann et al., 2009, pp. 295). 
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Visualizations and interactive feedback 
To create an interactive user experience for the learners we put some effort into the ar-
rangement of the material. Every exercise in the learning material comes with a detailed 
solution. Learners can access them by clicking the button “show solution” and hide them 
again at will. Once evoked, the solution places itself naturally in the flow of the contents, so 
it can be on the screen together with the original exercise. Furthermore students can use 
automatic feedback to check their own solution before they take a look at the right answer. 
This gives them the chance to reflect on their own solution. Since “feedback students re-
ceive from the teacher is a key supportive factor of the process of continuous improve-
ment” (Ibabe & Jauregizar, 2010, p. 244) this provides more objective feedback than pure 
self-evaluation. Because entering mathematical terms into a system on a keyboard is not 
easy, we designed an on-the-fly formula interpretation (the VE&MINT project developed a 
similar technique based on the mparser), which shows the learner the interpretation of 
his/her input before the answer is evaluated. 

Further Work 
The first four course packages were developed and made accessible in September 2015. 
That material has been evaluated and will be evaluated every time we submit one of the 
packages. A working group in Aachen led by Miss Wachtel is responsible for the evaluation. 
The last course packages will go live in August 2016. As soon as the development stage is 
complete we will start a quality management period until December 2017, when the project 
is planned to end. 

Acknowledgements 
The project is supported by the Ministerium für Innovation, Wissenschaft und Forschung of 
the federal state North Rhine-Westphalia, Germany. 

References 

Bausch, I.; Biehler, R.; Bruder, R.; Fischer, P.; Hochmuth, R.; Koepf, W. & Wassong, T. (2014). VEMINT – 
Interaktives Lernmaterial für mathematische Vor- und Brückenkurse. In Bausch et al: Mathemati-
sche Vor- und Brückenkurse: Konzepte, Probleme und Perspektiven, 261-276. Münster: Springer 
Spektrum. 

COSH-Catalogue 2014: mathematik-schule-hochschule/images/Aktuelles (visited on 23rd September 
2015) 

Gueudet, G. (2008). Investigating secondary-tertiary transition. Educational Studies in Mathematics, 
Volume 67, Number 3, 237-254. 

de Guzman, M.; Hodgson, B.; Robert, A. & Villani, V. (1998). Difficulties in the passage from secondary 
to tertiary education. Documenta Mathematica, extra volume ICM, 747-762. 

Ibabe, I. & Jauregizar, J. (2010). Online self assessment with feedback and metacognitive knowledge. 
Higher Education, 59(2), 243-258. DOI: 10.1007/s10734-009-9245-6 

Niegemann, H.M; Domagk, S.; Hessel, S.; Hein, A.; Hupfer, M. & Zobel, A. (2008). Kompendium multi-
mediales Lernen. Heidelberg: Springer. 

Standards of education in mathematics for North Rhine-Westphalia: beschluesse/bildungsstandards-
mathe-abi (visited on 23rd September 2015) 

StudiFinder Homepage: https://www.studifinder.de/ (visited on 23rd September 2015) 

http://www.mathematik-schule-hochschule.de/images/Aktuelles/pdf/MAKatalog_2_0.pdf
http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2012/2012_10_18-Bildungsstandards-Mathe-Abi.pdf
http://www.kmk.org/fileadmin/veroeffentlichungen_beschluesse/2012/2012_10_18-Bildungsstandards-Mathe-Abi.pdf
https://www.studifinder.de/


khdm-Report, Nr. 05, 2017 

466 

 

Didactic contract and secondary-tertiary transition: 
a focus on resources and their use  

Ghislaine Gueudet1, Birgit Pepin² 

1University of Brest, 2Technische Universiteit Eindhoven 
(1France, 2Netherlands) 

Abstract: In this article we claim that the concept of didactic contract can help to develop a deeper 
understanding of the secondary-tertiary transition, in particular by showing changes at three different 
levels: at the general, institutional level; at the level of the discipline concerning mathematical prac-
tices; and at the level of a given mathematical content. In fact, we argue that the didactic contract is 
linked to the use of and interaction with different resources, by teachers and students, in the sense 
that their use is shaped by the contract; and at the same time the available resources shape the 
mathematics taught. We draw here on two studies, one in the UK and one in France, to illustrate how 
a focus on resources can inform us about contract rules at the different levels.  

Didactic contract and interaction with resources: framework and re-
search questions 
The study presented here is a contribution to research on the transition from secondary 
school to university mathematics (Gueudet 2008; Pepin 2014). Whilst different theoretical 
perspectives can enlighten what happens during this transition (Nardi et al. 2014), we retain 
a socio-cultural approach in this paper. We consider secondary school and university as two 
different institutions (Chevallard 2006), with different mathematical practices. In particular, 
the didactic contract (Brousseau 1997) is different in these two institutions. The didactic 
contract is defined as a set of rules, some explicit but most of them implicit, framing the 
mathematical practices of both teacher and student/s, which can be presented as a sharing 
of responsibilities between teacher and student/s. Moreover, we have a specific interest in 
the links between the didactic contract and the resources intervening in the students’ math-
ematical work. In previous works (e.g. Gueudet, Pepin & Trouche 2012) we have shown that 
the use of resources – we consider here curriculum resources, like textbooks, websites, but 
also lecture notes, for example – contributes to shaping mathematics instruction and learn-
ing; and it is likely to shape in particular the didactic contract. 

The didactic contract can be considered at different levels (Chevallard 2006, Winsløw et al. 
2014); we distinguish here between three such levels (De Vleeschouwer & Gueudet 2011): 

• a general, institutional contract: its rules apply for all subjects taught in the given in-
stitution. For example, at secondary school the teacher writes on the blackboard all 
that the students need to write down; at University, at least a part of the content is 
only provided orally by the teachers and the student him/herself is responsible for 
taking written notes. We interpret this as a change of contract rules during the tran-
sition, likely to raise difficulties for many students.  
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• a contract at the level of the subject (here, mathematics): its rules apply for all
mathematical contents. For example, new expectations at university in terms of rigor
are changes in the didactic contract at this level.

• a didactic contract for particular mathematical contents: here the rule concerns a par-
ticular mathematical content, like Linear Algebra, Calculus and so on. Such rules are
likely to change during transition for contents taught both at secondary school and at
university (e.g. different teaching of calculus: “calculational” at school (how to calcu-
late an integral); and more mathematical at university (precise definitions and as-
sumptions, etc.)).

Our central research questions are the following: 

What are the resources and what is their “expected” (by the institution) use by students in 
higher education mathematics (first year), as compared to the resources and their uses at 
secondary school? How do these resources and their uses inform us about the didactic con-
tract at each level?  

We draw on two different data sets: one in the UK concerning the student transition from 
upper secondary school to university mathematics1; and one in France concerning the teach-
ing of number theory at first year university. To emphasize, we do not intend to compare 
these two cases; we consider them as complementary, since the first one informs us on the 
contract at the general and at the subject level, while the second informs us at the subject 
and the content level.  

Resources and institutional contract: the Transmath project 
In the UK, our data are anchored in the TransMaths project, where we investigated how stu-
dents experienced different mathematics teaching-and-learning practices at both sides of 
the transition point, and they developed different strategies to make the transition success-
ful (or not). As this project used a mixed-method approach, we could identify and analyse 
particular resources and their use, both from interviews with students (and lecturers), and 
from the accompanying student survey.  

From interviews with Sunny (and his friends), who studied at City University, we could iden-
tify the main resources used in their first year of study (see appendix): lecture and lecture 
notes; the lecturer him/herself (during office hours); the coursework, tutorial and tutor; their 
friends/study group. It was clear that these resources were quite different, in nature, from 
what students were used to at school: at school students had a textbook (which was por-
traying mathematics as something that one can learn by solving “tons of exercises”); and 
the teacher who was available for individual questions and explanations during lesson time 
(and even out of school time for special revision lessons). Friendship group did not seem to 
be important, as students could discuss their problems with the teacher, who was seen as 
the authority in terms of correctness and learning of the subject. 

1 Transmaths project at the University of Manchester: http://www.transmaths.org 

http://www.transmaths.org/
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Indeed, at university one mathematics lecturer said that “students [have to] learn ‘from day 
one’ that they are not in school but in a university mathematics department”. This included a 
clear distance between students and lecturers, which was also mentioned by Sunny: 

“I think it’s, it’s more like the learning here is more general like in a way, like in sixth 
form it was more personalised kind of. You kind of, you was closer to the teacher, 
you was, you had constant like, you was talking to them – you was after school you 
was chatting to them. You saw them around, like here it’s so funny cos when we see 
the lecturers walking around it’s like they’re like celebrities. Cos we haven’t got, we 
haven’t quite got that personalised you know, thing with them so they’re from a dis-
tance you know. ‘That’s Professor ..., that’s Professor…wow!’ You’re like wow, 
they’re about. So I suppose it’s less personal in a way.”     (DP5, Sunny) 

Returning to resources used and their nature, at university the main resources were clearly 
the lecture and the lecture notes provided by the lecturer/professor (sometimes supported 
by a textbook). However, these were not always “understandable” and students would 
have needed individual help from the lecturer (during particular office hours), but most stu-
dents did not dare to go (as they were afraid of asking “stupid questions”). In addition, the 
coursework (provided once a week) was to support student understanding of the lecture, 
through exercises. Sunny and his friends/learning group emphasized that unless the 
coursework was well aligned with the lectures, it did not help their understanding of the 
topic (see calculus as compared to geometry lectures/coursework). Indeed, in some cases 
students did not know what to ask in tutorial time, or in lectures, so little had they under-
stood the topic area. Other resources included textbooks (suggested/approved by the lec-
turers); and particular self-support schemes (where higher year students help their ‘young-
er’ peers) – these were seen as less helpful than the notes and support provided by lectur-
ers and tutors, in particular as students were often “learning to the test”. However, the 
same resources (e.g. lecture notes) were often evaluated very differently by students, in 
terms of support for their learning, so much so that Sunny (as student representative) had 
asked for a change in form and practice concerning lecture notes: as students did not want 
to be presented with “one slide after another”, they asked for hand-written lectures during 
the lecture (so that they would have time to think and process the notes, and perhaps ask 
questions). 

