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Abstract: Climate and atmospheric changes affect forest ecosystems worldwide, but little is known
about the interactive effects of global change drivers on tree growth. In the present study, we analyzed
single and combined effects of nitrogen (N) fertilization and drought events (D) on the growth of
European beech (Fagus sylvatica L.) saplings in a greenhouse experiment. We quantified morphological
and physiological responses to treatments for one- and two-year-old plants. N fertilization increased
the saplings’ aboveground biomass investments, making them more susceptible to D treatments.
This was reflected by the highest tissue dieback in combined N and D treatments and a significant
N × D interaction for leaf δ13C signatures. Thus, atmospheric N deposition can strengthen the
drought sensitivity of beech saplings. One-year-old plants reacted more sensitively to D treatments
than two-year-old plants (indicated by D-induced shifts in leaf δ13C signatures of one-year-old and
two-year-old plants by +0.5‰ and −0.2‰, respectively), attributable to their higher shoot:root-ratios
(1.8 and 1.2, respectively). In summary, the saplings’ treatment responses were determined by
their phenotypic plasticity (shifts in shoot:root-ratios), which in turn was a function of both the
saplings’ age (effects of allometric growth trajectories = apparent plasticity) and environmental
impacts (effects of N fertilization = plastic allometry).

Keywords: allometric growth; apparent plasticity; δ13C; global change; plastic allometry;
shoot:root ratio

1. Introduction

Many ecosystems are currently subject to unprecedented shifts in environmental conditions
on both regional and global scales [1]. This is true of forest ecosystems in particular, since trees
are characterized by long life-cycles, and growth processes are mediated by the environment over
centuries [2]. Among the currently active drivers of global change, climate and atmospheric changes
(such as altered precipitation regimes and the deposition of reactive forms of nitrogen) have been
shown to be amongst the major drivers of biodiversity loss and shifts in ecosystem functions [3].
Current climate projections assume rising mean annual temperatures, changing precipitation patterns,
and shifts in the frequency and magnitude of extreme weather events (including more severe summer
drought events [4]). In forest ecosystems, this may affect ecosystem functions such as primary
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production and carbon sequestration or the diversity and functional composition of tree species [5–7].
Atmospheric nitrogen (N) deposition has tripled in the past century, with an upward trend expected
for the coming decades [8,9]. Airborne N loads are considered to be responsible for enhanced radial
increment of trees, but also for adverse effects on the biodiversity of forests [10,11]. While critically
high loads of airborne N have affected ecosystem processes over the past decades, the impact of
climate change is expected to increase in importance over the course of this century. This means that
ecosystems which already have altered nitrogen levels are now subject to climate change, and both
factors will continue to act upon ecosystems in the coming decades [12].

Although an increasing body of research has addressed ecosystem responses to environmental
shifts by means of single-factor approaches, little is known about the interactive effects of co-occurring
global change drivers and how these may affect ecosystem processes and services in the future [13,14].
It is, for example, conceivable that tree growth responses to climate change could be strengthened
by the deposition of reactive forms of N, probably due to fertilization effects on morphological traits
such as shoot:root ratios (“plastic allometry” [15]). Thus, the extent to which climate shifts may alter
tree growth patterns over time will depend on how N deposition will interact with climate warming
or drought events [16]. Recent experiments have demonstrated that the combination of summer
drought and N fertilization resulted in non-additive effects on plant growth and vitality [17–19].
As a consequence, N-fertilized plants may exhibit higher drought sensitivity as compared to
non-fertilized ones.

A further but—with regard to many tree species—not adequately considered factor influencing
a plant species’ response to environmental shifts is plant age. Many trees follow allometric
growth trajectories that are characterized by age-related shifts in biomass allocation patterns
(“partitioning”; [15,20,21]). This is reflected by traits such as shoot:root ratios, which are expected to
decrease with increasing sapling age. As a consequence, a sapling’s drought sensitivity may decrease
with an age-related increase of belowground investments (“apparent plasticity” [15]). Thus, a tree’s
phenotypic plasticity (in terms of both plastic allometry and apparent plasticity) may influence its
growth responses to environmental change [22].

