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Abstract. Transport and mixing processes in fluid flows are
crucially influenced by coherent structures and the char-
acterization of these Lagrangian objects is a topic of in-
tense current research. While established mathematical ap-
proaches such as variational methods or transfer-operator-
based schemes require full knowledge of the flow field or
at least high-resolution trajectory data, this information may
not be available in applications. Recently, different computa-
tional methods have been proposed to identify coherent be-
havior in flows directly from Lagrangian trajectory data, that
is, numerical or measured time series of particle positions in
a fluid flow. In this context, spatio-temporal clustering algo-
rithms have been proven to be very effective for the extrac-
tion of coherent sets from sparse and possibly incomplete
trajectory data. Inspired by these recent approaches, we con-
sider an unweighted, undirected network, where Lagrangian
particle trajectories serve as network nodes. A link is estab-
lished between two nodes if the respective trajectories come
close to each other at least once in the course of time. Clas-
sical graph concepts are then employed to analyze the result-
ing network. In particular, local network measures such as
the node degree, the average degree of neighboring nodes,
and the clustering coefficient serve as indicators of highly
mixing regions, whereas spectral graph partitioning schemes
allow us to extract coherent sets. The proposed methodology
is very fast to run and we demonstrate its applicability in two
geophysical flows – the Bickley jet as well as the Antarctic
stratospheric polar vortex.

1 Introduction

The notion of coherence in time-dependent dynamical sys-
tems is used to describe mobile sets that do not freely mix

with the surrounding regions in phase space. In particular,
coherent behavior has a crucial impact on transport and mix-
ing processes in fluid flows. The mathematical definition and
numerical study of coherent flow structures has received con-
siderable scientific interest for the last 2 decades. The pro-
posed methods roughly fall into two different classes, geo-
metric and probabilistic approaches; see Allshouse and Pea-
cock (2015) for a discussion and comparison of different
methods. Geometric concepts aim at defining the boundaries
between coherent sets, i.e., codimension-1 material surfaces
in the flow that can be characterized by variational criteria
(see Haller, 2015, for a recent review). Central to these con-
structions is the Cauchy–Green strain tensor, which is de-
rived from the derivative of the flow map. Thus, full knowl-
edge of the flow field or at least high-resolution trajectory
data is required for these methods to work successfully. This
also applies to other geometric concepts such as shape co-
herence (Ma and Bollt, 2014). Probabilistic methods aim
at defining sets that are minimally dispersive while moving
with the flow. The main theoretical tools are transfer op-
erators, i.e., linear Markov operators that describe the mo-
tion of probability densities under the action of the nonlin-
ear, time-dependent flow. The different constructions in this
family of approaches are reviewed in Froyland and Padberg-
Gehle (2014), also highlighting the crucial role of diffusion
in this setting. Recently, a dynamic Laplacian framework has
been introduced by Froyland (2015), where explicit diffu-
sion is no longer required in the analytical and computational
framework. While for this approach fast and accurate algo-
rithms have been developed in Froyland and Junge (2015),
the classical transfer-operator setting requires the integration
of many particle trajectories for the numerical approximation
of the infinite-dimensional operator. Here again, full knowl-
edge of the underlying dynamical system is needed, which
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may not be available in applications. Moreover, all discussed
approaches assume that the nonautonomous dynamics is rep-
resented by a flow map, which, by construction, only consid-
ers the starting and end points of each particle trajectory but
neglects the dynamics between the initial and final points in
time.

To overcome these problems, different computational
methods have been proposed to identify coherent behavior
in flows directly from Lagrangian trajectory data, such as
obtained from particle tracking algorithms. One of the earli-
est attempts is the braiding approach proposed by Allshouse
and Thiffeault (2012), where trajectories are classified ac-
cording to their intertwining pattern in space–time. This
method is mathematically sound but computationally de-
manding and currently restricted to two-dimensional flows.
Trajectory-based approaches have also been introduced by
Mancho et al. (2013) and Budišić and Mezić (2012). They
use time-integrated quantities along trajectories, which again
requires knowledge of the underlying dynamical system. Fi-
nally, Williams et al. (2015) attempt to reconstruct the trans-
fer operator from a limited amount of trajectory data.

