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Abstract

We investigated the impact of immune regulatory mechanisms involved in the modulation of the recently presented, CD8+
lymphocyte mediated immune response in a mouse model of oligodendropathy-induced inflammation (PLPtg-mutants).
The focus was on the role of the co-inhibitory molecule PD-1, a CD28-related receptor expressed on activated T- and B-
lymphocytes associated with immune homeostasis and autoimmunity. PLPtg/PD-1-deficient double mutants and the
corresponding bone marrow chimeras were generated and analysed using immunohistochemistry, light- and electron
microscopy, with particular emphasis on immune-cell number and neural damage. In addition, the immune cells in both the
CNS and the peripheral immune system were investigated by IFN-gamma elispot assays and spectratype analysis. We found
that mice with combined pathology exhibited significantly increased numbers of CD4+ and CD8+ T-lymphocytes in the CNS.
Lack of PD-1 substantially aggravated the pathological phenotype of the PLPtg mutants compared to genuine PLPtg
mutants, whereas the PD-1 deletion alone did not cause alterations in the CNS. CNS T-lymphocytes in PLPtg/PD-1-/- double
mutants exhibited massive clonal expansions. Furthermore, PD-1 deficiency was associated with a significantly higher
propensity of CNS but not peripheral CD8+ T-cells to secrete proinflammatory cytokines. PD-1 could be identified as a
crucial player of tissue homeostasis and immune-mediated damage in a model of oligodendropathy-induced inflammation.
Alterations of this regulatory pathway lead to overt neuroinflammation of high pathogenetic impact. Our finding may have
implications for understanding the mechanisms leading to the high clinical variability of polygenic or even monogenic
disorders of the nervous system.

Citation: Kroner A, Schwab N, Ip CW, Leder C, Nave K-A, et al. (2009) PD-1 Regulates Neural Damage in Oligodendroglia-Induced Inflammation. PLoS ONE 4(2):
e4405. doi:10.1371/journal.pone.0004405

Editor: Christoph Kleinschnitz, Julius-Maximilians-Universität Würzburg, Germany

Received November 24, 2008; Accepted December 17, 2008; Published February 6, 2009

Copyright: � 2009 Kroner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The project was funded by the Deutsche Forschungsgemeinschaft (SFB 581; to RM and HW), by the Gemeinnützige Hertie-Stiftung (1.01.1/05/10 to RM)
and the Thyssen foundation (to R. M. and H. W.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: heinz.wiendl@klinik.uni-wuerzburg.de (HW); rudolf.martini@mail.uni-wuerzburg.de (RM)

¤ Current address: Caritas-Krankenhaus Bad Mergentheim, Bad Mergentheim, Germany

. These authors contributed equally to this work.

Introduction

We have recently investigated a mouse myelin mutant

overexpressing the proteolipid protein (PLP) in oligodendrocytes

leading to myelin degeneration and late onset axonal degenera-

tion. Although being primarily caused by the glial mutation, the

neuropathological phenotype was accompanied by an elevation of

CD11b+ macrophages and CD8+ T-lymphocytes in the central

nervous system [1]. Reconstitution experiments with RAG-1

deficient myelin mutants, receiving bone-marrow from either

CD8+/CD42 or CD82/CD4+ mutants, clearly identified CD8+
T-lymphocytes cells as pathogenic mediators. Lack of the

macrophage-restricted molecule sialoadhesin in the PLP mutants,

that mediates interactions of macrophage-like cells and T-

lymphocytes [2], abrogates the elevation of CD8+ T-lymphocytes

and substantially ameliorates the myelin-phenotype of the PLP

mutants, further supporting the pathogenetic role of CD8+ cells in

PLP transgenic mice [3]. In this model, CD8+ lymphocytes show

clonal expansions in the diseased CNS but not in peripheral

lymphatic organs. This serves as a strong hint for a pathogenetic,

antigen-specific role of these cells [4]. The link between

oligodendrocyte damage and components of the adaptive immune

system is particularly relevant for inflammatory disorders of the

nervous system. It has been recently hypothesized that subtypes of

multiple sclerosis (MS) may be caused by a primary oligodendro-

pathy [5,6]. This hypothesis is strongly supported by recent clinical

reports, showing that PLP mutations in humans can be linked to

primary progressive or relapsing-remitting MS [7,8]. Thus, our

recent work identifying a primary oligodendropathy as a ‘‘trigger’’ for

immune-driven pathological changes is important for our under-

standing of pathomechanisms occurring in some forms of MS.

