
 

Dimension estimates for certain sets of infinite complex continued fractions
Neunhäuserer, Jörg

Published in:
Journal of Mathematics

DOI:
10.1155/2013/754134

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):
Neunhäuserer, J. (2013). Dimension estimates for certain sets of infinite complex continued fractions. Journal of
Mathematics, 2013, Article 754134. https://doi.org/10.1155/2013/754134

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 30. Juni. 2025

https://doi.org/10.1155/2013/754134
http://fox.leuphana.de/portal/en/publications/dimension-estimates-for-certain-sets-of-infinite-complex-continued-fractions(94a852d3-e7bc-4ccb-b51b-1f03b9cae560).html
http://fox.leuphana.de/portal/de/persons/joerg-neunhauserer(9f5ac2f9-e415-4947-b5b5-3fbcc58f7536).html
http://fox.leuphana.de/portal/de/publications/dimension-estimates-for-certain-sets-of-infinite-complex-continued-fractions(94a852d3-e7bc-4ccb-b51b-1f03b9cae560).html
http://fox.leuphana.de/portal/de/journals/journal-of-mathematics(21ec4cbf-b3f4-4554-a157-89572c7010c5)/publications.html
http://fox.leuphana.de/portal/de/journals/journal-of-mathematics(21ec4cbf-b3f4-4554-a157-89572c7010c5)/publications.html
https://doi.org/10.1155/2013/754134


Hindawi Publishing Corporation
Journal of Mathematics
Volume 2013, Article ID 754134, 5 pages
http://dx.doi.org/10.1155/2013/754134

Research Article
�imension Estimates �or Certain �ets o� In�nite Complex
Continued Fractions

J. Neunhäuserer

Institut für Mathematik, Technical University Clausthal, Reitstallweg 9, 38640 Goslar, Germany

Correspondence should be addressed to J. Neunhäuserer; neunchen@aol.com

Received 13 August 2012; Accepted 2 October 2012

Academic Editor: Stefan Siegmund

Copyright © 2013 J. Neunhäuserer. is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We prove upper and lower estimates on the Hausdorff dimension of sets of in�nite complex continued fractions with �nitely many
prescribed Gaussian integers. Particulary we will conclude that the dimension of theses sets is not zero or two and there are such
sets with dimension greater than one and smaller than one.

1. Introduction

Continued fractions were studied in a number of theories
since the work of Wallis in the 17th century; see [1]. e
�rst dimensional theoretical perspective on in�nite real
continued fractions can be found in the work of Jarnik [2],
who introduced upper and lower estimates on the Hausdorff
dimension of sets of continued fractions with bounded digits.
e problem of calculating the dimension of these sets
has been addressed by several authors [3–7]. In a resent
work Jenkinson and Pollicott provide a fast algorithm to
approximate this dimension [8].

Dimension theoretical aspects of in�nite complex con-
tinued fractions were studied by Mauldin et al. [9, 10].
ey proved that the set of complex continued fractions
with arbitrary Gaussian integers fromℕ + ℤ𝑖𝑖 has Hausdorff
dimension greater than one and smaller than two.

We consider here in�nite complex continued fractions
and ask for the Hausdorff dimension of the set of continued
fractions with digits coming from a �nite set 𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴.
Using theMoran formula from the theory of iterated function
systems [11] we are able to give upper and lower estimates
on the Hausdorff dimension of these sets; see eorem 1.
We will show that the dimension of the sets is not zero or
two and there are such sets with dimension greater than one
and smaller than one; see Corollaries 2 and 3. In addition we
provide explicit estimates in selected examples.

2. Notations, Results, and Examples

Given a sequence 𝑧𝑧𝑛𝑛 ∈ ℂ for 𝑛𝑛 𝑛𝑛 0 of Gaussian integers we
de�ne the in�nite complex continued fraction by

󶁡󶁡𝑧𝑧0; 𝑧𝑧1, 𝑧𝑧2,…󶁱󶁱 ∶= 𝑧𝑧0 +
1

1 + 󶀡󶀡𝑧𝑧1/ 󶀡󶀡1 + 𝑧𝑧2 ⋯󶀱󶀱󶀱󶀱
∈ ℂ. (1)

It is well known that every complex number can be
represented as an in�nite continued fraction of Gaussian
integers using the Hurwitz algorithm [12]. Now �x a �nite
set