Very recently, spatio-temporal clustering algorithms have
been proven to be very effective for the extraction of coher-
ent sets from sparse and possibly incomplete trajectory data
(see, e.g., Froyland and Padberg-Gehle, 2015; Hadjighasem
et al., 2016; Banisch and Koltai, 2017; Schlueter-Kuck and
Dabiri, 2017). Here, distance measures between trajectories
are used to define groups of trajectories that remain close
and/or behave similarly in the time span under investigation.
All these methods can deal with sparse and incomplete tra-
jectory data and do respect the dynamics of the entire tra-
jectories, not just the end points. While c-means clustering
as used by Froyland and Padberg-Gehle (2015) is computa-
tionally inexpensive and works well in example systems (see
also Allshouse and Peacock, 2015), spectral clustering ap-
proaches as in Hadjighasem et al. (2016), Banisch and Koltai
(2017), and Schlueter-Kuck and Dabiri (2017) appear to be
more robust, but require considerable computational effort.

Inspired by these recent approaches, our aim is to design
a reliable but computationally inexpensive method for study-
ing coherent behavior as well as mixing processes directly
from Lagrangian trajectory data. For this, we consider an
unweighted, undirected network, where Lagrangian particle
trajectories serve as network nodes. A link is established be-
tween two nodes if the respective trajectories come close to
each other at least once in the course of time. This construc-
tion is similar in spirit to the concept of recurrence networks
(see, e.g., Donner et al., 2010a), but here in a spatio-temporal
setting. Whereas in recurrence networks, two points on a tra-
jectory or more generally of a time series are linked when
they are close, in the present work we consider a whole tra-
jectory as a single entity. We note that the discretized trans-
fer operator has also been viewed and treated as a network:
see, e.g., Dellnitz and Preis (2003), Dellnitz et al. (2005),
Padberg et al. (2009), Lindner and Donner (2017), and Ser-

Giacomi et al. (2015). The latter used the directed, weighted
network to analyze model data of the Mediterranean Sea with
the main focus on in- and out-degrees. A different approach
is taken in Donges et al. (2009). The authors compute the
mutual information matrix M of a climate data set as an ad-
jacency matrix A of an undirected and unweighted network.
This way they use the betweenness centrality to identify re-
gions of major importance for energy transport.

We use classical graph concepts and algorithms to analyze
our trajectory-based undirected and unweighted flow net-
work. Local network measures such as node degrees or clus-
tering coefficients highlight regions of strong or weak mix-
ing. These and other quantities have been considered in pre-
vious work on recurrence networks by Donner et al. (2010a)
and Donner et al. (2010b), where the authors could link net-
work measures to properties of the underlying dynamical
system. In a similar fashion, Lindner and Donner (2017) as
well as Ser-Giacomi et al. (2015) considered the in- and out-
degrees of a weighted, directed network obtained from a dis-
cretized transfer operator and found these to highlight hyper-
bolic regions in the flow. We note that the node degree in our
construction exactly corresponds to the trajectory encounter
number very recently introduced by Rypina and Pratt (2017),
a quantity that measures fluid exchange and thus mixing. Lo-
cal clustering coefficients can be related to regular behavior,
as has also been observed by Rodríguez-Méndez et al. (2017)
in the context of transfer-operator-based networks.

In addition to considering local network measures, we will
apply spectral graph partitioning schemes for the solution of
a balanced cut problem (Shi and Malik, 2000). This allows
us to efficiently extract coherent sets of the underlying flow,
similar in spirit to the approaches proposed in Hadjighasem
et al. (2016) and Banisch and Koltai (2017), who considered
weighted networks, which are constructed based on using
different metrics for determining the distance between two
trajectories.

The paper is organized as follows. In Sect. 2 we describe
our network construction. This is followed by a discussion
of network analysis tools in Sect. 3, where we review several
simple local network measures as well as the spectral graph
partitioning approach by Shi and Malik (2000). In Sect. 4
we apply the methodology to two different example systems,
a Bickley jet as well as the stratospheric polar vortex. We
close the paper with a discussion and an outlook on future
work.

2 Networks of Lagrangian flow trajectories

In the following, we assume that we have n ∈ N Lagrangian
particle trajectories from a flow simulation or from a par-
ticle tracking experiment in physical space Rd , d = 2 or
3. In practice, the particle positions may be given at dis-
crete times {0,1, . . .,T }. We denote the trajectories by xi ,
i = 1, . . .,n and the particle positions at a certain time in-
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stance t = 0, . . .,T by xi,t ∈ Rd . We now set up a network in
which the trajectories x1, . . .,xn serve as nodes. We link two
trajectories if they come ε close to each other at least once
in the course of time. Such an undirected, unweighted net-
work is uniquely described by a symmetric adjacency matrix
A ∈ {0,1}n,n. In practice, we construct this from the given
trajectories by setting

Aij =

 max
0≤t≤T

χBε(xi,t )(xj,t ), i 6= j

0, i = j
, (1)

where χB denotes the indicator function of a set B ⊂ Rd . So
Aij = 1; that is, a link is established between trajectories xi
and xj , if and only if at one or more time instances t , xj,t
can be found in an ε ball Bε(xi,t ) centered at xi,t and thus
the trajectories xi and xj have come ε close. In this way,
the network encodes in a compact manner how material is
transported in the flow – in space and time.