In the present study, we analyzed growth responses of tree saplings to combined effects of N
fertilization and drought events, taking Fagus sylvatica L. as an example. We focused on this tree
species because Fagus sylvatica is the most abundant and dominating broad-leaved tree species in many
parts of Western and Central Europe, and, therefore, is of particular importance from an ecological
and economic point of view [23]. Although several studies have investigated the drought sensitivity
of beech provenances along precipitation gradients in Central Europe and the Mediterranean region
(for an overview see [24]), little is known about the drought sensitivity of beech populations of the
south-western range margin (i.e., the Iberian Peninsula), an area that is considered one of the glacial
refugia of Fagus sylvatica [25]). Since the genotypic plasticity and allelic richness of beech trees in this
region are expected to be particularly high [25,26], these populations may play an important role in
the context of diversity conservation and the selection of proper genotypes for forestry under the
prospect of a drier and warmer climate [24,27–29]. However, it remains unclear how sensitive these
beech populations are in responding to co-occurring drivers of global change such as drought events
and N deposition.

In the present study, we performed a two-year greenhouse experiment in which we altered the
temporal combinations of N fertilization and summer drought, taking beech saplings originating
from populations of the Cantabrian Mountain as an example. Specifically, we asked to what extent
growth responses of tree saplings to single and combined effects of these drivers of global change
were influenced by the saplings age (i.e., we compared the growth responses of one-year-old and
two-year-old plants). Beech saplings were subjected to N fertilization in the first and second year of the
experiment, but some of the N-fertilized saplings were also exposed to drought events in the second
year (i.e., drought took effect on already fertilized plants). Growth responses of saplings were measured
in terms of morphological response variables (increment of height, stem diameter, and leaf biomass,
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total dry weight of aboveground and belowground biomass, tissue die-back) and physiological
response variables (leaf C and N concentrations, leaf C:N ratios, and leaf δ13C signatures as a proxy
for the plants’ intrinsic water use efficiency [30]). To test for age-related responses, we compared
growth responses of one- and two-year-old plants. We hypothesized that (i) N-fertilized plants would
exhibit higher drought sensitivity than non-fertilized plants; and (ii) one-year-old plants would be
more sensitive to drought treatments than two-year-old plants.

2. Materials and Methods

2.1. Seed Collection

Fagus sylvatica seeds were collected across seven forest sites on north-facing slopes in the
Cantabrian Mountains (NW Spain; Figure 1) in autumn 2009 (distances between sampling sites
were 3–50 km; for forest site characteristics see Table S1 and Dziedek et al. [31]).
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Figure 1. Location of the forest area in the Cantabrian Mountains (North Spain), in which seeds of
beech trees were sampled (rectangle).

2.2. Sapling Cultivation And Treatments

The experiment was performed in a greenhouse at the Thünen-Institute (Hamburg, Germany)
from spring 2010 to autumn 2011. After stratification in winter 2009/2010, seeds were raised in
small pots (so-called “Jiffy Strips”, Meyer KG, Rellingen, Germany) and seedlings were transplanted
into circular plastic pots in May 2010 (one seedling per pot with 1 L of volume; cultivation
substrate: TKS 2, Floragard, Oldenburg, Germany). In the second year of the experiment (2011),
saplings were transplanted into circular 3 L plastic pots (one sapling per pot) to account for an
increasing belowground biomass (cf. cultivation methods described by [24,31]).

In 2010, a total of 336 pots were randomly assigned to the two treatments applied in the first
year: control and nitrogen treatment (i.e., 168 pots per treatment). In 2011, the pots from the 2010
control treatment were randomly assigned to a control and a drought treatment (n = 84 pots in
each new treatment). Similarly, the 168 pots from the 2010 nitrogen treatment were randomly
assigned to a nitrogen treatment and a combined nitrogen-drought treatment performed in 2011. Thus,
84 pots, respectively, were subjected to four different treatments in 2011: control, nitrogen treatment,
drought treatment, and a combined nitrogen-drought treatment (henceforth referred to as control, D, N,
and ND treatment, respectively). Pots in the control and N treatment (applied in 2010 and 2011) were
well watered during the experiment to avoid drought effects (ca. 40% soil water content). Plants in
the D and ND treatments were subjected to two drought periods (applied in 2011), during which
no watering took place and the soil water content was reduced to ca. 10%. Both drought periods
lasted for about two weeks in June and August 2011 (the duration depended on the development of
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the pots’ soil moisture, quantified by daily weighing during the D treatment). After D treatments,
plants were again regularly watered (i.e., 40% soil water content). In the N and ND treatments,
N was applied (as NH4NO3) in both study years in a quantity equivalent to 50 kg·N·ha−1·year−1

