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Abstract: - This paper deals with a control of a vertical dynamics in the presence of nonlinear friction in a 

robotic mechanism. The control structure, which is taken into consideration, is the Sliding Mode Control 

(SMC). Using this control technique, it is possible to show the asymptotical stability of the trajectory to be 

tracked. Simulation results show the effectiveness of the proposed control technique.   

 

Key-Words: - Mechanical systems - Mechanical friction – Displacement - SMC – Applications - Simulations 

 

1 Introduction 

This paper extends the results already obtained in 

[1] with particular emphasis on some aspects the 

friction phenomenon including more simulation 

cases. In the course of Industry 4.0, the use of 

robotic systems in industrial manufacturing is 

increasingly playing an essential role. Moreover, the 

use of industrial robots is based on the guaranteed 

uniformity and precision that such a system offers. 

In this case, the robot can do different tasks. For 

example, it can be used independently in series 

production or supportive and it can serve the person 

as a helper at work. The articulated robots used in 

industry are usually constructed as an open 

kinematic chain. In this design, each arm part of the 

robot is connected via a joint to the following arm 

part. The last arm part of the chain is called the 

effector: this is the part of the robot that interacts 

with the environment. Tasks in which the effector 

enters into mechanical contact with objects within 

its environment are normal. Therefore, the contact 

force plays an essential role in the control of such 

systems. Since industrial robots are mainly operated 

position-controlled, the control of the contact force 

and the position control are related to each other. In 

order to move an object from its starting position to 

the target position, individual or cooperating robots 

are used in industrial production, these have as 

effector predominantly a variant of a gripper. The 

joint gripping of an object offers the advantage of 

load sharing, in contrast, this also leads to the 

closing of a kinematic chain between the two robots. 

As a result of this connection, the two robots 

mutually influence each other during their 

movement, as a result of which undesired changes 

in the relative robot position can occur, resulting in 

resultant forces in the workpiece. To avoid this 

problem, this work deals with the clawless position 

control of an object. In this case, an articulated robot 

is considered, which regulates the vertical position 

of an object solely by the applied contact pressure. 

In this case, the actual position of the object centre 

point should follow the desired set point position in 

a uniform movement.  The control was realized with 

a Sliding Mode Control (SMC), this method offers 

the necessary flexibility and robustness to enable a 

valid analysis, in particular in an application field, 

[2], [3], [4]. The paper is organized as follows. In 

Section 2 some physical basic knowledge are 

considered. Section 3 considers the construction of 

the model using differential equations. Section 4 

presents the obtained results. Discussion, conclusion 

and outlook close the paper. 

 

2 Background 

For simplification, the object is pressed against a 

rigid surface by the robot arm (Fig.1). One possible 

type of control of an articulated robot is the path 

control. In this motion control, from given velocity 

and acceleration, orbits are calculated with respect 

to the effector in the world coordinate system. The 

WSEAS TRANSACTIONS on SYSTEMS Tobias Ferch, Paolo Mercorelli

E-ISSN: 2224-2678 198 Volume 18, 2019



path control enables a movement on a straight line 

with the aid of linear interpolation. Here, the centre 

of the effector (also called TCP = Tool Centre 

Point) serves as a reference point for the movement 

on the linear path. This type of motion allows 

viewing robot dynamics in the horizontal plane, 

starting from the centre of the effector. The contact 

forces, due to Coulomb friction, provide a 

nonlinearity of dynamics. One of the core tasks is 

the modelling of the dynamics in order to be able to 

simulate system behaviour close to reality.. 

 

 

 
 

 

 

 

 

Figure 1: Schematic representation of robotic arm 

and object 

The field of control engineering makes it possible to 

describe the behaviour of dynamic systems based on 

their signals and the transformations of these 

signals. Signals are time-variable quantities which 

are processed and transmitted by a dynamic system. 

Because of this, differential equations typically form 

the basis of models. These contain signals and their 

time derivatives, as well as system-dependent          

physical parameters. The established differential 

equations make it possible to determine the time 

course of the output variable as a function of the 

input variable. In the process, the effects of the 

control parameters and the relationships of the 

control loop are recorded, which enables targeted 

intervention in the system. In order to arrive at the 

desired model via the relationships of the control 

loop, it is necessary to deduce the physical character 

of the dynamic processes. Here, temporal processes 

are described by time functions and the relationships 

between the processes as functional dependencies 

between these time functions. The temporally 

variable description variables of physical 

phenomena are decisive, as they reflect the dynamic 

behaviour of the system under consideration. In the 

following the physical basics for the derivation of 

the required differential equations are presented. 

 

2.1 Physical basics 

 

Coulomb's law of friction deals with dry friction 

between solid bodies and, due to its manifold 

applicability, it is an extremely complicated 

physical phenomenon. As a result of force-forced 

contact between two material surfaces, normal 

systems produce both normal forces and frictional 

forces. Two causes of microscopic nature are mainly 

responsible for the development of friction forces. 

Molecules tend to fall below of a minimum distance 

under pressure or heating to form molecular bonds. 

The second cause is roughness of the contact 

surfaces, this leads locally to different directions of 

the common normal surface, this tends to follow a 

rotation of the common normal surface in the 

direction of preventing any movement.  