By an appropriate choice of ε one ensures that the network
defined by Eq. (1) is connected and in this paper we will only
consider connected networks. For instance, if the trajectories
are initialized on a regular grid, then a natural lower bound
to ε would be the mesh size. In the case that particles are
randomly distributed, ε has to be chosen accordingly. We will
study different choices of ε in Sect. 4.

Alternatively, the network might be set up by linking the
k nearest neighboring trajectories at each time instance for
some k ∈ N. While this allows us to get rid of the problem
of a suitable choice of ε, it means that we have to choose
a reasonable k. In two-dimensional systems a natural choice
would be k = 4 mimicking the five-point stencil; similarly,
k = 6 in three-dimensional systems. If trajectories are initial-
ized on a regular grid, this choice again ensures that the re-
sulting network is connected. Our own preliminary studies
have indicated that this procedure gives very similar results
to the ε-based definition in Eq. (1) but requires slightly longer
computational run times. However, as the construction is not
symmetric in general, we will not pursue this in the present
work.

We note that the network depends on the time interval un-
der consideration. While the study of different time inter-
vals may reveal relevant information about the timescales and
other inherent properties of the dynamics, this will not be the
focus of our work here.

3 Network analysis

Here, we briefly discuss standard analysis concepts for net-
works (see, e.g., Newman, 2003) and relate them to features
of the underlying flow. In particular, we will describe how
to extract coherent structures by solving a graph-partitioning
problem, the balanced minimum cut problem as proposed by
Shi and Malik (2000) (see also Hadjighasem et al., 2016).

3.1 Degree matrix and graph Laplacian

From the adjacency matrix A one can derive two other im-
portant matrices to describe the network. The degree matrix
D is a diagonal matrix with Dii = di where di is the degree of
node xi , i.e., Dii =

∑n
j=1Aij , that is, the number of links at-

tached to node i. In our setting, di ∈ N, i = 1, . . .,n. By con-
struction, for our network the degree of a node is non-zero,
so there are no isolated nodes.

The non-normalized Laplacian is formed by L= D−A,
where D is the degree matrix and A is the adjacency matrix.
By the construction of A and D, L is symmetric and the en-
tries of L are

Lij =

{
−Aij , i 6= j

Dii, i = j
. (2)

and thus L ∈ Zn,n.
The normalized symmetric graph Laplacian L ∈ Rn,n is

defined as

L= In−D−
1
2 A D−

1
2 . (3)

L has non-negative real eigenvalues 0= λ1 ≤ λ2 ≤ . . .≤

λn. w1 =D
1
2 1 is eigenvector to eigenvalue λ1 = 0. The other

eigenvalues and corresponding eigenvectors can be charac-
terized variationally in terms of the Rayleigh quotient of L.
We come back to this in Sect. 3.3.

3.2 Local network measures

Node degree

The degree of a node encodes how many other nodes are con-
nected to it. In our setting, it measures how many different
trajectories come close to the trajectory represented by the
respective node, and thus it carries information about fluid
exchange. The node degree d is encoded in the diagonal ele-
ments di = Dii of the diagonal degree matrix D, with

di =
∑
j

Aij , i = 1, . . .,n. (4)

The node degree d corresponds to the trajectory encounter
number as recently introduced by Rypina and Pratt (2017),
who also compared this quantity to finite-time Lyapunov ex-
ponents and found good agreement in example systems.

Average degree of neighboring nodes

Here one considers the average node degree of the neighbors
of a node xi , defined as

〈d〉nn,i =

∑
jAijdj
di

, i = 1, . . .,n. (5)

Due to the averaging over all neighboring degrees, 〈d〉nn
tends to be smoother compared to the simple node degree
d.

www.nonlin-processes-geophys.net/24/661/2017/ Nonlin. Processes Geophys., 24, 661–671, 2017
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Both d and the average degree of neighboring nodes
〈d〉nn will be large, when the corresponding trajectory comes
ε close to many different other trajectories. In particular in
the context of volume-preserving flows, this is only possible
when fluid parcels get stretched and folded. Thus, both d and
〈d〉nn are expected to be large in mixing regions and can be at
least qualitatively related to finite-time Lyapunov exponents;
see Donner et al. (2010a), Padberg et al. (2009), Froyland and
Padberg-Gehle (2012), Lindner and Donner (2017), and Ser-
Giacomi et al. (2015) for related studies. However, whereas
finite-time Lyapunov exponents measure the overall stretch-
ing at the final time, in our construction all intermediate times
are also considered. Establishing a formal mathematical link
to finite-time Lyapunov exponents is therefore subject to fu-
ture research.