𝐴𝐴 𝐴 󶁂󶁂𝑎𝑎𝑗𝑗 + 𝑏𝑏𝑗𝑗𝑖𝑖 𝑖 𝑖𝑖𝑗𝑗, 𝑏𝑏𝑗𝑗 ∈ ℕ, 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗  𝑗𝑗󶁒󶁒 ⊂ ℕ [𝑖𝑖] . (2)

We consider the set of all in�nite continued fractions
having fractional entries coming from 𝐴𝐴:

ℭ (𝐴𝐴) ∶= 󶁁󶁁󶁁󶁁0; 𝑧𝑧1, 𝑧𝑧2,…󶁱󶁱 ∣ 𝑧𝑧𝑛𝑛 ∈ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴   󶁑󶁑 ⊂ ℂ. (3)

Obviously the setℭ(𝐴𝐴𝐴 is uncountable, and it is a null set
with respect to the two-dimension Lebesgue measure (this is
immediate from Corollary 2). us we are interested in the
Hausdorff dimension of this set. Recall [13, 14] that the 𝑑𝑑-
dimensional Hausdorff measure of a set ℭ ⊆ ℂ is

𝐻𝐻𝑑𝑑 (ℭ) = lim
𝜖𝜖𝜖𝜖

inf 󶁇󶁇
∞
󵠈󵠈
𝑖𝑖𝑖𝑖
diameter 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱

𝑑𝑑 ∣ ℭ ⊆
∞
󵠎󵠎
𝑖𝑖𝑖𝑖
𝐶𝐶𝑖𝑖,

diameter 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱 < 𝜖𝜖󶁑󶁑 .

(4)



2 Journal of Mathematics

e Hausdorff dimension of ℭ is given by
dim𝐻𝐻ℭ = sup 󶁂󶁂𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 (ℭ) = ∞󶁒󶁒 = inf 󶁂󶁂𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑 (ℭ) = 0󶁒󶁒 .

(5)

Now we are able to state our main result on dim𝐻𝐻 ℭ(𝐴𝐴𝐴.

eorem 1. �or a �nite set 𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴 let 𝐷𝐷𝐷 𝐷𝐷 𝐷 𝐷+ be the
uni�ue real numbers ful�llin�

󵠈󵠈
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

󶀥󶀥
1

𝑎𝑎2 + 𝑏𝑏2
󶀵󶀵
𝐷𝐷
= 1

󵠈󵠈
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

󶀧󶀧
1

𝑎𝑎2 + 𝑏𝑏2 + 󶀢󶀢1 + √2󶀲󶀲max {𝑎𝑎𝑎 𝑎𝑎} + 1
󶀷󶀷
𝑑𝑑

= 1.

(6)

We have
𝑑𝑑 𝑑 𝑑𝑑𝑑𝐻𝐻ℭ (𝐴𝐴) ≤ 𝐷𝐷𝐷 (7)

Unsing an additionla argument this theorem has the
following corollary.

Corollary 2. �or all �nite sets𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴 one has dim𝐻𝐻 ℭ(𝐴𝐴𝐴 𝐴
2; on the other hand dim𝐻𝐻 ℭ(𝐴𝐴𝐴 𝐴 𝐴 if 𝐴𝐴 has more than one
element.

Proof. Consider

󵠈󵠈
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

󶀥󶀥
1

𝑎𝑎2 + 𝑏𝑏2
󶀵󶀵
2
≤

∞
󵠈󵠈
𝑎𝑎𝑎𝑎

∞
󵠈󵠈
𝑏𝑏𝑏𝑏
󶀥󶀥

1
𝑎𝑎2 + 𝑏𝑏2

󶀵󶀵
2

≤
1
4
+

∞
󵠈󵠈
𝑘𝑘𝑘𝑘

(2𝑘𝑘 𝑘 𝑘) 󶀥󶀥
1

𝑘𝑘2 + 1
󶀵󶀵
2

≤−
3
4
+
∞
󵠈󵠈
𝑘𝑘𝑘𝑘

2𝑘𝑘 𝑘 𝑘
𝑘𝑘4

=−
3
4
+2𝜁𝜁 (3) − 𝜁𝜁 (4) < 1.