 

Figure 1: Frictional movement on a horizontal plane 

In Fig. 1, a body is pressed by its weight 𝐹𝐺  on a 

horizontal rough surface. The force of gravity 

counteracts an equally large normal force 𝐹𝑁   acting 

perpendicularly to the surface: 

 
𝐹𝐺 = 𝐹𝑁 = 𝑚𝑔                                                      (1)                                     

 

If the body is moved by a force 𝐹𝑥 at constant speed 

�̇�(𝑡), the frictional force must be overcome. This 

counteracts the sense of direction of the movement 

tangentially in the contact surface. If the acting 

force 𝐹𝑥 is not sufficient to overcome the resistance 

force generated by the friction, this form of 

resistance is called the static friction force 𝐹𝐻. With 
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the help of the free body image and the equilibrium 

condition, the following relations result: 

 
↑ :  𝐹𝑁 = 𝐹𝐺 , → :  𝐹𝐻 = 𝐹𝑥 .                                     (2) 

 

Charles Augustine de Coulomb has shown by 

experiments that as long as a horizontal force 𝐹𝑥 
remains below a limit 𝐹0, then 𝐹𝐻(𝑡) = 𝐹𝑥(𝑡),  
where 𝐹𝐻(𝑡) represents the friction force which can 

be considered in a possible movement. If the force 

reaches this limit, 𝐹𝐻(𝑡)assumes its maximum value 

𝐹𝐻0. Furthermore, Coulomb's experiments showed 

that the normal force and the limit 𝐹𝐻0 are 

proportional in a first approximation and it results as 

follows: 

 

𝐹𝐻0 = 𝜇0𝐹𝑁(𝑡). (3) 

 

The proportionality factor 𝜇0 is called the 

coefficient of adhesion, which depends on the 

materials of the surfaces. If the limit is exceeded, 

the body moves on a rough surface, while the 

sliding friction force 𝐹𝑅 occurs as an impressed 

force. This is opposite to the direction of movement 

and is therefore also a resisting force. Since the 

body moves in this scenario, the basic equation of 

kinetics of the mechanism results as follows: 

 

𝑚�̈�(𝑡) = 𝐹𝑥(𝑡) − 𝐹𝑅(𝑡). (4) 

 

Coulomb's experiments have shown that frictional 

force 𝐹𝑅(𝑡) is also proportional to normal force 

𝐹𝑁(𝑡) and simultaneously independent of velocity. 

This results in the following basic physical law: 

  
𝐹𝑅(𝑡) =  𝜇𝐹𝑁(𝑡). (5) 

 

Here, the proportionality factor 𝜇 is called the 

friction coefficient. The two coefficients are always 

less than one, hence  𝐹𝐻(𝑡) and 𝐹𝑅(𝑡) are always  

fractions of the normal force 𝐹𝑁(𝑡). The dimension 

of the factors is a material constant and is 

determined experimentally between two surfaces. 

The foundations of tribology listed here revealed the 

following findings applied to the vertical system. 

Since this is a dynamic scheme, these findings were 

determined in a time-dependent manner. The weight 

force 𝐹𝐺(𝑡), which previously pressed the body to 

the plane, now acts as a driving force for the 

movement in the y-direction. The body is brought 

into its equilibrium situation by the contact force 

𝐹𝑅𝑥(𝑡), acting through the robot. The free-body 

image of this system provides information about the 

position of the normal force and the static friction 

force: 

← :  𝐹𝑁(𝑡) = 𝐹𝑅𝑥(𝑡) ,   ↓ :  𝐹𝐻(𝑡) = 𝐹𝐺(𝑡). (6) 

 

According to Coulomb's laws, the limit is 

approximately for the static friction force 𝐹𝐻(𝑡):  

 

𝐹𝐻0(𝑡) = 𝜇0𝐹𝑁(𝑡) = 𝜇0𝐹𝑅𝑥(𝑡). (7) 

 

The static friction force is thus directly dependent 

on the acting contact force 𝐹𝑅𝑥(𝑡) of the robot. In 

the equilibrium position of the system the following 

relations hold: 

 

𝐹𝐻(𝑡) = 𝜇𝐻𝐹𝑅𝑥(𝑡),                                                    (8) 

𝐹𝐻(𝑡) > 𝐹𝐺(𝑡) .                                                        (9) 

 

Accordingly, if the robot exerts a contact force 

𝐹𝑅𝑥(𝑡) which, in conjunction with the static friction 

coefficient 𝜇𝐻, is greater than the weight of the 

body, it is prevented from moving. If this is not the 

case, the body moves in the positive y-direction 

defined here. From the basic equation of the kinetics 

follows: 

 

𝑚�̈�(𝑡) = 𝐹𝐺(𝑡) − 𝐹𝐻(𝑡) = 𝑚𝑔 − 𝑘𝐻𝐹𝑅𝑥(𝑡), with 

static friction coefficient 𝑘𝐻                               (10) 

 

𝑚�̈�(𝑡) = 𝐹𝐺(𝑡) − 𝐹𝑅(𝑡) = 𝑚𝑔 − 𝑘𝑅𝐹𝑅𝑥(𝑡) with 

coefficient of friction 𝑘𝑅. (11) 

 

 

2.2 The viscoelasticity 

The horizontally acting force of the robot 𝐹𝑅𝑥(𝑡) 
causes deformation of the body, any deformation or 

return of a body is time-dependent. If the load is 

released, a time-dependent complete recovery of the 

material is called viscoelasticity. This behaviour can 
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be simplified with the help of a Kelvin-Voigt 

element (Fig. 2), see [5]. 