3.2.1 Local clustering coefficient

Here one considers the induced subgraph formed by the ver-
tex xi under consideration and the vertices incident to it. The
local clustering coefficient C indicates how strongly con-
nected this subgraph is by measuring what proportion of the
neighbors of xi are neighbors themselves:

Ci =
no. of triangles connected to xi
no. of triples centered around xi

=
(A3)ii

di(di − 1)
, i = 1, . . .,n. (6)

In the context of recurrence networks, large clustering coef-
ficients have been found to indicate invariant sets of the un-
derlying dynamics (Donner et al., 2010a). In flow networks
obtained from a discretization of the transfer operator large
clustering coefficients have been related to periodic behav-
ior (Rodríguez-Méndez et al., 2017). In the aperiodic time-
dependent setting, invariant sets no longer exist, but instead
mobile sets, such as vortices, in which the dynamics is regu-
lar. In these regions the dynamics is mainly characterized by
rotation and translation. Therefore, in the course of time, tra-
jectories tend to continue interacting with their initial neigh-
bors and encounter only relatively few different trajectories.
So the triples and triangles in the network that are due to ini-
tial neighborhoods (for sufficiently large ε) continue to posi-
tively influence the value of the clustering coefficient in regu-
lar dynamics. A trajectory in a mixing region will be linked to
many other trajectories, and due to the underlying stretching
and folding, the proportion of triangles is small. Therefore,
the local clustering coefficient C is expected to be large for
trajectories in regular regions (i.e., for which d or 〈d〉nn is
small).

The simple local network measures reviewed here de-
pend on the local properties of the network and therefore, of
course, on the choice of ε. We will study the ε dependence in
our numerical studies in Sect. 4. In the context of recurrence
networks, the problem of an appropriate choice of ε has been
discussed in Donner et al. (2010b). They considered the edge

density ρ(ε)= 2|E(ε)|
|V |(|V |−1) , where |V | denotes the fixed num-

ber of vertices and |E(ε)| the ε-dependent number of edges
of the network. In the literature, values of ε that maximize
dρ
dε are proposed as optimal choices of ε. In the study of Don-
ner et al. (2010b) (see also our own numerical investigations
in Sect. 4), however, it has been shown that such a choice
typically results in very dense networks, which no longer en-
code the local properties of the underlying dynamics. Instead,
a limit of ρ(ε)≤ 0.05 has been proposed to give reasonable
results.

3.3 Spectral graph partitioning

Spectral graph partitioning aims at decomposing a network
into components with specific properties. In our setting, the
network encodes how material is transported by the flow, in
both space and time. We are interested in identifying coher-
ent structures in the flow, which are known to be organizers
of fluid transport. From a spatio-temporal point of view, co-
herent sets are formed by trajectories that stay close to each
other (Froyland and Padberg-Gehle, 2015) and thus are more
tightly connected than others. Such information can be ob-
tained by solving a balanced cut problem of the network
(Hadjighasem et al., 2016).

As outlined above, the normalized symmetric graph Lapla-
cian L has non-negative real eigenvalues 0= λ1 ≤ λ2 ≤