At the same time institutional practices and accompanying resources played a crucial role in 
the ways that mathematics, and what it meant to “do mathematics”, was portrayed, which 
often hindered students developing a mathematical disposition that supported their en-
gagement with demanding mathematics. From the student surveys at entry to university, as 
compared to a year later, we could see that students adjusted to particular practices and 
routines, and socio-mathematical norms (see Pepin 2014). In particular, “whole-group/class 
teaching” (and listening/writing in lectures) and “working in groups” (either with friends, or 
in the tutorial) was seen as essential to pass the examinations. “Taking notes in lectures” 
and “studying from your own notes” depended on what the lecturer provided as learning 
resources. For example, one lecturer (of geometry) apparently provided “perfect notes”, 
that is lecture notes that suited students’ level of understanding and learning pace, and that 
were aligned with the coursework (exercises) and the examinations. So, students felt well-
prepared by the lectures, the lecturer’s explanations during the lecture, and the coursework, 
to pass the examinations. 
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On the basis of video footage of selected lectures and pre- and post-video stimulated recall 
discussions with lecturers, one could identify meanings that were attached to particular 
practices. Particular lectures reflected the kinds of things that a “rigorous mathematician” 
may need to learn:  

• ‘reasoning and proof’ based thinking and practices were expected to be developed
through Geometry and Linear Algebra;

• ‘procedural fluency’ (methods) was seen to be developed through Calculus;

• practical and context relatedness was regarded to be developed through Statistics.

In terms of Didactic Contract for mathematics, it can be argued that there was a clear institu-
tional didactic contract at City University, made explicit in discussion with lecturers and stu-
dents, and mediated by particular practices. This contract was about helping students to be-
come a “rigorous mathematician” and attain the “very highest academic standards”. Becom-
ing a “rigorous mathematician” included making sense of the mathematics in lectures, and 
different lectures (different mathematical topic areas) appeared to provide the key to par-
ticular competencies (e.g. reasoning and proof was developed through Algebra). However, 
how students were expected to learn and develop these was not clear. It can be argued that 
this change of Didactic Contract from school to university appeared to necessitate students 
becoming more independent learners. In terms of resources (and their use) we retain that 
the change of Didactic Contract at transition from school to university mathematics educa-
tion has implications for students, (1) in terms of the change in nature of the resources: 
teachers ‘change into’ lecturers; lessons into lectures; homework into coursework; text-
books into course materials and lecture notes; tests into examinations; and school mathe-
matics into university mathematics; and (2) in terms of the expectations of their use: the 
teacher could be accesses (nearly) all the time, whereas the (individual) lecturer is ‘only’ 
available for a limited number of minutes/hours; textbooks in school are seen as a support 
of teachers’ teaching, mainly in terms of provision of exercises, whereas at university lec-
ture notes are to be “understood” and studied, with the support of the lecture and the 
coursework/tutorials. 

Resources, didactic contract and mathematical content: the case of 
number theory 
In this section we focus on the Didactical Contract at the level of a particular mathematical 
content. Number theory is known as a difficult topic for students of different levels (Zazkis & 
Campbell 2006). In France, where our study took place, the scientific students taking the 
“mathematics specialty” in grade 12 (last year before university) learned advanced topics 
like prime numbers, Bézout’s and Gauss’ theorems and congruencies, with the aim to devel-
op reasoning and proof skills. However, Battie (2010) who examined exercises proposed at 
the Baccalauréat (end of secondary school examination) argues that the expectations for 
grade 12 students concerning number theory was mostly limited to computation, and the 
application of methods they learned. We interpret this in terms of the Didactic Contract 
(Brousseau 1997): an important rule of the Didactic Contract for number theory in grade 12 
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was that developing an original solution method was not part of the students’ responsibili-
ties.  

At university level we investigated a teaching unit on number theory taught at the first se-
mester of the first year in a university in France. This teaching unit addressed topics such as: 
Euclidean division and Euclidean algorithm; prime numbers; and congruencies. The main re-
sources available for the students in this teaching were actually the mathematical “texts” 
(e.g. exercises from textbooks; etc.). We firstly consider the level of mathematics as a disci-
pline.  

We asked the students about their use of mathematical texts (considered as resources) for 
this teaching unit; we also asked the responsible lecturer of this course about the uses she 
would expect (from students). We proposed an online questionnaire to the 140 students 
enrolled and obtained 85 answers. The resources offered by the institution were: a “poly-
copie” (lecture notes, comprising of all the definitions, the theorems and their proofs – in-
stead of a textbook); exercise sheets; previous examination papers, all on paper and availa-
ble online as pdf files. Moreover, the students had their own course notes (five classes fol-
lowed this course, with five different teachers). According to the lecturer responsible for the 
course, the students should work on the polycopie in order to learn the theorems and to 
work on the proofs. Considering the answers to our questionnaire, the actual situation 
seemed quite different: only 52% of the students declared that they found the polycopie 
helpful. They considered that the lecture was enough, and that they used the polycopie only 
for the final examinations (83%). Moreover 90% would like to find worked examples in the 
polycopie; and 44% looked for additional resources on the Internet, in particular worked 
examples.  

We interpret these answers as follows: whilst the teachers at university expected that the 
polycopie would be used to work on the text of the lecture (i.e. in terms of definitions, theo-
rems, proofs etc.), the students considered that their responsibility was to work on the exer-
cises, and that this was an efficient way to prepare the test. In secondary school they were 
used to find methods presented in the textbook, in particular many worked examples (Rezat 
2013). In this teaching unit, the polycopie did not incorporate the presentation of methods 
how to solve problems, or worked examples. In fact, most of the exercises proposed did not 
correspond to the application of a given method.  

Let us now consider the level of a particular mathematical content. Differences between the 
school and university Didactic Contracts could be observed by analyzing the ques-
tions/exercises proposed (e.g. in examinations, or in tutorials). For example, at the final ex-
amination the following exercise was proposed (figure 1): 

Figure 1. Exercise 4. An application from IN to IN is defined by 𝒇(n)=gcd(n,42) for all integer n. 1. 
Compute 𝒇(0), 𝒇(2), 𝒇(10) and 𝒇(5). Is 𝒇 an injective application? 2. Is 𝒇 surjective? Determine 
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𝒇(IN). The exam lasts two hours, and comprises of 6 exercises. The exam is marked on 20 points, 
exercise 4 is marked on 3 points.  

In this exercise, for the first questions the students just needed to apply the definition of a 
gcd to compute 𝑓(0), 𝑓(2), 𝑓(10) and 𝑓(5). Then they found that 𝑓(2) = 2 = 𝑓(10), and 
concluded by applying the definition of injectivity that 𝑓 is not injective. The second 
question required more personal initiative. The students had to determine the range of  ; 
the question is “open”, thus they firstly need to decide if they will try to prove that 𝑓 is 
surjective or not. Then they searched for 𝑓(𝐼𝑁). This required to choose the relevant 
property of the gcd: gcd(n, 42) divides 42, so it belongs to {1, 2, 3, 6, 7, 14, 21, 42}; and 
then to justify that each of these values was reached by 𝑓.  

No similar exercise had been solved in the tutorials, or given as example in the polycopie. 
Surjective functions was indeed a topic studied at the beginning of the teaching unit, during 
the second or third week, while gcd was studied during the weeks 8 and 9. In the tutorials, 
no exercises associated gcd and functions.  

Analyzing the mathematical problems/exercises proposed (in tutorials, examinations or in 
tutorials) showed that students were not given “recipe” solutions, but that they were ex-
pected to use their understandings of the course lectures to find a solution method. The ex-
ample given above with gcd(42, n) was typical: the students had to go back to the defini-
tions and properties presented in the course (here: the gcd of two numbers is in particular a 
divisor of these two numbers) to build their own solution method. Thus, unlike secondary 
school, in the Didactic Contract at the level of mathematics at university, building the meth-
od was the students’ responsibility, and this would direct their use of resources for their 
individual work. However, in the first year at university the students had not yet entered 
into this contract, they still looked for worked examples in order to observe and reproduce 
solution methods. 

Discussion 
Our investigations led us to observe changes in the rules of the Didactic Contract between 
school and university, at the institutional level and at the level of mathematics in UK; at the 
level of mathematics and at the level of a particular content in France. These rules were as-
sociated with the use of particular resources, which subsequently became indicators for 
these changes.  

At the institutional level, we retain from our study in UK the increasing responsibility of the 
students towards their own developing understanding, and the “replacement” of the teach-
er by other students as a central resource. At the level of mathematics, both in UK and in 
France we observed that the lecturer expected that the text of the lecture would be used by 
the students, not only to learn and understand the concepts, but also as a model for his/her 
own mathematical practices, mathematical proof in particular. In France we observed that 
the novice students did not adhere to this rule, and searched for worked examples as model. 
At the level of a particular content, number theory, we observed expected changes in the 
students’ responsibilities through and by analyzing the mathematical texts. At university this 
also included developing or identifying/choosing a method to solve an exercise.  

f
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We claim that the available and expected usages of resources contributed to the shaping of 
the Didactic Contract. At the same time the resources were shaped by the teachers’ and 
students’ expectations. Hence, we contend that investigating the changes in resources and 
their actual or expected usages can inform about changes in the contract, at different levels. 
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MINT-Kolleg Baden-Württemberg (Karlsruher Institut für Technologie) 
(Germany) 

The MINT-Kolleg Baden-Württemberg, a joint institution of the Karlsruher Institut für Technologie (KIT) 
and the University of Stuttgart, offers a wide range of supplementary courses at the transition level, 
both for interested candidates and already enrolled students. An integrated course concept is used to 
bridge the gap between school and university in mathematics, computer science, physics and chemis-
try. Course types range from classical lectures to small group teaching, inverted classroom concepts 
and online learning and testing. The need for different course types arises from a complicated mix-
ture of reasons for problems in the first year at university. Combination of different course types 
proves to be more successful in raising the success ratio then a single course type program for specif-
ic audiences. 

Introduction 
Transition from school mathematics to university level is one of the most difficult steps for a 
beginning student due to a multitude of reasons. Difficulties mainly arise from new para-
digms of thinking about mathematics as described in [Grünwald], from a widening gap of 
content taught in school to content assumed to be taught at school by university lecturers, 
from diverse and changing ways to acquire an university entrance examination (Hochschul-
zugangsberechtigung in German), but also from miscellaneous problems like finding ac-
commodation at the start of the term, being away from family for the first time and having 
a much tighter time and work schedule then before. If this transition and the necessary 
change in the learning and working behavior occurs too late (or not at all), an effective un-
derstanding of lecture content becomes impossible. To address these problems, a wide 
range of supplementary course types is offered by the MINT-Kolleg, differing by teaching 
strategy and setting (lecture, guided exercise solving, online learning, group based working, 
open learning rooms), time schedule (before enrollment, before term, parallel to the lecture, 
after term, prior to examination) and subject (courses of MINT type: mathematics, computer 
science, natural sciences and engineering, but also interdisciplinary courses like time man-
agement and efficient learning techniques). Also each course type comes with its own test-
ing and feedback tools. Students combine courses of different subjects and types to improve 
their examination results, adjusted to personal preference or time constraints.   