 

 

 
Figure 2: Parallel connection spring and damper element 

 

To determine the behaviour of viscoelastic 

materials, characteristic material functions are 

experimentally developed. Viscoelastic fabrics have 

both elastic and viscous properties. 

The viscoelastic factors are cumulated in this 

constant in the constant 𝑘𝑐. From the factor of 

viscoelasticity and the movement of the centre of 

mass in the x-direction, this relationship results for 

the viscoelastic resistance 𝐹𝑐(𝑡): 
 

𝐹𝑐(𝑡) = 𝑘𝑐𝑥𝑚(𝑡).                                               (12) 

 

2.3 The flow resistance 

 
The body of the object is flowed around by the fluid 

air, the body prevents the fluid particles from 

flowing straight along the streamlines. As a result, 

the fluid is deflected and flows past the body. Now, 

as the body moves through the fluid, it creates a 

resistive force that counteracts the movement of the 

body. In contrast to the Coulomb friction, the 

resistance increases with increasing speed. Other 

influencing factors are the shape of the body and the 

fluid properties of the fluid. At low speeds, there is 

approximately a proportionality between speed and 

drag. At higher speeds, the force increases in 

proportion to the square of the speed. Assuming 

gravity to be constant and accelerating the object 

down from rest, the equation for flow resistance is 

given: 

 

𝐹𝐿(𝑡) = 𝑏|𝑣(𝑡)|𝑛                                          (13) 

 
with 𝑏 und 𝑛 being constants. 

 

This general formula of flow resistance begins to 

become inaccurate even at speeds of a few meters 

per second. With the help of the Bernoulli equation, 

an equation can be derived which has a much higher 

accuracy. Assuming that the body around which it 

flows lowers the velocity of the fluid directly behind 

the body to zero, the pressure difference between 

the faces perpendicular to the flow direction results: 

Figures and Tables should be numbered as follows: 

 

∆𝑝 =
1

2
𝜌𝑣(𝑡)2.                                              (14) 

 

Since 𝑝 = 𝐹/𝐴, the drag force can be calculated 

based on the dynamic pressure. From this 

assumption, the general formula for the Newtonian 

resistance force follows: 

 

𝐹𝐿(𝑡) =
1

2
𝑐𝐴𝜌𝑣(𝑡)2.                                     (15) 

 
The constant c is the coefficient of resistance, this 

refers to the entire shape of the body and is 

determined experimentally. Since the shape of the 

body and the material properties can be neglected in 

the course of this research work, the following 

forms can be derived from the laws listed here: 

 

𝐹𝐿(𝑡) = 𝑘𝐿𝑣(𝑡).                                                 (16) 
 

The factor 𝑘𝐿 is a constant which includes all 

system-specific factors and serves as a substitute for 

them. Thus, the flow resistance is only in proportion 

to this factor and the respective speed. From this 

form results for the dynamics in the x- and y-

direction: 

 

𝐹𝐿𝑦(𝑡) = 𝑘𝐿𝑦�̇�(𝑡)  and 

 𝐹𝐿𝑥(𝑡) = 𝑘𝐿𝑥�̇�(𝑡).                             (17) 

3 Modelling  

The physical phenomena and laws listed in the 

previous section allow to set up the necessary 

differential equations, which serve as a basis for the 

subsequent modelling. When setting up a 

differential equation, basically four steps can be 

used. In the first step, the system is broken down 

into its individual components. Subsequently, the 

physical laws are formulated, which describe the 

behaviour of the components. This step was already 

done in the previous section. In the third step, the 

coupling relationships between the components are 

established, and in the final, fourth step, the 

determined equations are then combined to form a 

differential equation. Since the target is the position 

control of the object in the vertical plane, three 

differential equations are needed in total. 
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3.1 DGL Ⅰ horizontal dynamics of the robot 

 

Figure 3: Free cut robot arm 

The cut-out in Fig. 3 provides the position of the 

forces on the robot arm: 

 ← :  0 = 𝐹𝑅𝑥(𝑡) − 𝑘𝑐𝑥𝑅(𝑡) − 𝑘𝐿𝑥�̇�𝑅(𝑡),           (18) 

with 𝑥𝑅(𝑡) as the movement of the robot in the 

positive x-direction and �̇�𝑅(𝑡) as the associated 

movement speed. The origin of the coordinate 

system lies at the centre of the tool tip, as shown in 

the figure above. The resistance of the air and the 

resistance of the viscoelasticity counteract pressure 

of the robot. In conjunction with the basic equation 

of kinetics, the following differential equation 

results: 

 

𝑚𝑅�̈�𝑅(𝑡) = ∑ 𝐹𝑥 (𝑡),                                        (19) 
 
𝑚𝑅�̈�𝑅(𝑡) = 𝐹𝑅𝑥(𝑡) − 𝑘𝑐𝑥𝑅(𝑡) − 𝑘𝐿𝑥�̇�𝑅(𝑡).        (20) 

 

3.2 DGL Ⅱ horizontal dynamics of the object 

 

Figure 4: Free cut object horizontal 

The free-body image in Fig. 4 shows the position of  

the forces between the robot arm and the object: 

 

← :  0 = 𝑘𝑐𝑥𝑅(𝑡) − 𝑘𝑐𝑥𝑚(𝑡) + 𝑘𝐿𝑥�̇�𝑅(𝑡)
− 𝑘𝐿𝑥�̇�𝑚(𝑡) 

0 = 𝑘𝑐(𝑥𝑅(𝑡) − 𝑥𝑚(𝑡)) + 𝑘𝐿𝑥(�̇�𝑅(𝑡) 

                                                                  −�̇�𝑚(𝑡)), 

(21) 

 with 𝑥𝑚(𝑡) as movement of the mass in positive x-

direction and �̇�𝑚(𝑡) as associated movement speed. 