It is well known, that genetic and environmental factors control

disease onset and disease course of CNS inflammatory autoim-

mune disorders [9]. The co-inhibitory molecule ‘‘programmed

death’’ (PD)-1 (CD279) is a CD28-related receptor expressed on

activated T- and B-lymphocytes and associated with immune
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homeostasis and autoimmunity [10,11]. Accordingly, we recently

demonstrated that a polymorphism of the PD-1 gene is associated

with a progressive disease course in MS [12], therefore

corroborating the importance of PD-1 as a disease modifying

gene. Moreover, inactivation of PD-1 in an animal model for

inherited demyelination in the peripheral nervous system impli-

cating T-lymphocytes [13] leads to a substantial aggravation of the

primarily genetically-caused neuropathy [14].

In the present study, we investigate the impact of immune-

regulatory mechanisms involved in the modulation of the immune

response in PLP transgenic mice, a model of oligodendropathy-

induced inflammation. Our present study identifies PD-1 as a

crucial factor regulating tissue homeostasis of T-lymphocytes and

indicates that a primary oligodendropathy combined with

alterations in this regulatory pathway can lead to accelerated

neuroinflammatory reactions of high pathogenetic impact.

Materials and Methods

Animals and Determination of Genotypes
PLP transgenic mice [15] were bred and genotyped as described

previously [1]. PD-1-/- mice [16] were kindly provided by T.

Honjo and C. Blank. Absence of PD-1 was verified by PCR

genotyping as described [14]. To generate double mutants, PLPtg

and PD-1-/- mice were crossbred. All resulting genotypes were

investigated at 2, 6 and 12 months of age.

To exclude organ autoimmunity in the PD-1-/- mice [16], urine

samples were investigated for protein and glucose with CombiS-

creenH urine tests (BioconDiagnostik, Voehl-Marienhagen, Ger-

many). For bone marrow chimerization, PLPtg/RAG-1-/- mice

were used as recipients. RAG-1 deficiency was identified as

previously described [1,14,17].

All mice were bred and kept in our animal facility under barrier

conditions (University of Wuerzburg, Department of Neurology).

All animal experiments were approved by the local authorities

(Regierung von Unterfranken).

Bone marrow chimerization
Two strategies to generate bone marrow chimeras were

performed: In one group, the recipients (PLPtg mice with PLPwt

mice as controls) were sublethally irradiated (5 Gy), while mice in

the other group were deficient for the recombination activating

gene (RAG)-1 (PLPtg/RAG-1-/- recipients with PLPwt/RAG-

1-/- as controls). The bone marrow chimeras were transplanted

with PD-1-/- or wildtype bone marrow at the age of 6–8 weeks

and investigated at the age of 10 months (n = 8–9). Transplanta-

tion and control of successful transplantation was performed as

described before [1,18,19].

Purification of splenocytes
Spleens were passed through a cell strainer (BD Biosciences

Pharmingen, San Jose, CA USA), erythrocytes were lysed with a

lysis buffer (150mM NH4Cl2, 10 mM KHCO3, 0.1 mM EDTA in

distilled water at pH 7.3) and cells were washed and processed for

the respective experiments.

Preparation of CNS mononuclear cells and flow
cytometry of splenocytes and CNS lymphocytes

Mice were killed with CO2 and transcardially perfused with cold

0.1 M PBS. The CNS was prepared, tissues were homogenized

and cells were gradient isolated as described [1]. Flow cytometry

was performed using standard methods as described [4,20].

Tissue preparation and immunohistochemistry
For identification of macrophage-like cells, mice were transcar-

dially perfused with 4% paraformaldehyde in 0.1 M cacodylate

buffer. Tissue was dissected, postfixed for 2 hours and cryopro-

tected in 30% sucrose overnight. For T- lymphocyte and MBP

staining, mice were perfused with 0.1 M phosphate buffered saline

(PBS) only. After snap freezing, 10 mm thick transverse sections of

the spinal cord and longitudinal or transverse sections of the optic

nerve were cut.

Immunohistochemistry for CD11b, Sialoadhesin, CD4, CD8

and MBP was performed as described before [1,3]. MBP was

stained on optic nerve cross sections 1200–1400 mm caudal to the

retina. Sources of reagents, of antibodies and clones of the

antibodies were the same as described [1,3].