. . .≤ λn. The second smallest eigenvalue λ2 ≥ 0 is called
the algebraic connectivity or Fiedler eigenvalue of a graph
(Fiedler, 1973). This eigenvalue is non-zero if and only if the
network is connected. More generally, the number of con-
nected components of the network appears as the multiplic-
ity of the eigenvalue zero of the Laplacian matrix. If λ2 > 0
but very close to zero, then the network is nearly decoupled
and the sign structure of the corresponding eigenvector de-
termines two communities in the network (Fiedler cut). If
λi , i = 2, . . .,k for some k < n are close to zero and there
is a spectral gap between λk and λk+1, then the network
is nearly decoupled into k communities. The corresponding
eigenvectors w2, . . .,wk carry information about the location
of these communities, which can be verified by considering
the Rayleigh quotient of the normalized graph Laplacian, as
outlined in Shi and Malik (2000). They used this concept to
solve a balanced cut problem for defining communities in the
network that are characterized by minimum communication
between different communities and maximum communica-
tion within communities. Such nearly decoupled subgraphs
correspond to bundles of trajectories that are internally well
connected but only loosely connected to other trajectories.
This is indicative of coherent behavior (see also Hadjighasem
et al., 2016). Instead of considering the eigenvalue problem
Lw = λw, Shi and Malik (2000) propose to solve the equiv-
alent generalized eigenvalue problem
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Figure 1. Network measures for high-resolution initial conditions (case i) in the Bickley jet for ε = 0.1 (a), ε = 0.2 (b), and ε = 0.5 (c).
From top to bottom: node degrees d and 〈d〉nn and clustering coefficient C.
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Figure 2. Network measures for 1000 random initial conditions (case ii) in the Bickley jet for ε = 0.5 (a), ε = 1.5 (b), and ε = 1.9 (c). From
top to bottom: node degrees d and 〈d〉nn and clustering coefficient C.

Lv = λDv. (7)

As both L and D are symmetric and have integer entries,
eigenvalue problem Eq. (7) turns out to be numerically more
convenient than the original one. It has the same eigenval-
ues 0= λ1 ≤ λ2 ≤ . . .≤ λn and the eigenvectors are related
by wi = D

1
2 vi , i = 1, . . .,n. In particular, v1 = 1. The num-

ber of leading eigenvalues (i.e., eigenvalues close to zero)
indicates the number of nearly decoupled subgraphs. An ap-
plication of a standard k-means clustering algorithm (Lloyd,
1982) can then be employed to extract the sets of interest
from the corresponding eigenvectors.

4 Examples

4.1 Bickley jet

As our first example we consider the Bickley jet proposed by
Rypina et al. (2007). It is defined by the streamfunction

9(x,y, t)=−U0L tanh(y/L)

+

3∑
i=1

AiU0L sech2(y/L)cos(kix− σi t) (8)

and it serves as an idealized model of the stratospheric flow.
For better comparison, we use the same parameter values as
in Hadjighasem et al. (2016), i.e., U0 = 5.414, A1 = 0.0075,
A2 = 0.15, A3 = 0.3, L= 1.770, c1/U0 = 0.1446, c2/U0 =

0.205, c3/U0 = 0.461, k1 = 2/re, k2 = 4/re, and k3 = 6/re,

www.nonlin-processes-geophys.net/24/661/2017/ Nonlin. Processes Geophys., 24, 661–671, 2017



666 K. Padberg-Gehle and C. Schneide: Network-based study of Lagrangian transport and mixing

0 5 10 15
x

-2

0

2

y

-1

0

1

10-3

0 5 10 15
x

-2

0

2

y

-2
0
2
4
6
10-3

0 5 10 15
x

-2

0

2

y

-6
-4
-2
0
2
4

10-3 0 5 10 15
x

-2

0

2

y

-5

0

5
10-3

(a) (b)

(d)(c)

Figure 3. Leading eigenvectors v2–v5 (from a to d) of the generalized graph Laplacian eigenvalue problem Eq. (7) for the network con-
structed from high-resolution initial data in the Bickley jet (case i) with ε = 0.2.
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Figure 4. Leading eigenvectors v2–v5 (from a to d) of the generalized graph Laplacian eigenvalue problem Eq. (7) for the network con-
structed from 1000 random initial conditions in the Bickley jet (case ii) and ε = 0.5.

where re = 6.371 as well as σi = ciki , i = 1,2,3. Here, we
have dropped the physical units for brevity. The physical as-
sumptions underlying the model equations and the parame-
ters are described in detail in Rypina et al. (2007). For our
choice of parameters and when considered on a cylinder, the
system exhibits a meandering central jet and three regular
vortices on each side of the jet.

Initial conditions are chosen in the domain M =

[0,20[×[−3,3] and are numerically integrated on the time
interval [10,30] using a fourth-order adaptive Runge–Kutta
scheme and periodic boundary conditions in the x direction.
We output the particle positions at integer time steps. We also
tested finer temporal resolutions and different time intervals,
but these did not significantly change our results for this sys-
tem. We consider two sets of initial conditions, which we will
refer to as cases (i) and (ii) in the following:

i. 12 200 points from a regular grid on M with grid mesh
size 0.1; and

ii. 1000 random points uniformly distributed on M .