(as solution in deionized water; corresponding to current maximum N deposition rates at the natural
sites). Nutrient solutions were applied every two weeks from 15th July to 15th September (in 2010
and 2011, except for the two-week drought periods in the ND treatment in 2011). Controls and D
treatments received the same amount of deionized water. The mean temperature in the greenhouse
was 17.5 ◦C and 19.0 ◦C, and the mean relative humidity was 77% and 71% in the first year and second
year of the experiment, respectively (means from July to October in 2010 and May to September in
2011). All pots were randomly relocated every four weeks to avoid position effects.

2.3. Measurement of Response Variables

In 2010, the following response variables were measured at the end of the growing season
(October): stem diameter (measured 5 cm above the root collar in N-S and E-W direction), plant height
(measured from the root collar to the shoot apex), and total leaf biomass (inferred from the number of
leaves per tree individual and the mean biomass of a single leaf, determined after leaf harvest at the
end of the experiment). In September 2011, all saplings were harvested and the following variables
were measured: stem diameter, plant height, number of dead branches, and number of necrotic leaves
(more than two-third of the leaf area with necrotic tissue). The root biomass was sampled by carefully
wet sieving roots until soil residues were removed as far as possible. As this cleaning procedure
was very laborious, belowground biomass was quantified for a subset of randomly selected saplings
only (n = 28 per treatment). All biomass samples (shoots, leaves, and roots) were dried to a constant
weight at 40 ◦C, and the following variables were determined: leaf biomass (dry weight = DW of all
leaves), aboveground biomass (DW of shoots and leaves), root biomass DW, and shoot:root ratios
(aboveground biomass:belowground biomass ratio; n = 28 per treatment). Using both years’ data,
we also calculated the annual stem, height, and total leaf biomass increment.

Analyses of morphological responses were complemented by the analyses of physiological
responses (i.e., leaf C and N concentrations, leaf C:N rations, leaf δ13C signatures; cf. [24,31]). To this
end, leaf samples (one sample comprised all leaves of a tree individual) were ground in a centrifugal
mill (ZM 200, Retsch, Haan, Germany) and re-dried at 40 ◦C for 3 days. C and N concentrations and δ13C
signatures were measured using a continuous flow elemental analyzer-isotope mass spectrometer (vario EL
cube, Elementar, Hanau, Germany), coupled to an Isoprime Isotope-ratio mass spectrometer (IRMS,
Isoprime Ltd., Cheadle Hulme, UK). Isotope signatures were presented in the delta (δ) notation (in per
mil; ‰) as a relative deviation from an international standard (PeeDee Belemnite). The relative precision
of repeated analyses of an International Atomic Energy Agency-standard (IAEA-CH-3) was ±0.1‰.

To assess the effect of sapling age on shoot:root ratios and leaf δ13C signatures, we compared data
from the present study with measurements from Dziedek et al. ([31]; one-year-old plants).