These assumptions are to be considered in the 

context of the DGL. The movement of the robot arm 

causes a deformation of the object and thus moves 

the centre of gravity of the body. Under these 

conditions the following dynamic behaviour results: 

 

𝑚�̈�𝑚(𝑡) = ∑ 𝐹𝑥 (𝑡)                                                    (22) 

𝑚�̈�𝑚(𝑡) = 𝑘𝑐(𝑥𝑅(𝑡) − 𝑥𝑚(𝑡)) 

                                            +𝑘𝐿𝑥(�̇�𝑅(𝑡) − �̇�𝑚(𝑡)).  (23) 

As a result, the horizontal movement of the centre of 

mass counteracts the flow resistance of the air and 

its own viscoelastic properties. These forces are 

directly related to the movement of the robot arm. 

 

 

3.3 DGL Ⅲ vertical dynamics of the object 

 

Figure 5: Free-cutting object vertical 
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The free-body image in Fig. 5 provides the forces 

acting vertically on the body: 

 

↓ :  0 = 𝑚𝑔−𝐹𝐻(𝑡) − 𝑘𝐿𝑦�̇�𝑚(𝑡) at rest              (24) (2) 

 ↓ :  0 = 𝑚𝑔−𝐹𝑅(𝑡) − 𝑘𝐿𝑦�̇�𝑚(𝑡)  in motion.     (25) (3) 

 

If the weight force 𝐹𝐺(𝑡) is below the limit value of 

the adhesive condition, the body remains in its 

equilibrium position. If the limit of static friction is 

exceeded, the body starts to move. This movement 

counteracts the resistance of Coulomb friction and 

slows down the body. Furthermore, the flow 

resistance of the air counteracts the movement. 

Information about the dynamic behaviour provides 

again the basic equation of the kinetics: 

   𝑚�̈�𝑚 (𝑡) = ∑ 𝐹𝑦 (𝑡) (26) 

 

  𝑚�̈�𝑚 (𝑡) =  𝑚𝑔−𝐹𝐻(𝑡) − 𝑘𝐿𝑦�̇�𝑚(𝑡)               (27) 

𝑚�̈�𝑚 (𝑡) =  𝑚𝑔−𝐹𝑅(𝑡) − 𝑘𝐿𝑦�̇�𝑚(𝑡). (28) 

4 The Sliding Mode Control: 

Background and its Applications 

SMC is one of the most important control strategies 

in the field of nonlinear control, [6], [7], [8], [9] and 

[10]. The dynamics of the overall system modelled 

in this way do not yet offer any possibility of 

regulating the position of the object based on a 

desired setpoint position. Only the parameter 

𝐹𝑅𝑥(𝑡) determines by the friction law whether the 

body starts to move or the rest position is 

maintained. The aim now is to define the contact 

force 𝐹𝑅𝑥(𝑡) so that it can be regulated as a function 

of the actual and desired position. In formulating 

any practical regulatory task, there will always be a 

certain discrepancy between reality and the 

mathematical model. These discrepancies are based 

on unknown external interfering signals, system 

parameters and non-modelled dynamics. The 

challenge is to develop controller laws that provide 

the desired performance in the presence of these 

disturbing influences. Therefore, there is an 

increasing interest to develop such robust control 

methods. One of these robust methods is the so-

called Sliding Mode Control (SMR), which belongs 

to the field of variable structured control. Variable 

Structured Control (VSR) covers a wide range of 

different system types, including nonlinear systems, 

multi-input multi-output systems, large scale 

systems, and infinite dimensional systems. The main 

feature of the VSR is the invariance over certain 

limited noise and parameter variations. Slip state 

controllers switch between two control laws 

depending on the state vector. The basic principles 

of SMR can be explained by considering a simple 

linear controlled system. 

�̇�1 = 𝑥2  𝑥1(0) = 𝑥10 (29) 

�̇�2 = 𝑢 + 𝑓(𝑥1, 𝑥2, 𝑡) 𝑥2(0) = 𝑥20.       (30)  

With 𝑢 as the input and 𝑓(𝑥1, 𝑥2, 𝑡) as the term 

containing any system resistive forces. Basically, 

the task of the input variable 𝑢 = 𝑢(𝑥1, 𝑥2) is to 

control the state variables of the system to zero: 

 

lim
𝑡→∞

𝑥1, 𝑥2 = 0.                                                    (31) 

 
The goal of asymptotic convergence in the presence 

of the unknown limits of the resistance forces 

𝑓(𝑥1, 𝑥2, 𝑡)  is a demanding regulatory task. For 

example, the following linear feedback control law 

would provide asymptotic stability of origin, just for 

the case 𝑓(𝑥1, 𝑥2, 𝑡) = 0. 