Assessment of demyelination
Myelin damage in optic nerve cross sections was assessed by

measuring MBP negative areas, data were displayed as a

percentage of the total area. For this, we used a Zeiss Axiophot2

microscope at a final magnification of 3006. The area was

measured using digital images acquired via a CCD- camera and

ImagePro 4.0 software.

Additionally, myelin damage was semiquantitatively rated as

described before [1], with score 1 depicting homogeneous MBP

distribution, score 5 massive myelin loss.

Tissue preservation for light microscopy of semithin
sections

Optic nerves from transcardially perfused mice were processed

for light microscopy of semithin sections as recently reported [1].

Tissue damage was assessed by quantification of axonopathic

vacuoles .6 mm.

Quantification of immune cells in the CNS
Longitudinal sections of the optic nerve of 2, 6 and 12 months

old wildtype, PD-1-/-, PLPtg and PLPtg/PD-1-/- mice and

10 months old bone marrow chimeras were analysed. Quantifi-

cation of CD11b+ and Sialoadhesin (Sn)+ cells was performed as

described before [1] in the rostral region. CD4+ and CD8+ T-cells

were quantified in total longitudinal optic nerve sections, using a

Zeiss Axiophot2 microscope and measurement tools as described

above.

Detection of cytokines by ELISA and ELISPOT
16106/ml splenocytes were cultured unstimulated or stimulated

with ConA (2 mg/ml, Sigma, Schnelldorf, Germany) or CD3/

CD28 coated microspheres (Dynal, Invitrogen, Karlsruhe, Ger-

many). After 48 hours, supernatant was harvested and ELISA for

IFN-c, IL-2 or IL-10 (R&D Systems, Minneapolis, MN, USA) was

performed according to the manufacturers instructions.

Assessment of interferon-gamma (IFN-c) producing cells was

performed by ELISPOT. 1x104 CNS lymphocytes or 16105

splenocytes per well were incubated for 24 hours, unstimulated or

stimulated with PMA (20 ng/ml)/Ionomycin (500 ng/ml, both

Sigma), or a mixture of class one PLP, MOG and MBP peptides

(Genscript Corp, Piscataway, NJ, USA) as previously described

[4]. ELISPOT assay was performed according to the manufac-

turers instructions (BD Pharmingen). Spots were quantified by

CTL Europe (Aalen, Germany) using ImmunoSpot 4.0.17.

CDR3 Spectratyping
The CDR3 spectratyping was performed as described previ-

ously [4,21] using an ABI Prism 3130 capillary sequencer (Applied
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Biosystems) to determine length and distribution, using a module

for fragment-analysis. As an internal length standard, 500-ROX

(Applied Biosystems) was used.

Statistical analysis
Quantified profiles were tested with two-tailed student’s t-test,

scores were analyzed by the nonparametric Mann-Whitney-U test

and Kruskal-Wallis test.

Results

The role of PD-1, a co-inhibitory molecule critical for immune

homeostasis and tolerance, was tested in a model of CNS-

myelinopathy associated with secondary, low grade inflammation

of high pathological relevance.

Numbers of CNS immune cells are significantly elevated
in PLPtg/PD-1-/- double mutants

To obtain myelin mutants with inactivated PD-1 function, two

strategies have been chosen. First, double mutants have been

created in analogy to previous experiments [1,3] by crossbreeding

the corresponding single mutants. This strategy has the advantage

that all cells of the organism lack PD-1. Complementarily, bone

marrow chimeric mutants have been generated using either

irradiated or RAG-1-deficient PLPtg mice as recipients and PD-

1-/- mice as donors [1,18]. The latter strategy has the advantage

that unexpected side effects or influences of the systemic PD-1-

inactivation (e.g. influences of PD-1 deficiency on thymic

maturation or neonatal tolerance) can be circumvented.

PLPtg/PD-1-/- double mutants and their respective controls

(wt, PD-1-/- and PLPtg mice), were examined at the age of 2, 6

and 12 months (n = 3–7). To quantify immune cells in the CNS,

we focussed on longitudinal sections of the optic nerve, an already

established read out technique for the scoring of inflammation in

PLP mutant CNS [1,3,22].