Course types at the MINT-Kolleg Baden-Württemberg (KIT) 
Preparatory courses (studienvorbereitende Kurse in German) are offered for candidates not 
yet enrolled at university. Applicants select and combine courses in mathematics, computer 
science, physics or chemistry. Courses are taught in small groups of up to 20 students. Con-
tent is selected both from school curricula and university level courses to both repeat neces-
sary school topics and introduce university level concepts to deal with these topics. These 
courses are advertised for prospective students having a larger time gap between school 
and university enrollment. Typically few students enlist for these courses, mostly those 
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planning to start a bachelor program after an apprenticeship or prolonged military or civil 
service. 

Bridging courses (Vorkurse in German) are offered for enrolled students one month (typical-
ly in September) before regular courses start. They consist of a classical 90 minute lecture 
with up to 200 students in each course followed by small exercise solving groups (Tutorien 
in German, up to 25 students in each group) led by student tutors. Depending on the subject 
and its target bachelor program these courses often exceed school level, especially in math-
ematics where students are required to perform complicated calculations without using a 
calculator or a computer algebra system. Typically, 20% of the students enlist for bridging 
courses and combine different subjects, for example mathematics and computer science. 

Online courses and tests are offered during the whole year for free, some are integrated 
into certain bridging courses. Focus is strictly on repetition or assessment of school level 
content. 

Accompanying courses (Begleitkurse in German) take place during a term. Most calculus 
and linear algebra courses at the KIT consist of a classical lecture, an exercise lecture (Große 
Übung in German) and small exercise solving groups (Tutorien) totalling 4+2+2=8 hours. An 
additional accompanying course (totaling 6 hours) is offered for students who are unable to 
follow the lecture or do not understand how to solve exercises using the contents of the 
lecture. These courses are taught in small groups by professional teachers (which usually 
hold a PhD and have several years of teaching experience). Content given in the lecture is 
briefly repeated in the course and then intensely trained by solving guided exercises. Typi-
cally, 10% of the students enlist for such a course. 

Basic courses (Basiskurse in German) repeating basic mathematical skills are available dur-
ing the term for students who show severe deficits in school mathematics. These courses 
are not connected to a specific lecture and students from different Bachelor programs par-
ticipate in the same course. An average of 2% of students attends a basic course in mathe-
matics. 

Countercyclic courses (Antizyklische Kurse in German) are offered for students who failed to 
pass an exam and typically repeat a specific lecture. Like accompanying courses they consist 
mostly of guided exercise solving, as content from the previous lecture is known but not 
fully understood. Typically, 5% of the students opt to enlist for such a course. 

Repetition courses (Aufbaukurse in German) are offered prior to a written examination be-
tween terms. They intensely repeat and train techniques and content from a lecture. These 
are offered as compact courses (four hours each day for up to two weeks), typically by the 
same teacher who gave the accompanying course. Typically, 10% of the students enlist for 
repetition courses. 

Interdisciplinary courses are offered like accompanying courses alongside lectures. They 
compromise time scheduling, working and learning techniques, support courses for women 
or language courses for migrants. 

Open learning rooms (Offene Lernräume/Helpdesks in German) are offered at fixed weekly 
time slots in mathematics and computer science. Participants are encouraged to form small 
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groups to solve weekly homework (Übungsbetrieb in German) or prepare for an examina-
tion. Professional staff is present to help and render advice, or briefly repeat lecture content, 
but group based problem solving by students themselves is the primary focus of this con-
cept. 

The preferred combination at the KIT is a bridging course (both in mathematics and comput-
er science) and an accompanying course for the first mathematics lecture (calculus in most 
cases). An average of 10% of first year students in MINT bachelor programs at the KIT settle 
for this combination. A detailed analysis of this specific combination and its effectiveness is 
described in [Ebner et al]. Students failing their tests in accompanying courses are advised 
to change to a basic course in mathematics and can do so without further requirements. 
Often students start attending accompanying courses in the middle of the term, when lec-
tures become more complex and they are no longer able to solve their assignments by 
themselves. 

Teaching, testing and course integration 
Teaching in most course types at the MINT-Kolleg is an interactive process, often course 
structure and content selection is changed according to test and supervision results, some-
times students are advised to change from an accompanying course to a basic course. In 
extreme cases especially difficult topics are explained in full detail while other content from 
the lecture is omitted. The following testing concepts are applied by the MINT-Kolleg: 

• Bridging courses use tests both at the beginning and the end of the course to assess 
both the level of knowledge of beginning students at the start of the term and the 
success of the course itself. 

• Preparatory, accompanying and countercyclic courses use introductory tests and 
short midterm tests, but students are judged mainly by their (supervised) exercise 
work during course times, giving teachers an immediate and precise feedback on the 
success of their teaching style. 

•  Online learning and testing information is gathered also, but cannot be related to 
participants during the term because online testing at the MINT-Kolleg is mostly 
anonymous.  

Test results show a consistent composition of the audience in MINT courses consisting of 
students who want to refine their skills (but not in need of the course itself), students who 
are unable to understand lecture content sufficiently to solve exercises, students who un-
derstand the lecture but suffer from a severe lack of mathematics basics taught at school 
(the typical example being a student who is able to compute the characteristic polynomial of 
a matrix but unable to factorize it) and students who have lost track of the lecture and its 
exercises entirely. These groups are not restricted to a lecture: students having problems in 
a math lecture often have the same problems in physics or computer science lectures and 
typically combine accompanying courses for both. In extreme cases students attend accom-
panying courses for every mathematics and computer science lecture until they become 
comfortable at the university level and drop courses they no longer need. 
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Results 
While test data (both from MINT courses and final lecture examinations) confirms a rise both 
in grades obtained and percentage of passed tests for participants of MINT courses with 
respect to students attending the regular lecture program only, strong improvements are 
found for students who have attended a combination of MINT courses. For example, com-
bining a bridging course and an accompanying course proves to be much more successful 
then single course selections, as is shown in [Ebner et al]. Even unusual or excessive combi-
nations (for example students attending accompanying and countercyclic courses simulta-
neously, adding up to 12 hours to their regular workload) succeed and result in significantly 
higher success rates. These results are not related to mathematics and are found in comput-
er science, physics and chemistry also. 

The MINT-Kolleg Baden-Württemberg is supported by the German Federal Ministry of Edu-
cation and Research (http://www.qualitaetspakt-lehre.de/de/2956.php) and the State Min-
istry of Science, Research and Arts of Baden-Württemberg (https://mwk.baden-
wuerttemberg.de). 
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Project mamdim – Learning mathematics with digital media
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The BMBF-project mamdim explores novice students’ mathematical competencies as well as the us-
age and benefit of digital media focusing on descriptive statistics. In the main study next year, 300 
students from five participating German universities will work mainly on measures of center and 
spread using media such as video tutorials, audio commented presentations and instructional texts. 
There are different study settings regarding the number of students (alone or in dyads) and the task 
(with respectively without accompanying questions/prompts). First results from a pilot study that 
was conducted at two universities (N = 68) will be presented and implications for the main study 
drawn. 

Introduction 
The transition from school to university is well known as problematic. Especially the transi-
tion in mathematics is explored by several researchers (e.g. Artigue 2001; de Guzmán et al. 
1998; Wood 2001) and described as a complex problem area consisting of individual, social, 
epistemological, cultural and didactical impacts (de Guzmán et al. 1998; Gueudet 2008). 
Since decades universities try to support their students in the first semester by offering 
bridging courses to get them accustomed to the way in which mathematics is taught at uni-
versity level. An analysis shows that the impact and use of digital media has been growing 
during the last years (Biehler et al. 2014 I), whereas the impact of these learning environ-
ments on the learning process and the effectiveness of learning is nearly unexplored. In 
these learning environments respectively bridging courses digital media such as pdf-
documents, interactive pdf-documents, screencasts, videos, online-tests, animated worked-
out examples, dynamic-geometry-environments (DGE) and computer-algebra-systems is 
used. Moreover, a comparison of several digital learning environments does unfortunately 
not happen in current research (Biehler et al. 2014 II). The project mamdim takes these 
learning processes into its research focus by exploring students’ handling of different digital 
media from several perspectives. 

The project mamdim 
The project mamdim (mathematics learning with digital media in the passage from second-
ary to tertiary education) is financially supported by the German Federal Ministry of Educa-
tion and Research (BMBF). The main study will take place in summer 2016 in bridging 
courses at the German universities of Bielefeld, Cottbus-Senftenberg, Pforzheim, Oldenburg 
and Offenburg. Every university uses a specific digital medium in the bridging course and in 
every course the topic measures of center and spread in descriptive statistics is picked out 
as a central theme. In this paper, the focus is on the pilot study which was conducted at the 
universities of Bielefeld and Offenburg in autumn 2015 with 68 probands in all. 

In Göller, R., Biehler, R., Hochmuth, R., Rück, H.-G. (Eds.). Didactics of Mathematics in Higher Education 
as a Scientific Discipline – Conference Proceedings. Kassel, Germany: Universitätsbibliothek Kassel. 
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Aims and Methodology 
The research questions are the following:  

1. What kind of communication processes take place, when students work in dyads on 
the digital medium and how can these communication processes be stimulated?  

2. What influence do these communication processes have on the process of learning 
mathematics and how do these learning processes differ from that of a single user of 
the medium?  

3. How effective is the use of a specific digital medium concerning the learning effect 
of individuals with a comparably similar knowledge before the intervention?  

4. What influence does the use of digital media have on students’ motivation?  

5. Is the digital medium utilized by students in the expected manner and which learning 
difficulties can be observed?  

6. Is it possible to identify different user types of digital media?  

To answer those research questions, the following design was developed for the main study 
at five universities each with 60 probands (fig. 1): 

 

 
 
The students’ knowledge regarding descriptive statistics is tested before and after the me-
dia-intervention-phase with the help of paper-and-pencil-questionnaires. Furthermore, their 
(academic) motivation, their domain-specific self-efficacy and the acceptance of the materi-
al used during the intervention period are surveyed. Moreover, the user behavior and their 
learning strategies during this phase will be analyzed qualitatively using the video record-
ings from the interventions as well as the students’ individual notes.  