 

𝑢 = −𝑘1𝑥1 − 𝑘2𝑥2,              𝑘1 > 0,   𝑘2 > 0.      (32) 

 
To solve this problem, the SMR uses a 

compensation dynamics 𝑠(𝑡), the so-called 

switching hyperplane or sliding surface. This 

switching function is defined as follows: 

𝑠(𝑡) = 𝐶𝑠𝑥(𝑡).                                                     (33) 

 
The vector 𝐶𝑠 contains coefficients which describe 

the switching level as a function of the state vector 

𝑥(𝑡). The value of s specifies the distance of a point 

to the switching plane, hence 𝑠 = 0 means that the 
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point lies on the switching hyperplane. Defining the 

switching level as follows: 

 

𝑠 = 𝑐𝑠1𝑥1 + 𝐶𝑠2𝑥2 + ⋯ + 𝑐𝑠𝑛−1𝑥𝑛−1 + 𝑥𝑛 = 0       

(34) 

𝑥𝑛 = −𝑐𝑠1𝑥𝑠1 − 𝑐𝑠2𝑥2 − ⋯ − 𝑐𝑠𝑛−1𝑥𝑛−1         (35)  

�̇�𝑛 = −𝑐𝑠1𝑥2 − 𝑐𝑠2𝑥3 − ⋯ − 𝑐𝑠𝑛−2𝑥𝑛−1 

                                        + ∑ 𝑐𝑠𝑛−1𝑐𝑠𝑖𝑥𝑖
𝑛−1
𝑖=1            (36) 

 

 
the entire dynamics of the system are governed by 

the parameters of the switching hyperplane: 

 

�̇�𝑛 = −𝑐𝑠1𝑥2 − 𝑐𝑠2𝑥3 − ⋯ − 𝑐𝑠𝑛−2𝑥𝑛−1 +
∑ 𝑐𝑠𝑛−1𝑐𝑠𝑖𝑥𝑖

𝑛−1
𝑖=1                                                  (37) 

 

   𝑥�̇� = 𝑥𝑖+1,  𝑖 = 1, 2, … , 𝑛 − 1.         (38) 

 
As a result, the system dynamics have independence 

from the system parameters and only depend on the 

parameter 𝐶𝑠 of the switching level. This is proof of 

the robustness of the SMR against parameter 

fluctuations. A general basic formula for 

determining the switching function can have the 

following form: 

 

𝑠(𝑡) = (
𝑑

𝑑𝑡
+ 𝑘𝑠)

𝑛−1
∆𝑥(𝑡)                                 (39) 

 
with  

∆𝑥(𝑡) = 𝑥(𝑡) − 𝑥𝑑(𝑡) =

[∆𝑥(𝑡), ∆�̇�(𝑡), … , ∆𝑥(𝑡)(𝑛−1)]
𝑇

and 𝑘𝑠 > 0.        (40) 

 
In the case of a position control, 𝑥(𝑡) corresponds to 

the actual value of the position which follows the 

setpoint value 𝑥𝑑(𝑡)  in a finite time. To make this 

possible, the initial condition 𝑥𝑑(0) = 𝑥(0) must be 

fulfilled. To initialize a slip state, another aspect is 

essential besides stability. This includes the 

reachability of the switching level for all trajectories 

of the state space. To ensure this accessibility, a 

necessary condition is that the trajectories of the 

control loop on both sides converge to the switching 

level. This can be expressed by the following 

conditions for the switching function: 

 

 

�̇�(𝑡) < 0  for 𝑠(𝑡) > 0       (41) 

�̇�(𝑡) > 0  for 𝑠(𝑡) < 0.       (42)  

 
These two conditions can be summarized in the 

reachability condition: 

 

𝑠(𝑡)�̇�(𝑡) < 0.                                                 (43) 

 

The following example illustrates, however, that the 

reachability condition is not sufficient to establish 

the slip state. 

 

 �̇�(𝑡) = −𝑠(𝑡)                                                      (44) 

 𝑠(𝑡)�̇�(𝑡) = −𝑠(𝑡)2, ∀𝑠(𝑡) ≠ 0.                         (45) 

 

The solution for this is given by: 

 

𝑠(𝑡) = 𝑒−𝑡𝑠(0).                                                   (46) 

 

This has the consequence that 𝑠(𝑡) = 0  is only 

given for 𝑡 → ∞, when approaching the switching 

level, it takes infinite time to reach them. A 

common approach for solving this problem is that of 

Gao and Hung. Here, the decrease of the switching 

function along the trajectories is specified. 
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�̇�(𝑡) =  −𝐵𝑠𝑔𝑛(𝑠(𝑡)) − 𝜆𝑠(𝑡)                          (47) 

 
with 𝐵 and 𝜆 as strictly positive constants, this 

makes it possible to fulfil the reachability condition: 

 

𝑠(𝑡)�̇�(𝑡) = −𝐵|𝑠(𝑡)| − 𝜆𝑠(𝑡)2 < 0.                   (48) 

 
The parameters 𝐵 and 𝜆 are freely selectable 

parameters which make it possible to influence the 

rate of change of the switching function constantly 

and proportionally. 

4.1 Lyapunov Approach: Background 

 
One of the prerequisites for the induction of a 

sliding mode control is the verification of the system 

stability, with respect to the switching hyperplane. 

One method which lends itself to the general 

stability analysis of nonlinear systems is the stability 

theory of A.M. Lyapunov. This procedure makes it 

possible in principle to examine all dynamic 

systems for their stability. A variant to prove the 

stability according to the Lyapunov stability theory 

is to show the dependence of the derivative �̇�(𝑡)  of 

the suitable Lyapunov function 𝑉(𝑡) on the input 𝑢. 