(8)

Hence𝐷𝐷 𝐷𝐷 . If 𝐴𝐴 has more than one element we have

󵠈󵠈
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

󶀧󶀧
1

𝑎𝑎2 + 𝑏𝑏2 + 󶀢󶀢1 + √2󶀲󶀲max {𝑎𝑎𝑎 𝑎𝑎} + 1
󶀷󶀷
0

> 1, (9)

hence 𝑑𝑑 𝑑𝑑 . e result now follows from our theorem.

By a similar argument we get the second corollary.

Corollary 3. �ere exist �nite sets 𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴 with
dim𝐻𝐻 𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈   and there exist such sets with dim𝐻𝐻 𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈  .

Proof. Consider
∞
󵠈󵠈
𝑎𝑎𝑎𝑎

∞
󵠈󵠈
𝑏𝑏𝑏𝑏

󶀧󶀧
1

𝑎𝑎2 + 𝑏𝑏2 + 󶀢󶀢1 + √2󶀲󶀲max {𝑎𝑎𝑎 𝑎𝑎} + 1
󶀷󶀷

≥
∞
󵠈󵠈
𝑘𝑘𝑘𝑘

2𝑘𝑘 𝑘 𝑘
2𝑘𝑘2 + 󶀢󶀢1 + √2󶀲󶀲 𝑘𝑘 𝑘𝑘

≥
∞
󵠈󵠈
𝑘𝑘𝑘𝑘

󶀧󶀧
2

󶀢󶀢4 + √2󶀲󶀲 𝑘𝑘
−

1
2𝑘𝑘2

󶀷󶀷 = ∞.

(10)

Hence for a suitable choice of 𝐴𝐴 we have

󵠈󵠈
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

1
𝑎𝑎2 + 𝑏𝑏2 + 󶀢󶀢1 + √2󶀲󶀲max {𝑎𝑎𝑎 𝑎𝑎} + 1

> 1. (11)

For this set 𝐴𝐴 we have 𝑑𝑑 𝑑𝑑 . On the other hand consider
𝐴𝐴 𝐴𝐴𝐴𝐴   𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴. We have

󵠈󵠈
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

1
𝑎𝑎2 + 𝑏𝑏2

< 1, (12)

hence𝐷𝐷 𝐷𝐷 . e result again follows from our theorem.

We remark that it is possible to deduce the last corollaries
fromeorems 1 and 2 of [9] by a few additional arguments.
To obtain these results from our main theorem seems to us
more transparent.

Our last corollary gives the obvious explicit upper and
lower bounds following fromeorem 1.

Corollary 4. �or a �nite set𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴with cardinality |𝐴𝐴𝐴 one
has,

log (|𝐴𝐴|)
max𝐴𝐴 log 󶀢󶀢𝑎𝑎2 + 𝑏𝑏

2󶀲󶀲

≤ dim𝐻𝐻 ℭ (𝐴𝐴)

≤
log (|𝐴𝐴|)

min𝐴𝐴 log 󶀢󶀢𝑎𝑎2 + 𝑏𝑏
2+󶀢󶀢1+√2󶀲󶀲max {𝑎𝑎𝑎 𝑎𝑎}+1󶀲󶀲

.

(13)

e estimates in this corollary are of course very crude.
At the end of this section we will applyeorem 1 directly to
a few examples. Let 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴. e numbers
𝐷𝐷 and 𝑑𝑑 are given by

󶀤󶀤
1
8
󶀴󶀴
𝐷𝐷
+ 󶀤󶀤

1
13
󶀴󶀴
𝐷𝐷
+ 󶀤󶀤

1
18
󶀴󶀴
𝐷𝐷
= 1,

󶀥󶀥
1

11 + 2√2
󶀵󶀵
𝑑𝑑
+ 󶀥󶀥

1
17 + 3√2

󶀵󶀵
𝑑𝑑
+ 󶀥󶀥

1
22 + 3√2

󶀵󶀵
𝑑𝑑
= 1,

(14)

which implies 0.36 < dim𝐻𝐻 𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈  , which is an
acceptable estimate. If we consider values with smallmodulus
𝐴𝐴 𝐴𝐴𝐴𝐴   𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴 we get

󶀤󶀤
1
2
󶀴󶀴
𝐷𝐷
+ 2󶀤󶀤

1
5
󶀴󶀴
𝐷𝐷
= 1, 󶀥󶀥

1
4 + √2

󶀵󶀵
𝑑𝑑
+ 2󶀥󶀥

1
8 + 2√2

󶀵󶀵
𝑑𝑑
= 1.