First Results and Implications for the Main Study 
The main aim of the pilot study was the improvement and evaluation of several instruments 
with regard to the main study. The first version of the pretest, constructed for the assess-
ment of the students’ prior knowledge, consisted of 21 items. Due to the mathematical fo-
cus of the study, the items deal with the calculation of measures of central tendency and 
variability as well as with their application in real life situations. First analyses reveal that 
many items show solution frequencies from 0% up to 40% and only a few items are solved 

Figure 1: Study design 
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with frequencies higher than 50% (fig. 2). To improve the test balance, a selection of diffi-
cult items (solution frequency below 10%) shall be replaced by easier items for the main 
study. 

 

Figure 2: Solution frequencies of pretest items 
 
Regarding the acceptance of the material in the pilot study, the instructional video format 
was highly accepted by most probands with 91% agreeing it was fun to work with it and a 
good help for learning (97.1%). Students emphasized the importance of many comprehen-
sible, realistic examples, an appropriate length of the video respectively the verbally anno-
tated presentation and their preference for controlling the learning speed e.g. by individually 
rewinding or fast-forwarding the digital medium. It will be interesting to see through further 
analysis especially of the video recordings taken during the intervention phase, in how far 
the different settings (alone – in dyads/with or without questions or prompts) influence the 
communication processes and hence, the learning outcomes. 

Outlook 
With the results of the ongoing analyses of the empirical data collected during the pilot 
study (video recordings, motivation scales and tests/questionnaires), we will improve the 
quality of the various instruments with regard to the main study. 

Furthermore, some aspects of the instructional videos and presentations will be adjusted to 
the students’ feedback. With regard to instructional design guidelines, influences of subop-
timal design features of the material shall be minimized, having in mind the different basic 
conceptions, aims and peculiarities of the partner universities. 

These modifications will be completed in spring 2016, so that the main study with a total of 
approximately 300 students from different courses at the partner universities can be con-
ducted from March 2016 on. 
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Design, conception and realization of an interactive manual for 
e-learning materials in a mathematical domain  

Tobias Mai, Rolf Biehler 
Universität Paderborn 

(Germany) 

Multimedia learning materials increase in popularity – especially in the context of bridging courses, 
which aim to ease the students' transition from school mathematics to university mathematics. At the 
same time they become more and more sophisticated in their design on the level of contents as well 
as in the didactical environment they provide. We will discuss how a high level of support for self-
regulation in multimedia learning materials makes a learning environment less self-evident and in-
creases the need of an improved guidance for learners. Afterwards we will present an interactive 
manual that was designed to efficiently support self-regulated learning in VEMINT's e-learning mate-
rials for bridging courses further and its underlying design principles. 

A (very) brief overview of VEMINT and its learning materials 
VEMINT is a German acronym which loosely translates into virtual entrance tutorial for 
STEM. The VEMINT-project is a collaborative project by the universities of Darmstadt, Kassel, 
Lüneburg and Paderborn with members coming from the field of mathematics and from 
mathematics education. VEMINT's learning materials are multimedia based e-learning mate-
rials. One important characteristic is the structure of the contents, which are organized into 
60 different modules. They each present a domain (e.g. linear functions) in a closed form 
and independently from other modules. This organization of contents allows a unique selec-
tion of modules for many different (preparatory) courses. Furthermore each module is struc-
tured in the same way. Each module's contents are organized in units, namely overview, 
genetic introduction, explanation, applications, typical mistakes, exercises, visualizations, 
information and supplements. By our didactical design those units are linked with an under-
lying model of competences as shown in table 1. 

competence name included skills and abilities related module units 

technical  
competence 

calculate, draw graphs, ... information,  
exercises 

comprehension recognize and describe connections between 
concepts, ... 

genetic introduction, 
explanation 

application and 
modelling 

solve problems in contexts, ... applications 

diagnosis of  
mistakes 

find mistakes in mathematical 
argumentations, ... 

typical mistakes 

Table 1: Competence model and related module units (see Fischer 2014, pp. 56-57). 
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The manifold units of a module serve to enable a variety of different learning approaches. 
The described, consistent structure of every unit makes it possible to postulate different 
learning approaches. VEMINT's learning scenarios make use of the different units and advise 
the use of a specific set of a module's units within a learning approach. An apparent ap-
proach would be to go through a module's core units step by step to learn the domain 
knowledge anew or repeat it thoroughly. Selective approaches include fewer units, like a 
training scenario (focus on exercises) or the use as a reference book (info unit) with focus 
on the relevant definitions and theorems only. Once an approach is identified, it can be used 
again in any other module due to their coherent structure. For a more detailed description of 
VEMINT's learning materials see Biehler et. al. (2012). 

Possible answers for the challenge of self-regulated learning 
Many years of experience with predominantly e-learning based blended learning courses 
confirm that the expectations at the learner's self-regulation competences are high. As a 
consequence students need to be supported in this regard. They need help with the selec-
tion of contents to focus on during the course. Hence, they are offered study plans for the 
course duration, which suggest a selection of modules (mathematical domains) they should 
work through with regard to their personal course of study, and also weekly work plans to 
orientate on for short term planning. Among the support features of the learning materials 
are the module structure and its units as well as the built in support to monitor one's per-
sonal learning progress. They can be found within each module and should be properly ex-
plained to the learner. So far only text based manuals were provided. The potential for im-
provement here was to get those explanations directly into the context where they are 
needed without creating a distraction from the contents and without splitting the learner's 
attention between the manual and the things that are explained. For this reason the interac-
tive manual eVEMINT was developed. 

 

Figure 1: A screenshot of eVEMINT while definition and theorem boxes from a VEMINT module are 
beeing explained and highlighted next to it. 

The interactive manual eVEMINT 
eVEMINT is integrated into a module of VEMINT in such a way that it does not look like 
something 'extra' from the learner's perspective. In the overview unit of a module a button 
opens the interactive manual. Once it has been started, a small window within the module 
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pops up. This is the actual manual. At the first glance it is a video with a person in it who 
explains the module and a table of contents to quickly navigate the manual next to the vid-
eo. The interactivity starts to play a role while the video is playing. On the one hand it inter-
acts with the user who keeps full control and can start, stop, move or close the manual at 
any time. On the other hand eVEMINT interacts with the module itself. Instead of iconic rep-
resentations it brings up the parts of the module which are currently explained on the 
screen themselves. Important pieces are highlighted with a red frame. This way the learner 
can stop manually at any given time and experiment with the explained features and con-
tinue at will. You can take a look yourself at http://go.upb.de/eVEMINT (unfortunately only 
a German version is available). Already existing manuals have remained untouched from the 
introduction of eVEMINT and remain available for learners with deviating preferences. 

The beneficial composition of design-paradigms 
Essential for the conception of the interactive manual were the Cognitive Load Theory (CLT) 
from Sweller et al. 2011 and the Cognitive Theory of Multimedia Learning (CTML) from 
Mayer 2001. The principles derived from those theories are based on certain assumptions, 
but the effects were also empirical proven. For both cognitive theories the assumption of a 
working memory is vital. In the working memory incoming information are actively pro-
cessed and also connected with information from the long-term memory. The space of the 
working memory is limited. Especially important for the CTML is the assumption of dual input 
channels to the working memory – the visual and auditive channel. We will exemplarily de-
scribe some principles and their implications on eVEMINT's design. 

According to the principle of coherence from the CTML, it interferes with the learning pro-
cess if irrelevant extra information is provided to the learner. This applies to (for the solu-
tion) unnecessary context information about a problem with an application context as well 
as to additional sounds like background music. According to the multimedia principle from 
the CTML, it helps to provide information on both channels at the same time. This is the rea-
son why the interactive manual uses a video with sound to explain the module to the learn-
ers. S/he can focus visually on the module while listening to the explanation. Other sounds 
than the voice do not occur. The video only shows the speaker with a plain background 
(book shelf) to avoid distractions. The speaker herself is intended to create a positive emo-
tional response with the learner and is thus not considered as unnecessary information. 

A detailed explanation might be just right for beginners, but advanced learners do not need 
the same level of details and, on the contrary, they might be slowed down or disrupted. 
When this happens we talk about the reverse-expertise-effect from the CLT. The right 
amount of information depends on the addressed individual. This effect might occur with 
eVEMINT when a learner was already introduced to the learning material, e.g. in one of VE-
MINT's opening events. How to cope with this effect can be derived from usability engineer-
ing theories, which we will look at in the following paragraph. 

From point of view with regard to computer science, multimedia learning materials are 
some sort of software with a graphical user interface. It cannot be argued that usability to-
gether with the look and feel of the materials are important and should not be neglected. 
Nielsen 1993 formulated ten usability heuristics for good user interface design. Although the 
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heuristics seem naturally, they are often enough violated. One of the heuristics is that a pro-
gram should contain shortcuts for experts – e.g. the key combination ctrl+s to quickly save a 
document. To include shortcuts for experts we added a table of contents to eVEMINT which 
is connected with the video and the module and thus allows precise navigation towards the 
specific parts for intermediate learners. Another usability heuristic recommends consistency 
of the software to the rest of the system. A simple example is the X-Button to close the in-
teractive manual. This is a well known usability concept and its usage is intuitively clear. But 
also consistency to the learning materials themselves is important. eVEMINT uses the same 
colors, font type and graphics as are used within the module and due to its interactive ap-
proach and abstinence of iconic representation the representations of the learning materials 
are always up to date – even after content updates. 

Selected poll results 
eVEMINT has been piloted successfully during winter term 2014/15 bridging course. Figure 
2 shows selected results from the latest evaluation in winter term 2015/16. 

 

Figure 2: Student's opinions about the interactive manual. 
 
It is safe to say that the interactive manual was very well accepted among the students who 
took part in the poll. It is also indicated that the participants have diverse needs. Some did 
not gain new insights from the interactive manual regarding personal directed and purpose-
ful approaches, while others seem to have better understood and learned how the learning 
materials are designed to satisfy their individual needs. 