At the age of two months, there was no significant difference

between wt, PD-1-/-, PLPtg and PLPtg/PD-1-/- mice. At

6 months, however, there was a slight elevation of CD8+ T- cells

in the optic nerve of PLPtg mice in comparison to wildtype mice,

consistent with our previous observations. PD-1-/- also showed a

mild elevation, whereas PLPtg/PD-1-/- double mutant mice

exhibited a robust upregulation of CD8+ T-cells in optic nerve

sections (approximately 35-fold increase compared to wildtype

mice and a more than 8 fold increase in comparison to PLPtg

mice, Figure 1A). In 12 months old mice, the general pattern of

CD8+ lymphocyte numbers in optic nerves was similar in the

different genotypes, but proportions had shifted a little: wt and

PD-1-/- mice were now at similar levels (with no marked increase

of profiles in PD-1-/- mice compared to the 6 months old group),

and PLPtg mice displayed significantly more CD8+ profiles than

the former two genotypes. Strikingly, these CD8+ T-lymphocytes

were again clearly outnumbered by those from PLPtg/PD-1-/-

mice (Figure 1B, C).

CD4+ T-lymphocytes are rarely present in the CNS of PLPtg

and wt mice [1]. At the age of two months, no differences were

detectable in all investigated groups.

At the age of 6 months a significant elevation of CD4+
lymphocytes was already visible in PLPtg/PD-1-/- compared to

wt, PD-1-/- and PLPtg mice and there was no marked increase

until the age of 12 months (Figure 1D). Similar changes in T-

lymphocyte numbers were detected in the spinal cord (data not

shown).

Furthermore, we investigated the number of CD11b+ macro-

phage-like cells in the optic nerve. We did not detect significant

differences at the age of 2 or 6 months, although a trend of

increased numbers was already detectable in PLPtg mice and

PLPtg/PD-1-/- double mutants at 6 months (data not shown). In

12 months old mice, however, a difference was detectable. While

wt and PD-1-/- mice showed a common low level of cells, both

PLPtg and PLPtg/PD-1-/- mice had elevated numbers of

CD11b+ cells (Figure 1E).

We additionally investigated the number of Sialoadhesin (Sn)

expressing macrophage like cells in 12 months old PLPtg/PD-1-/-

mice and detected a very low amount of positive profiles in both

wildtype and PD-1-/- mice. In PLPtg, a more than ten-fold

increase was detectable, but there was no significant difference

between PLPtg and PLPtg/PD-1-/- mice (data not shown).

Numbers of immune cells are significantly elevated in
PLPtg PD-1-/- transplanted bone marrow chimeras
(BMCs)

Another strategy to investigate the role of PD-1 in PLPtg mice

was to examine PLPtg mice which were transplanted with bone

marrow from either PD-1-/- mice (PLPtg BMC PD-1-/-) or

wildtype mice (PLPtg BMC wt). Wildtype mice which were

transplanted with either wildtype or PD-1-/- bone marrow served

as controls. These animals never displayed myelin pathology or

CNS inflammation in any experiment.

The bone marrow chimeric mice faithfully reflected the findings

described for the double mutants. For example, both irradiated

and PLPtg/RAG-1-/- recipients showed a robust upregulation of

CD8+ lymphocytes, when bone marrow was derived from PD-

1-/- mice (Figure 1F). Similar observations were made for the low

but significantly elevated amount of CD4+ cells (data not shown).

Increased elevation of CD8+ and CD4+ cells in the absence of

PD-1 was significant both in irradiated and in RAG-1-deficient

PLPtg mice.

Analysis of CD11b+ macrophage like cells depicted a small,

significant increase in PLPtg PD-1-/- transplanted chimeras

compared to recipients that received bone marrow from wildtype

mice (data not shown). In the irradiated PLPtg mice statistical

significance was reached, while the PLPtg/RAG-1-/- mice showed

a trend into the same direction but did not reach the level of

significance (p = 0.06).

Pathological features are enhanced in PLPtg/PD-1-/-
double mutated mice

MBP immunohistochemistry revealed that, while wildtype and

PD-1-/- mice always showed a homogeneous distribution of

myelin, PLPtg mice displayed a more patchy and inhomogeneous

MBP staining. Compared to that, PLPtg/PD-1-/- mice showed an

even less homogeneous MBP distribution, reflecting extensive

myelin loss (Figure 2A).

Interestingly, in one PLPtg/PD-1-/- optic nerve we observed an

extended and sharply confined area of MBP-loss, reminiscent of a

demyelinated lesion common to active or inactive MS plaques

(Figure 2B). This lesion was associated with an accumulation of

CD8+ lymphocytes (Figure 2C) and hematoxylin-stained cells of

probably inflammatory character (Figure 2D).

