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A TRANSFER OPERATOR BASED COMPUTATIONAL STUDY OF REACTING FLUIDS
Motivation Transfer Operator Method Double Gyre Mixer (DG)

The DG mixes fluids over the domain [0,2]x[0,1] with the
velocity field u [5] defined by

x = —0.5msin(mtf (x,t))cos(my)

We analyze transport and reactions of ideal fluid particles. We assume that they move passively
according to x(t) = u(x(t), t), with tracer trajectories x(t) € R%. Let S:M — M be the flow map that
maps a particle x, = x(ty) to its new position S(x,) = x(t, + 7) over the time span [t,, t, + T].

In many industrial applications one aims for efficient chemical
reactions. We use a toy model to mimic reactions of chemical

fluids In a stirred tank reactor (STR) and investigate the
dynamics under the influence of complex flow structures.

Results for 6 = 0.1

In practice, we represent fluids by density vectors, which are evolved by means of a numerical
transfer operator and are subsequently updated according to an underlying chemical reaction
scheme. We model a STR as a compact domain M c R? discretized into n disjoint, connected sets
(boxes) B;, i =1, ...,n[1]. Each box B; contains N uniformly distributed sample points of chemical

y = 0.57 cos(nf (x, t)) sin(my) % (x,t),
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particles and their concentrations as networks. reaction is simulated using the explicit Euler method.
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