Conclusion 
A rich support of self regulation can be achieved to aid learners in situations of e-learning. 
However in sum they come for the price of increased complexity. We have shown that con-
textualized interactive manuals can do their part to make more complex didactic ideas ac-
cessible to the learners that certain design principles should be considered. A surplus of sup-
port offered without adequate guidance will not only likely be without effect, but can also 
increase the cognitive load and have a negative effect on the students' learning success. 
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Didactics of mathematics in higher education, a service to 
science or a science in itself? Experiences made with tree- 

-structured online exercises.  
 

Robert Ivo Mei, Johanna Heitzer 

Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen  
(Germany) 

Thousands of students need to be taught and tested in mathematics each year even though it is not 
their primary field of study. At RWTH Aachen, this situation led to the Didactics of Mathematics de-
partment developing tree-structured, adaptive e-learning exercises for a first-year engineering maths 
course. The ongoing project has been a challenge and a chance: On one hand, it has created an op-
portunity to conduct didactically oriented content analyses of higher mathematical topics, and high 
student numbers in the course have allowed for substantial empirical investigations. However, a sep-
aration of students into test groups has not been possible. In this text, we describe the exercise de-
sign process as well as some results of our evaluations up to now.  

Introduction 
Starting in the 2012/2013 winter semester, the Didactics of Mathematics department at 
RWTH Aachen University was asked to develop adaptive e-learning exercises for a first-year 
mathematics course of an engineering study programme. The motivation was to improve 
online learning opportunities to this course with roughly 1000 students, and in particular to 
help those among the students who had more serious problems like school-level maths de-
ficiencies and/or unautonomous strategies relying on rote learning of sample solutions 
(Mustoe, 2001, p. 4; Rooch, Kiss, & Härterich, 2014, p. 399). For those learners, such defi-
ciencies could then result in insufficient formal rigour, logical argumentation, and experience 
in solving tasks. The new e-learning exercises were therefore intended to feature 

• direct and formative feedback (Shute, 2008, pp. 1, 177-181), 

• high approachability / low threshold, 

• structural overview, 

• proximity to the process of solving tasks on paper (with regard to formal, logical, and 
heuristical aspects). 

We opted to design them in a way such that users could “explore” exam-style task solu-
tions. Such a design needs to offer multiple ways of approaching a problem, and it needs 
individual, adaptive feedback that responds to user choices. 
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In order to realise this, we decided to include answer-dependent branching in the exercises, 
leading to a tree structure. Although the core idea – intra-exercise branching into different 
paths depending on the learner’s answers – goes back to Norman Crowder’s branching sys-
tem type of programmed instruction (Lockee, Moore, & Burton, 2004, p. 550), our approach 
appears yet to be rare in mathematics e-learning. Contemporary mathematics e-learning 
platforms (like the European platforms “Math-Bridge” and “MUMIE”, or the Singaporean 
“ACE-Learning”) seem to either offer collections of unbranched questions or roughly follow 
the more linear approach originally proposed by B. F. Skinner, where a certain error rate in 
one question set sends the learner to a remedial question set in order for him to acquire 
more practice (Lockee et al., 2004, p. 547). At any rate, the tree structure has allowed for 
individual feedback and, in many cases, for exploring the multiple ways which are often 
possible for solving a task. Since winter 2012, the exercises have been used in the course 
every semester, gradually been extended, and been evaluated statistically as well as with 
student surveys. In the following, we will describe our approach in developing the exercises, 
and then present some of the results from the evaluations carried out up to now. 

Design and development of the tree-structured exercises 
What was the motivation to introduce new e-learning exercises in the first place? The math-
ematics course in question already had a diverse range of optional and non-optional practice 
elements, but it was found 

• that the mandatory online test exercises (necessary for exam application) were too 
simple compared to actual exam tasks, while the optional harder written assign-
ments (corrected by tutors) left weaker students clueless, which in turn made them 
resort to rote-learning of sample solutions; 

• that especially the online tests and tutorial lessons could not give much individual 
feedback to students about what they were doing wrong and how to improve; 

• that weaker students could often hardly be convinced to learn autonomously and to 
try to solve tasks without sample solutions. 

Our new e-learning exercises should address these issues. The mathematical contents of the 
course in question had previously been established in collaboration with the engineering 
departments, so these contents were a fixed guideline to us. Since then, our work has been 

• to select those types of exercises that are deemed problematic for some learners, 
often found out by direct experience with students; 

• to perform a didactically oriented content analysis on these topics, finding aspects 
important for understanding them – supported by experience with students (the de-
velopers were also working as tutors in the course) as well as observing one's own 
thought processes while solving an exercise; 

• to transform these findings into adaptive e-learning exercises which are close in 
style to exam tasks, which give individual feedback to at least some extent, and 
which offer enough coaching elements to activate even less well-performing stu-
dents. 
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As mentioned, we have decided to design our exercises in a tree-structured way in order to 
reach the goals above. How could such answer-dependent branching be realised technical-
ly? The choice fell on the “lesson” feature of Moodle: It offers consecutive linking from one 
page to one or more others, either knowingly chosen by the user on a “content page” (an 
example is shown in figure 1) or determined automatically by the answer given on a “ques-
tion page”. 

This makes it possible to follow different paths leading to a solution, and to give different 
feedback according to what the user has answered. We call this intra-exercise branching 
“local adaptivity”, as an exercise can react directly to user choices/answers from one page 
before, but not indirectly to any actions before that (it does not store behaviour in  
variables). 

 

 
 

Figure 1: A content page in an exercise on analytic geometry, where the user can click link buttons 
to choose the method for determining an intersection point. Note the overview menu in the upper 
left and the “look up this concept” book icon at the far right. Similar icons exist for “write down” 
and “pay attention”. 
 
Content-wise, the exercises have been designed to follow the solution process of exam-like 
tasks such as a principal component analysis, solving a separable differential equation, etc. 
Every tree-structured exercise starts with such an exam-like task description and then fol-
lows the corresponding solution process (or several alternative solution processes) step by 
step up to a solution. It is important that this solution process also includes intermittent 
thoughts and/or an initial heuristic trial-and-error phase, not only the final phase of writing 
down an actual neat solution. 
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Figure 2: Structure of a series convergence exercise. 

 

In figures 2 and 3, one can see the structures of two example exercises; the first one re-
quires the user to examine the series 
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for convergence depending on 𝑥 from the real numbers, the second one asks for all real 
solutions to the differential equation system 
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Figure 2 shows how a large portion of the series convergence exercise – the whole left side 
in the diagram – is reserved for an initial trial-and-error phase. With the help of explanations 
on respective pages, the user tries out different convergence tests for applicability. When 
the user feels ready to start writing down the actual solution, he has to correctly answer 
which convergence / divergence test can be used for which 𝑥 (in the three blue consecutive 
question pages in the upper top portion). The right side of the diagram then illustrates the 
solution writing phase. Here, the user is led through the solution for three different cases for 
𝑥 (with a couple of question pages); and as shown in the diagram, two cases can each be 
solved in two different ways. 
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Figure 3: Structure of a simple differential equation system exercise. 
 
The structure of a shorter exercise on a 2×2 linear differential equation system is shown in 
figure 3. Again, there are different ways to reach the solution, with the top one using the 
matrix diagonalisation method, and the two lower ones using a “combination” method (dif-
ferentiating one of the two equations and smartly combining all the resulting equations), 
which can here be performed in two different but similar ways. 

What are typical aspects found in a didactically oriented content analysis to such exercises? 

• In the series convergence exercise from above, some aspects important to under-
standing can be: Knowing common convergence tests; recognising when a specific 
convergence test is useful (as simple examples, the quotient test might solve some 
types of fraction expressions, the root test might solve some expressions to a power 
of 𝑘); recognising asymptotic behaviour of an expression; developing an instinct on 
which cases of 𝑥 need to be distinguished (for series with a variable 𝑥); knowing 
common inequalities like the triangle inequality; thinking from the back to the start 
and knowing some common tricks (for constructing inequality chains). 

• In the differential equation system exercise, aspects (apart from obvious necessities 
like factorising quadratic polynomials, diagonalising a matrix etc.) can be: Under-
standing the difference between the two methods available, especially knowing in 
which cases they can be used; understanding that for a specific solution, the parame-
ters from the solution set have to be chosen in correct correspondence in the upper 
and lower component; being aware that different methods can lead to slightly dif-
ferent-looking but equivalent expressions for the set of solutions. 

For each topic, we have tried to include most or all of those aspects in the corresponding 
exercise(s), for example on explanation pages or, when possible, on correction pages fol-
lowing a common mistake. 

In conclusion, our exercises can be seen as interactive, explorable solving processes. They 
always include detailed thoughts on every step, question pages for intermediate results, one 
or more sample solutions, and sometimes trial-and-error phases. We want to stress that, 
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more than just a rote learning of solution patterns, learning with sample solutions can in-
deed be effective when enhanced as described above (also cf. Ableitinger & Herrmann, 
2013, p. 27). 

Evaluation results up to now 
The engineering mathematics course in question is a two-semester course with one exam 
each semester. Following some content changes in the exercises, as of mid-2016, there are 
11 tree-structured exercises for the winter semester and 8 exercises for the summer se-
mester. The percentage of students who have used our tree-structured exercises varied 
over the semesters – roughly half of all students in some semesters, or just around a quarter 
of all participants in other semesters. This difference is likely due to changing ways in which 
the exercises have been included in the course. 

One part of our evaluations has been a student survey. Starting in autumn 2013, we have 
conducted a survey after the end of each full cycle, with largely positive results every year 
(although suryey participation numbers have been low in 2015): Roughly 80% of survey 
participants each year have found the tree-structured exercises helpful for understanding 
the mathematical concepts and using them in tasks. Around 40% have even stated that 
without the tree-structured exercises, they would probably have performed worse in their 
exams. A common remark has been that – while our exercises are helpful – written assign-
ments are still a better preparation as they are closest to exam conditions. 

The second part of our evaluations up to now has been the analysis of correlations between 
exercise usage (optional tree-structured exercises, optional written homework, mandatory 
short online tests) and exam performance. This analysis has been conducted every semester 
on the basis of anonymous student data; the investigations for every semester from winter 
2012/2013 until winter 2015/2016 have been completed. Among others, we used Pearson 
correlation coefficients for the correlation between the number of points reached in the ex-
am and 

• the number of optional tree-structured exercises used; 

• the number of points reached in the optional written homework assignments; 

• the number of points reached in the mandatory short online tests; 

with all of these correlations being positive. Participants who later decided not to take the 
exam were counted as zero points. While the concrete values for these correlations have 
varied over the semesters, their relative standing to each other has remained rather stable. 
This means that the written assignments have in most cases shown the highest correlation 
(from around 0.3 up to around 0.5), with the tree-structured exercises’ correlation being 
slightly lower (also from around 0.3 up to around 0.5), and the mandatory online tests’ cor-
relation being the lowest (from around 0.1 up to around 0.3). These results also reflect the 
students’ estimation of the helpfulness of our exercises. 