To quantify the demyelinating phenotype of the different

mutants, MBP-negative areas of optic nerve cross sections were

determined as measure for demyelination. Neither wildtype nor

PD-1-/- mice showed any MBP-negative areas, while demyelin-

ation was present in PLPtg mice and further significantly increased

in PLPtg/PD-1-/- mice (Figure 2E). Additionally, myelin integrity-

related MBP distribution was analysed by semi-quantitative

scoring. Again, wt and PD-1-/- mice showed healthy myelin

PD-1 in Hereditary Gliopathy
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(score 1) while PLPtg mice had an average score of 360.81 and

PLPtg/PD-1-/- mice showed a higher score (3.8360.75). PD-1-

deficiency leads to the highest MBP loss in the myelin mutants and

the most seriously affected mutants belong to the PD-1-deficient

group. Generally, the persons investigating the histopathological

features (A. K., R. M.) were not aware of the respective genotypes.

Similar to these results in double mutant mice, 10 months old

PLPtg BMCs reconstituted with PD-1-/- bone marrow showed a

more disrupted state of MBP distribution than PLPtg mice

transplanted with BMCs from wt mice (data not shown).

We also investigated periaxonal vacuoles in semithin cross

sections of the optic nerve as another reliable pathological marker

[1,3] (age of 12 months in double mutants, age of 10 months in

bone marrow chimeras). PLPtg/PD-1-/- double mutants, com-

pared to PLPtg mice, showed a clear trend of increased vacuole

numbers (13.367.9 versus 7.9563.6), while wt and PD-1-/- mice

never displayed any vacuoles (data not shown).

PLPtg BMCs transplanted with PD-1-/- bone marrow showed a

highly significant increase of axonal damage (Figure 2F, G, H). In

the optic nerves of wildtype mice, we never detected any vacuoles,

regardless what kind of bone marrow had been transplanted.

T-cell CDR3 spectratype analysis: robust clonal
expansions in the CNS of PLPtg/PD-1-/- mice

Evidence for monoclonal T-cell expansions as revealed by single

Vb-Jb peaks in the corresponding PCR-diagrams could be

detected (one Vb peak per animal) in 12-month-old PLPtg mice

corroborating these previous findings [4]. Corresponding expan-

sions could not be detected in spectratyping analyses from

lymphocytes of wild type mice. Spleens of the same animals

displayed the expected Gaussian distribution of Vb profiles [4].

CDR3 spectratype in PD-1-/- mice (n = 7) showed more than

one Vb peak (Figure 3). Similarly, multiple Vb peaks were visible

in the CNS of PLPtg/PD-1-/- double mutants (n = 3) (Figure 3), as

well as in 10 months old PLPtg/PD-1-/- BMCs (n = 5). The clonal

expansions occurred widely distributed over different Vb and Jb
regions, although some domains seemed to be prone for clonal

expansions in different mutant mice. Notably, approximately 30%

of the individual clonal expansions were detected in both spleen

and brain, 70% of the expansions were exclusively present in CNS

tissue.

We then sequenced some clones to 1) demonstrate that the

specific PCR fragment represents one TCR (a readable sequence

proves the existence of an expansion), and 2) to detect similarities

between the CDR3s of different clonal expansions. For example,

by analysing the sequences of 2 individuals (mouse A and B) we

identified two expansions with the same VbJb combination and

one expansion with a different VbJb combination in the two mice

(Table S1). While those D segments with flanking N sequences

( = NDN) amino acids, responsible for connecting with the MHC-

bound antigen, show some similarities, the lengths of the CDR3

are not identical, showing that these clones are not specific for the

exact same antigen.

Peripheral immune parameters do not differ between
mutant mouse strains

In order to exclude that peripheral immune parameters in the

mutant mouse strains could account for the different numbers of

immune cells and the aggravated pathological features in double

mutated mice, we analyzed (i) phagocytic capability of macro-

phages, (ii) inducibility and rate of stimulation-induced apoptosis

of splenocytes, (iii) immune subset distribution (CD4+, CD8+,

CD11b+, B220), and (iv) levels of stimulation induced IL-2

production between the different groups (wt, PD-1-/-, PLPtg,

PLPtg/PD-1-/-).

The phagocytic capacity of peritoneal macrophages was similar

in all genotypes. Furthermore, investigation of splenocytes showed

no significant differences between the different genotypes used in

this study in regard of inducibility of apoptosis, cell subsets and

production of cytokines (see Material S1, Figure S1).