(15)

is gives 0.49 < dim𝐻𝐻 ℭ(𝐴𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴, which is not very
good. Let us consider one more example 𝐴𝐴 𝐴𝐴𝐴𝐴   𝐴𝐴𝐴𝐴𝐴𝐴   𝐴𝐴𝐴.
We get

󶀤󶀤
1
10
󶀴󶀴
𝐷𝐷
+󶀤󶀤

1
20
󶀴󶀴
𝐷𝐷
=1, 󶀥󶀥

1
14 + 3√2

󶀵󶀵
𝑑𝑑
+󶀥󶀥

1
25 + 4√2

󶀵󶀵
𝑑𝑑
=1

(16)

and thus 0.21 < dim𝐻𝐻 𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈𝔈  . As a last example con-
sider 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴   𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴    𝐴𝐴𝐴. An elementary calculation
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shows that eorem 1 gives 1 < dim𝐻𝐻 𝔈𝔈𝔈𝔈𝔈𝔈 𝔈𝔈 𝔈𝔈𝔈. We like
to remark here that it is possible to �nd an algorithm using
thermodynamic formalism that approximates the dimension
of 𝔈𝔈𝔈𝔈𝔈𝔈. We could apply the recent approach of Jekinsion
and Pollicott [15� to in�nite complex continuous fractions.
is approach has the disadvantage that it is not possible to
perform necessary calculations without using a computer,
which would change the �eld of our research to computa�
tional mathematics.

3. Proof of the Result

For (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎2 consider transformations𝑇𝑇𝑎𝑎𝑎𝑎𝑎 ∶ ℂ ↦ ℂ given
by

𝑇𝑇𝑎𝑎𝑎𝑎𝑎 (𝑧𝑧) =
1

𝑧𝑧 𝑧 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧
. (17)

We need three elementary lemmas concerning these
transformations to apply the dimension theory of iterated
functions systems to the set 𝔈𝔈𝔈𝔈𝔈𝔈. First we restrict the maps
to the open ball 𝐵𝐵1/2(1/2) = {𝑧𝑧 𝑧𝑧𝑧  𝑧 𝑧𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧 𝑧𝑧𝑧𝑧 𝑧.

Lemma 5. For (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎2 one has

𝑇𝑇𝑎𝑎𝑎𝑎𝑎 󶀤󶀤𝐵𝐵1/2 󶀤󶀤
1
2
󶀴󶀴󶀴󶀴 ⊂ 𝐵𝐵1/2 󶀤󶀤

1
2
󶀴󶀴 . (18)

Proof. For 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼   we have

𝐼𝐼 󶀡󶀡𝐵𝐵𝑟𝑟 (𝑧𝑧)󶀱󶀱 = 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2−𝑟𝑟2) 󶀥󶀥
𝑧𝑧

|𝑧𝑧|2 − 𝑟𝑟2
󶀵󶀵 , (19)

if |𝑧𝑧𝑧 𝑧 𝑧𝑧. Applying the translation with 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 we obtain

𝑇𝑇𝑎𝑎𝑎𝑎𝑎 󶀡󶀡𝐵𝐵𝑟𝑟 (𝑧𝑧)󶀱󶀱 = 𝐵𝐵𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟2−𝑟𝑟2) 󶀦󶀦
𝑧𝑧 𝑧 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧

|𝑧𝑧 𝑧 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧|2 − 𝑟𝑟2
󶀶󶀶 (20)

if |𝑧𝑧 𝑧 𝑧𝑧 𝑧 𝑧𝑧𝑧𝑧𝑧 𝑧 𝑧𝑧. Especially we get

𝑇𝑇𝑎𝑎𝑎𝑎𝑎 󶀤󶀤𝐵𝐵1/2
1
2
󶀴󶀴 = 𝐵𝐵1/(2𝑎𝑎𝑎𝑎𝑎𝑎2+2𝑏𝑏2) 󶀥󶀥

1/2 + 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎 𝑎 𝑎𝑎2 +𝑏𝑏 2

󶀵󶀵 . (21)

Since |(1/2)+  𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎 for 𝑎𝑎𝑎 𝑎𝑎 𝑎 𝑎. We have to show
the distance of the center of the image to 1/2 plus the radius
of the image is less or equal to 1/2. is means