Conclusion 
Coming back to the title question, we hold that didactics of mathematics in higher education 
can be seen both as a service and a science: From a scientific point of view, developing 
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learning aids for university lectures is an opportunity to open the field of higher mathemati-
cal contents to didactically oriented content analysis, which has mostly been reserved for 
school mathematics before. It can also serve as a “testing ground” for new approaches, as in 
our project, and high student numbers allow for statistically sound empirical investigations 
of effectiveness. It should be noted, however, that fairness constraints often prohibit test 
group separation for statistical hypothesis testing – as is the case with our course in ques-
tion. From a service point of view, cooperative projects often result in didactically well-
designed products, usable for a long while, and which can be helpful for (weaker) students. 

Finally, specifically concerning our tree-structured exercises: Even though written assign-
ments can still be suspected to be the most effective option for learning and exam prepara-
tion, the fact that the tree-structured exercises’ correlation is rather close to the written 
assignments’ correlation is certainly interesting and speaks for a certain effectiveness of the 
exercises. 
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The use of digital technology in university 
mathematics education  

Jürgen Richter-Gebert 

Technische Universität München 
(Germany) 

Since the advent of personal computers in the 1980s various teaching scenarios have been created in 
which computers were used to enhance understanding. Since modern computers are capable of per-
forming computations very fast, one nowadays can create explanation material in which the effects 
under considerations emerge from the combination of basic (rather elementary) building blocks. The 
article discusses scenarios under which these types of simulations and visualizations can be profitably 
used in teaching and explaining. The article also discusses some quality criteria that must be applied 
to the tools used to create such visualizations. 

Why computers? 

It is almost a commonality that computers are a versatile tool for enhancing comprehension 
in teaching situations. Nevertheless it is appropriate to ask from time to time „why“ once 
should use computers in teaching scenarios of different types. In particular one might ask 
whether there are particular situations in which only a computer could transport a certain 
learning experience to the student. From a birds eye perspective the abilities that are specif-
ic to modern computers can be divided in the following categories: 

• perform computations very fast, 

• provide a viewing surface that can be updated very fast and on demand, 

• provide several types of input channels for interaction, 

• give access to huge amounts of stored data including different kinds of media, 

• create various types of communication channels to other users. 

We here will focus on teaching scenarios related to the combination of the first three items 
neglecting those scenarios that take advantage of the storage and database aspects (access 
to films, pictures, lexicons, etc.) and the social aspects (communication, interaction within 
groups, forums, etc.).  

The first point (fast computations) should not be mistaken as as mere possibility of doing 
fast routine number crunching: Fast computations give the opportunity to create complexity 
(in combination with appropriate software concepts). In particular, it becomes possible to 
create simulations based on first principles and observe certain high level structures as 
emerging effects (consider for instance a physics simulation that illustrates the conformation 
of molecules based on the mutual interaction of single atoms). The second point (viewing 
platform) provides the opportunity to visualize the results of the computations. If computa-
tions and visualizations are fast enough this creates a cinematic experience of a process or 
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effect (to stick with our example, one can see how the atoms under their mutual forces start 
to form molecular structures). Finally the third point (interactivity through input channels) 
provides the possibility to interact with the simulation. Provided everything is fast enough a 
situation is created the exceeds the purely cinematographic experience. One may get an 
immersive interaction within a simulated micro world (in our example: playing „god“ by 
moving single atoms around and see what happens) (compare Richter-Gebert 2013). 

What are the benefits of these capabilities for teaching? Using the simulation power of a 
computer gives the student (both on school and university level) the possibility to experi-
ence a certain context in a very direct (and ideally intuitive) manner. By this the student can 
become a „researcher“ that explores a context and gets involved in a very direct manner. 
Such considerations not only form the basis of dynamic geometry software (like Cabri, Ge-
ometers Sketchpad, GeoGebra or Cinderella) but also many other more general mathemati-
cal visualization attempts as they may be found for instance in the collections of the Wolf-
ram Demonstration project (Wolfram Research Inc., 2007-) , the collection of Mathe Vital 
(Richter-Gebert et al., 2007-) or on GeogebraTube (Hohenwarter et al., 2011-). 

Usage scenarios 
Let us use the adjective highly interactive for those interactive visualizations and simulations 
that are based on first principles and derive their effects as emergent structures from ele-
mentary building blocks. They are in contrast to mere stimulus response animations in which 
the computer only reacts according to narrow predefined patterns created by the program-
mer. We will briefly outline some scenarios in which the use of highly interactive visualiza-
tions provides a particular benefit.  

Versatile demonstration material 
Ideally a good simulation models a part of the abstract mathematical realm and maps it to a 
tangible entity on a computer screen. By this such simulations play a role similar to classical 
19th century mathematical geometry models whose purpose was to make abstract mathe-
matical concepts „tangible“ and „visible“. Digital simulations (if done well) may by far ex-
ceed the possibilities of physical models. They allow for a broad variety of interaction with 
the object under consideration. By this they become very versatile tools for teaching allow-
ing a lecturer do demonstrate various aspects of the subject that should be explained. In the 
collection Mathe-Vital we aimed to create such digital-models for teaching scenarios for 
undergraduate university studies. All together over 500 such visualizations were written so 
far covering different branches of mathematics and a huge variety of objects. To demon-
strate the spectrum of these models we here just mention a few topics that were created 
for a Linear Algebra class: Finite additive and multiplicative groups, modulo arithmetic, Eu-
clids algorithm, continued fractions, transformation groups, stereographic projections, vector 
arithmetics, eigenvectors, linear differential equations, and many more. Each of these 
demonstrations was created to support a certain teaching situation with interactive visual 
material that allows for a flexible usage within a specific context. 
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Self studies 
The models mentioned above can also be used in a scenario in which a student wants to go 
deeper and explore the effects by his own. To stay with our comparison to physical models 
this corresponds to the situation in which the lecturer has explained a model and then pass-
es it around in the class (or even allows your students to take it home). Experimenting with 
a specific digital micro laboratory (compare Richter-Gebert 2013) can set the student in the 
situation of a researcher who explores how a certain predefined scenario behaves in specific 
circumstances. For instance in the examples of atoms that form molecules under their mutu-
al forces one might be interested to see what happens if the atoms have different charges, 
masses, etc. In the example of modulo arithmetic and subgroups of finite multiplicative 
groups one might explore which sub-groups are generated by various collections of ele-
ments. 

Learning by creating worlds 
Taking this one step further one might even create situations in which students themselves 
create simulations or micro laboratories. Putting the students in the role of a model-maker 
gives them a chance to explore a topic in depth and at the same time thinking of the educa-
tional value of the model they create. Perhaps this is best expressed by the words Felix 
Klein put it in his Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhunderts 
(1928). He describes the role of models in the 19th century geometry school as follows: 

Wie heute, so war auch damals der Zweck des Modells, nicht die Schwäche der An-
schauung auszugleichen, sondern eine lebendige, deutliche Anschauung zu entwi-
ckeln ein Ziel, das vor allem durch das Selbstanfertigen von Modellen am Besten er-
reicht wurde. 

Almost literally this description applies to the creation and use of digital models if they are 
created by a highly interactive first principle approach. 

Tools for creation of digital mathematical content 

Creating digital models for a specific mathematical context is by no means an easy task and 
generally requires programming skills as well as a deep mathematical understanding as well 
as a good „gut feeling“ for the educational value and implication of a specific model. During 
the last three decades several tools for the creation of such models have been released. 
They have different origins (like computer algebra, dynamic geometry, physics simulation 
engines, raytracing,...) however nowadays many of them provide methods to create math-
ematical content on a fairly high abstraction level. In particular a certain convergence of 
concepts can be observed. While computer algebra systems (like Mathematica or Maple) are 
more and more enhanced by interaction and visualization capabilities on the one hand, dy-
namic geometry software, on the other hand, is more and more enhanced by scripting lan-
guages, and computer algebra components. For such tools to be useful it is important that 
they satisfy several quality standards since they will have an direct impact on the educa-
tional value of digital models created with them. We only list a few of them 

• Many mathematical objects (like points, lines, vectors, polynomials, types of num-
bers,...) and operations on them should be accessible, on a high level of abstraction. 
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• The behavior of such objects and operations (even of very elementary ones) should 
be correct and free of artifacts on a high mathematical level. This usually requires a 
significant amount of mathematical modeling and a deep understanding of the ele-
mentary objects and operations (see for instance Kortenkamp & Richter-Gebert 
2001). 

• Despite the mathematical depth the objects should be accessible in an easy and un-
derstandable way to the user of the tool. 

• There should be a close semantic correspondence between the abstract objects, their 
visual representation and their interaction pattern. 

Similar quality criteria apply on another level when concrete interactive visualizations are 
designed with such tools. A detailed analysis of this topic together with crucial aspects rele-
vant for the design are given in (Richter-Gebert 2013) and (Richter-Gebert 2015). 
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Rethinking refresher courses in mathematics  
Katherine Roegner 

Hochschule Ostwestfalen-Lippe 
(Germany) 

The stated purpose of refresher courses in mathematics at many German institutions for higher learn-
ing is to offer incoming students the opportunity to bridge the gap between their actual mathematical 
skills and those expected of them. Several studies have supported the hypothesis that the students 
with weak skills tend to complete at most a small portion of such courses. This contribution provides 
a brief overview of how some programs attempt to meet this challenge. A pilot project at the Univer-
sity of Applied Sciences Ostwestfalen-Lippe that combines tutoring and mentoring within and beyond 
the refresher course is presented along with initial findings.  

Extended Abstract 
Many colleges and universities in Germany offer refresher courses to incoming engineering 
students as a review of school mathematics. The main goals for these courses on the meta-
level are often to reduce attrition rates, to reduce the heterogeneity of student knowledge, 
and/or remediation (see for example Bausch et al., 2014). Unfortunately, the time allotted is 
often too short for these purposes. Furthermore, it is not clear if the intended audience is 
being reached (see for example Roegner, 2012). Moreover, the effectiveness of such pro-
grams with respect to these goals is often difficult to measure. The question of how to re-
shape refresher courses with measurable goals in mind arises. 