For the first high-resolution setting (i) we study different ε
from 0.1 to 0.5 (in steps of 0.05), with ε = 0.1 corresponding
to the distance between neighboring grid points. The differ-
ent choices of ε result in values for the edge density ρ(ε)

between 0.002 and 0.04, which are well within the proposed
limit of ρ(ε)≤ 0.05 as considered in Donner et al. (2010b).
We found no local maximum of dρ

dε in this range. For ε = 0.5
the resulting network already has about 3 million links, so
a possible peak of dρ

dε would lie well outside a computation-
ally reasonable range of ε.

For the sparse setting (ii), we start with ε = 0.5, for which
ρ(ε)= 0.04. Significantly smaller values of ε did not pro-
duce a connected network in this case. A maximum of dρ

dε is
detected at about ε = 1.9, yielding ρ = 0.45, which already
corresponds to a dense network. So a reasonable range ap-
pears to be ε ∈ [0.5,1.9].

In Fig. 1 the local network measures for case (i) are plotted
with respect to the initial conditions. The left column con-
tains the results for ε = 0.1, the middle column for ε = 0.2,
and the right column for ε = 0.5. The top row displays the
node degree d . As expected, d is high in mixing regions,
i.e., where trajectories meet many other trajectories, and low
in the regular regions, i.e., the six vortices and the jet core.
Whereas the result for ε = 0.1 appears a bit fuzzy, those for
ε = 0.2 and ε = 0.5 are much sharper. The average node de-
gree of neighboring nodes 〈d〉nn (middle row) gives a very
pronounced indication of regular and mixing flow behavior
for small ε, but at ε = 0.5, the jet core is no longer high-
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(a) (b) (c)

Figure 5. Leading eigenvalues of the generalized graph Laplacian eigenvalue problem Eq. (7) for the Bickley jet. (a) High-resolution data
(case i, ε = 0.2); (b) sparse data case ii, ε = 0.5; (c) case ii, ε = 1.9.
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Figure 6. Extraction of eight coherent sets based on a k-means clustering of the eight leading eigenvectors of the generalized eigenvalue
problem for the Bickley jet. Coherent sets at initial time (t = 10, a) and at final time (t = 30, b). Top: high-resolution case (i), ε = 0.2;
bottom: 1000 random initial conditions (case ii), ε = 0.5.

lighted by low values of 〈d〉nn due to the increased neighbor-
hood over which averages are taken. The bottom row shows
the clustering coefficient C. For ε = 0.1, the vortex cores are
characterized by a zero clustering coefficient. This is due to
the fact that in this case ε is chosen as the distance between
neighboring grid points. However, in this case, two neigh-
bors of a grid point have initially a distance of at least ε

√
2,

and therefore in the vortex core region, with its very regular
dynamics, the network does not possess any triangles. For
all other values of ε studied, the clustering coefficient gives
a very clear indication of different dynamical flow regimes,
with high values in regular regions as expected.

In Fig. 2 we repeat the study for the low-resolution case
(ii), using ε = 0.5 (left column), ε = 1.5 (middle), and ε =
1.9 (right column). The results are very much comparable
to the high-resolution case (i), with the average node degree
〈d〉nn (middle row) giving again a good indication of the dif-
ferent flow regimes for small ε, where the node degree d only
produces spurious results. At ε = 1.5, the average node de-
gree 〈d〉nn appears to be “switching” and starts to pick up
regular regions instead of mixing regions as for smaller ε.
This is again due to the enlarged neighborhood, where av-
erages are now crucially influenced by flow regimes outside

the local neighborhood of the trajectory under consideration.
For instance, for a node with a small node degree, its neigh-
borhood extends far into the mixing regions characterized by
large node degrees, resulting in a large average degree for this
node (and vice versa for nodes with large node degrees). For
all choices of ε the local clustering coefficient C picks up the
cores of the six vortices, whereas the node degree d is small
in these regions and large along the jet, the major transport
barrier in this flow. We note that in this sparse setting, the jet
core is not resolved by any of the local network measures.

This study supports the local network measures being of
course ε dependent, but in particular the node degree and the
clustering coefficient are robust within a reasonable range of
ε values, even for ε = 1.9 in the low-resolution case. As ex-
pected and as found in related work, the clustering coefficient
indicates vortices, whereas the node degree highlights major
transport barriers. The average node degree 〈d〉nn appears to
be a good choice for small ε, but turns out to be less robust
for increasing ε, as larger and larger parts of the network are
then considered for the averaging and thus the local nature of
this network measure decreases.