󶙥󶙥
1/2 + 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎
𝑎𝑎 𝑎 𝑎𝑎2 +𝑏𝑏 2

−
1
2
󶙥󶙥 +

1
2𝑎𝑎 𝑎𝑎 𝑎𝑎2 + 2𝑏𝑏2

≤
1
2

⟺ 󶙢󶙢𝑎𝑎2 +𝑏𝑏 2 − 𝑎𝑎 𝑎𝑎𝑎𝑎   𝑎𝑎𝑎𝑎󶙢󶙢
2
≤ 󶀢󶀢𝑎𝑎2 +𝑏𝑏 2 + 𝑎𝑎 𝑎𝑎 󶀲󶀲

2

⟺ 󶀢󶀢𝑎𝑎2 +𝑏𝑏 2 − 𝑎𝑎 𝑎𝑎 󶀲󶀲
2
+ 4𝑏𝑏2 ≤ 󶀢󶀢𝑎𝑎2 +𝑏𝑏 2 + 𝑎𝑎 𝑎𝑎 󶀲󶀲

2

⟺ 4𝑎𝑎 𝑎𝑎 𝑎𝑎2 ≤ 4 󶀢󶀢𝑎𝑎2 +𝑏𝑏 2󶀲󶀲 𝑎𝑎𝑎𝑎𝑎   𝑎𝑎2,

(22)

which is obviously true for a 𝑎𝑎 𝑎 𝑎.

Next we show that the images of the open balls 𝐵𝐵1/2(1/2)
under different 𝑇𝑇𝑎𝑎𝑎𝑎𝑎 are disjoint.

Lemma 6. If (𝑎𝑎1,𝑏𝑏 1)≠(  𝑎𝑎2,𝑏𝑏 2), one has

𝑇𝑇𝑎𝑎1,𝑏𝑏1 󶀢󶀢𝐵𝐵1/2 (1/2)󶀲󶀲 ∩ 𝑇𝑇𝑎𝑎2,𝑏𝑏2 󶀢󶀢𝐵𝐵1/2 (1/2)󶀲󶀲 = ∅. (23)

Proof. We have to show that the distance of the balls at hand
is bigger or equal to the sum of their radii, that is:

󶙦󶙦
1/2 + 𝑎𝑎1 −𝑏𝑏 1𝑖𝑖
𝑎𝑎1 + 𝑎𝑎21 +𝑏𝑏

2
1
−
1/2 + 𝑎𝑎2 −𝑏𝑏 2𝑖𝑖
𝑎𝑎2 + 𝑎𝑎22 +𝑏𝑏

2
2
󶙦󶙦 ≥

1
2𝑎𝑎1 + 2𝑎𝑎21 + 2𝑏𝑏

2
1

+
1

2𝑎𝑎2 + 2𝑎𝑎22 + 2𝑏𝑏
2
2
.

(24)