CNS T-cells are prone to IFN-c secretion in the absence of
PD-1

Polyclonal immune responses in the periphery do not differ

between mouse mutants. We therefore tested whether CNS cells

show altered production of inflammatory cytokines upon

stimulation. IFN-c secretion of CNS-derived T-lymphocytes was

measured after addition of PMA/ionomycin or upon antigenic

stimulation.

Interestingly, CNS lymphocytes of PD-1-/- and PLPtg/PD-1-/-

mice showed strong IFN-c secretion upon PMA/ionomycin

challenge, while CNS T-cells from PLPtg mice or wt showed

only minimal or no cytokine production (Figure 4A). Of note, such

differences have not been observed in T-cells from spleen

(Figure 4B). Antigenic stimulation with a number of MHC

class I related myelin peptides [4] did not lead to IFN-c
production of CNS T-cells under any condition (ELISPOT, data

not shown).

Discussion

Recent data from human studies in distinct leukodystrophies

and some forms of MS together with investigations in myelin

mutant mice indicate that a primary glial injury can be causative

for neuroinflammation of substantial pathological and

clinical relevance [1,3,4,23,24,25]. Further characterization of

‘‘secondary’’ inflammatory responses in a model of PLP

overexpression identified CD8+ T-lymphocytes of effector cell

phenotype as crucial mediators of demyelination and axon

damage [1]. The finding that CD8+ T-cells in the CNS of myelin

mutants are clonally expanded [4,25] further supports a

Figure 1. Quantification and immunohistochemical detection of CD8+ and CD4+ lymphocytes and CD11b+ macrophage-like cells in
longitudinal sections of optic nerves of wt, PD-1-/-, PLPtg and PLPtg/PD-1-/- mice and of CD8+ cells in bone marrow chimeric mice -
A, B. Quantification of CD8+ lymphocytes in 6 (A: n = 3) and 12 (B: n = 3–7) months old mice of different genotypes. C. Immunohistochemical
detection of CD8+ lymphocytes in the optic nerve of 12 months old mice of different myelin and immunological genotypes. Arrows indicate
positively labelled CD8+ lymphocytes. D. Quantification of CD4+ lymphocytes in 12 months old mice (n = 3–7). Note that in the myelin mutants, both
CD8+ and the generally scarce CD4+ lymphocytes are substantially increased in the absence of PD-1. E. Quantification of CD11b+ macrophage-like
cells in 12 months old mice (n = 3–6). Note that the number CD11b+ cells does not differ significantly in PLPtg/PD-1+/+ and PLPtg/PD-1-/- double
mutants. Similar results are obtained in irradiated and non-irradiated (RAG-1-/-) PLPtg bone-marrow recipients. The rather small increase of CD11b+
cells is not surprising, since the molecule in focus (PD-1) is a component of predominantly T-lymphocytes rather than of macrophages/microglial
cells. F. Quantification of CD8+ cells in the CNS of 10 months old PLPtg bone marrow chimeras (BMCs) which were transplanted with either wt or PD-
1-/- bone marrow (n = 8–9). Note that also in bone marrow chimeras, CD8+ T-lymphocytes are substantially elevated in the CNS of PLPtg mutants in
the absence of PD-1. Error bars represent standard deviations. * p- value,0.05, ** p - value#0.01. Scale Bar: 50 mm.
doi:10.1371/journal.pone.0004405.g001
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pathogenetic concept that primary myelin damage in the CNS can

be associated with secondary reactivity of the adaptive immune

system against a still unknown antigen(s). Another key question in

this scenario is which factors control tissue homeostasis of immune

cells. We therefore investigated the impact of immune-regulatory

mechanisms on the adaptive immunity in PLP overexpressing

mutants focussing on the role of the co-inhibitory molecule PD-1.