In this case, it should be demonstrated that for every 

meaningfully chosen value of u, the derivative  

�̇�(𝑡) < 0.                                                           (49) 

This is because an equilibrium state is considered 

stable if it is possible to find a Lyapunov function of 

the system state which has its minimum in the rest 

position of the system and whose value decreases 

along each trajectory of the system. This behavior 

allows to guarantee stability without a solution to 

the differential equation of the system. From these 

conditions, two basic steps can be formulated. The 

Lyapunov function and its derivative should be 

chosen so that the distance to the sliding surface and 

its rate of change have inverted signs. Furthermore, 

a controller should be chosen that meets the selected 

stability criteria. In addition, the selection should 

aim to find a Lyapunov function that has the 

greatest possible simplicity. 

 

Looking at the following simple differential 

equation, it is possible to establish the stability 

criteria according to Lyapunov. 

�̇� = 𝑓(𝑥)                        𝑥𝑅 = 0.                         (50) 

 
For every initial value from an environment 𝑈1(0) 

of origin, the equation has a continuous and unique 

solution. Now there exists a function 𝑉(𝑡) with the 

following properties: 

 

𝑉(0) = 0.    (51) 

 

It is continuous in the environment and has 

continuous partial derivatives. Furthermore, with the 

exception of 𝑡 = 0, it fulfils the following 

conditions: 

 

𝑉(𝑡) > 0                                                              (52) 

 

�̇�(𝑡) ≤ 0,                                                                (53)  

then, the system results to be stable.  

 

�̇�(𝑡) < 0,                                                             (54) 

then, the system results to be asymptotically stable.  

 

So, the rest position is stable or asymptotically 

stable in the sense of Lyapunov. If the function 

𝑉(𝑡) satisfies these three conditions, the stability is 

proven. It should be noted that the physical meaning 

of the function itself is not critical. The direct 

method of Lyapunov therefore returns the problem 

of stability analysis to a functional Lyapunov 

function. There is no systematic method for 

formulating the Lyapunov function which certainly 

generates the optimal function for a nonlinear 

system. 

4.2 Application of the Sliding Mode Control 

The switching function of the dynamics results from 

the following general basic equation: 

 

  𝑠(𝑡) = (
𝑑

𝑑𝑡
+ 𝑘𝑠)

𝑛−1
∆𝑥(𝑡)                             (55)

 with          
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                                   ∆𝑥(𝑡) = 𝑥(𝑡) − 𝑥𝑑(𝑡).        (56) 

The goal is to control the position of the body in a 

vertical plane. For these dynamics a differential 

equation of the second order exists, from which it 

follows with n = 2: 

  𝑠(𝑡) = (
𝑑

𝑑𝑡
+ 𝑘𝑠)∆𝑦(𝑡).                                          (57) 

𝑠(𝑡) = �̇�𝑚(𝑡) − �̇�𝑚𝑑(𝑡)

+ 𝑘𝑠(𝑦𝑚(𝑡) − 𝑦𝑚𝑑(𝑡)). 

(58) 

The following Lyapunov function is suitable for this 

switching function, with the condition 

 𝑉(0) = 0.                                                       (59) 

Considering 

 

𝑉(𝑠(𝑡)) =
1

2
𝑠2(𝑡). (60) 

This function satisfies the condition 𝑉(𝑡) > 0 of 

Lyapunov, the differentiation of this function leads 

to: 

 

�̇�(𝑠(𝑡)) = 𝑠(𝑡)�̇�(𝑡). (61) 

This corresponds to the desired shape. The insertion 

of the sliding surface leads to: 

 

�̇�(𝑡) = 𝑠(𝑡)[�̈�𝑚 (𝑡) − �̈�𝑚𝑑  (𝑡) + 𝑘𝑠(�̇�𝑚(𝑡)

− �̇�𝑚𝑑(𝑡))]. 

(62) 

Subsequent insertion of the equation (28) for 

�̈�𝑚 (𝑡): 

�̇�(𝑡) = 𝑠(𝑡) [𝑔 −
𝐹𝐻(𝑡) − 𝑘𝐿𝑦�̇�𝑚(𝑡)

𝑚

− �̈�𝑚𝑑  (𝑡) + 𝑘𝑠(�̇�𝑚(𝑡)

− �̇�𝑚𝑑(𝑡))] 

(63) 

and the substitution of 𝐹𝐻(𝑡) leads to: 

  0 = 𝑔 −
𝐹𝐻(𝑡)−𝑘𝐿𝑦�̇�𝑚(𝑡)

𝑚
− �̈�𝑚𝑑  (𝑡) + 𝑘𝑠(�̇�𝑚(𝑡)- 

�̇�𝑚𝑑(𝑡))                                                                        (64) 

𝐹𝐻(𝑡) = −𝑘𝐿𝑦�̇�𝑚(𝑡) + 𝑚[−�̈�𝑚𝑑  (𝑡) +

𝑘𝑠(�̇�𝑚(𝑡) − �̇�𝑚𝑑(𝑡)) + 𝑔].                              

 (65)                        

 

Taking into account the following relation: 

 

𝐹𝐻(𝑡) = −𝑘𝐿𝑦�̇�𝑚(𝑡) + 𝑚[−�̈�𝑚𝑑  (𝑡) +

𝑘𝑠(�̇�𝑚(𝑡) − �̇�𝑚𝑑(𝑡)) + 𝑔]   + 𝑚𝜆𝑠(𝑡)   +

𝑚𝐵𝑠𝑔𝑛(𝑠(𝑡)).                                                     (66)                                                        

 

 

Subsequent insertion of the substitution term in 

�̇�(𝑡): 

  �̇�(𝑡) = 𝑠(𝑡)[−𝜆𝑠(𝑡) − 𝐵𝑠𝑖𝑔𝑛(𝑠(𝑡))].                (67) 

With the condition 𝜆, 𝐵 > 0 it follows: 
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�̇�(𝑡) = −𝜆𝑠(𝑡)2 − 𝐵|𝑠(𝑡)| < 0. (68) 

 

The stability condition of Lyapunov is thus fulfilled 

and also the asymptotic stability of the rest position. 