2.4. Statistical Analyses

We applied linear mixed-effects models (LMMs) to analyze the effects of treatment (control, D, N,
ND) on morphological and physiological responses. To account for variability between forest sites,
we used forest site as a random effect. We used the same mixed-model approach to analyze age-related
effects (one-year old vs. two-year-old plants) of N and D treatments and their interactions on shoot:root
ratio and leaf δ13C signatures. As some response variables were count data (i.e., number of dead
branches and necrotic leaves), we fitted generalized linear mixed-effects models (GLMMs) assuming
a Poisson error distribution with a logit link function. We found no indication for overdispersion.
The response variables “belowground biomass” and “shoot:root ratio” were log-transformed to meet
model assumptions [32]. Model selection (determination of the best-fitting and most parsimonious
model) was based on the Akaike information criterion (AIC) using maximum likelihood (ML)
estimations and the model with the smallest AIC was chosen as the best-fitting model [33]. Parameter
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estimates of the best-fitting models were based on the restricted maximum likelihood (REML)
method. All statistical analyses were conducted with R 3.1.2 (R Project for Statistical Computing;
http://www.R-project.org) with the packages lme4 [34] and lmerTest [35].

3. Results

3.1. Effects of N, D, and ND Treatments on Two-Year-Old Saplings

N and ND treatments caused a significant increase in the aboveground biomass production
(in terms of stem increment, leaf biomass increment, and total aboveground biomass), but had no
significant effect on the belowground biomass (Table 1 and Table S2). Moreover, the plants’ height
increment increased in the ND treatment in comparison to the controls. The relative increase in the
aboveground biomass allocation resulted in significantly higher shoot:root ratios in the N and ND
treatments (Table S2). Branch dieback was significant only in the ND treatment (p = 0.006), whereas N
fertilization reduced the number of necrotic leaves (negative estimate; Table 1). N fertilization caused a
distinct increase in N concentrations, which in turn resulted in decreasing C:N ratios (Tables 1 and S2).
Leaf δ13C signatures were not significantly affected by N fertilization. D treatments had no effect
on morphological responses, but caused decreasing values for C concentrations, N concentrations,
and leaf δ13C signatures (Tables 1 and S2).

3.2. Effects of Sapling-Age

On average, one-year-old plants showed significantly higher shoot:root ratios than two-year-old
plants (Table 2; p < 0.001). In the controls, shoot:root ratios decreased from 1.78 in the first year to 1.20
in the second year (Figure 2a). The effects of the N treatments on shoot:root ratios were not affected by
plant age (i.e., no significant N × Age interaction; Table 2). This indicates that N fertilization caused an
increase in shoot:root ratios irrespective of the plants age.
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δ13C signatures (mean ± 1SE) between (b) drought treatments (D) and the control (p < 0.001) and
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two-year-old Fagus sylvatica plants.

In addition, we found age-related responses of leaf δ13C signatures to D and ND treatments,
indicated by a significant D × Age interaction for leaf δ13C signatures (Table 2). Whereas D treatments
caused an increase in leaf δ13C values of one-year-old plants by about 0.53‰ (from −29.36‰ to
−28.83‰), leaf δ13C values of two-year-old plants decreased by about 0.19‰ (from −29.05‰ to
−29.24‰; Figure 2b). In the ND treatment, we found a significant increase in leaf δ13C values by
about 0.57‰ for one-year-old plants (from −29.36‰ to −28.79‰), whereas shifts in δ13C values
were non-significant for two-year-old plants (increase by about 0.09‰ from −29.05‰ to −28.96‰;
Figure 2c). Importantly, N treatments strengthened an increase in leaf δ13C signatures following D
treatments, indicated by significant D × N interaction (and a positive estimate) for both one-year-old
and two-year-old plants (p = 0.042).

http://www.R-project.org
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Table 1. Results of mixed-effects models (LMM and GLMM) for treatment effects in response to morphological and physiological variables. Abbreviations of
treatments: D = drought treatment, N = nitrogen treatment, ND = combined nitrogen and drought treatment; significant effects (p < 0.05) are indicated in bold.