In Fig. 3 the four (non-trivial) leading eigenvectors
v2, . . .,v5 of the generalized eigenvalue problem Eq. (7) are
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Figure 7. Node degree d (a), average node degree of neighboring nodes 〈d〉nn (b), and clustering coefficient C (c) of a network constructed
from trajectories for the polar vortex flow between 1 September and 31 October 2002.

Figure 8. Eigenvector v2 of the generalized graph Laplacian eigenvalue problem for the polar vortex example from trajectories computed on
two different time spans (a–c: 1 September to 31 October 2002; d and e: 1–26 September 2002). Top row: particles at 1 September 2002 (a);
26 September 2002 (b); 31 October 2002 (c). Bottom row: particles at 1 September 2002 (d); 26 September 2002 (e).

shown for the high-resolution initial conditions (case i) with
ε = 0.2. The eigenvectors highlight the two regions delin-
eated by the jet as well as the different vortices, comparable
to the results in Banisch and Koltai (2017). We note that the
corresponding figures for the other choices of ε would look

the same. Surprisingly, in the study by Hadjighasem et al.
(2016) only the six vortices have been identified but not the
different flow regimes delineated by the jet core.

In the low-resolution case (ii), the leading eigenvectors
match those of the high-resolution data case, but in a slightly

Nonlin. Processes Geophys., 24, 661–671, 2017 www.nonlin-processes-geophys.net/24/661/2017/



K. Padberg-Gehle and C. Schneide: Network-based study of Lagrangian transport and mixing 669

Table 1. Computation times (in s).

Trajectory Computation Eigenvalue
integration of A problem

(i) 12 200 points (ε = 0.1) 13.4 s 25.9 s 1.8 s
(i) 1000 points (ε = 0.5) 1.6 s 0.3 s 0.1 s

different order (see Fig. 4 for the choice ε = 0.5). This comes
from the fact that the four eigenvalues λ3, . . .,λ5 all have ap-
proximately the same magnitude and are therefore sensitive
to perturbations.

The 10 leading eigenvalues for case (i) and ε = 0.2 are dis-
played in Fig. 5a, the low-resolution case (ii) with ε = 0.5 in
Fig. 5b. These spectra exhibit clear spectral gaps between the
second and third and between the eighth and ninth eigenval-
ues.

The first spectral gap is related to the coherent behavior of
the upper and lower parts of the cylinder, delineated by the
jet core. The second (and larger) spectral gap indicates the
existence of altogether eight coherent sets. These can be ex-
tracted via a standard k-means clustering (with k = 8) of the
first eight eigenvectors. The resulting partitions are shown
in Fig. 6. As expected, the six vortices and the two distinct
stream regions are picked up in both the high-resolution (i)
and sparse data (ii) cases. However, in the sparse case the
clustering finds a few false green and blue points (Fig. 6a).
For the low-resolution case (ii) and a choice of ε = 1 (or
larger) the spectrum is no longer correctly recovered (see
Fig. 5c for the choice ε = 1.9).

Finally, we note that the proposed approach is computa-
tionally inexpensive, with total run times of < 2s for the
sparse data case (ii) and≈ 40s for the high-resolution case (i)
using MATLAB (R2016a) on a single processor; see Table 1
for details.

4.2 Stratospheric polar vortex

As a second example we study the transport and mixing dy-
namics in the stratospheric polar vortex over Antarctica. The
coherent behavior of the polar vortex has already been nu-
merically studied using transfer-operator methods (Froyland
et al., 2010). For the computation of particle trajectories we
use two-dimensional velocity data from the ECMWF-Interim
data set1 The global ECMWF data are given at a temporal
resolution of 6 h and a spatial resolution of a 121× 240 grid
in the longitude and latitude directions, respectively. As in
Froyland et al. (2010) we focus on the stratosphere over the
Southern Hemisphere. We consider the flow from 1 Septem-
ber 2002 to 31 October 2002 on a 600 K isentropic surface.
For the integration of particle trajectories, we seed initial
data on a 64× 64 grid centered at the South Pole (square
of side lengths 12 000 km), with a mesh size of 187.5 km.

1http://apps.ecmwf.int/datasets/.

A fourth-order Runge–Kutta scheme with a constant step size
of 45 min and linear interpolation in space and time are used
and we output the particle positions every 6 h. For the con-
struction of the trajectory network we choose ε = 375 km,
i.e., twice the grid spacing. For this choice, we obtain an edge
density of ρ(ε)= 0.03, which lies well within the reasonable
range proposed by Donner et al. (2010b).