The relationship between the contact force 𝐹𝑅𝑥(𝑡) 
and the static friction force 𝐹𝑅𝑥(𝑡) is given by: 

 

𝐹𝐻(𝑡) = (𝐹𝑅𝑥(𝑡) − 𝑘𝑐(𝑥𝑚(𝑡) − 𝑥𝑅(𝑡))𝑘𝐻 . (69) 

The required contact force to produce the stiction 

state is thus defined by: 

 

𝐹𝑅𝑥(𝑡) =
𝐹𝐻(𝑡)

𝑘𝐻
+ 𝑘𝑐(𝑥𝑚(𝑡) − 𝑥𝑅(𝑡)). 

(70) 

Inserting the switching function leads to: 

𝐹𝑅𝑥(𝑡)

= 𝑘𝑐(𝑥𝑚(𝑡) − 𝑥𝑅(𝑡))

+
−𝑘𝐿𝑦�̇�𝑚(𝑡) + 𝑚[−�̈�𝑚𝑑 (𝑡) + 𝑘𝑠(�̇�𝑚(𝑡) − �̇�𝑚𝑑(𝑡))]

𝑘𝐻
 

+m[
+𝑔+𝜆𝑠(𝑡)+𝐵𝑠𝑔𝑛(𝑠(𝑡))]

𝑘𝐻
].                     (71) 

  

Thus, a SMC was derived taking into account the 

stability theory of Lyapunov and the reachability 

condition of the switching hyperplane. With the help 

of this it is now possible to control the actual 

position of the object solely on the basis of the 

desired position. 

 

5 Simulations 

It is used to vary parameters in the course of the 

investigation in order to analyse the control and in 

order to show how the disturbance can influence the 

behaviour of the controlled system. 

 

Figure 6: Target (blue line) and actual position (red line) 

• All graphs of the actual position are marked with a  

red colour 

 

• All graphs of the nominal position are marked with 

the blue colour. 

 

The function graphs in Fig. 6 show a possible 

behaviour between the set point and the actual 

position. The simulation time was set at ten seconds 

and the desired movement of the body was defined 

to 10 mm. The desired position is asymptotic in the 

approach to the target position. However, it is also 

clear that the entire sequence of movements is not a 

uniform movement, in addition to the target position 

is not fully achieved. With the parameters λ and B, 

the SMC has tuning parameters, which offer the 

possibility of optimizing the SMC and thus 

smoothing the present motion sequence. A 

significant change in the system behaviour in the 

range λ, B <1, could not be determined. 
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Figure 7: Simulation for λ = 100 and B=1 

 

It was therefore necessary to investigate how the 

dynamics change when the parameters in the range 

λ and B> 1 are increased. First, the behaviour of the 

function graph at a constant value of B = 1 and the 

change of λ is investigated. Setting λ = 100 

produces the result graphed in Fig. 7. The 

achievement of the desired position is thereby not 

possible. However, some increase in the switching 

frequency during the sliding phase of the switching 

function which is noticeable. Of interest is now the 

behaviour of the function with further increase of 

the factor. The function graph in Fig. 8 corresponds 

to the behaviour at λ = 1000. The actual position 

follows here approximately the desired position on 

the entire route. The movement provides a much 

more stable pattern along the entire route. When 

enlarging the graphs, however, it became clear that 

even here the target position is not completely 

reached. There is a small difference between the 

actual value and the set point value every time t. 

∆𝑦(𝑡) = 𝑦𝑚(𝑡) − 𝑦𝑚𝑑(𝑡) > 0. (72) 

By simply tuning the parameter λ, the sliding 

surface cannot be met. 

 

 

 

 

Figure 8: Simulation for λ = 1000 and B=1 

It was therefore necessary to investigate whether 

and to what degree the parameter B can improve the 

system behaviour in terms of control. As in the 

previous analysis, the value of a parameter is kept 

constant, here λ = 1. The function graph in Fig. 9 

shows the system behaviour with a parameterization 

of B = 100. 

 

Figure 9: Simulation for λ = 1 and B = 100 

In contrast to the λ parameter, the B parameter does 

not seem to exert a significant influence on the 

switching frequency of the graph. However, it is 

clear that the actual position reaches the target 

position asymptotically. After reaching the desired 

position ∆𝑦(𝑡) = 𝑦𝑚(𝑡) − 𝑦𝑚𝑑(𝑡) = 0, the 

dynamics is maintained at the switching hyperplane. 
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Figure 10: Simulation for λ = 1 and B = 1000 

Further increasing the parameter B = 1000 gave the 

result of Fig. 10. The feature now provides a 

significant improvement in stability during the 

sliding phase. It follows that during this phase the 

parameter has an influence on the rate of change of 

the switching function. 

 

Figure 11: Simulation for λ = 500, B = 100 

It is thus proven that the connection of the two 

parameters can unmistakably contribute to 

achieving the desired performance. The result of the 

connection and tuning of the two parameters is 

shown in Fig. 11. This function graph now offers 

asymptotic stability during the sliding phase in the 

direction of the desired position. In addition, the rate 

of change is designed so that the actual position 

follows the desired position during the sliding phase 

in an approximately uniform movement.  