Morphological Variables Stem Increment Height Increment Leaf Biomass
Increment Aboveground Biomass

Estimate t-value p-value Estimate t-value p-value Estimate t-value p-value Estimate t-value p-value
Intercept 1.867 16.828 <0.001 3.837 3.617 0.004 2.546 9.986 <0.001 18.121 19.998 <0.001

D 0.026 0.260 0.793 0.048 0.054 0.957 0.158 1.158 0.248 0.609 0.709 0.479
N 0.566 5.649 <0.001 2.021 2.292 0.023 0.397 2.932 0.004 2.712 3.170 0.002

ND 0.567 5.675 <0.001 2.599 2.956 0.003 0.461 3.413 <0.001 3.593 4.211 <0.001

Morphological Variables Belowground
Biomass Shoot:Root Ratio No. of Necrotic

Leaves No. of Dead Branches

Estimate t-value p-value Estimate t-value p-value Estimate χ2 p-value Estimate χ2 p-value
Intercept 2.669 41.668 <0.001 0.073 3.690 0.002 0.550 2.363 0.018 0.072 −0.270 0.787

D 0.047 0.599 0.550 0.008 −0.375 0.709 0.464 1.675 0.094 0.079 −0.386 0.700
N 0.068 0.866 0.389 0.059 2.857 0.005 −0.620 −2.130 0.033 0.216 1.101 0.270

ND 0.109 0.079 0.169 0.043 2.061 0.041 −0.330 −1.163 0.245 0.512 2.724 0.006

Physiological Variables C Concentration
Leaves

N Concentration
Leaves C:N Ratio Leaf δ13C Signature

Estimate t-value p-value Estimate t-value p-value Estimate t-value p-value Estimate t-value p-value
Intercept 463.205 1.987 <0.001 15.413 27.799 <0.001 30.777 29.853 <0.001 29.049 −167.820 <0.001

D −3.738 2.931 0.004 −1.354 −4.296 <0.001 2.420 4.634 <0.001 −0.197 −2.175 0.030
N −2.466 1.934 0.054 3.138 9.954 <0.001 −5.380 10.302 <0.001 −0.094 −0.134 0.302

ND −2.482 1.945 0.053 2.557 8.107 <0.001 −4.718 −9.031 <0.001 0.083 0.920 0.358
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Table 2. Best-fitting mixed-effects models for (a) shoot:root ratio and (b) leaf δ13C signatures of
Fagus sylvatica saplings. Shoot:root ratios and leaf δ13C signatures were modelled as a function of the
saplings’ age (one-year old vs. two-year-old plants), drought treatments (D, ND), nitrogen treatments
(N, ND), and their interactions. The best-fitting model was selected using the Akaike information
criterion (AIC).

Fixed Effects Estimate t-Value p-Value

(a) Shoot:root ratio
Intercept 1.747 22.185 <0.001
D 0.023 4.649 <0.001
N 0.089 2.078 0.038
Age (1 year vs. 2 years) −0.456 −4.392 <0.001
D × Age −0.258 −2.621 0.009

(b) Leaf δ13C signature
Intercept −29.688 −159.014 <0.001
D 0.442 5.431 <0.001
N −0.034 −0.516 0.606
Age (1 year vs. 2 years) 1.058 8.188 <0.001
D × N 0.191 2.035 0.042
D × Age −0.546 −5.804 <0.001

4. Discussion and Conclusions

4.1. Treatment (N, D, ND) Effects on Sapling Growth

Beech saplings significantly increased their aboveground investments in N and ND treatments
and hence followed the “resource optimization hypothesis” [36], according to which plants increase
their aboveground biomass allocation as a result of improved nutrient supply. This observation is
in agreement with other studies [17,18,37,38], and was also mirrored by increased shoot:root ratios
in the N and ND treatments. However, only plants from the ND treatment showed a significant
biomass dieback. This finding supports our first hypothesis (“N-fertilized plants exhibit higher
drought sensitivity”) and suggests that combined effects of N fertilization and drought may adversely
affect the vitality of beech saplings. This interpretation is supported by the finding that N treatments
strengthened the effect of drought on leaf δ13C signatures (D × N interaction; Table 2). This might be
explained with the observed shifts in biomass allocation patterns (i.e., increasing shoot:root ratios),
as has also been documented by other studies. [39,40]. An indication of drought stress based on the
plants’ leaf δ13C signatures in the ND treatment was particularly pronounced for one-year-old plants
(see paragraph on “effects of sapling age”). We cannot rule out the possibility that other factors, such as
nutrient imbalances or a failure of photoassimilate transport, may have also contributed to the dieback
of branches of two-year-old plants, because these factors are impaired by N fertilization [41].