Recent data in mice as well as in humans demonstrate that PD-1 is

substantially involved in the control of T-cell homeostasis under

physiological and pathological conditions [26] by preventing

Figure 2. Quantification of pathological features in various myelin and PD-1 mutants and BMC mice A. MBP immunohistochemistry of
optic nerve cross sections of 12 months old wt, PD-1-/-, PLPtg and PLPtg/PD-1-/- mice. Note homogeneous MBP distribution in wt and PD-1-/- mice
compared to more disrupted myelin (inhomogeneous labeling) in PLPtg and, more pronounced, PLPtg/PD-1-/- mice. B.-D. MBP immunohisto-
chemistry (B), immunohistochemical detection of CD8+ cells (C) and hematoxylin eosin staining (D) in a plaque like demyelinating lesion in a
12 months old PLPtg/PD-1-/- mouse. Note sharply confined lesion (B) with accumulated T-cells (C) and other, probably inflammatory, cell nuclei (D). E.
Quantification of demyelination by measuring MBP-negative areas. PD-1-deficient myelin mutants (PLPtg/PD-1-/-) show more severe MBP loss than
PLPtg mice expressing PD-1 (PLPtg; n = 4–6). F.,G. Semithin optic nerve sections sections of 10 months old PLPtg mice which were transplanted with
wt (F) or PD-1-/- (G) bone marrow. Arrows indicate periaxonal vacuoles which are more numerous in PD-1-/- BMCs. H. Quantification of vacuoles
.6 mm in bone marrow chimeras. PD-1-deficiency leads to the most robust histopathological alterations in the myelin mutants and the most
seriously affected mutants belong to the PD-1-deficient group (n = 3–5). * p- value,0.05, ** p - value#0.01. Scale bars: 50 mm.
doi:10.1371/journal.pone.0004405.g002
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uncontrolled proliferation of autoreactive T-cells [27]. In accor-

dance with these functional data, certain polymorphisms in the

PD-1 gene are associated with human autoimmune disease

including MS [12,28].

Our present experiments show that PD-1 plays a major role in

modulating numbers of CD8+ cells in the demyelinating model of

PLP overexpressing mice.

The most relevant finding of our study was that in PLPtg mice

the histopathological phenotype was much more severe when PD-

1 was absent. Interestingly, not only CNS damage was more

pronounced per individual, but most severely affected individuals

always belonged to the group of PLPtg mice in combination to

functional disruption of PD-1.

How does ablation of the PD-1 pathway affect CNS pathology?

PD-1-deficiency alone only transiently affected the number of

CD8+ cells found in the CNS and, more importantly, the

corresponding mice showed normal histological features in the

CNS. While it has been reported that PD-1-/- mice on a C57/Bl6

Figure 3. Spectratyping of CNS derived lymphocytes - Lymphocytes from the CNS of 12 months old PLPtg (n = 7, as adopted from [4], PD-1-/-
(n = 7), and PLPtg/PD-1-/- (n = 4) mice were analysed for disturbances in the T-cell receptor repertoire by spectratyping. Clonal expansions (visible as
single peaks in the fragment analysis) are shown as colored dots (different colors indicate individual animals). The expanded T-cells are characterized
by their Vb- and Jb-chains. The clonal expansions occurred widely distributed over different Vb and Jb regions, although some domains seemed to be
prone for clonal expansions in different mutant mice. Note that different numbers of experimental mice contribute to the different numbers of dots.
doi:10.1371/journal.pone.0004405.g003

Figure 4. IFN-c ELISPOT assay on spleen and brain derived lymphocytes - IFN-c ELISPOT assay after stimulation with PMA/ionomycin on
CNS derived lymphocytes (A) and splenocytes (B) from wt, PD-1-/-, PLPtg and PLPtg/PD-1-/- mice. Note elevated spot numbers in CNS T-lymphocytes
taken from PLPtg/PD-1-/- mice in comparison to wt and PLPtg mice, reflecting a higher susceptibility to activation. Error bars represent standard
deviations. * p - value,0.05, ** p - value#0.01
doi:10.1371/journal.pone.0004405.g004
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background show lupus-like glomerulonephritis when aging [16]

we did not observe any obvious organ pathology, urinal glucose or

protein content (not shown) or spontaneous autoreactions

associated with loss of PD-1. Furthermore, the peripheral immune

‘‘status’’ was not changed in the tested groups (wt, PD-1-/-, PLPtg,

PLPtg/PD-1-/-). However, we found clonal expansions of T-cells

in the periphery in PD-1-/- mice using CDR3 spectratyping

analysis. While numerically not elevated in the CNS at 12 months,

the PD-1-deficient CD8+ cells of PLPwt/PD-1-/- mice showed

multiple clonal T-cell expansions, as opposed to PD-1-expressing

CD8+ cells of normal wild type mice which do not show any

repertoire perturbations. The corresponding CD8+ cells of PLPtg

mice display their characteristic mono- or oligoclonal expansion in

the CNS as previously described [4]. The combination of the PLP

transgene with PD-1 deficiency led to significantly higher numbers

of T-cells within the CNS. Moreover, CD8+ T-lymphocytes of

PD-1 mutants are aberrant with regard of their strong numerical

increase and prominent clonal expansions. This suggests that PD-1

prevents a large number of possible clonal expansions of a variety

of T-cell clones in PLPtg mice. PD-1 signalling is known to

attenuate signals of the T-cell receptor such as PKCtheta and

ZAP-70/CD3f [29]. This could also be the explanation that only

CNS T-cells deficient of PD-1 show markedly enhanced INF-c
secretion after stimulation, whereas CNS CD8+ cells from genuine

PLPtg mice show no relevant production of this proinflammatory

cytokine. These findings suggest that although prominently

expanded and highly susceptible to become activated, PD-1-

deficient T-lymphocytes appear to be pathologically ‘‘silent’’ in a

healthy environment.