In Fig. 7 we show the local network measures applied to
this network. The node degree d and the average node degree
〈d〉nn highlight again the strongly mixing regions that delin-
eate the polar vortex. Similar observations have been made
using other stretching measures (see, e.g., Joseph and Legras,
2002; Froyland and Padberg-Gehle, 2012). The local cluster-
ing coefficient is large in particular in the core of the vortex,
where the node degree and the average node degree take on
small values. As the dynamics is very irregular, the results
are less pronounced than in the Bickley jet example, also for
larger ε (not shown).

In Fig. 8a–c, the second eigenvector of the generalized
graph Laplacian eigenvalue problem Eq. (7) is shown. It
highlights the polar vortex as a coherent set, confirming the
transfer-operator-based results obtained by Froyland et al.
(2010) for a different data set (1–14 September 2008). How-
ever, the result of our computation appears spurious, with
small, isolated yellow regions dispersed in the background
flow. This is due to a bifurcation in the flow patterns: towards
the end of September 2002, the polar vortex splits into two
vortices. One of the two vortices becomes unstable and dis-
perses, whereas the other vortex has increased again by the
end of the computation (31 October 2002; see Fig. 8c). It
would be very interesting to identify a precursor of the vor-
tex splitting from the network properties, but this will be the
subject of future work.

We repeat the study of the spectrum by considering a new
network where the trajectories are restricted to the time span
before the bifurcation (1–26 September 2002); see Fig. 8d
and e. On this interval, the polar vortex can be clearly iden-
tified by the second eigenvector of the generalized graph
Laplacian eigenvalue problem.

5 Discussion and conclusion

We have proposed a very simple and inexpensive approach
to analyzing coherent behavior and thus transport and mix-
ing phenomena in flows. It is based on a network in which
Lagrangian particle trajectories form the nodes. A link is

www.nonlin-processes-geophys.net/24/661/2017/ Nonlin. Processes Geophys., 24, 661–671, 2017

http://apps.ecmwf.int/datasets/


670 K. Padberg-Gehle and C. Schneide: Network-based study of Lagrangian transport and mixing

established between two nodes if the respective trajectories
come close to each other at least once in the course of time.
The resulting network is unweighted and undirected and can
be represented by a binary adjacency matrix. Classical local
network measures such as node degree and clustering coeffi-
cient highlight regions of strong mixing and regular motion,
respectively. While these network measures are ε dependent,
they appear to be robust within a reasonable range of ε val-
ues. Overly large ε’s blur the local information of the under-
lying dynamics and an edge-density-dependent choice of ε
as discussed in the context of recurrence networks (Donner
et al., 2010b) has turned out to be useful in our setting as
well. In addition, we have used a generalized graph Lapla-
cian eigenvalue problem to efficiently and robustly extract
coherent sets, even for the case of sparse data as illustrated
by case (ii) in the Bickley jet investigations.

While in this paper we have only demonstrated our ap-
proach in examples that are volume-preserving and two-
dimensional, the extensions to three-dimensional flows and
also to dissipative systems are straightforward. In addition,
although not illustrated here, our method can easily deal
with incomplete trajectory data as only one-time encoun-
ters of trajectories are required for setting up the network.
The approach is not restricted to connected networks, and in
particular in the presence of attracting sets in non-volume-
preserving systems, these might be worthwhile considering
as well. We have studied unweighted networks throughout
the paper. Counting the number of times a trajectory comes
close to another is one option for choosing weights. Our own
preliminary studies indicate that in this case the node de-
gree and average node degree become less meaningful, as
these cannot distinguish any more between repeated encoun-
ters (as in regular regions) and many different encounters (as
in mixing regions). Clustering coefficients and subdominant
eigenvectors of the Laplacian appear to continue to highlight
coherent regions.

There are some direct relations to other recently proposed
methodologies such as the dynamic isoperimetry framework
introduced by Froyland (2015), where a dynamic Laplacian
and its spectrum play a central role. The graph Laplacian ma-
trix studied in the present paper appears to be a very coarse
but inexpensive and robust approximation of this operator
and in a similar way it approximates the diffusion maps stud-
ied in Banisch and Koltai (2017). In this context, it might
be interesting to analyze the networks resulting from the dif-
ferent choices of metrics used in Banisch and Koltai (2017),
Schlueter-Kuck and Dabiri (2017), and Hadjighasem et al.
(2016). A mathematical analysis of the commonalities and
differences between these approaches and our novel network
approach is the subject of future research. Finally, the node
degree of our network construction exactly corresponds to
the trajectory encounter number very recently introduced by
Rypina and Pratt (2017), which has now obtained a wider
interpretation in the context of flow networks.
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