The refresher courses at the University of Applied Sciences Ostwestfalen-Lippe (HS OWL) 
are similar in nature to other such courses in Germany. They run for two weeks prior to the 
beginning of the semester. Most participants have just recently completed their schooling. 
The instructors are often retired schoolteachers or master’s students. The topics to be cov-
ered are vast so that a lecture style prevails. Attendance at the beginning of the course 
ranges anywhere between 30% and 70% of the students enrolled for their first semester. 
Attendance at the end amounts to a handful of students who seemingly could have re-
freshed their skills during the semester. So why even bother with refresher courses? 

Inspired by the socialization and independent learning aspects in certain US and English pro-
grams (e.g. Tutoring Lab at Eckerd College, Math Lab at Southeastern Louisiana University, 
Mathematics Learning Support Centre at the University of Loughborough) and the utilization 
of “learning-scouts” at the HS OWL, an alternative approach towards the refresher course 
was conceived and is currently under development. The main idea is to reduce the content, 
allowing more time for the participants to solve problems. The students are supported in this 
phase by a learning-scout: a student in the same field of study as the participants and 
trained in the principle of minimal help. The focus shifts in this way from quantity to quality. 
The participants not only build a social net with other new students, they also become ac-
quainted with someone who has successfully completed the first year(s) of study. Thus the 
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learning-scout also acts as mentor and role model. This learning-scout supports the first-
semester mathematics course so that the students participating in the refresher course 
(hopefully) not only stay longer in that course but are also more motivated to use the re-
sources offered in the first-semester math course during the self-study phase.  

In the pilot phase, a learning-scout was placed in one of the refresher courses at HS OWL in 
Höxter prior to the Winter Semester 2015/2016. The arrangement made with the lecturer 
was basically “business as usual”. It was, however, agreed upon that some time would be 
allotted each day for problem solving. During this time, the learning-scout would assist the 
students. Observations concerning the interactions between participants, lecturer, and learn-
ing-scout were recorded in order to provide a foundation for future studies. As expected, 
the students interacted with each other for longer periods of time when the learning-scout 
supported any one of the given students. According to the students in the parallel session 
(without a learning-scout), there was neither time for the students to actively solve prob-
lems nor time to interact with each other.  

First findings of this preliminary study are given that are relevant to the alternative set-up 
that is to be piloted in the Winter Semester 2016/2017. After a detailed description of the 
proposed set-up, comments, criticisms, and suggestions from the audience will be wel-
comed.  
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Innovative education in mathematics for engineers. 
Some ideas, possibilities and challenges  

Frode Rønning 

Norwegian University of Science and Technology 
(Norway) 

At the Norwegian University of Science and Technology (NTNU) extensive work is being done to 
change the way basic mathematics is taught to engineering students. The focus is being shifted to 
more student centred approaches to teaching and learning and the aim is that students should devel-
op deep understanding of mathematical concepts and processes. Various steps have been taken to 
stimulate students’ own involvement and activity in the learning process. Such steps include changing 
the format of the lectures, providing more 1-1 contact with students and a diverse selection of learn-
ing resources. Resources are provided on digital platforms both in the form of videos and as computer 
aided assessment. This paper reports on experiences from the first two years of the project.  

Background 
The Norwegian University of Science and Technology (NTNU) is the main institution for edu-
cation of engineers on master level in Norway. Every year some 1600 students are admit-
ted to 18 different study programmes in engineering. Due to high minimal requirements for 
admission as well as high competition to many of the study programmes, most of the stu-
dents have a very strong background in mathematics when they start studying. Despite this 
fact one has faced rather high failure rates in the basic mathematics courses as well as high 
drop out rates from some of the study programmes.  

It is recognised that although the students have had to take as much mathematics in upper 
secondary school as possible with rather good grades to be admitted, and therefore could 
be expected to have a strong interest in mathematics, their main motivation for seeking 
engineering education is not to study mathematics as such. Therefore they are expected to 
come with varying motivation for learning mathematics and it is a challenge to organise the 
education in ways that can meet all students’ needs.  

The high number of students and relatively limited teaching resources has traditionally been 
handled by giving lectures in large groups complemented by problem sessions in small 
groups led by student assistants, sometimes just one year ahead of the students they are 
tutoring. The project Quality, accessibility and differentiation in the basic teaching of math-
ematics, launched in 2014, with a pilot starting in 2013, has as two of its main goals to in-
crease differentiation and to enable closer contact between students and highly qualified 
teachers. Further goals are to stimulate students to increased and more continuous work 
input in the studies and to increase student activity and involvement in the education.  

The project covers the courses Calculus 1 (autumn) and Calculus 2 (spring). Calculus 1 is giv-
en to all the engineering programmes and Calculus 2 to almost all. Some programmes in 
computer science take a course in discrete mathematics instead of Calculus 2. 
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Some important components in the project 
To achieve accessibility and differentiation a guiding principle has been that various types of 
learning resources should be made available when and where students need them. There-
fore learning material is available on the internet in the form of web pages and videos of 
different types. Videos range from simply capturing a regular lecture or a problem solving 
session and put it on the web to producing more focused thematic videos dealing with one 
particular concept that is central, and perhaps also known to be difficult to get the grip on. A 
student support centre (drop-in centre) is open every day from 12.00 to 18.00 (Fridays to 
16.00). Here students can come as they wish to work on their own or in collaboration with 
fellow students and there are always teachers there that can be asked for help. The main 
responsible persons at the drop-in centre are usually PhD students in mathematics. They are 
assisted by students with lower qualifications and also the regular lecturers are present at 
the drop-in centre at given times of the week. The drop-in centre is a component that ad-
dresses both quality, accessibility and differentiation, quality in the sense that one aims at 
using teacher with high mathematical qualifications there.  

In order to shift teaching resources towards using more highly qualified personnel some of 
evaluation tasks have been moved over to the computer. Traditionally students have hand-
ed in paper-based solutions to problem sets every week and these solutions have been as-
sessed by a large number of, often low qualified, student assistants. The weekly problem 
sets are still maintained but now they are done on the computer, using a computer aided 
assessment system (Maple T.A.). Paper based hand-ins are limited to one per month, com-
prising more elaborate problems and where the students can expect to get more helpful 
feedback which will bring them further in their learning process.  

Theoretical background 
The traditional teaching of mathematics at university can be seen as based on a metaphor 
for learning that entails transmission of knowledge from those who know to those who do 
not know. It is widely accepted that in order for learning to take place some kind of activity 
on the learner’s side has to take place. Also it is well recognised that participation and com-
munication are important factors to foster learning (Lave & Wenger, 1991). Although lec-
tures can certainly involve student activity they may also lead to passitivity and in order for 
lectures to function well it is necessary to shift the focus from teaching to learning and in-
stead of producing a best possible presentation to focus on how the presentation can enable 
the students to learn in a best possible way (Chang, 2012; Engelbrecht & Harding, 2005). 
The project is based on a view on knowledge and learning that recognises students’ en-
gagement as essential for a good learning outcome. This includes both an affective, behav-
ioural and cognitive engagement (Fielding-Wells & Makar, 2008).  

In recent years the idea of ‘flipped classroom’ (Mazur, 2012) has attracted a lot of interest, 
also at higher education. In order for this to function well it requires a certain engagement 
on the students’ behalf in terms of preparing for classes. Previous research indicates that 
this might not be successful with students who are not used to it (Sopasakis, 2013). Chal-
lenges might be expected to be even higher when, as is the case at NTNU, one is facing ra-
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ther large student groups in one classroom. However, there is evidence to show that even in 
large classes this approach may be successful (Deslauriers, Schelew, & Wieman, 2011). 

Findings from the project 
In order to monitor the project surveys have been carried out each semester since autumn 
2013 (two cohorts of students) with approximately 700 respondents in Calculus 1 and ap-
proximately 600 respondents in Calculus 2. In addition focus group interviews have been 
carried out with a small number of students every semester and the students also have the 
possibility to give anonymous feed back through a web-based application every week (web 
diary).  

Some of the questions that have been asked in the project concern how students work with 
mathematics, what learning resources they use and how they value the available resources. 
By using many of the same questions in the survey each time one will be able to see 
whether there are any changes over time.  

When presenting the students with a list of available resources one can detect a certain 
preference for the traditional learning resources. About 70% report that they “to a large 
extent” attend lectures. About 20% watch the video recorded lectures “to a large extent” 
and other kinds of videos are used by a much smaller portion of the students. The lectures 
are also highly valued as a source for learning, about 40% agree “to a large extent” with the 
statement “I learn a lot by going to lectures”. Another 40% agree “to a rather large extent” 
with the same statement. In interviews students have been prompted to elaborate on the 
role of lectures and this reveals that lectures play different roles in the students’ life. On 
important role is that they provide some structure in the students’ daily life (“Lectures make 
me get up in the morning”) and they also provide a sense of good conscience (“When I go 
to lectures I feel that I have done something useful”). Reasons that are more directly linked 
to the learning process are that the lectures provide a natural arena for discussing with fel-
low students and also for talking to the lecturer. Lectures are given in two times 45 minutes 
with a 15 minutes break and this break is used eagerly to ask questions to the lecturer. 
There is also evidence to suggest that mathematics may be somewhat different from other 
subjects in the sense that it is hard to read mathematics from a book. In interviews students 
come up with statements like, “in mathematics it is important to have things explained to 
you”.  

The textbook is also placed in high regard by the students, 80-90% report that they use it 
“to a large extent” or “to a rather large extent”. When being asked about how they use the 
textbook it seems that the most important role of the textbook is as a source of help when 
the students are stuck on a problem. They will then use the textbook to look for an example 
that resembles the problem they are working on. The theory in the textbook seems to play 
a less important role but there are indeed about 75% of the students that agree, completely 
or to some extent, to the statement “I read the theory in the textbook”.  

The traditional lecture structure allows the students to be rather passive and changing to 
more student active structures will require a higher degree of involvement on the students’ 
side. This could be challenging since there is evidence to suggest that students do not pre-
pare for lectures to a large extent. Our surveys indicate that around 80% never or rarely 
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read “today’s topic” before lectures and around 55% never or rarely work on the material 
the same day after the lecture. These results, as well as results from other projects (e.g. 
Sopasakis, 2013), suggest that one should approach the changes in the traditional structure 
with some care.  