𝑠(𝑡)�̇�(𝑡) = −𝐵|𝑠(𝑡)| − 𝜆𝑠(𝑡)2 < 0.           (79) 

The values λ = 500 and B = 100 were determined 

experimentally and a further optimization of the 

parameterization is not excluded. 

 

5.1 Disturbance behaviour 

 

The robustness of the SMR, in contrast to limited 

external disturbances, now had to be proven as well. 

One potential source of interference could be 

bumped on the surface of the object. The simulation 

of this case was realized with the help of the Sine 

Wave function block. The sine wave block 

generates a sinusoidal output signal, whereby the 

simulation time serves as a time base. With a 

randomly chosen value for the amplitude, the noise 

signal shown in Fig. 12. 

 

 

Figure 12: Sine wave interference signal 

The interference signal 𝑧(𝑡) thus generated has the 

following effects on the vertical dynamics of the 

object: 
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�̈�𝑅(𝑡) =  
𝑚𝑔−𝐹𝑅(𝑡)−𝑘𝐿𝑦�̇�𝑚(𝑡)+𝑧(𝑡)

𝑚
        and

 �̈�𝑚(𝑡) =  
𝑚𝑔−𝐹𝐻(𝑡)−𝑘𝐿𝑦�̇�𝑚(𝑡)+𝑧(𝑡)

𝑚
. 

(73) 

 

Due to the prior adjustment of the sliding mode 

control, there was no change in the function shown 

in Fig. 11. Setting the parameters λ, B = 1 confirms 

the influence of the disturbance variable on the 

dynamics (Fig. 13). 

Figure 13: Simulation with a sine interference signal, λ = 

1, B = 1 

Of interest are the limits of λ and B, where the 

control has instability. A constant parameter B = 

100 and the simultaneous reduction of λ resulted in 

no decrease in performance up to a value of λ=389, 

from which value of an instability resulted, Fig. 14. 

 

 

Figure 14: Simulation with a sine interference signal, λ = 

389, B = 100 

Keeping the parameter λ = 500 constant and 

reducing B at the same time did not lead to any 
change in performance up to a value of B > 3; from 

this value an instability resulted, Fig. 15. With 

correct dimensioning of the parameters λ and B, the 

SMC accordingly has a resistance to interference. 

The rate of change of the switching function thus 

ensures fulfilment of the stability condition. 

 

 

 

Figure 15: Simulation with a sine interference signal, λ = 

500, B = 3 
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Figure 16: Simulation with a sine interference signal, λ = 

100, B = 1 

Figures 16 and 17 show how, increasing parameter 

B, maintaining λ = 100, the performance of the tracking 

can be improved. 

 

Figure 17: Simulation with a sine interference signal, λ = 

100, B = 1000 

6. Discussion and Conclusion 
 
In this work, the vertical position control of an 

object, using a SMC, has been investigated. First of 

all, the physical laws concerning the system were 

explained. In particular, the friction law according 

to Charles Augustin de Coulomb should be 

emphasized, as this ensures a nonlinearity within the 

dynamics. The second step was to describe the 

dynamic relationships of the system using 

differential equations. These equations were then 

transformed into Simulink function blocks to allow 

simulation of system behaviour. Subsequently, the 

choice of the Sliding Mode regulation was justified. 

Proof of whether the use of this regulatory variant 

has legitimacy was based on the stability theory of 

Alexander M. Lyapunov. In the analysis of the 

regulation, the reachability condition of the 

switching hyperplane was met by matching the 

veining rate. Furthermore, this parameterization 

ensured the required uniform motion sequence. The 

aspect of the research question as to whether a 

vertical position control can be regulated by 

specifying the target position has been confirmed by 

the simulation and analysis. It should be noted that 

this also has to be considered in the context of 

simplification. The presence of the nonlinear 

Coulomb friction was compensated by the Sliding 

Mode Control. However, not only the factor of 

nonlinearity, but also the robustness and stability of 

the control has been proven experimentally. This 

was done by using a limited random disturbance. To 

what degree the control is possible to be determined 

on the basis of this modelling only for the two-

dimensional Cartesian coordinate system defined 

here. According to the analysis, the control is not 

possible if the parameters of the switching function 

are defined incorrectly or an unlimited disturbance 

occurs. 
 

7 Outlook 

The simulation has thus shown that this type of 

position control in the two-dimensional Cartesian 

coordinate system is possible. Of further interest is 

now the extension of this system to a three-

dimensional space. This analysis is an important 

preliminary stage to enable the interaction of two 

robots using this method. By using two cooperating 

robots, objects could be transported to any position 

within their environment by combining both contact 

forces. Since the shape, material type and start 

position of the object are known in industrial 

production, it would be possible to define the object 

centre as the origin of a coordinate system. This 

would result in the robots being able to orient their 

centre of effect around the newly created origin of 

coordinates. When moving in three-dimensional 

space, rotational movements of the robots play an 
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essential role. But not only the rotation of the robot 

axes has to be considered, but also the rotation 

movement of the object has to be included in the 

control. Since the findings of this work were derived 

purely from a simulation, it goes without saying that 

the practical implementation of these findings is of 

great interest. This outlook shows that there is a 

broad spectrum for further theoretical and 

experimental research based on this approach. 
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