With 𝑑𝑑1 = 𝑎𝑎1 + 𝑎𝑎
2
1 +𝑏𝑏

2
1 and 𝑑𝑑2 = 𝑎𝑎2 + 𝑎𝑎

2
2 +𝑏𝑏

2
2 we have to

show

󶙥󶙥
(1/2) + 𝑎𝑎1 −𝑏𝑏 1𝑖𝑖

𝑑𝑑1
−
(1/2) + 𝑎𝑎2 −𝑏𝑏 2𝑖𝑖

𝑑𝑑2
󶙥󶙥 ≥

1
2𝑑𝑑1

+
1
2𝑑𝑑2

⟺ 󶙤󶙤𝑑𝑑2 󶀤󶀤
1
2
+ 𝑎𝑎1 −𝑏𝑏 1𝑖𝑖󶀴󶀴 − 𝑑𝑑1 󶀤󶀤

1
2
+ 𝑎𝑎2 −𝑏𝑏 2𝑖𝑖󶀴󶀴󶙤󶙤

2

≥ 󶀥󶀥
𝑑𝑑1
2
+
𝑑𝑑2
2
󶀵󶀵
2

⟺ 󶀤󶀤󶀤󶀤
1
2
+ 𝑎𝑎1󶀴󶀴 𝑑𝑑2 − 󶀤󶀤

1
2
+ 𝑎𝑎2󶀴󶀴 𝑑𝑑1󶀴󶀴

2
+ 󶀡󶀡𝑏𝑏1𝑑𝑑2 −𝑏𝑏 2𝑑𝑑1󶀱󶀱

2

≥ 󶀥󶀥
𝑑𝑑1
2
+
𝑑𝑑2
2
󶀵󶀵
2

⟺ 󶀥󶀥󶀥󶀥
1
2
+ 𝑎𝑎1󶀴󶀴

2
+𝑏𝑏 21󶀵󶀵 𝑑𝑑

2
2 − 2 󶀤󶀤

1
2
+ 𝑎𝑎1󶀴󶀴 󶀴󶀴

1
2
+ 𝑎𝑎2󶀴󶀴 𝑑𝑑1𝑑𝑑2

+ 󶀥󶀥󶀥󶀥
1
2
+ 𝑎𝑎2󶀴󶀴

2
+𝑏𝑏22󶀵󶀵 𝑑𝑑

2
1−2𝑏𝑏1𝑑𝑑2𝑏𝑏2𝑑𝑑1

≥
𝑑𝑑21
4
+
𝑑𝑑1𝑑𝑑2
2

+
𝑑𝑑22
4

⟺ 𝑑𝑑1𝑑𝑑
2
2 − 󶀤󶀤

1
2
+ 𝑎𝑎1 + 𝑎𝑎2 + 2𝑎𝑎1𝑎𝑎2󶀴󶀴 𝑑𝑑1𝑑𝑑2 + 𝑑𝑑2𝑑𝑑

2
1

− 2𝑏𝑏1𝑑𝑑2𝑏𝑏2𝑑𝑑1 ≥
𝑑𝑑1𝑑𝑑2
2

⟺ 𝑑𝑑1 + 𝑑𝑑2 − 󶀡󶀡1 + 𝑎𝑎1 + 𝑎𝑎2 + 2𝑎𝑎1𝑎𝑎2 + 2𝑏𝑏1𝑏𝑏2󶀱󶀱 ≥ 0

⟺ 󶀡󶀡𝑎𝑎1 − 𝑎𝑎2󶀱󶀱
2 + 󶀡󶀡𝑏𝑏1 −𝑏𝑏 2󶀱󶀱

2 − 1 ≥ 0.
(25)

is is obviously true under our assumption.

e last lemma contains estimates on the modulus of
derivative of the maps on the closed ball 𝐵𝐵1/2(1/2).
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Lemma 7. For (𝑎𝑎𝑎 𝑎𝑎𝑎 𝑎 𝑎2 one has

max 󶁄󶁄󶁄󶁄𝑇𝑇′𝑎𝑎𝑎𝑎𝑎 (𝑧𝑧)󶙣󶙣 𝑧𝑧 𝑧 𝐵𝐵1/2
1
2
󶁔󶁔 ≤

1
𝑎𝑎2 + 𝑏𝑏2

,

min 󶁄󶁄󶁄󶁄𝑇𝑇′𝑎𝑎𝑎𝑎𝑎 (𝑧𝑧)󶙣󶙣 𝑧𝑧 𝑧 𝐵𝐵1/2
1
2
󶁔󶁔

≥
1

𝑎𝑎2+𝑏𝑏2+󶀢󶀢1+√2󶀲󶀲max {𝑎𝑎𝑎 𝑎𝑎} + 1
.

(26)

Proof. For 𝑧𝑧 𝑧 𝐵𝐵1/2(1/2) we have

𝑇𝑇′𝑎𝑎𝑎𝑎𝑎 (𝑧𝑧) =
−1

(𝑧𝑧 𝑧𝑧𝑧𝑧𝑧𝑧   𝑧𝑧)2
and hence

󶙣󶙣𝑇𝑇′𝑎𝑎𝑎𝑎𝑎 󶀡󶀡𝑥𝑥𝑥𝑥𝑥𝑥𝑥󶀱󶀱󶙣󶙣 =
1

(𝑥𝑥 𝑥𝑥𝑥 )2 + 󶀡󶀡𝑦𝑦𝑦𝑦𝑦  󶀱󶀱2
.