4.2. Effects of Sapling Age

Comparisons of leaf δ13C signatures showed that plant responses to treatments were strongly
influenced by sapling age. This supports our second hypothesis that one-year-old plants would
react more sensitively to treatments than two-year-old plants, particularly with regard to drought
events. We hypothesize that differences in drought sensitivity were mainly related to the plants’
shoot:root ratios [22], which significantly differed for one-year-old and two-year-old beech saplings
(i.e., two-year-old plants showed relatively higher belowground investments than one-year-old plants).
As a consequence of these age-related shifts in biomass allocation patterns (i.e., apparent plasticity;
according to Weiner [15]), two-year-old plants may be less drought sensitive and may experience less
constraints in their water supply, particularly in periods of drought [42,43]. This interpretation is
supported by the finding that leaf δ13C signatures of one-year-old plants increased by 0.53‰ and 0.57‰



Forests 2017, 8, 91 8 of 11

in the D and ND treatment, respectively, whereas two-year-old plants showed no significant shifts or
even decreasing values in leaf δ13C signatures in response to the ND and D treatments, respectively.

Given that the biomass allocation patterns of many plant species follow allometric trajectories
and are therefore a function of plant age [15], our findings on age-related responses might have
general implications for predictions of plant responses to environmental stressors such as climate
or atmospheric changes. In forest ecosystems, for example, biomass allocation patterns strongly
depend on tree age [44], but relationships between the trees’ life-stages and their sensitivity to climate
and atmospheric changes have not been well investigated or are even unknown [45]. Ettinger and
HilleRisLambers [46] found that climate change-related tree mortality in forest ecosystems was
strongly affected by stand development processes, and effects of decreasing precipitation or increasing
temperatures on tree growth significantly decreased with stand age. A study by Luo and Chen [45]
confirmed that climate change-associated increases in tree mortality were significantly higher in young
compared to old forests due to the higher sensitivity of young trees to regional warming and drought.
Thus, observations from mature forest stands might underestimate climate change effects on tree
mortality. Luo and Chen [45] concluded that life-stage related analyses of tree growth are crucial
to better understand and predict forest responses to climate change. This might also apply to an
assessment of interaction effects of drought and N deposition on tree growth: given that one-year-old
seedlings have the highest shoot:root ratios (according to age-related allometric trajectories; [15])
and that N fertilization further increases shoot:root ratios (according to the resource optimization
hypothesis), then N-fertilized one-year-old seedlings should exhibit the highest sensitivity to drought
events (also suggested by the significant D × N interaction for leaf δ13 signatures). This conclusion is
supported by the experiments of Dziedek et al. [31], which showed that a combination of N fertilization
and drought negatively affected the total biomass production and strongly increased the formation of
necrotic leaf tissue.

In conclusion, our experiments provided evidence that nitrogen fertilization has the potential
to increase the drought sensitivity of beech saplings due to its impact on biomass partitioning,
with consequences for the plants’ shoot:root ratios (i.e., plastic allometry of tree saplings). However,
this increase in drought sensitivity is confounded with sapling age, because sapling development seems
to follow allometric growth trajectories in which partitioning patterns are also life-stage dependent
(i.e., apparent plasticity of tree saplings). As a consequence, predictions of tree growth responses
to atmospheric and climate changes should consider the effects related to both the plastic allometry
and apparent plasticity of a tree species’ development. We are aware that greenhouse experiments
are limited with regard to a generalization of findings, and our study does not allow us to directly
infer growth response of naturally regenerated trees to global change effects. However, allometric
growth trajectories should also apply to naturally regenerated tree saplings. This would indicate that
assessments of tree growth responses to global change should include life-stage related shifts in a tree’s
sensitivity to co-occurring global change drivers.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/8/3/91/s1,
Table S1: Site characteristics (from Dziedek et al. [31]), Table S2: Summary of treatment effects on the response
variables measured, Table S3: Data for two-year-old trees, Table S4: Data for one-year-old and two-year-old
trees (comparisons of shoot:root ratios and leaf δ13 signatures). References [47,48] are cited in the supplementary
materials”).
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