Due to its inhibitory properties the cognate ligand PD-L1 has

been proposed to contribute to maintaining peripheral tolerance

and limiting inflammatory damage [20,27,30,31,32]. Parenchymal

PD-L1 contributes to the limitation of insulinitis and the resolution

of inflammation [33]. We and others recently reported that PD-L1

is expressed and upregulated on CNS cells (e.g. microglia cells)

under inflammatory conditions [20,34], restricts parenchymal

neuroantigen-specific T-cell responses and confines inflammatory

CNS damage in experimental autoimmune encephalomyelitis

[35]. One therefore might assume that PD-L1 - PD-1 interactions

counteract T-cell mediated pathology observed in PLPtg mice by

limiting clonal expansion and cytokine release of detrimentally

self-reactive low avidity clones.

A synoptic view summarizing our recent and previous

observations may be as follows: overexpression of PLP may

induce intracellular stress that causes several immune-relevant glial

reactions, such as expression of cytokines and upregulation of

MHC-I molecules on oligodendrocytes [1] and Sn on the surface

of macrophage-like cells. It is of note that the latter reaction is an

important prerequisite for CD8+ cell activation in the present

model [3]. Furthermore, supraphysiological concentrations of

myelin antigens associated with PLP-overexpression could pro-

mote reactivity of low-avidity T-cell clones that survived clonal

deletion or ignorance in the thymus [4]. CNS-derived, but not

spleen-derived CD8+ cells show mono- or oligoclonal expansions,

further suggesting CNS-restricted specificity against yet unidenti-

fied CNS-antigens. PD-1 is critically involved in these processes: in

the presence of PD-1 on CNS CD8+ cells, activation and

proliferation is limited, whereas absence of PD-1 leads to

substantial increase of CD8+ cells, a higher propensity to secrete

proinflammatory cytokines, multiple clonal expansions and an

aggravation of neural damage.

Taken together, our study demonstrates the important role of a

co-inhibitory molecule, PD-1, in modulating glial-injury-related

immune responses in the CNS. This impressively reflects the high

and obviously wide-range relevance of immunmodulatory mech-

anisms under various pathological conditions and should be

particularly considered when seeking for mechanisms leading to

the high clinical variability of polygenic or even monogenic

disorders of the nervous system.

Supporting Information

Figure S1 Exclusion of differences in the peripheral immune

systems of wt, PD-1-/-, PLPtg and PLPtg/PD-1-/- double

mutants. Peritoneal macrophages were incubated with fluorescent

latex beads and the percentage of macrophages which ingested

beads was found similar in all genotypes (A). Differences in the

apoptosis rate were excluded by flow cytometry of annexin V and

PI positive splenocytes under highly stimulatory conditions (B).

Analysis of immune cell subsets (CD4+, CD8+, CD11b+ and

B220+ cells) showed similar distribution in splenocytes of all

investigated genotypes (C). Exclusion of deviations in peripheral

proinflammatory activation using unstimulated and stimulated

splenocytes from different genotypes, by examining IL-2 in the

corresponding supernatants by ELISA (D). Error bars represent

standard deviations.

Found at: doi:10.1371/journal.pone.0004405.s001 (0.39 MB TIF)

Material S1 Material and Methods S1

Found at: doi:10.1371/journal.pone.0004405.s002 (0.03 MB

DOC)

Table S1 CDR3 sequences. Sequencing analysis of two clones

with identical VbJb combinations from PLPtg/PD-1-/- mice A

and B and of one clone with a different VbJb combination from

mouse A. Note identical TCRVb and TCRJb regions surrounding

the CDR3 region, which not only differs in aminoacids but also,

more importantly, in length, thus indicating recognition of

different antigens.

Found at: doi:10.1371/journal.pone.0004405.s003 (0.03 MB

DOC)
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