(27)

Now the �rst estimate is obvious. For the second part note
that

max 󶁄󶁄󶁄𝑥𝑥 𝑥𝑥𝑥 )2 + 󶀡󶀡𝑦𝑦𝑦𝑦𝑦  󶀱󶀱2 ∣ 𝑧𝑧 𝑧𝑧𝑧𝑧   𝑧𝑧𝑧𝑧𝑧  𝐵𝐵1/2 󶀤󶀤
1
2
󶀴󶀴󶀴󶀴

= max󶁅󶁅󶁅𝑥𝑥 𝑥𝑥𝑥 )2 + 󶀡󶀡𝑦𝑦𝑦𝑦𝑦  󶀱󶀱2 ∣ 󶀤󶀤𝑥𝑥 𝑥
1
2
󶀴󶀴
2

+𝑦𝑦2 ≤
1
4
, 𝑥𝑥𝑥 𝑥𝑥 𝑥 𝑥󶁔󶁔

= 𝑎𝑎2 + 𝑏𝑏2 + max 󶁄󶁄𝑥𝑥 𝑥𝑥 𝑥𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥  𝑥𝑥2 ≤ 𝑥𝑥 𝑥 𝑥𝑥2,

𝑥𝑥 𝑥 [0, 1] ,𝑦𝑦𝑦   󶁤󶁤
−1
2
,
1
2
󶁴󶁴󶁴󶁴

≤ 1 + 𝑎𝑎2 + 𝑏𝑏2 + 2max 󶁄󶁄𝑥𝑥𝑥𝑥𝑥  𝑥𝑥𝑥𝑥𝑥  𝑥𝑥2 ≤ 𝑥𝑥 𝑥 𝑥𝑥2,

𝑥𝑥 𝑥 [0, 1] ,𝑦𝑦𝑦   󶁤󶁤
−1
2
,
1
2
󶁴󶁴󶁴󶁴

≤ 1 + 𝑎𝑎2 + 𝑏𝑏2

+ 2max {𝑎𝑎𝑎 𝑎𝑎}max 󶁄󶁄𝑥𝑥 𝑥 𝑥𝑥 𝑥 𝑥𝑥2 ≤ 𝑥𝑥 𝑥 𝑥𝑥2,

𝑥𝑥 𝑥 [0, 1] ,𝑦𝑦𝑦   󶁤󶁤
−1
2
,
1
2
󶁴󶁴󶁴󶁴

≤ 1 + 𝑎𝑎2 + 𝑏𝑏2 + 󶀢󶀢1 + √2󶀲󶀲max {𝑎𝑎𝑎 𝑎𝑎}

(28)

using the approach of Lagrange in the last estimate. is
implies the result.

Given a �nite set𝐴𝐴 𝐴 𝐴𝐴𝐴𝐴𝐴 consider the iterated function
system (IFS) in the sense of Hutchinson [16]:

󶀤󶀤𝐵𝐵1/2 󶀤󶀤
1
2
󶀴󶀴 , 󶁁󶁁𝑇𝑇𝑎𝑎𝑎𝑎𝑎 ∣ 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎󶁑󶁑󶁑󶁑 . (29)

By Lemma 5 this IFS is well de�ned with attractor ℭ(𝐴𝐴𝐴,
that is:

ℭ (𝐴𝐴) = 󵠎󵠎
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑇𝑇𝑎𝑎𝑎𝑎𝑎 (ℭ (𝐴𝐴)) . (30)

By Lemma 6 the IFS ful�lls the open set condition, �rst
introduced by Moran [11]. Moreover by Lemma 7 we have

󶙡󶙡𝑧𝑧1 − 𝑧𝑧2󶙡󶙡
𝑎𝑎2 + 𝑏𝑏2 + 󶀢󶀢1 + √2󶀲󶀲max {𝑎𝑎𝑎 𝑎𝑎} + 1

≤ 󶙡󶙡𝑇𝑇𝑎𝑎𝑎𝑎𝑎 󶀡󶀡𝑧𝑧1󶀱󶀱 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎 󶀡󶀡𝑧𝑧2󶀱󶀱󶙡󶙡 ≤
󶙡󶙡𝑧𝑧1 − 𝑧𝑧2󶙡󶙡
𝑎𝑎2 + 𝑏𝑏2

(31)

for all 𝑧𝑧1, 𝑧𝑧2 ∈ 𝐵𝐵1/2(1/2) and all 𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎. Noweorem 1
is a direct application ofeorem 8.8 of Falconer [17], a well-
know result in the dimension theory of IFS, which goes back
to Moran [11].
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