Survey lectures and interactive lectures 
In the traditional structure of Calculus 1 lectures have been provided as 2 times 45 minutes 
slots two days a week. Students are grouped in six sections, according to their study pro-
gramme. This structure will usually lead to a style with basically one-way communication 
and the students spend the time listening and taking notes. From the start of this academic 
year a new structure has been implemented. The first 2 x 45 minutes session of the week is 
announced as a ‘survey lecture’. This is given in a room of maximal size (400 persons), four 
times to accommodate all students, and it is also video taped. The purpose of this lecture is 
to give an overview of the material that the students are supposed to work with during the 
coming week. The second session of the week is announced as an ‘interactive lecture’ for 
which the students are given problems in advance to prepare for class. During the interac-
tive lectures the students can work on the given problems with assistance from the lecturer, 
and also on other problems that the lecturer may present during the lecture. The interactive 
lectures are given in 12 sections, i.e. still a rather high number of students in each section. 
An electronic student response system is used to generate activity and communication dur-
ing the lecture. In the last phase of the interactive lecture the teacher uses the input he/she 
has acquired during the lecture as the basis for discussing main issues of the week’s topic. In 
a quick survey done after about five weeks into the semester 80% of the respondents  
(n = 462) report that they benefit from the interactive lectures to a large or rather large ex-
tent and around 75% report in the same way about the survey lectures.  

Preliminary conclusions 
The project is still running and it is too early to report on any effects or impact from the pro-
ject. A general impression from the findings is that students have a preference for traditional 
methods and that therefore changes should be implemented with care.  
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The role of mathematics in the design of engineering 
programs – a case study of two Scandinavian universities  

Olov Viirman 

University of Agder 
(Norway) 

A recently initiated project is introduced, focusing on mathematics within engineering education from 
an institutional perspective. The aim of the study is to identify and investigate conditions and con-
straints for the teaching and learning of mathematics created through the organizational structure of 
engineering programs. The study is a case study of two engineering programs at one Norwegian and 
one Swedish university, and it is set within the overall framework of the anthropological theory of the 
didactic (ATD). So far, very little data has been collected, and only some initial observations can be 
made. From these observations, however, some indication of an applicationist understanding of 
mathematics within civil engineering education at both universities can be found. 

Introduction 
In recent years, university mathematics education (UME) research has taken an increased 
interest in the teaching of mathematics to non-mathematics majors as evidenced, for in-
stance, by a number of  papers presented in the UME working group at the 9th Congress of 
European Research in Mathematics Education (CERME 9) earlier this year (Nardi et al, in 
press). The teaching of mathematics in engineering programs is of particular relevance, giv-
en the large number of students enrolled in such programs, the perceived importance of 
mathematics in engineering, and engineering students’ reported difficulties with mathemat-
ics courses they are expected to take, leading for instance to high attrition rates (e.g. Alpers 
et al 2013, Broadbridge & Henderson 2008).  

This paper introduces a recently initiated project focusing on mathematics within engineer-
ing education from an institutional perspective. The aim of the study is to identify and inves-
tigate conditions and constraints for the teaching and learning of mathematics created 
through the organizational structure of engineering programs, as exemplified, for instance, 
by program and course syllabi, forms of assessment, organization of teaching etc. An exam-
ple of such constraints presented in the literature is the notion of ‘applicationism’, as intro-
duced by Barquero, Bosch and Gascon (2011). In their words, applicationism is an under-
standing of mathematics and its relation to the natural sciences where “first mathematical 
tools are built within the field of mathematics and then they are ‘applied’ to solve problem-
atic questions from other disciplines, but this application does not cause any relevant 
change, neither in mathematics nor in the rest of the disciplines where the questions to 
study appeared.” (ibid, p. 1940) Barquero, Bosch and Gascón see the epistemology of appli-
cationism that they detect in various mathematics syllabi and textbooks in Spanish universi-
ties as an obstacle to the implementation of modelling activities in the mathematics courses 
taught in science programs. Similarly, the prevalence of applicationist tendencies in the syl-
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labi of engineering programs might help explain reported difficulties in implementing, for 
instance, integrated curricula (e.g. Merton, Froyd, Clark & Richardson 2009). 

The main focus of the study will be on the mathematics courses within the programs, but 
there will also be consideration of the role of mathematics in the courses in other subjects. 
Anecdotal evidence from colleagues involved in engineering education and other service 
teaching of mathematics suggests that the way mathematics is talked about and used in the 
students’ main subjects can have a significant effect on the way they approach the study of 
mathematics. There is ongoing research in various areas relating to this issue. For instance, 
there are studies on the mathematics needed for problem solving in general engineering 
contexts (Biehler, Kortemeyer & Shaper, in press; Hochmuth, Biehler & Schreiber, 2014; 
Lehmann, Roesken-Winter & Schueler, in press); on differences in how mathematical con-
cepts are presented in textbooks in engineering and mathematics (Alpers, 2015); and on 
differences in instructors’ attitudes towards the teaching of mathematics to engineering 
students, depending on their academic background (Hernandes Gomes & González-Martín, 
in press). Studies like these all suggest the relevance of considering not only the position of 
the subject of mathematics in engineering programs, but also the position of mathematical 
content and practices within other subjects in the engineering programs. 

Theoretical framework 
The project is set within the overall theoretical framework of the Anthropological Theory of 
the Didactic (ATD). Central to ATD is the notion of praxeology. According to Chevallard 
(2006, p. 23) a praxeology is “the basic unit into which one can analyse human action at 
large”. In a praxeology, “two inseparable aspects can be distinguished: the block of the 
practice (or praxis) that consists of types of problematic tasks and techniques to tackle 
these tasks. Linked to this block, a reasoned discourse (logos) arises about the practice, 
whose function it is to provide a description, explanation and justification of the practice.” 
(Barquero, Bosch & Gascón 2012, p.312, italics in original). The logos is in turn made up of 
technology, the discourse on the technique, and theory, providing the foundations of the 
technology. Praxeologies can be classified according to increasing complexity, starting with 
specific praxeologies, built up around a single type of problem, which are then “linked ac-
cording to their theoretical background to give rise to local, regional or global praxeologies” 
(Bosch & Gascón 2006, p. 59). In engineering education, from the perspective of this study, 
two different global praxeologies can be distinguished – a mathematical and an engineering 
praxeology, with different tasks, techniques, technologies and theories. Still, mathematics 
plays an important role in engineering education, and an investigation of the role mathe-
matical techniques and technologies play in the engineering praxeology might be a fruitful 
way of investigating questions relevant to the aim of this project. 

Another aspect of ATD relevant to this project is the notion of a hierarchy of “levels of di-
dactic co-determination”: 

Civilization↔Society↔School↔Pedagogy↔Discipline↔Domain↔Sector↔Theme↔Subject 

(Barquero, Bosch & Gascón 2011, p. 1938). These different levels, ranging from the most 
general – civilization – to the most specific – the subject of study in a particular teaching situ-
ation – all affect one another, providing conditions and constraints for how teaching and 
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learning activities can be organized in a specific context. Given that the present study aims 
to focus on how the organizational structure and the design of engineering programs affects 
the role of mathematics in the programs, the levels of didactic co-determination ought to 
provide useful tools for analysis. 

Data collection and initial observations 
The study focuses on the cases of two engineering programs, civil engineering and electron-
ics, at one Norwegian and one Swedish university, and the main focus lies on the first two 
years of study (where most of the mandatory mathematics courses tend to be situated), 
although the overarching structure of the programs, for instance general learning outcomes 
of the programs, is also considered. The two universities chosen are similar in many respects 
– relatively new institutions of approximately the same size, with a mainly regional student 
recruitment base. At the same time, there are pronounced differences between them re-
garding, for instance, the role of examination, where the Norwegian university routinely 
uses external examiners for its courses, in contrast to the Swedish case where all examina-
tion is done locally. Also, engineering education in Norway is subject to a certain amount of 
governmental control through a national curriculum for engineering education issued by the 
department of education. Similar documents do not exist in the Swedish context, where 
there are only general national curricula for bachelor and master education. 

Since at the time of writing the autumn semester is only a few weeks old, I have so far only 
been able to collect course syllabi, program descriptions and curricula, and the different na-
tional curricula. I intend to complement these with some sample textbooks and examples of 
homework and examination tasks, as well as information about what forms of teaching and 
learning activities are used in different courses. An analysis of textbooks should give insight 
into how the relation between mathematics and engineering is articulated there. This is like-
ly to affect how students experience this, since in both the Norwegian and the Swedish con-
text the textbook is one of the most important resources that lecturers use when planning 
their teaching. Homework and assessment tasks should give insight into the types of tasks 
and techniques in the different praxeologies, and also to what extent what is being said in 
curricula and syllabi about the connecting mathematics and engineering is actually practiced 
and assessed. 

With such limited data at my disposal, obviously not much in the way of analysis has been 
conducted so far. Some initial observations can be made, however, as an indication of the 
types of findings the study will hopefully provide. For instance, comparing the syllabi for the 
first semester courses in civil engineering at the Norwegian university one notes certain 
differences between the mathematics course, Mathematics 1, and the engineering course, 
Technical design. In the mathematics course, which is given within six different engineering 
bachelor programs, there is no mention of engineering, or indeed anything outside of math-
ematics, except for the mention, in one of the learning goals, of “practical problems”. On the 
contrary, in the Technical design course, the first learning goal states that the student should 
“understand the subject's correlation to the other courses in the civil engineering program”. 
Also, the student should be able to “perform basic calculations on the properties of the main 
building materials.” Hence, this course is seen as part of an overall civil engineering curricu-
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lum that makes use of mathematical techniques. The mathematics course, on the other 
hand, is presented as disjoint from the engineering context. Comparing this with the civil 
engineering bachelor at the Swedish university, the situation is largely similar, although in 
the aims of the first semester mathematics course, Basic course in mathematics, it is explic-
itly stated that the course is intended to “give basic mathematical knowledge and skills of 
importance for continued studies in mathematics and applied subjects”. In the content and 
the goals of the course, however, there is no mention of the world outside of mathematics, 
and thus mathematics is once again presented as something that is disjoint from the overall 
context, but that might be applied later. These initial observations are consistent with an 
applicationist understanding in the sense of Barquero, Bosch and Gascón (2011), although of 
course much more evidence needs to be gathered in order to be able to make such a claim 
with any force. 

This project is still in its very early stages, and it is much too soon to be able to say anything 
of its potential impact. Still, it is hoped that the results of the project will give insight into the 
considerations needed to be made when designing engineering programs. 
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